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Previous tutorials on CLARION have focused 
mainly on presenting detailed introductions to the 
core theoretical con- cepts underlying the 
CLARION cognitive architecture. For this tutorial, 
in addition to providing a detailed introduction to 
the theory, we will also focus on giving participants 
hands-on experience using the new implementation 
of CLARION -- the CLARION Library, version 6.1 
(written in C#). To that end, we will introduce 
guidelines for setting up and using basic and 
intermediate aspects of the library (with detailed 
walk-throughs for several simulation examples) as 
well as present several significant new features and 
en- hancements. 
 As CLARION is implemented in C#, 
participants will learn how they can employ the 
CLARION library on differ- ent operating systems 
using either the Visual Studio or Mono 
development environments. By the conclusion of 
this tutorial, participants should be equipped with 
the necessary foundation to begin developing 
CLARION-based agents for their own applications. 
 

Tutorial Outline 
A General Overview of CLARION (15 min.) 
In this section, an introduction to cognitive 
architectures in general, and CLARION in 
particular, will be presented. CLARION will be 
compared to various other architectures and a brief 
discussion of some past and current applications of 
CLARION will be presented along with cognitive 
justifi- cations and implications. 
CLARION is a unified, comprehensive theory of 
the mind based on two basic theoretical 
assumptions: representational differences and 
learning differences of two different types of 
knowledge --- implicit vs. explicit, among other 
essential assumptions and hypotheses. 
In addition to these theoretical assumptions, 
CLARION is a cognitive architecture composed of 
four main subsystems: the Action-Centered 
Subsystem, the Non-Action-Centered Subsystem, 
the Motivational Subsystem, and the Meta- 
Cognitive Subsystem. 
Action-Centered Subsystem Basics (30 min.) 
In this section, some basic concepts of the Action- 

Centered Subsystem (ACS) will be presented. The 
structure and design of various aspects of the ACS, 
along with the learning mechanisms and the 
properties of the model, will be presented. 
The Action-Centered Subsystem is used mainly for 
action decision-making. In the ACS, the top level 
generally con- tains simple “StateàAction” rules, 
while the bottom level uses multi-layer perceptrons 
to associate states and actions. Reinforcement 
learning algorithms (usually with backprop- 
agation) are used in the bottom level while rule 
learning in the top level is mostly “one-shot” and 
can be performed bottom-up (via “explicitation”) or 
independently (e.g., through linguistic acquisition). 
This section will focus on the representation for the 
top and bottom levels, and will detail bottom level 
learning and bottom-up rule extraction and 
refinement (RER). 
Setting up and Using the ACS (30 min.) 
For the first hands-on section of the tutorial, 
participants will be instructed on how to set up and 
install the CLARI- ON Library and are walked 
through a simple simulation example. In addition, 
several core principles necessary for interacting 
with the library will be outlined. 
Working Memory and Goals (15 min.) 
In this section we will discuss the theoretical 
underpin- nings for the working memory (WM) and 
the role that goals play in the decision-making 
processes of the ACS. 
The working memory is conceived as a requisite 
structure within the ACS, whereas goals are stored 
within a top-level construct of the Motivational 
Subsystem, referred to as the Goal Structure (GS). 
Setting up and Using the WM and GS (15 min.) 
For this hands-on section, participants will be 
shown both the manual and action-oriented 
methods for setting-up and using the working 
memory and goal structure. In addition, asimple 
simulation example will be presented that demon- 
strates the use of working memory. 
Drives and Meta-Cognitive Modules (30 min.) 
This section will focus on the structure and design 
of the motivational (MS) and meta-cognitive 
(MCS) subsystems. In particular, the drives within 
the MS and various meta- cognitive modules within 
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the MCS, will be described. 
The Motivational Subsystem contains both low-
level (physiological) and high-level (social) 
primary drives that take into account both 
environmental and internal factors in determining 
drive strengths. These drive strengths are re- ported 
to the Meta-Cognitive Subsystem, which regulates 
not only goal structures but other cognitive 
processes as well (e.g., monitoring, parameter 
setting, etc). 
Setting up and Using Drives and Modules (30 min.) 
For this hands-on section, participants will be 
shown both the manual and action-oriented 
methods for setting up and using the working 
memory and goal structure. In addition, a simple 
simulation example will be presented that demon- 
strates the use of these mechanisms. 
Hands-On Practice Session #1 (15 min.) 
In the final section before lunch, participants will 
be given the opportunity to further explore the 
CLARION Library and the simulations that were 
presented to this point. Partic- ipants will also be 
encouraged to ask any questions they may have 
with regard to using the library at this time. 
The Non-Action-Centered Subsystem (45 min.) 
Similar to the section on the ACS, this section will 
detail the Non-Action-Centered Subsystem 
(NACS). The structure and design of the various 
aspects of the NACS, along with the learning 
mechanisms and the theorems describing the 
properties of the model, will be presented. 
The Non-Action-Centered Subsystem stores 
declarative (“semantic”) and episodic knowledge 
and is responsible for reasoning in CLARION. In 
the NACS, the top level con- tains simple 
associations while the bottom level involves 
nonlinear neural networks. Associative learning 
algorithms (e.g., backpropagation or contrastive 
Hebbian) are generally used in the bottom level 
whereas associations in the top lev- el are mostly 
learned “one-shot” (similar to the ACS). 
Performing Reasoning using the NACS (15 min.) 
For this hands-on section, participants will be given 
a very brief introduction to using the reasoning 
mechanism in the NACS. However, as the NACS is 
currently in the devel- opment stage, this 
demonstration will necessarily be brief. 
Intermediate Aspects of the ACS (30 min.) 
In this section we will discuss several intermediate 
con- cepts for the ACS. In particular, we will 
review the theoreti- cal considerations that govern 
IRL and Fixed rules. 
IRL and Fixed rules are the other two forms of 
procedural knowledge (besides RER rules) that can 
be found in the top level of the ACS. 
Setting-up and Using IRL and Fixed Rules (30 
minutes) 
For this hands-on section, participants will be 

