
Tutorials

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

xiv

	
Developing CLARION-based Agents with the New CLARION Library

Michael Lynch (lynchm2@rpi.edu)

Department of Language, Literature and Communication Rensselaer Polytechnic Institute, 110 Eighth Street,
Troy, NY 12180 USA

Telephone: (518) 276-3243 | Fax: (518) 276-4092

Nicholas Wilson (wilson3@rpi.edu)
Ron Sun (rsun@rpi.edu)

Cognitive Science Department Rensselaer Polytechnic Institute, Troy, NY 12180 USA

Previous tutorials on CLARION have focused
mainly on presenting detailed introductions to the
core theoretical con- cepts underlying the
CLARION cognitive architecture. For this tutorial,
in addition to providing a detailed introduction to
the theory, we will also focus on giving participants
hands-on experience using the new implementation
of CLARION -- the CLARION Library, version 6.1
(written in C#). To that end, we will introduce
guidelines for setting up and using basic and
intermediate aspects of the library (with detailed
walk-throughs for several simulation examples) as
well as present several significant new features and
en- hancements.
 As CLARION is implemented in C#,
participants will learn how they can employ the
CLARION library on differ- ent operating systems
using either the Visual Studio or Mono
development environments. By the conclusion of
this tutorial, participants should be equipped with
the necessary foundation to begin developing
CLARION-based agents for their own applications.

Tutorial Outline
A General Overview of CLARION (15 min.)
In this section, an introduction to cognitive
architectures in general, and CLARION in
particular, will be presented. CLARION will be
compared to various other architectures and a brief
discussion of some past and current applications of
CLARION will be presented along with cognitive
justifi- cations and implications.
CLARION is a unified, comprehensive theory of
the mind based on two basic theoretical
assumptions: representational differences and
learning differences of two different types of
knowledge --- implicit vs. explicit, among other
essential assumptions and hypotheses.
In addition to these theoretical assumptions,
CLARION is a cognitive architecture composed of
four main subsystems: the Action-Centered
Subsystem, the Non-Action-Centered Subsystem,
the Motivational Subsystem, and the Meta-
Cognitive Subsystem.
Action-Centered Subsystem Basics (30 min.)
In this section, some basic concepts of the Action-

Centered Subsystem (ACS) will be presented. The
structure and design of various aspects of the ACS,
along with the learning mechanisms and the
properties of the model, will be presented.
The Action-Centered Subsystem is used mainly for
action decision-making. In the ACS, the top level
generally con- tains simple “StateàAction” rules,
while the bottom level uses multi-layer perceptrons
to associate states and actions. Reinforcement
learning algorithms (usually with backprop-
agation) are used in the bottom level while rule
learning in the top level is mostly “one-shot” and
can be performed bottom-up (via “explicitation”) or
independently (e.g., through linguistic acquisition).
This section will focus on the representation for the
top and bottom levels, and will detail bottom level
learning and bottom-up rule extraction and
refinement (RER).
Setting up and Using the ACS (30 min.)
For the first hands-on section of the tutorial,
participants will be instructed on how to set up and
install the CLARI- ON Library and are walked
through a simple simulation example. In addition,
several core principles necessary for interacting
with the library will be outlined.
Working Memory and Goals (15 min.)
In this section we will discuss the theoretical
underpin- nings for the working memory (WM) and
the role that goals play in the decision-making
processes of the ACS.
The working memory is conceived as a requisite
structure within the ACS, whereas goals are stored
within a top-level construct of the Motivational
Subsystem, referred to as the Goal Structure (GS).
Setting up and Using the WM and GS (15 min.)
For this hands-on section, participants will be
shown both the manual and action-oriented
methods for setting-up and using the working
memory and goal structure. In addition, asimple
simulation example will be presented that demon-
strates the use of working memory.
Drives and Meta-Cognitive Modules (30 min.)
This section will focus on the structure and design
of the motivational (MS) and meta-cognitive
(MCS) subsystems. In particular, the drives within
the MS and various meta- cognitive modules within

