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ABSTRACT

Recent brain imaging findings suggest several new
assumptions concerning the architectural properties of the
neural systems that underlie high level cognition, such as
language, comprehension, visual cognition, and problem
solving. Some of these assumptions have to do with

1. resource-constrained processing and task assignment;
2. dynamic configuration and resource recruitment;

3. functional embedding, self-similarity, and
interaction among the components of the cognitive
system;

4. a preference ordering for the types of processing that
each cognitive component can perform (graded
specialization).

The 4CAPS computational modeling system implements
these assumptions, with the goal of accounting not only
for processing times and error probabilities, but also for
the amount of brain activation observed in each of the
activated component neural systems. 4CAPS consists of
several component processing modules, each of which is
a parallel production system with some connectionist
properties, and each of which is intended to correspond to
the function of an underlying large-scale neural network.
The component production systems are highly interactive
with each other, operate in parallel, and have a task
allocation regimen based on graded specialization and
resource availability.
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ABSTRACT

This paper investigates the memory phenomena
underlying directed access to hidden objects. A
computational cognitive model is described that encodes
long-term episodic traces automatically whenever it
attends to an object in its environment. Later, if an object
of interest is hidden from view, the model can try to
remember seeing it. This involves generating appropriate
cues from memory to try to trigger episodic traces encoded
while attending to that object. The underlying cognitive
architecture (Soar) constrains the nature of these cues and
the processes required to generate them. These constraints
lead to a theory of episodic indexing, which is that people
store simple information about attention events in large
amounts, but make use of it only to the extent that they
are able to generate appropriate images from memory.
Episodic indexing helps characterize the cognitive cost of
a cluttered interface.

Keywords
Cognitive simulation, episodic memory, human-computer
interaction, Soar

INTRODUCTION

Our surroundings are filled with information. Most of this
is hidden to us at any given time, being out of our field of
view, yet we manage to gain access to it when we need
to. For example, we might recall seeing a figure in a
book, or a key phrase, and then return to that area in the
book to refresh our memory, or to examine the context
more carefully.

This paper investigates the memory phenomena
underlying such access to external information. What do
people encode about something they see, such that they
can remember later that it exists? We would like to know
both what information is stored, and under what
circumstances. Second, what causes the retrieval of these
memories? People typically navigate their environment
for a purpose rather than haphazardly, implying some
knowledge of a target to be visited. We would like to
understand the role of domain knowledge in mediating
access to what we know exists in our environment.

Our approach to these questions is to represent the
phenomena explicitly using a cognitive architecture, Soar
(Newell, 1990; Rosenbloom, Laird, & Newell, 1992).
Soar includes mechanisms grounded in psychological
theory and data that impose constraints on the
representation of behavior. Applied to hidden-object
access, these constraints imply that people store large
amounts of information about their environment, but
retrieve it only occasionally and with requisite knowledge
and cognitive effort.

The paper is organized as follows. We first characterize
the kind of task that requires the fine-grain episodic
memory for efficient performance, and introduce the model
using simple hypothetical examples to illustrate its
encoding and retrieval processes. We then offer an
accounting of the memory bandwidth implied by
pervasive episodic encoding. Finally, we examine the
theory for consistency with other findings on episodic
memory, and for design of interfaces to extensive
information environments.

-THE MODEL

The kind of hidden-information access we are interested in
studying is illustrated by the following scenario. A
computer user is working with an application that
generates much more information than fits on the screen
at once. Most of this information is hidden, scrolled out
of the way by the application to make room for the new
information that it generates continually. This old
information remains accessible, and the user occasionally
scrolls some of it back into view. Thus, the user appears
to have a memory that functions as an index to the
environment. Much as the index in a book supports
looking up a term of interest, the episodic index stored in
memory supports “looking up” objects of interest in the
environment. We are interested in how this index is
created in memory, and how it is later accessed. In the
following, we use examples from a hypothetical database
programming task. The real task simulated by the model
is described elsewhere (Altmann & John, in press;
Altmann, 1996; Altmann, Larkin, & John, 1995).