shown how to do some basic customization using 
the CLARION Li- brary. In particular, we will 
show participants how to use C#’s delegate concept 
in order to quickly and easily create their own 
customized rules. In addition, a simple simulation 
that uses IRL rules will be presented. 
Pre-Training, Tuning and Parameter Setting (15 
minutes) 
For this hands-on section, participants will be 
shown sev- eral methods for performing simple 
tuning and parameter setting operations in the 
CLARION Library. 
Features and Plugins (15 minutes) 
For this hands-on section, participants will be 
shown some of the useful features and plugins that 
are currently available as part of the CLARION 
Library. 
Hands-On Practice Session #2 (30 min.) 
In the final section of the day, participants will be 
given the opportunity to further explore the 
CLARION Library and ask any additional 
questions they may have. 
 

Relevance for Cognitive Science 
The CLARION cognitive architecture is well 
established with over 100 scientific papers and 
several books. CLARI- ON is particularly relevant 
to cognitive scientists because of its strong 
psychological plausibility and the breadth of its 
application to cognitive modeling and simulation. 
In CLAR- ION, each structure corresponds to a 
psychological pro- cess/capacity. CLARION-based 
models have been used to explain data as diverse as 
implicit learning, cognitive skill acquisition, 
inductive and deductive reasoning, meta- cognition, 
motivation, personality, and social simulations. 
 

Presentation Details 
Descriptions and demonstrations during the 
presentation will be provided using PowerPoint and 
the Visual Studio and Mono development 
environments. 
Participants in the tutorial are encouraged to ask 
questions throughout the presentation to clarify any 
ideas described. 
 