xv

the MCS, will be described.
The Motivational Subsystem contains both low-
level (physiological) and high-level (social)
primary drives that take into account both
environmental and internal factors in determining
drive strengths. These drive strengths are re- ported
to the Meta-Cognitive Subsystem, which regulates
not only goal structures but other cognitive
processes as well (e.g., monitoring, parameter
setting, etc).
Setting up and Using Drives and Modules (30 min.)
For this hands-on section, participants will be
shown both the manual and action-oriented
methods for setting up and using the working
memory and goal structure. In addition, a simple
simulation example will be presented that demon-
strates the use of these mechanisms.
Hands-On Practice Session #1 (15 min.)
In the final section before lunch, participants will
be given the opportunity to further explore the
CLARION Library and the simulations that were
presented to this point. Partic- ipants will also be
encouraged to ask any questions they may have
with regard to using the library at this time.
The Non-Action-Centered Subsystem (45 min.)
Similar to the section on the ACS, this section will
detail the Non-Action-Centered Subsystem
(NACS). The structure and design of the various
aspects of the NACS, along with the learning
mechanisms and the theorems describing the
properties of the model, will be presented.
The Non-Action-Centered Subsystem stores
declarative (“semantic”) and episodic knowledge
and is responsible for reasoning in CLARION. In
the NACS, the top level con- tains simple
associations while the bottom level involves
nonlinear neural networks. Associative learning
algorithms (e.g., backpropagation or contrastive
Hebbian) are generally used in the bottom level
whereas associations in the top lev- el are mostly
learned “one-shot” (similar to the ACS).
Performing Reasoning using the NACS (15 min.)
For this hands-on section, participants will be given
a very brief introduction to using the reasoning
mechanism in the NACS. However, as the NACS is
currently in the devel- opment stage, this
demonstration will necessarily be brief.
Intermediate Aspects of the ACS (30 min.)
In this section we will discuss several intermediate
con- cepts for the ACS. In particular, we will
review the theoreti- cal considerations that govern
IRL and Fixed rules.
IRL and Fixed rules are the other two forms of
procedural knowledge (besides RER rules) that can
be found in the top level of the ACS.
Setting-up and Using IRL and Fixed Rules (30
minutes)
For this hands-on section, participants will be

shown how to do some basic customization using
the CLARION Li- brary. In particular, we will
show participants how to use C#’s delegate concept
in order to quickly and easily create their own
customized rules. In addition, a simple simulation
that uses IRL rules will be presented.
Pre-Training, Tuning and Parameter Setting (15
minutes)
For this hands-on section, participants will be
shown sev- eral methods for performing simple
tuning and parameter setting operations in the
CLARION Library.
Features and Plugins (15 minutes)
For this hands-on section, participants will be
shown some of the useful features and plugins that
are currently available as part of the CLARION
Library.
Hands-On Practice Session #2 (30 min.)
In the final section of the day, participants will be
given the opportunity to further explore the
CLARION Library and ask any additional
questions they may have.

Relevance for Cognitive Science
The CLARION cognitive architecture is well
established with over 100 scientific papers and
several books. CLARI- ON is particularly relevant
to cognitive scientists because of its strong
psychological plausibility and the breadth of its
application to cognitive modeling and simulation.
In CLAR- ION, each structure corresponds to a
psychological pro- cess/capacity. CLARION-based
models have been used to explain data as diverse as
implicit learning, cognitive skill acquisition,
inductive and deductive reasoning, meta- cognition,
motivation, personality, and social simulations.

Presentation Details
Descriptions and demonstrations during the
presentation will be provided using PowerPoint and
the Visual Studio and Mono development
environments.
Participants in the tutorial are encouraged to ask
questions throughout the presentation to clarify any
ideas described.