The model's main mode of performance is a kind of
comprehension in which it tries to gather information
about objects in its environment. This is a generalized and
simplified representation of interaction with an
information-rich environment. In particular, it is
simplified in that the model does not construct the
complex mental structures generally associated with
comprehension of text (e.g., Lewis, 1993; Kintsch,
1998).

The model selects goals to comprehend objects and issues
commands to change the display. Some commands
generate new information, and some scroll to old
information. The model uses this external information as
it tries to comprehend objects.

To comprehend a particular object, the model selects
subgoals that retrieve information about that object.
Information can come either from the display (an extérnal
source) or from LTM (an internal source). For example,
suppose the model is comprehending a data structure that
represents a student record. The student record contains a
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which is displayed on the screen. To retrieve information
about this field, the model selects an attend subgoal.
Suppose (for simplicity) that the model attends only to
the field and not to the-actual number stored there. This
act of attention would add the following attribute-value
pair to WM.

(~field ssn) From attending to SSN field.

Alternatively, if this information is not available
externally but the model has the appropriate domain
knowledge, the same information can be recalled from
LTM. To do this, the model selects a probe subgoal. For
example, the model might probe with the SSN field,
perhaps to see if this activates any other information
relevant to the student record. Probing and attention are
symmetrical in that a probe can look exactly like the
output of attention.

(~field ssn) From probing with SSN field.

Under episodic indexing, attention and probing process
another kind of element, one which represents the actual
event of attending to an object. Attention automatically
adds this element to WM as a side effect of attending to an
object. Thus the full outcome of attending to an SSN
field would be the following.

(~field ssn)
(~attended-to ssn)

From attending to SSN field.
From attending to SSN field.

The same representation could also be produced by a
probe, consistent with the attention-probing symmetry
noted above. The probe below represents the model asking
itself, “What do I know about the event of attending to an
SSN field?”

(~field ssn)
(~attended-to ssn)

From probing with SSN field.
From probing with SSN field.

We refer to an attribute-value pair like attended-to ssn,
when generated by a probe, as an image of attending to an
object. The term image is meant to suggest a code like
that produced by attention, namely more like a percept
than an abstraction or a concept. Beyond this, we do not
attempt ~ to interpret the model's images
phenomenologically, or psychologically in terms other
than how they function in the model. For example, their
symbolic nature reflects Soar's representation language
and is not intended as a statement in the debate over
propositional vs. analog spatial codes. In general, LTM
contains many kinds of codes (Bower, 1975), and in
particular expert programmers often use vivid imagery to
understand programs, including color, sound, and dancing
symbols (Petre & Blackwell, 1997). Amidst this diversity
it seems reasonable to posit a code representing the event
of attending to an object.

Thus the model can imagine attending to an object,
providing it has the knowledge to do so. Such imagining,
and hence the requisite store of images, is the basis of the
retrieval processes of episodic indexing.

Learning in Soar

Encoding information about the environment is a form of
learning, and requires that the model modify its long-term
knowledge representation. In Soar, all long-term
knowledge is represented productions. These are condition-
action rules like the one below. If the condition part

action part (below the arrow) adds new elements to WM.
The production below acts as a declarative memory,
because it associates an object (a student record) with facts
about that object (that it has an SSN field). In general, all
the model's operations, like attending to objects,
generating probes, and recalling facts, depend on
knowledge represented as productions.

(“structure student-record) Condition:
Student record in WM.

-—>
(~field ssn) Action: Put SSN field in

WM.

The model learns by acquiring new productions. The
learning mechanism is part of Soar. It is unified with
Soar’s knowledge-representation language (productions)
and control structure (goals) in that Soar acquires new
productions in response to achieving goals (Laird,
Rosenbloom, & Newell, 1986). A new production, or
chunk, represents an inference that may have taken several
steps to make. The chunk is added to LTM, making the
inference available in a single step from then on.