Sample Materials 
• Sample slides: 

https://sites.google.com/site/clarioncognitivearchitect
ur e/presentations 

• A complete technical specification of CLARION: 
http://www.cogsci.rpi.edu/~rsun/sun.tutorial.pdf 

• A list of CLARION-related publications: 
http://www.cogsci.rpi.edu/~rsun/clarion-pub.html 

• The current (6.1.0.6, C#) and previous (6.0.5, Java) 
versions of the CLARION Library: 
https://sites.google.com/site/clarioncognitivearchitect
ur e/downloads 

• Other demonstration materials: See the "Tutorials" 
folder within the current CLARION Library software 
package 
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Introduction 

A common theoretical obstacle encountered by 
computational- or rational-level models of 
cognition is that the cognitive capacities that they 
postulate appear to be computationally intractable 
(e.g., NP-hard or worse). Formally, this means that 
the computations that these models postulate 
consume an exponential amount of time. 
Informally, this means that the postulated 
computations do not scale in any obvious way to 
explain how cognitive capacities can operate in the 
real world outside the lab. How can cognitive 
scientists overcome this undesirable property of 
models of cognition? Over the last decade, several 
sophisticated complexity-theoretic techniques have 
been developed in theoretical computer science that 
can be utilized by cognitive modelers to 
systematically generate hypotheses about model 
changes or constraints that yield computational 
tractability without loss of the general applicability 
of the models. With this workshop we aim to bring 
these complexity-theoretic techniques to the 
attention of a broad audience of cognitive modelers 
and illustrate how they can be used to make 
cognitive models that scale to situations of real-
world complexity. 
	  

Morning Session 
In the morning session the tutorial organizers, Van 
Rooij and Kwisthout, will give a conceptual primer 
on computational complexity analysis in the context 
of cognitive modeling. The session will include a 
conceptual introduction to tractable cognitive 
modeling. Subsequently, they will review 
complexity-theoretic concepts (e.g., NP-hard, fixed-
parameter tractability) and techniques (e.g., 
polynomial-time and parameterized reduction). 
Participants will have opportunity to practice the 
techniques via hands-on exercises (these can be 
done using paper and pencil). Also more 
controversial issues will be topic of discussion, 
such as the question to what extent intractable 
computations can be efficiently approximated by 
randomized or heuristic methods. The organizers 
aim for an interactive style of discussion.  
Reading material: van Rooij, I. (2008). The 
Tractable Cognition thesis. Cognitive Science, 32, 
939-984. 

Afternoon session 
In the afternoon session, four speakers will 
illustrate several applications of the concepts and 
techniques introduced in the morning session. Each 
application talk will consider a different type of 
model in a different cognitive domain.   
 
What does (and doesn't) make deriving analogies 
hard? 
Todd Wareham (Memorial University of 
Newfoundland) will present complexity analyses of 
Structure-Mapping Theory (SMT), assessing 
several conjectures in the literature about conditions 
that make analogy derivation under SMT feasible in 
practice. 
 
Does recipient design make intention recognition 
tractable? 
Mark Blokpoel (Radboud University) will consider 
Bayesian models of intention recognition and 
recipient design in the context of communication. 
He will demonstrate these models are NP-hard but 
also identify model constraints that yield 
computational tractability.  
 
A tractability border in natural language semantics 
Jakub Szymanik (University of Groningen) will 
discuss how ambiguity in natural language may be 
related to computational complexity. He will focus 
on logic-based models of quantifier expressions 
(e.g. `some', `more than') and will outline a 
tractability border between quantifier sentences. 
 
Is managing multiple goals an intractable 
balancing act? 
Daniel Reichman (Weizmann Institute of Science) 
will put forth the idea that people find it difficult to 
achieve multiple goals simultaneously because 
doing so entails solving computational intractable 
problems. He will outline approaches that can aid 
people in solving hard problems related to the 
attainment of multiple interrelated goals. 
	  
For more information about this tutorial, full details 
of the schedule, and extra materials, please refer to 
our website: http://tcs.dcc.ru.nl/iccm2012/  
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Abstract 
The Symbolic and Sub-symbolic Robotics Intelligence 
Control System (SS-RICS) is a production system based 
robotics controller based largely on the cognitive 
architecture the Adaptive Character of Thought-Rational 
(ACT-R). At the beginning of the research program a set 
of design principles were developed to aid in the design 
of the robotics system. These principles are discussed and 
revisited here. 
 