Sample Materials
• Sample slides:

https://sites.google.com/site/clarioncognitivearchitect
ur e/presentations

• A complete technical specification of CLARION:
http://www.cogsci.rpi.edu/~rsun/sun.tutorial.pdf

• A list of CLARION-related publications:
http://www.cogsci.rpi.edu/~rsun/clarion-pub.html

• The current (6.1.0.6, C#) and previous (6.0.5, Java)
versions of the CLARION Library:
https://sites.google.com/site/clarioncognitivearchitect
ur e/downloads

• Other demonstration materials: See the "Tutorials"
folder within the current CLARION Library software
package

xvi

Scaling models of cognition to the real world:
Complexity-theoretic tools for dealing with intractability

	
Iris van Rooij (i.vanrooij@donders.ru.nl)

Donders Institute for Brain, Cognition, and Behaviour
Radboud University Nijmegen

	
Johan Kwisthout (kwisthou@liacs.nl)

Leiden Institute of Advanced Computer Science
Leiden University

Introduction

A common theoretical obstacle encountered by
computational- or rational-level models of
cognition is that the cognitive capacities that they
postulate appear to be computationally intractable
(e.g., NP-hard or worse). Formally, this means that
the computations that these models postulate
consume an exponential amount of time.
Informally, this means that the postulated
computations do not scale in any obvious way to
explain how cognitive capacities can operate in the
real world outside the lab. How can cognitive
scientists overcome this undesirable property of
models of cognition? Over the last decade, several
sophisticated complexity-theoretic techniques have
been developed in theoretical computer science that
can be utilized by cognitive modelers to
systematically generate hypotheses about model
changes or constraints that yield computational
tractability without loss of the general applicability
of the models. With this workshop we aim to bring
these complexity-theoretic techniques to the
attention of a broad audience of cognitive modelers
and illustrate how they can be used to make
cognitive models that scale to situations of real-
world complexity.
	

Morning Session
In the morning session the tutorial organizers, Van
Rooij and Kwisthout, will give a conceptual primer
on computational complexity analysis in the context
of cognitive modeling. The session will include a
conceptual introduction to tractable cognitive
modeling. Subsequently, they will review
complexity-theoretic concepts (e.g., NP-hard, fixed-
parameter tractability) and techniques (e.g.,
polynomial-time and parameterized reduction).
Participants will have opportunity to practice the
techniques via hands-on exercises (these can be
done using paper and pencil). Also more
controversial issues will be topic of discussion,
such as the question to what extent intractable
computations can be efficiently approximated by
randomized or heuristic methods. The organizers
aim for an interactive style of discussion.
Reading material: van Rooij, I. (2008). The
Tractable Cognition thesis. Cognitive Science, 32,
939-984.

Afternoon session
In the afternoon session, four speakers will
illustrate several applications of the concepts and
techniques introduced in the morning session. Each
application talk will consider a different type of
model in a different cognitive domain.

What does (and doesn't) make deriving analogies
hard?
Todd Wareham (Memorial University of
Newfoundland) will present complexity analyses of
Structure-Mapping Theory (SMT), assessing
several conjectures in the literature about conditions
that make analogy derivation under SMT feasible in
practice.

Does recipient design make intention recognition
tractable?
Mark Blokpoel (Radboud University) will consider
Bayesian models of intention recognition and
recipient design in the context of communication.
He will demonstrate these models are NP-hard but
also identify model constraints that yield
computational tractability.

A tractability border in natural language semantics
Jakub Szymanik (University of Groningen) will
discuss how ambiguity in natural language may be
related to computational complexity. He will focus
on logic-based models of quantifier expressions
(e.g. `some', `more than') and will outline a
tractability border between quantifier sentences.

Is managing multiple goals an intractable
balancing act?
Daniel Reichman (Weizmann Institute of Science)
will put forth the idea that people find it difficult to
achieve multiple goals simultaneously because
doing so entails solving computational intractable
problems. He will outline approaches that can aid
people in solving hard problems related to the
attainment of multiple interrelated goals.
	