" For example, suppose the model’s goal were to find the

sum of two numbers (4 and 7) and that although it could
not retrieve the sum directly from memory, it knew a
procedure for adding by counting up from one of the
addends. The goal to find the sum would be implemented
by subgoals that might involve initializing a running
sum to the value of one addend, invoking the counting
procedure, and recognizing when the count equaled the
other addend. The result (11) would represent achieving
the goal, and Soar would encode a chunk associating the
relevant inputs to the counting procedure with the new
result. In the future, this chunk will compute 4 + 7 = 11
without subgoals, bypassing the counting procedure.

In general terms, a chunk encodes an association between
an inferred result (e.g., the sum) and the WM elements
on which the inference is based, which we refer to here as
premises (e.g., the addends). The premises have either
already contributed to achieving the current goal or were
in WM when the goal was selected. The result is inferred
from the premises through a sequence of intermediate
production firings. A chunk will fire immediately in the
future if WM contains the same premises.

The chunking process does very little induction or
generalization, The result essentially becomes the chunk’s
action and the premises become the chunk’s conditions,
though there is some variabilization (Laird, Rosenbloom,
& Newell, 1986). This makes a chunk specific to its
encoding context, consistent with the encoding specificity
principle (Tulving, 1983). This specificity acts as a hard
constraint on the nature of the process for retrieving
learned knowledge (Howes & Young, 1997).

Encoding the Episodic Index

The model contains two key assumptions about the
process of attending to an object. Both assumptions are
related to the event of attending. The first assumption is
that the event itself is worth representing in WM, apart
from the object of attention. The second assumption is
that all attention events are goal-directed. This assumption
says that the model is always looking for new
information about the object it is trying to comprehend,
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contribute to the current goal. The two assumptions
together operationalize what we might think of informally
as “paying attention to” or “concentrating on” what we are
doing. The important implication is that if the model
“pays attention” to an event, this enables remembering
the event because it causes chunks to be acquired.

The first assumption (that attention events are
noteworthy) is implemented as follows. When the model
attends to an object, it records the event using its internal
clock. That is, it associates the WM code for the attention
event with the current value of an internal variable that is
updated periodically. For example, when the model attends
to the SSN field of a student record, the complete
representation created in WM is something like the
following.

(~attended-to ssn)

field.

(“event ssn “time td2)
field.

The model’s internal clock ticks when it selects a new
object to comprehend (meaning that the model’s sense of
time is keyed to its train of thought). All objects attended
while comprehending that object are encoded in LTM with
the current time symbol.

From attending to SSN

From attending to SSN

The second assumption (that episodic processing
contributes to the current goal) is implemented by
associating the time symbol with the current goal in
WM. This causes Soar to build a chunk, as described in
the previous section. The premise of the chunk is the
attribute-value pair representing attention to the SSN
field, and the result is the time symbol. The two are
linked by the inference that the SSN field was attended
now. The chunk is shown below (named attended-ssn for
reference later). '

chunk: attended-ssn  Chunk for an attention event.

(~attended-to ssn)
—-—
(~event ssn "“time t42)

Attended-ssn represents an attention event. This makes it
an episodic trace, as distinct from a semantic trace with
no temporal content (Tulving, 1983). It functions as one
entry in an index of objects encountered in the
environment. In the future, if no SSN field is visible, the
model can look up the SSN field in this index by
attempting to cause this chunk to fire. If the lookup is
successful, then the model can infer that it attended to an
SSN field in the past, even though no such field is
currently visible. The lookup and inference processes are
described in the next section.

Retrieval from the Episodic Endex

The episodic index consists of a set of chunks, each of
which associates an attention event with a time symbol.
Suppose that a particular attention event occurred long
enough in the past that it is no longer active in WM and
that the corresponding object is no longer in view. The
model can use its episodic index to see if the object exists
somewhere in the environment. This requires two steps.
The first is to generate the cue necessary to get an
episodic chunk to fire. We can think of this as “looking
up” the object. The second is to make the appropriate

think of this as acting on the information retrieved from
the lookup.

To look up an object, the model must add to WM an
image of attending to that object, as a cue for triggering
episodic chunks. As discussed previously, an image can
appear in WM either through attention, which generates
the image from an external stimulus, or through probing,
which generates the image from memory. In either case,
an image appearing in WM will activate all episodic
chunks acquired whenever the corresponding object was
attended in the past. Production imagine-ssn, below,
generates the necessary probe for the SSN field.

production: imagine-ssn
Conditions testing that it's relevant to know that
an SSN field was seen.