Keywords: cognitive architectures, cognitive 
modeling, robotics 
 

Introduction 
In the last several decades, cognitive architectures 
have been designed around psychological principles 
in an attempt to reproduce the thought patterns of 
the human mind (Anderson & Lebiere, 1998). 
These cognitive architectures have made progress 
in modeling the human mind by using the 
production system architecture as a basis; however, 
they traditionally have had little interaction with the 
outside world which gives them limited 
functionality as real-world robotics controllers. The 
Sub-symbolic Robotic Intelligence Control System 
(SS-RICS) was developed using a production 
system as the central executive, as with traditional 
cognitive architectures, while also using sub- 
symbolic algorithms for perceptual processing. This 
allows SS-RICS to interact with the outside world. 
Additionally, these perceptual sub-symbolic 
algorithms are run in parallel with the production 
system, and mimic the parallel perceptual 
processing seen in the humans and animals. 
Additionally, the production system within SS-
RICS is capable of shutting down certain 
algorithms (i.e. face recognition) if the current goal 
does not require the specified algorithms, thereby 
freeing up computational resources. 
SS-RICS is part of an ongoing development within 
the U.S. Army Research Laboratory of a robotic 
control architecture that was inspired by 
computational cognitive architectures, primarily the 
Adaptive Control of Thought – Rational (ACT-R). 
SS-RICS combines symbolic and sub- symbolic 
representations of knowledge into a robotic control 
structure that allows robotic behaviors to be 
programmed in a production system format. The 
architecture is organized as a goal driven, serially 
executing, production system at the highest 
symbolic level; and a multiple algorithm, parallel 
executing, simple collection of algorithms at the 
lowest sub-symbolic level. 

Five Development Principles 
In order to guide the development of SS-RICS, five 
development principles were established in 2009 
(Kelley et al. 2009). 

1) The lowest level of perception includes 
algorithms running in a parallel fashion, 
while the highest levels of cognition are 
algorithms operating in serial fashion 

2)  At both the low levels and the high levels of 
cognition, the algorithms are relatively 
simple. It is the interaction, processing and 
results of simple algorithms which produce 
complex intelligent behavior. 

3)  Pre-programming SS-RICS is guided by the 
algorithms that are recognized as part of the 
human evolutionary process (for example, 
algorithms for edge detection, auto-focus of 
the eyes, pupil dilatation in different lighting 
environments). The pre-programming that is 
done should allow for the emergence of 
complex behavior, but not be the complex 
behavior itself. 

4) Cognitive development within SS-RICS is 
principally about the reorganization of 
memory elements through increasing and 
decreasing their respective strengths. 

5)  Cognitive development and change can 
occur after allowing for specialized internal 
processing (i.e. dreaming) or after the 
necessary low level elements (i.e. features) 
are in place to allow for higher level 
symbolic extraction. 