For more information about this tutorial, full details
of the schedule, and extra materials, please refer to
our website: http://tcs.dcc.ru.nl/iccm2012/

	

xvii

Design principles revisited: The continued design of the Symbolic and Sub-
symbolic Robotics Intelligence Control System (SS-RICS)

Troy Dale Kelley (troy.d.kelley6.civ@mail.mil)

U.S. Army Research Laboratory Human Research and Engineering Directorate Aberdeen Proving Ground,
Aberdeen MD 21005

Abstract
The Symbolic and Sub-symbolic Robotics Intelligence
Control System (SS-RICS) is a production system based
robotics controller based largely on the cognitive
architecture the Adaptive Character of Thought-Rational
(ACT-R). At the beginning of the research program a set
of design principles were developed to aid in the design
of the robotics system. These principles are discussed and
revisited here.

Keywords: cognitive architectures, cognitive
modeling, robotics

Introduction
In the last several decades, cognitive architectures
have been designed around psychological principles
in an attempt to reproduce the thought patterns of
the human mind (Anderson & Lebiere, 1998).
These cognitive architectures have made progress
in modeling the human mind by using the
production system architecture as a basis; however,
they traditionally have had little interaction with the
outside world which gives them limited
functionality as real-world robotics controllers. The
Sub-symbolic Robotic Intelligence Control System
(SS-RICS) was developed using a production
system as the central executive, as with traditional
cognitive architectures, while also using sub-
symbolic algorithms for perceptual processing. This
allows SS-RICS to interact with the outside world.
Additionally, these perceptual sub-symbolic
algorithms are run in parallel with the production
system, and mimic the parallel perceptual
processing seen in the humans and animals.
Additionally, the production system within SS-
RICS is capable of shutting down certain
algorithms (i.e. face recognition) if the current goal
does not require the specified algorithms, thereby
freeing up computational resources.
SS-RICS is part of an ongoing development within
the U.S. Army Research Laboratory of a robotic
control architecture that was inspired by
computational cognitive architectures, primarily the
Adaptive Control of Thought – Rational (ACT-R).
SS-RICS combines symbolic and sub- symbolic
representations of knowledge into a robotic control
structure that allows robotic behaviors to be
programmed in a production system format. The
architecture is organized as a goal driven, serially
executing, production system at the highest
symbolic level; and a multiple algorithm, parallel
executing, simple collection of algorithms at the
lowest sub-symbolic level.

Five Development Principles
In order to guide the development of SS-RICS, five
development principles were established in 2009
(Kelley et al. 2009).

1) The lowest level of perception includes
algorithms running in a parallel fashion,
while the highest levels of cognition are
algorithms operating in serial fashion

2) At both the low levels and the high levels of
cognition, the algorithms are relatively
simple. It is the interaction, processing and
results of simple algorithms which produce
complex intelligent behavior.

3) Pre-programming SS-RICS is guided by the
algorithms that are recognized as part of the
human evolutionary process (for example,
algorithms for edge detection, auto-focus of
the eyes, pupil dilatation in different lighting
environments). The pre-programming that is
done should allow for the emergence of
complex behavior, but not be the complex
behavior itself.

4) Cognitive development within SS-RICS is
principally about the reorganization of
memory elements through increasing and
decreasing their respective strengths.

5) Cognitive development and change can
occur after allowing for specialized internal
processing (i.e. dreaming) or after the
necessary low level elements (i.e. features)
are in place to allow for higher level
symbolic extraction.