-—>
(*attended-to ssn) Al
(~imagined ssn) A2

Imagine-ssn will fire in a situation in which it would be
useful to remember seeing an SSN field. For instance,
suppose (as we did previously) that the model were asked

- whether a given database record contained confidential

information. The model might try to recall seeing an SSN
field by firing imagine-ssn. When imagine-ssn fires, Al
adds to WM an image of attending to the SSN field,
providing an opportunity for a chunk like attended-ssn to
fire. A2 tags this image as generated from memory rather
than from a stimulus. In general, there could be many
situations in which it might be useful to imagine an SSN
field. Each would be represented in a production like
imagine-ssn (with different conditions).

If we suppose that attended-ssn fires in response to
imagine-ssn, then WM will contain the following
elements. -

(*attended-to ssn)
{*imagined ssn)
{(~event ssn “time t42)

From imagine-ssn.
From imagine-ssn.
From attended-ssn.

From these elements the model can infer that an SSN
field exists in the environment. The production that
makes this inference is recall-seeing-object, below. This
production belongs to the set of generic mechanisms that
form part of the model's static knowledge.

production: recall-seeing-object

(~attended-to <o>) C1
(~imagined <o>) C2
(“event <o> “time <then>) C3
{(“time <now> != <then>) C4
-—

(“recall-seeing <o>)

Recall-seeing-object's conditions, numbered on the right,
are as follows. Conditions C1 and C2 test that there is an
image in WM that was generated internally rather than
from an external stimulus.' C3 and C4 test that the image
was attended in the past. The single action summarizes

' Angle brackets around a letter (e.g., “<0>“) indicate a
variable. If the same variable occurs in multiple conditions,
it must have the same value in each condition for the
production to fire. Thus, for example, C1 and C2 test that the
object bound to <o> is both attended-to and imagined.
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recollection of having seen the object.

The identity comparison in C4 is the only operation
afforded by time symbols. Thus time is categorical,
rather than ordinal or interval, and the only categories are
present (the current comprehension goal) and past (any
previous goal). The model cannot compute, for example,
the interval between two events. This information-
leanness is consistent with qualitative aspects of the rapid
decay of unelaborated temporal codes in people
(Underwood, 1977).

The nature and use of the episodic index is shaped by
Soar's constraints on learning. Because Soar makes a
chunk specific to its encoding context, attended-ssn's
conditions are tied to the object code that appeared in WM
during the attending event. This specificity implies that
recalling the existence of an object must be preceded by
imagery involving the object.

Summary of Assumptions

There are four theoretical assumptions that shape how the
model acquires and retrieves memories for attention
events. The first assumption is that the attention event
itself is worth symbolizing in WM, in addition to the
attended object. The second assumption is that attention is
an integral part of comprehension and thus contributes to
every comprehension goal. These two assumptions are
hypotheses that we have embodied in the model.

The third and fourth assumptions come with Soar. The
third is that all knowledge that contributes to achieving a
goal is stored permanently in chunks. The fourth is that
chunks are specific to their encoding context.

Together, these assumptions imply that chunk acquisition
in the model will be pervasive and automatic, and that
retrieval will be effortful. Learning will be pervasive
because the model will encode a new episodic chunk for
every object it attends to. This learning is automatic, in
that the model exercises no control over whether or not to
learn, and in that learning is a side effect of attentional
processing rather than an end in itself. Retrieval will be
effortful because learning involves little induction. To get
chunks to fire, cues describing the original encoding
context will have to be generated from memory.

Knowledge Distinguished by Dperation

Episodic indexing encodes information about dynamic
information arising during task performance. It also
allows us to make distinctions among the different

brings to a task. Domain knowledge is involved in three
operations:

o Attention. During the acquisition episode, the
- model must know what to attend to in the first place.

Thus the model must be able to identify objects and

understand them to be relevant to the task at hand.

