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ABSTRACT

Recent results in cognitive skill acquisition suggest that
task speed-up can be due to either speed-up of procedural
knowledge or speed-up of the retrieval of declarative
knowledge. This paper presents a single Act-R model that
closely fits the data of two learning and transfer
experiments conducted by Rabinowitz and Goldberg
(1995). These experiments test three main hypotheses: 1)
access to procedural and declarative knowledge speeds
up as separate power laws of practice; 2) training on a
large variety of problems leads to strengthening of
procedural knowledge, whereas training on a small set of
problems leads to the acquisition and strengthening of
declarative knowledge; and 3) procedural knowledge
operates in one direction only—from condition to
action—whereas declarative knowledge can be cued by
any of its elements. The model provides a good fit to the
data, further validating Act-R as a model of the human
cognitive architecture

Keywords
Declarative memory, procedural memory, learning,
transfer, knowledge compilation, Act-R, Soar.

INTRODUCTION .
One common view of cognitive skill acquisition is that it
progresses from an interpretive stage to a procedural
stage using some kind of knowledge compilation
mechanism (Stillings et al., 1995; VanLehn, 1989). Such
a mechanism produces procedural knowledge from the
results of more deliberate, interpretive problem solving.
This view has received a lot of empirical support. Several
researchers have shown that knowledge compilation can
model the transition from novice to expert behavior
(Larkin, 1981; Newell & Rosenbloom, 1981). One major
research effort, the Soar architecture, even asserts that
knowledge compilation is the only mechanism required
to account for all human learning (Newell, 1990).
Researchers using Soar have been able to model a wide
range of learning strategies (Miller, 1993; Rosenbloom &
Aasman, 1990; Steier et al, 1987). Knowledge
compilation mechanisms can also sometimes account for
the ubiquitous power law of learning (Newell &
Rosenbloom, 1981).

Recent results on the characteristics of declarative and
procedural knowledge, however, threaten the simplicity
of this view of skill acquisition, because they suggest that
cognitive skill can also improve through the acquisition
and strengthening of declarative memory elements (for a
review see (VanLehn, 1996)). A number of experiments
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have suggested that the retrieval of declarative
knowledge and the application of procedural knowledge
speed up as separate power laws of practice. In other
words, the time to retrieve a declarative memory speeds
up as a power function of the number of retrievals,
whereas the time to apply a procedure speeds up as a
power function of the number of applications. This
implies that cognitive skill can improve by acquiring and
strengthening procedural or declarative knowledge, or
some combination of the two.

Despite the intuitive nature of the distinction between
declarative and procedural knowledge, the hypothesis
that there are separate long-term memory stores for
declarative and procedural knowledge remains a
controversial issue in cognitive science. The controversy
arises because, in theory, anything that can be modeled
with two distinct long-term stores can also be modeled
using only a procedural long-term store. For example,
long-term procedural knowledge might add “Washington,
DC” to working memory whenever working memory
encodes a goal to determine the capitol of the United
States. Working memory is widely thought to be a
declarative store, so the declarative-procedural distinction
applies only to long-term memory.

There is, however, mounting evidence in favor of the
distinction. Cognitive neuroscientists have found a
double dissociation between declarative and procedural
knowledge—some patients can acquire new declarative
knowledge, but not procedural, whereas other patients
can acquire procedural, but not declarative. There is also
evidence that the two kinds of knowledge have different
retrieval characteristics: declarative knowledge can be
primed by any of its components, but procedural
knowledge only works in one direction: from a specific
set of cues to an action. A review of these issues can be
found in (Anderson, 1993).

Rabinowitz and Goldberg (1995) conducted two
experiments that nicely illustrate many of the recent
phenomena concerning skill acquisition and the
distinction  between declarative and  procedural
knowledge. These experiments use a learning and transfer
paradigm to examine learning of declarative and
procedural knowledge, and their different retrieval
characteristics.

This paper presents a single Act-R model that accounts
for the data in the two Rabinowitz and Goldberg
experiments. In addition, the paper presents protocol
results from a newly conducted experiment designed to
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Figure 1: Mean response times during alphabet arithmetic training as a function of training group and
practice block. Data plotted from original data by Rabinowitz and Goldberg (1995).

further test the assumptions of the experiments and the
model.