 
Developmental principles revisited 

As defined in principle one, we have found an 
enormous value in running perceptual algorithms 
(motion tracking) in parallel with our other sub-
symbolic algorithms (finding corners or gaps in a 
wall). This allows the higher levels of the system to 
turn off perceptual algorithms as the system 
becomes overloaded or runs out of memory; or 
allows us to pick and choose what functionality we 
are interested in, depending on the task. This can 
make the system very adaptive to certain tasks and 
make it able to use all of the available processing 
power for a given task. Additionally, we are 
currently running the cognitive process in serial but 
have found some utility in running multiple 
cognitive processes in parallel. In other words, 
the algorithm for the identification of an object is 
running in parallel with the algorithm for the 
identification of a specific face. The reader might 
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ask – “what is the line between cognitive 
processes and perceptual processes” and it should 
be noted that this distinction can sometimes become 
blurred. It is not entirely clear that the identification 
of a face is, in fact, a cognitive process. We would 
rather reserve cognitive processes to strategy 
selection and problem solving so these lower levels 
processes should be, perhaps, pushed down to the 
parallel aspects of perception. This would make our 
goal stack relatively simple and would make the 
production system relatively simple to program. 
As outlined in principle two, our algorithms, in 
general, remain relatively simple, except in some 
cases were we are using traditional AI techniques 
like Principle Component Analysis (PCA) or 
algorithms involved with Simultaneous 
Localization and Mapping (SLAM) (i.e. particle 
filters). While we strive to use cognitively plausible 
algorithms, traditional robotics algorithms can be 
seen as a means to an end for certain behaviors. For 
example, it is useful to use some SLAM algorithms 
to allow the robot to move from one room to the 
next, while more cognitively based algorithms like 
spreading activation can be used for object 
identification along the way. 
Pre-programming algorithms based on evolutionary 
processes continues, and we feel we have adhered 
to principle three. However, when one considers the 
number algorithms humans are endowed with 
through evolution (i.e. color identification, sound 
localization, pupil dilatation based on light levels, 
object identification, object tracking, movement 
identification, contrast illumination.. and so forth), 
this can be a daunting task. Indeed, we have found 
this to be one of the more difficult and time 
consuming aspects of implementing an intelligent 
robotics system. It is important for any robotics 
engineer to realize that many of these low level 
algorithms need to be in place before any more 
complex behavior can emerge from an intelligent 
system. And while many of these algorithms seem 
intuitively simple (object identification)
 their implementation and interaction with 
other algorithms can create challenging 
developmental issues. 
The reorganization of information as outlined in 
principles four and five continues to be an issue. 
We have not used proceduralization as 
implemented within ACT-R and would like to use 
this process to reduce the number and size of the 
goals developed by programmers. The struggle to 
write simple and powerful goals continues to be an 
issue, and we have looked at using subsumptive 
architectures to reduce the number and size of the 
goals. However, as I have pointed out in other 
articles, you cannot simulate extremely complex 
behaviors (i.e. playing chess) with a subsumptive 
architecture (Kelley and Long, 2010), and more 
powerful planning and strategy selection behaviors 
must still be written by hand or generated by some 
relatively complex process. 
The abstraction and generalization of memories, as 

outlined in principle five, especially different types 
of memories (declarative, procedural and episodic) 
continues to be an area of continued research within 
SS-RICS. Interestingly, we have found some 
computational support 
for the concept of off-line processing or dreaming 
based on the speed of different memory retrievals. 
As part of our development of SS-RICS we found 
that real time retrieving memories for moving 
objects slows the system down too much, and it is 
better to try and remember everything that happens 
and consolidate these memories in order to speed 
retrievals. During consolidation, an off-line strategy 
to activate important memories is used and 
subsequent retrieval times can be greatly increased. 
Specifically, by increasing the strength of important 
memories using bottom-up activation, certain 
perceptions can then be selected by the cognitive 
system depending on their task relevance. This is 
more efficient than trying to identify everything 
that happens in real time. This would be an 
evolutionary argument for dreaming, which 
consolidates memories and speeds their retrieval 
times for the efficient execution of future 
recognitions. 
 