¢ Retrieval. During the retrieval episode, the model
must (a) be able to generate an image, and (b) do this
when the results of a successful probe on that image
would be useful. Thus retrieval depends on both
visual familiarity and semantic understanding specific
to the particular domain.

e Action. The decision to revisit a hidden object is
distinct from recalling that it exists. There might be
other means for acquiring the information that the
object could provide, and there might be no reason to
act on the recollection.

Thus the model points to several operations by which
relatively static domain knowledge helps us gain access to
the relatively dynamic information around us.

- PRODUCTIONS ENCODED AND FIRED

The model simulates 10.5 continuous minutes of problem
solving, spanning the encoding and retrieval episodes of a
number of scrolling events (Altmann, 1996). This
extended lifetime served as a form of methodological
control during our analysis. A sufficiently close
examination of the data to construct the model was the
best way to avoid missing events between acquisition and
retrieval that might have recoded or otherwise affected the
nature of the participant’s episodic index. This extended
lifetime also serves to illustrate the implications of
pervasive episodic encoding for the bandwidth of the
model’s memory system in terms of the number of
chunks acquired and fired.

Figure 1 tabulates productions and firing counts according
to four categories of knowledge (arrayed horizontally). The
top bar indicates the number of productions in each
category when the model stops, including all preloaded
productions and all chunks acquired as the model runs.
The bottom bar indicates the total number of production
firings in each category during the model's run.
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Figure 1: Production and firing counts.

The right half of the picture (shaded) shows that most of
the model's productions are acquired by learning, but fire
seldom because they are specific to their encoding context.
The large number of chunks at the end of the run (1320)
indicates the extent to which learning is pervasive. In
terms of real time, the model is encoding roughly two
chunks per second.

Few of these chunks fire, but some do. In particular,
chunks encoding some aspect of the display account for
8% of firings. Thus the model's behavior depends in part
on a memory for specific external situations that arise
during task performance.

The left half of the picture (unshaded) shows that the
model begins with a small number of preloaded
productions that account for most of its processing.
Preloaded productions number 194 (13%), of which 126
(8%) represent domain knowledge that we attribute to the
programmer. This knowledge lets the model attend to
external objects, generate cues, and recall facts about
objects. It also tells the model what commands it can
issue and what objects are important to comprehend and
therefore select as comprehension goals.

Expertise should be flexible, in that it should guide
behavior under a variety of appropriate circumstances. In
our model, a large number of static domain-knowledge
productions (93 out of the 126 indicated in Figure 1)
represent either comprehension goals or attend or probe
subgoals. These 93 productions account for all 499 goal
and subgoal selections that occur as the model runs, for a
mean of 5.4 goals per production. They also account for
2,518 out of the 2,848 firings of domain-knowledge
productions. These measures indicate that to a large extent
the model's goal and subgoal productions transfer among
situations rather than being hardwired to a particular one.

The category of preloaded productions labeled generic
mechanisms accounts for 75% of total production firings,
despite being only 5% of the total number of productions.
These are domain-independent productions like recall-

seeing-object, discussed earlier, which infers the existence
of a hidden object from an episodic trace. The high firing
rate of mechanistic productions is consistent with their
being the most general productions in the model and
potentially general across many domains.

The production and firing counts over the model's lifetime
illustrate the implications of pervasive episodic learning.
In a few minutes of simulated time, the model acquires a
great deal of dynamic information about its environment
and stores it permanently in LTM. Some of these chunks
transfer in the near-term, firing seconds to minutes (of
simulated time) after being created. The fast rate of
learning -- 1,320 productions over 10.5 minutes -
suggests that Brooks's (1977) estimate of tens or hundreds
of thousands of rules making up a programmer's static
domain knowledge may account for only part of what
generates expert performance. There may in addition be a
vast and constantly growing store of rules capturing
dynamic knowledge.

DISCUSSION

Below we discuss the relationship of episodic indexing to
previous conceptions of episodic memory in Soar and to a
related theory advanced to account for expanded working
memory for domain experts. We then speculate on
episodic indexing and the cognitive cost of clutter.