Developmental principles revisited

As defined in principle one, we have found an
enormous value in running perceptual algorithms
(motion tracking) in parallel with our other sub-
symbolic algorithms (finding corners or gaps in a
wall). This allows the higher levels of the system to
turn off perceptual algorithms as the system
becomes overloaded or runs out of memory; or
allows us to pick and choose what functionality we
are interested in, depending on the task. This can
make the system very adaptive to certain tasks and
make it able to use all of the available processing
power for a given task. Additionally, we are
currently running the cognitive process in serial but
have found some utility in running multiple
cognitive processes in parallel. In other words,
the algorithm for the identification of an object is
running in parallel with the algorithm for the
identification of a specific face. The reader might

xviii

ask – “what is the line between cognitive
processes and perceptual processes” and it should
be noted that this distinction can sometimes become
blurred. It is not entirely clear that the identification
of a face is, in fact, a cognitive process. We would
rather reserve cognitive processes to strategy
selection and problem solving so these lower levels
processes should be, perhaps, pushed down to the
parallel aspects of perception. This would make our
goal stack relatively simple and would make the
production system relatively simple to program.
As outlined in principle two, our algorithms, in
general, remain relatively simple, except in some
cases were we are using traditional AI techniques
like Principle Component Analysis (PCA) or
algorithms involved with Simultaneous
Localization and Mapping (SLAM) (i.e. particle
filters). While we strive to use cognitively plausible
algorithms, traditional robotics algorithms can be
seen as a means to an end for certain behaviors. For
example, it is useful to use some SLAM algorithms
to allow the robot to move from one room to the
next, while more cognitively based algorithms like
spreading activation can be used for object
identification along the way.
Pre-programming algorithms based on evolutionary
processes continues, and we feel we have adhered
to principle three. However, when one considers the
number algorithms humans are endowed with
through evolution (i.e. color identification, sound
localization, pupil dilatation based on light levels,
object identification, object tracking, movement
identification, contrast illumination.. and so forth),
this can be a daunting task. Indeed, we have found
this to be one of the more difficult and time
consuming aspects of implementing an intelligent
robotics system. It is important for any robotics
engineer to realize that many of these low level
algorithms need to be in place before any more
complex behavior can emerge from an intelligent
system. And while many of these algorithms seem
intuitively simple (object identification)
 their implementation and interaction with
other algorithms can create challenging
developmental issues.
The reorganization of information as outlined in
principles four and five continues to be an issue.
We have not used proceduralization as
implemented within ACT-R and would like to use
this process to reduce the number and size of the
goals developed by programmers. The struggle to
write simple and powerful goals continues to be an
issue, and we have looked at using subsumptive
architectures to reduce the number and size of the
goals. However, as I have pointed out in other
articles, you cannot simulate extremely complex
behaviors (i.e. playing chess) with a subsumptive
architecture (Kelley and Long, 2010), and more
powerful planning and strategy selection behaviors
must still be written by hand or generated by some
relatively complex process.
The abstraction and generalization of memories, as

outlined in principle five, especially different types
of memories (declarative, procedural and episodic)
continues to be an area of continued research within
SS-RICS. Interestingly, we have found some
computational support
for the concept of off-line processing or dreaming
based on the speed of different memory retrievals.
As part of our development of SS-RICS we found
that real time retrieving memories for moving
objects slows the system down too much, and it is
better to try and remember everything that happens
and consolidate these memories in order to speed
retrievals. During consolidation, an off-line strategy
to activate important memories is used and
subsequent retrieval times can be greatly increased.
Specifically, by increasing the strength of important
memories using bottom-up activation, certain
perceptions can then be selected by the cognitive
system depending on their task relevance. This is
more efficient than trying to identify everything
that happens in real time. This would be an
evolutionary argument for dreaming, which
consolidates memories and speeds their retrieval
times for the efficient execution of future
recognitions.

Conclusions
SS-RICS continues to be undergo a complex and
challenging development cycle, where new
developments occur each day. We feel we have
adhered to our original design guidelines and will
continue to use these guidelines to further the
development of the system.