THE RABINOWITZ AND GOLDBERG EXPERIMENTS
Both experiments used an alphabet arithmetic task, which
consists of problems of the form letter! + number =
letter2, where letter2 is number letters after letterl. For
example, A+2=C, because C is 2 letters after A.

In Experiment 1, one group of participants (the consistent
group) received training on 36 blocks of problems, where
each block consisted of the same 12 problems. Another
group of participants (the varied group) received training
on 6 blocks of problems, where each block consisted of
the same 72 problems. Thus, both groups received 432
training trials, but the consistent group practiced each
problem 36 times, whereas the varied group practiced
each problem only 6 times. The problems used addends
from 1 to 6. Consistent problems had two occurrences of
each addend, whereas varied problems had 12
occurrences.

In the transfer phase, both groups received 12 new
addition problems, repeated 3 times. Rabinowitz and
Goldberg reasoned that during training the consistent
group would quickly acquire declarative knowledge of
the answers and switch to retrieval, whereas the varied
group would continue to count up the alphabet. Thus the
consistent group would get a lot of practice at retrieving
the answers to the same 12 problems, but relatively little
practice on the procedural knowledge needed to count up
the alphabet. In contrast, the varied group would receive
little or no practice retrieving declarative knowledge, but
a great deal of practice counting up the alphabet. When
transferred to the 12 new addition problems, the
consistent group should revert to counting up the
alphabet, resulting in a dramatic decrease in speed.
However, the varied group should show perfect transfer
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from the training problems to the new problems.

The training results are shown in Figure 1. Each point on
the graph is the mean of the median response times for all
subjects on a block of 12 problems. The different
asymptotes support the assertion that varied participants
practice procedural knowledge, while consistent
participants switch to and then practice retrieval.

The transfer results, shown in Figure 2, support the
predictions: the varied group shows perfect transfer, but
the consistent group shows considerable slow-down.

Although Experiment 1 supports the predictions, it is also
consistent with a procedural-only long-term store. The
consistent subjects might have acquired problem-specific
procedural knowledge that directly produces the answer
to each problem. For example, knowledge of the form “If
problem is A+2, then type C.” Since this knowledge is
specific to the 12 training problems, it would not have
helped the participants during the transfer phase. This
issue is examined in Rabinowitz and Goldberg’s second
experiment.

The second experiment attempts to determine whether
consistent training leads to specific procedural
knowledge, or to declarative knowledge. It is based on
the hypothesis that declarative and procedural knowledge
have different retrieval characteristics. Declarative
knowledge is thought to be subject to symmetric
retrieval, meaning that any part of a declarative memory
element can act as a cue for the retrieval of that element.
Procedural knowledge is thought to be subject to
symmetric access, meaning that a procedure operates in
only one direction: from condition to action.

Training in Experiment 2 was identical to Experiment 1,
however, in the transfer phase, both groups were given 12
subtraction problems repeated 3 times. A subtraction
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Figure 2: Mean response times for Experiment 1 as a
function of task and group.

problem is of the form letter! - number = letter2. For
example, C-2=A. The 12 subtraction problems were

inverted versions of the addition problems that both -

groups had seen during training. If the consistent group
acquires declarative knowledge of the addition problems,
the participants in this group should be able to solve the
subtraction problems by retrieving and inverting addition
problems. However, if this group has acquired problem-
specific procedural knowledge, they will need to develop
a new procedural for counting down the alphabet, as will
the varied participants—who presumably strengthen their
procedural knowledge during training.

Training results are similar to those for Experiment 1, so
they are not reproduced here. Figure 3 shows that the
transfer results are consistent with the predictions: the
varied group requires considerably more time than the
consistent group.

Taken together, Experiments 1 and 2 support the speed-
up of both declarative knowledge retrieval and procedural
knowledge application, as well as symmetric access to
declarative knowledge and asymmetric access to
procedural knowledge.