Episodic Memory in Soar

Episodic memory is a natural construct to study in Soar.
Learning is closely integrated with performance, meaning
that events are easy to capture and store in LTM.
Moreover, chunk conditions are determined by a process
that gives chunks an inherently episodic quality. The
chunking mechanism traces from a result back to the WM
elements from which the result was generated, encoding
an association between the result and important elements
of context in which it was encoded. Thus the simple
existence of a chunk represents some episodic
information. A model can gain access to this information
by generating cues that would cause the chunk to fire if it
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chunk’s result. Several Soar models have addressed
episodic memory in these terms (e.g., Rieman, Young &
Howes, 1996; Rosenbloom, Newell, & Laird 1991).

However, episodic indexing requires richer information to
decide whether an object was actually attended at some
time in the past. Below we examine the constraints met
by the model's time symbols, and how these constraints
arise from the interaction of pervasive episodic encoding
(an assumption in our model) with encoding specificity
(an architectural constraint inherited from Soar).

Episodic encoding extends to probe events as well as
attention events -- that is, the model encodes episodic
chunks for both. This follows from assuming that
attention is integral to comprehension and thus
contributes to every comprehension goal. Probing
contributes equally to comprehension, and thus with
respect to episodic learning the model treats probing and
attention symmetrically.

This symmetry could lead to confusion should the model
probe repeatedly with the same image. A particular probe
will trigger episodic chunks from all previous probes,
potentially leading the model to mistake these past probes
as attention events. A kind of reality monitoring (Johnson
& Raye, 1981) is necessary to avoid this mistake (and
hence to avoid scrolling to imaginary objects). To support
this reality monitoring, episodic chunks must contain
enough information about the source of a memory
(attention vs. prabing) to let the model discriminate past
attention events from past probe events.

Identifying past attention events must be done indirectly
because source information cannot be represented
explicitly in episodic chunks, when the source is the
environment. This seems a surprising constraint, but it
follows from encoding specificity. When building, a
chunk, Soar traces from the result back to premises
existing before the result was generated, and encodes these
premises as conditions. Therefore, if source information is
a result, it also becomes a condition. Thus if a chunk has
an action identifying an object as real, its conditions can
never be met by an image alone. However, by the same
logic, a chunk can have an action identifying an object as
imagined and still be triggered by an image. Thus the
model includes an probe tag with each chunk built during
a probe event (see Appendix).

At retrieval time, these probe tags provide part of the
information necessary to decide if the object of interest
was ever attended. To make this decision, the model must
identify all episodic chunks triggered by the current probe
but built during past probes, and subtract them from the
total set of episodic chunks triggered by the current probe.
If the resulting set is non-empty, then the object was
attended in the past. In terms of predicate calculus, the
model tests an existential quantifier (“Did I recall an
attention event?”) by testing a negated universal quantifier
(“Did T recall any event that was not a probe?”). This
requires that each episodic chunk be uniquely identifiable.
Because chunks are identifiable only by their results, this
in turn requires that each episodic chunk have a uniquely
identifiable result. This requirement cannot be met by a
fixed set of symbols because at most one instance of any
particular symbol can be represented in WM at any given
time whereas the number of distinct events to represent is

model's time symbols (as illustrated in the Appendix),
because each is unique and they are generated anew at
regular intervals.

Thus episodic indexing contrasts with- previous Soar
formulations of episodic memory in which multiple
chunks may have the same result (e.g., Rieman, Young
& Howes, 1996; Rosenbloom, Newell & Laird 1990).
The episodic representation in our model is implied by
theoretical assumptions interacting with task requirements
in a way that does not constrain these other models. Our
assumptions specify an indiscriminate encoding of
episodic chunks, and the task requires that chunks from
attention events transfer to probe events. However, this
transfer requirement combined with encoding specificity
restricts the source information that episodic chunks can
represent. To compensate they are made discriminable by
their results, allowing the model to partition past events
into probe events and all the rest. This shaping of a
representation by a complex interaction of constraints
illustrates the benefit of taking a comprehensive and
integrated approach to modeling cognitive phenomena
(Newell, 1973).