References
Anderson, J. R., and Lebiere, C. The Atomic
Components of Thought: Erlbaum, 1998.
Kelley, T.D., Avery, E., Long L.N., & Dimperio, E.
(2009). A Hybrid Symbolic and Subsymbolic
Intelligent System for Mobile Robots. Presented at
the AAIA Infotech@Aerospace Conference, AAIA-
2009-1949, Seattle, WA, April 6-9.
Kelley, T. D., & Long, L.N. (2010). Deep Blue
cannot play checkers: The need for generalized
intelligence for mobile robots. Journal of Robotics,
2010, 1-8.

xix

Understanding cognitive processes through language use

Thora Tenbrink (tenbrink@uni-bremen.de)
SFB/TR 8 Spatial Cognition, University of Bremen, Germany

Introduction
How can cognitive processes be accessed and understood sufficiently to enable reliable computational
models? One established way of addressing internal processes is to analyze their external
representations, most prominently natural language produced along with cognitively complex tasks
(Ericsson & Simon, 1993). The aim of this tutorial is to familiarize both young and experienced
researchers with the systematic and linguistically informed analysis of language data collected in order
to substantiate cognitive models. The method of Cognitive Discourse Analysis (CODA) (Tenbrink &
Gralla, 2009; Tenbrink, 2010) will be introduced, which uses linguistic methods and insights to address
research questions in cognitive science. One main aim is to identify particular types of linguistic
patterns in the collected data that are likely to point to specific cognitive processes. The outcome of a
CODA-based analysis is a validated account of systematic cognitive processes feeding directly into
subsequent computational cognitive modelling.
Methods that employ language to address research questions in cognitive science range from
psychological via psycholinguistic approaches to linguistic discourse analysis. In spite of their
fundamental diversity, such methods share the basic view that patterns in language are systematically
related to patterns of thought (Chafe, 1998). A prominent feature and aim of the CODA framework is to
identify relevant types of linguistic patterns that are likely to point to specific cognitive processes in
diverse scenarios. Systematic accounts of recurring patterns of thought and prominent
conceptualizations provide a substantial prerequisite for cognitive modelling approaches of any kind.
CODA can be employed to enhance the analysis of think-aloud protocols and retrospective reports for
the identification of (internal) cognitive processes (Ericsson and Simon, 1993; Tenbrink, 2008).
Conventionally, the focus in this kind of analysis lies on the content of verbal data, addressing those
aspects (e.g., particular thought processes or strategies) that the speakers are themselves aware of. The
content-based inspection of verbal reports, particularly if carried out by experts in the problem domain
and set against a substantial theoretical background (Krippendorff, 2004), often leads to well-founded
specific hypotheses about the cognitive processes involved. The detailed systematic analysis of
linguistic features and structures in CODA provides a particularly sound basis for using the language
data as evidence (e.g., Hölscher et al., 2011; Tenbrink et al., 2011; Tenbrink & Seifert, 2011; Tenbrink
& Wiener, 2009). CODA is used to gain insights into generalizable cognitive phenomena that go
beyond conscious reflection by individual speakers, and that may not necessarily be directly observable
in linguistic content. Speakers may not be aware of the cognitive structures that are reflected in
particular ways of framing a representation linguistically. Further- more, they may not be consciously
aware of the underlying network of options (Tenbrink & Freksa, 2009) that allows for a range of
linguistic choices beside their own, which emerges more clearly by considering a larger data set
collected under controlled circumstances. According to previous research in cognitive linguistics and
discourse analysis (e.g., van Dijk, 2008), linguistic features such as the verbal representation of
semantic domains reflected in ideational networks, lexical omissions and elaboration, presuppositions,
hesitation and discourse markers, and the like all indicate certain conceptual circumstances; these are
related to the current cognitive representations in ways that distinguish them from other options
available in the network. In particular, the chosen linguistic options reflect what speakers perceive as
sufficiently relevant to be verbalized, as well as the information status assigned to the diverse parts of
the verbalization.
Besides building on established insights about the significance of particular linguistic choices,
validating evidence for the relationship between patterns of language use and the associated cognitive
processes can be gained by triangulation, i.e., the combination of linguistic analysis with other types of
evidence such as behavioral performance data. In these combined ways, data collected in empirical
studies serve as validated evidence for subsequent computational modelling of complex cognitive
processes.