AN ACT-R MODEL

Act-R (Anderson, 1993) seems well suited for modeling
these results, because it contains procedural and
declarative long-term stores, along with learning
mechanisms that alter the speed of elements in the two
stores as a function of experience. Trafton (1996) has
described an Act-R model for Experiment 1, but a bigger
challenge is to construct a single Act-R model that can
account for the results from both experiments. Such a
model will serve three purposes. First, it will act as an
additional test for several of Act-R’s theoretical
assumptions. Second, although each of Act-R’s
mechanisms has been tested in isolation, this model will
test the interaction of several mechanisms. Third, the
model will provide an explicit account of declarative and
procedural learning and transfer that might then be used
to analyze a wide range of more complex cognitive tasks.
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Figure 3: Mean response time for Experiment 2 as a
function of task and group.

The model presented here uses Act-R 4.0 (Anderson &
Lebiere, in press).

Act-R is a parallel matching, serial firing rule-based
system. It contains two long-term stores: procedural
memory, represented by production rules, and declarative
memory, represented by an associative network of
declarative memory elements (DMEs). Working memory
is viewed as the highly active portion of long-term
declarative memory.

The alphabet arithmetic model has six production rules
for the main goal. These are described in Table 1. READ-
DISPLAY and ENCODE-DISPLAY simply read and
look up the meaning of the textual symbols in the
problem. REPORT-ANSWER reports the answer and
signals that the goal has been achieved.

The remaining three rules—RETRIEVE-PLUS-
RESULT, RETRIEVE-MINUS-RESULT, AND
SUBGOAL-COUNT—are the most important rules in the
model. RETRIEVE-PLUS-RESULT attempts to solve an
addition problem by retrieving a fact from declarative
memory that matches the problem, but also contains the
answer. If successful, it uses the retrieved answer as the
solution. RETRIEVE-MINUS-RESULT attempts to
solve a subtraction problem by retrieving an addition
DME that is the inverse of the subtraction problem. In
other words, if the current problem is C-2=7?, this rule will
attempt to retrieve a fact of the form letter + 2 = C.
SUBGOAL-COUNT creates a subgoal to solve the
current problem by counting up or down the alphabet.

The model is designed so that Act-R will first try to
retrieve an answer by using one of the retrieve rules. If
the retrieval fails, then SUBGOAL-COUNT will fire to
create the computation subgoal.

The model switches from computation to retrieval by
acquiring declarative representations of problems that it
has solved. When the model begins to solve problems it
does not have any DMEs of past problems to retrieve, so
it always uses SUBGOAL-COUNT. However, each time
it solves a problem, it automatically remembers the
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description of the computation subgoal.

The computation subgoal works by counting either up or
down the alphabet. It uses a set of declarative memory
elements that represent the alphabet using chunks thought
to be common to people raised in United States:

ABCD EFG HIJK LMNOP QRS TUV WXYZ

Each chunk is a DME containing up to five letters and a
pointer to the next chunk. For example, the second chunk
in the alphabet (named alpha2) is represented as:

alphaZ2

ISA item

FIRST e

SECOND f

THIRD g

NEXT alpha3
The subgoal contains 26 rules that implement counting
forward and backward through the alphabet. To do this, it
must first retrieve the alphabet chunk that contains the
starting letter. Next it steps forward along the chunk until
it finds the starting letter. Finally, it counts along the
alphabet (either forward or backward) the required
number of letters. If it reaches a chunk boundary, it must
retrieve either the next or previous chunk before
continuing the count.

The subgoal automatically produces a declarative
memory trace of the problem and its solution. Goals in
Act-R are DMEs that have been pushed onto the goal
stack. You can think of a goal as a kind of goal-specific
working memory, because it encodes the problem, the
solution, and any partial results. When the subgoal has
computed an answer, a rule pops the goal off of Act-R’s
goal stack. This removes the goal from the stack, but it
remains in declarative memory as a DME representing
the problem and its solution. For example, the DME
representing A+2=C is:

Add-fact-10

ISA problem

ARGl a

OP plus

ARG2 2

COUNT 2

RESULT c
Here, Add-fact-10 is an arbitrary name for the DME, and
COUNT is used during processing to keep track of how
many letters were counted.

Every time the subgoal solves a new problem, it leads to
a new DME representing the problem and its solution.
These DMEs are then available for retrieval by the two
retrieval rules described above.