" A Form of Long-Term Working Memory

Episodic indexing posits that access to dynamic
information depends on static information that one brings
to the task. In this it is congruent with long-term
working memory (LT-WM; Ericsson & Kintsch, 1995),
of which a central claim is that long-term knowledge (as
opposed to inherent WM capacity; e.g., Just, Carpenter &
Hemphill, 1996) accounts for functionally expanded WM
in domains in which one has expertise. Episodic indexing
and LT-WM both propose that people store information
rapidly in LTM, using domain knowledge to organize it
and gain access to it later.

Episodic indexing extends LT-WM in the direction of
leaner and more ubiquitous memory structures acquired at
encoding time. The most routine application of LT-WM
reviewed by Ericsson and Kintsch (1995) is text
comprehension, but even this involves online encoding of
memory structures that represent potentially intricate
semantic mappings. For example, in referent resolution
the comprehender must represent the connection between a
pronoun and what it stands for, which is a semantic
association that is not always straightforward to establish.
By contrast, the episodic index is a one-way mapping
from semantic to episodic codes which lacks the network
structure that typically characterizes semantic memory.

The Cost of Clutter

Episodic indexing suggests that clutter has a cognitive
cost, due to the paucity of information encoded with
episodic traces and the effect this has at retrieval time. An
episodic retrieval indicates the existence of an object of
interest but not its whereabouts. This is consistent with
the difficulty that even experienced users have in recalling
features of interfaces (Mayes, Draper, McGregor, &
Qatley, 1988; Payne, 1991), and with findings that spatial
and location knowledge is not automatically encoded in
real-world task environments (Lansdale, 1991). It is also
consistent with the generally reconstructive nature of
memory for the source of an item (Johnson, Hashtroudi,
& Lindsay, 1993).
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add spatial information to the episodic information
encoded during attention. However, encoding specificity as
implemented in Soar predicts that any such information
would place a heavy burden on the retrieval process.
Location information encoded in the actions of a chunk
would also be present in the conditions, thus requiring
that location cues be generated at retrieval time. This
would not completely defeat the purpose, because the
model could use the same kind process it now uses to
generate and recognize images at retrieval time. However,
more cues would have to be generated, requiring both
more cognitive effort and more knowledge from which to
generate them.

This shifts the emphasis to alternative strategies. One
alternative might be to infer location from the nature of
the target item. For example, applications often deposit
different kinds of output into different windows. In such
environments a reliable and easily-retained mapping from
content to location should reduce the cost of clutter.
Another strategy might be search, implying that reliable,
easily-retained, and flexible searching tools also reduce the
cost of clutter. More generally, the implication of
episodic indexing is that access to hidden objects requires
a reconstructive memory process that becomes more
costly the more source information is stored with the
target item. Thus users are likely to mitigate clutter by
inferring location as needed, implying that interfaces to
extensive information environments should support such
inferences with .direct, structured and learnable item-
location mappings.

CONCLUSIONS

We propose that people store simple dynamic information
in long-term memory as a matter of course, and use this
information to index their environment. Our theory of
episodic indexing makes two main claims:

¢ Pervasive and automatic encoding. People acquire
large amounts of recognitional, episodic information
about attention events, as a side effect of attention.

e Semantic, image-based retrieval. People retrieve
this episodic information as a function of pre-existing

knowledge that generates image cues when
semantically appropriate.

The generality of these claims rest on the generality of
their theoretical underpinnings. Soar's  chunking
mechanism (which predicts goal-based learning and
encoding specificity) has been offered as a universal
account of learning (Laird, Rosenbloom, & Newell, 1986;
Newell, 1990), and our additional assumptions about the
integration of episodic processing, attention, and
comprehension are domain-independent. Thus episodic
indexing may operate whenever people pay attention to
what they are doing, and know the domain well enough to
generate the right cues at the right time.
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APPENDIX

Below we present a complete picture of the processing
that occurs when the model probes with an image and
retrieves episodic’chunks. (This elaborates on the process
described in the section, Encoding the Episodic Index.) In
the general case, the episodic chunks retrieved by a probe
will be of two kinds: those encoded during attention
events and those encoded during (past) probe events. Only
those acquired during probe events will contain source
information in their actions (as discussed in the section,
Episodic Memory in Soar). To determine whether the
object of interest was actually attended in the past, the
model computes the difference between the total set of
episodic chunks retrieved and those representing probe
events. The scenario below supposes that the model first
probes for information about the SSN field, then actually
attends to the field, then probes again.