Format and schedule
This tutorial is designed to cover a half day (three hours). Rather than offering primarily theoretical
insights, the tutorial will take the participants' current or intended projects as a starting point to address
the following issues, supplemented wherever suitable by practical exercises.

xx

Motivation: How can language data serve as empirical evidence for cognitive modelling?
Data collection: What kinds of issues need to be considered in the light of actual research purposes?
CODA based analysis (main part): Systematic data annotation and interpretation, substantiated by
linguistic insights.
Triangulation and systematization: How can the insights gained from language be complemented by
other types of empirical data and systematized for modeling purposes?
In contrast to previous offerings, this tutorial will focus on the systematic identification of the cognitive
steps and principles that can be fed into computational models.

Target audience information
There are no particular prerequisites for attending this tutorial. It will be open for researchers in
cognitive science at any point in their career, ranging from graduate students to established experts in
cognitive modelling.
Linguistic knowledge or expertise is welcome but not a prerequisite for this tutorial. Participants are
encouraged to bring examples of their own collected natural language data as handouts or on their
computers. Sample data collected in relevant scenarios will be discussed, tailored to the participants'
current focus of interest.

Acknowledgments
Funding by the DFG, SFB/TR 8 Spatial Cognition, I6- [NavTalk] is gratefully acknowledged. Further
thanks go to my collaborators across diverse research projects that continue to support the development
of the methodology.

References
Chafe, W. (1998). Language and the Flow of Thought. In M. Tomasello (ed.), The New Psychology of
Language. Cognitive and Functional Approaches to Language Structure. Mahwah: Lawrence Erlbaum.
van Dijk, T.A. (2008). Discourse and Context. A Sociocognitive Approach. Cambridge:
 Cambridge University Press.
Ericsson, K.A., & Simon, H.A. (1993). Protocol analysis: Verbal reports as data. Cambridge, MA:
MIT Press.
Hölscher, C., Tenbrink, T., & Wiener, J. (2011). Would you follow your own route description?
Cognition 121, 228- 247.
Krippendorff, K. (2004). Content Analysis: An Introduction to its Methodology (2nd ed.). London:
Sage.
Tenbrink, T. (2008). The verbalization of cognitive processes: Thinking-aloud data and retrospective
reports. In W. Ramm & C. Fabricius-Hansen (eds.), Linearisation and Segmentation in Discourse.
Multidisciplinary Approaches to Discourse 2008 (MAD 08), Feb 20-23 2008, Lysebu, Oslo. Oslo:
Dept. of Literature, Area Studies and Europ. Languages, Univ. of Oslo.
Tenbrink, T. (2010). CODA: Kognitive Diskursanalyse. In: E. Ruigendijk, T. Stolz, & J. Trabant
(Hrsg.), Linguistik im Nordwesten: Beiträge zum 1. Nordwestdeutschen Linguistischen Kolloquium.
Bochum: Brockmeyer.
Tenbrink, T., Bergmann, E., Konieczny, L. (2011). Wayfinding and description strategies in an
unfamiliar complex building. In L. Carlson, C. Hölscher, & T.F. Shipley (Eds.), Proceedings of the
33rd Annual
Conference of the Cognitive Science Society. Austin, TX:
Cognitive Science Society. Tenbrink, T., & Freksa, C. (2009). Contrast sets in spatial
and temporal language. Cognitive Processing 10
Supplement 2, S322-S324. Tenbrink, T., & Gralla, L. (2009). Accessing complex
cognitive processes via linguistic protocol analysis. In U. Schmid, M. Ragni, M. Knauff (Eds.):
Proceedings of the KI 2009 Workshop Complex Cognition, Paderborn, Germany, September 15, 2009.
Tenbrink, T., & Seifert, I. (2011). Conceptual Layers and Strategies in Tour Planning. Cognitive
Processing 12:1, 109–125.
Tenbrink, T., & Wiener, J. (2009). The verbalization of multiple strategies in a variant of the traveling
salesperson problem. Cognitive Processing 10:2, 143-161.
	

xxi