Conclusions 
SS-RICS continues to be undergo a complex and 
challenging development cycle, where new 
developments occur each day. We feel we have 
adhered to our original design guidelines and will 
continue to use these guidelines to further the 
development of the system. 
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Introduction 
How can cognitive processes be accessed and understood sufficiently to enable reliable computational 
models? One established way of addressing internal processes is to analyze their external 
representations, most prominently natural language produced along with cognitively complex tasks 
(Ericsson & Simon, 1993). The aim of this tutorial is to familiarize both young and experienced 
researchers with the systematic and linguistically informed analysis of language data collected in order 
to substantiate cognitive models. The method of Cognitive Discourse Analysis (CODA) (Tenbrink & 
Gralla, 2009; Tenbrink, 2010) will be introduced, which uses linguistic methods and insights to address 
research questions in cognitive science. One main aim is to identify particular types of linguistic 
patterns in the collected data that are likely to point to specific cognitive processes. The outcome of a 
CODA-based analysis is a validated account of systematic cognitive processes feeding directly into 
subsequent computational cognitive modelling. 
Methods that employ language to address research questions in cognitive science range from 
psychological via psycholinguistic approaches to linguistic discourse analysis. In spite of their 
fundamental diversity, such methods share the basic view that patterns in language are systematically 
related to patterns of thought (Chafe, 1998). A prominent feature and aim of the CODA framework is to 
identify relevant types of linguistic patterns that are likely to point to specific cognitive processes in 
diverse scenarios. Systematic accounts of recurring patterns of thought and prominent 
conceptualizations provide a substantial prerequisite for cognitive modelling approaches of any kind. 
CODA can be employed to enhance the analysis of think-aloud protocols and retrospective reports for 
the identification of (internal) cognitive processes (Ericsson and Simon, 1993; Tenbrink, 2008). 
Conventionally, the focus in this kind of analysis lies on the content of verbal data, addressing those 
aspects (e.g., particular thought processes or strategies) that the speakers are themselves aware of. The 
content-based inspection of verbal reports, particularly if carried out by experts in the problem domain 
and set against a substantial theoretical background (Krippendorff, 2004), often leads to well-founded 
specific hypotheses about the cognitive processes involved. The detailed systematic analysis of 
linguistic features and structures in CODA provides a particularly sound basis for using the language 
data as evidence (e.g., Hölscher et al., 2011; Tenbrink et al., 2011; Tenbrink & Seifert, 2011; Tenbrink 
& Wiener, 2009). CODA is used to gain insights into generalizable cognitive phenomena that go 
beyond conscious reflection by individual speakers, and that may not necessarily be directly observable 
in linguistic content. Speakers may not be aware of the cognitive structures that are reflected in 
particular ways of framing a representation linguistically. Further- more, they may not be consciously 
aware of the underlying network of options (Tenbrink & Freksa, 2009) that allows for a range of 
linguistic choices beside their own, which emerges more clearly by considering a larger data set 
collected under controlled circumstances. According to previous research in cognitive linguistics and 
discourse analysis (e.g., van Dijk, 2008), linguistic features such as the verbal representation of 
semantic domains reflected in ideational networks, lexical omissions and elaboration, presuppositions, 
hesitation and discourse markers, and the like all indicate certain conceptual circumstances; these are 
related to the current cognitive representations in ways that distinguish them from other options 
available in the network. In particular, the chosen linguistic options reflect what speakers perceive as 
sufficiently relevant to be verbalized, as well as the information status assigned to the diverse parts of 
the verbalization. 
Besides building on established insights about the significance of particular linguistic choices, 
validating evidence for the relationship between patterns of language use and the associated cognitive 
processes can be gained by triangulation, i.e., the combination of linguistic analysis with other types of 
evidence such as behavioral performance data. In these combined ways, data collected in empirical 
studies serve as validated evidence for subsequent computational modelling of complex cognitive 
processes. 
 

Format and schedule 
This tutorial is designed to cover a half day (three hours). Rather than offering primarily theoretical 
insights, the tutorial will take the participants' current or intended projects as a starting point to address 
the following issues, supplemented wherever suitable by practical exercises. 
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Motivation: How can language data serve as empirical evidence for cognitive modelling? 
Data collection: What kinds of issues need to be considered in the light of actual research purposes? 
CODA based analysis (main part): Systematic data annotation and interpretation, substantiated by 
linguistic insights.  
Triangulation and systematization: How can the insights gained from language be complemented by 
other types of empirical data and systematized for modeling purposes? 
In contrast to previous offerings, this tutorial will focus on the systematic identification of the cognitive 
steps and principles that can be fed into computational models. 
 

Target audience information 
There are no particular prerequisites for attending this tutorial. It will be open for researchers in 
cognitive science at any point in their career, ranging from graduate students to established experts in 
cognitive modelling. 
Linguistic knowledge or expertise is welcome but not a prerequisite for this tutorial. Participants are 
encouraged to bring examples of their own collected natural language data as handouts or on their 
computers. Sample data collected in relevant scenarios will be discussed, tailored to the participants' 
current focus of interest. 
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