At time t42, the model probes by placing an image in
WM (Al) together with source information identifying
the image as an image (A2).

production: imagine-ssn
Conditions testing that it's relevant to know that
an SSN field was seen.
—-——>
(~attended-to ssn)
(~imagined ssn)

Al
A2

The model encodes an episodic chunk during the probe
event, under the assumption of pervasive episodic
encoding. Source information is included as a chunk
action (A2) and hence also as a chunk condition (C2).

chunk: imagined-ssn
event.

Chunk capturing a probe

(~attended-to ssn) Cl1
(~imagined ssn) C2
—-——>

("event ssn “time t42) Al

I

At time t43, the model actually attends to the SSN
object, resulting in another episodic chunk.

chunk: attended-ssn  Chunk capturing attention
event.

(~attended-to ssn)

-—>

(~event ssn “time t43)

Finally, at time t44, the model probes a second time (by
firing imagine-ssn). This triggers the two episodic chunks
described above, causing the following elements to enter
WM.

(~attended-to ssn)
(*“imagined ssn)
("“event ssn “time t42)
("probe t42)

{“event ssn “time t43)

From imagine-ssn.
From imagine-ssn.
From imagined-ssn.
From imagined-ssn.
From attended-ssn.

From these elements the model can infer that an SSN
field exists in the environment. The production that
makes this inference is recall-seeing-object, below.
Condition C5 (not reported in the section, Using the

- Episodic Index) effectively subtracts the set of probe

events (containing t42) from the set of probe plus
attention events (containing t42 and t43). The leading
minus sign (“-’) negates the subsequent condition,
meaning that WM cannot contain an element matching
that condition. In our scenario, this negated condition
holds for at least one past event (t43). Thus the
production matches, inferring that SSN was attended at

some point in the past (Al).

production: recall-seeing-cbject
{(~attended-to <o>) Cl1, <o> = ssn

(“imagined <o>) C2

(~event <o> ~time <then>) C3, <then>=t43
(“"time <now> != <then>) C4, <now>=t44
- {~probe <then>) Cs

—

{(“recall-seeing <o>) Al
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ABSTRACT

Operators’ models, or equivalent end-user models, have
became a standard prerequisite for most man-machine
system design. Nowadays, the designer can chose among
a great variety of models: behavioral models of
performance, running competence models, and cognitive
models are available in a large range of granularity from
quasi-neuropsychological models of memory to
framework models of dynamic cognition. However,
despite -- or maybe because of -- that variety, modelling
the operator is still an area of uncertainty within the
industry, with multiple forms and meanings, and with a
persistent feeling that these models, whereas they should
be useful, are hard to incorporate into the design process.

This paper focuses on the development and use of
cognitive models of human reliability for the design of
complex systems, and tries to understand biases and
limitations of their use within the industry. In that
sense, the paper is more industry-oriented than research
oriented. It is divided into three sections. The first
section details the range of existing cognitive models of
human reliability and proposes a classification of these
models into four main categories: error production
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models, error detection and recovery models, systemic
models, and integrated safety ecological models. The
example of the Aviation Industry shows how difficult it
has been in the recent past to incorporate the most
advanced of these models into design, whereas the same
Industry had long complained about the lack of
availabilily of cognitive operators’ models.

- The second section tries to explain the reason for the

relative failure. It shows the inter-dependency existing
between the category of cognitive model, the safety
paradigm, and the strategy for design. Severe drawbacks
may occur each time a model is used with the wrong
safety paradigm or the wrong strategy for design. It also
shows that the more cognitively-based the model is, the
less it is incorporated into design. The lack of education
in psychology of designers, as well as the lack of a clear
procedure for incorporating such models into design, are
among the most important factors explaining this lack of
success.

The third and last-section points to new directions in
cognitive modelling to improve the fit between operator
modelling and design requirements.