The model accounts for the experimental data by using
three of Act-R’s mechanisms: base-level learning, which
speeds up access to commonly retrieved DMEs, strength
learning, which speeds up rules that are commonly used,
and the memory retrieval threshold, which prevents the
retrieval of DMEs below a specified activation.

To understand how these mechanisms produce the speed-
up and transfer shown in the data, you must first
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rule is the sum of the time needed to retrieve the DMEs it
matches plus the time to execute the rule’s action. The
time to retrieve a DME depends on its activation and the
strength of the production rule that is retrieving it.
Intuitively, latency of retrieval is inversely proportional
to production strength and DME activation. The time to
match DME i is given by Equation 1:

—f(A+S
ti=Fef(;+p)

Equation 1
Here, F and f are constants. A is the activation of DME i,
and Sp is the strength of production p.

The activation of a DME is the sum of its base level
activation and the spreading activation from other DMEs:

Al, = Bi + ZWJ. S].‘. Equation 2
j

where Bi is the base level activation, Wj is the source
activation of DME j, and §ji is the strength of association
from j to i. A single unit of source activation is divided
among all DMEs that fill slots of the current goal. For the
present model, this means that elements of the current
problem (i.e., the letter, operator, and number) will
spread activation to DMEs representing past solutions.

Read-Display

IF the goal is to do an alphabet arithmetic problem, but
the problem text has not yet been read

THEN read the problem text from the display

Encode-Display

IF the goal is to do an alphabet arithmetic problem, and
the problem text has been read, but its meaning has not
been determined

THEN encode the meaning of each textual symbol

Retrieve-Plus-Result

IF the goal is to do an alphabet ADDITION arithmetic
problem of the form letter] + number =, but the answer
has not been determined, and there is a fact in memory
stating that letter]l + number = letter2

THEN note letter2 as the answer

Retrieve-Minus-Result

IF the goal is to do an alphabet SUBTRACTION
arithmetic problem of the form letterl - number =, but
the answer has not been determined, and there is a fact
in memory stating that letter2 + number = letter1l

THEN note letter2 as the answer

Subgoal-Count

IF the goal is to do an alphabet arithmetic problem, but
the answer has not been determined

THEN set a subgoal to compute the answer by counting

Report-Answer

IF the goal is to do an alphabet arithmetic problem, and
the answer has been determined
THEN report the answer and pop the goal

Table 1: The English version of the modei’s main
production rules
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The same is true for the operator and the number. Hence,
the DME that represents the past solution to the current
problem will receive activation from all three elements
and will, most likely, be the most active DME.

The base level activation of a DME reflects the log prior
odds that the DME will be matched by a production rule.
Act-R assumes that these odds increase as a function of
use and decrease as a function of delay. This is given by
the optimized base-level learning equation.

nL™
B =1n +
; —d B

Equation 3

where [ represents the initial base-level, d is the decay
rate, L is the time since the DME was created, and »n is
the number of times the DME has been used. This
equation assumes that the uses of the DME are evenly
spaced in time. This is a reasonable assumption for the
present model, because each trial occurs only once in a
given block. Act-R’s exact base-level learning equation
does not make this assumption, but is much more
expensive to compute.

A use count of a DME is incremented whenever the DME
is retrieved by a rule or when a duplicate DME is created.
As noted above, when a goal is popped from the stack it
remains in declarative memory. However, if Act-R
detects that a- newly created DME is identical to an
existing DME, then it destroys the new DME and
increments the use count of the old DME. This is
important during initial skill acquisition, because a newly
created DME might be too inactive to recall after a brief
delay. When this happens, the model must recompute the
answer. Since the subgoal creates a duplicate DME, the
original DME is strengthened, increasing the chances of
recall in future trials.

A DME that matches a rule’s condition will be
successfully retrieved whenever its activation exceeds the
global retrieval threshold. Act-R assumes that DME
activation contains permanent noise with mean O and

variance O 12 . When a DME is first created, its base-level

activation is set to a base level constant plus the
permanent activation noise.

We can now see how the model might learn to retrieve
declarative traces in the consistent training condition, but
not in the varied training condition. In the consistent
condition, the model is exposed to each problem 36
times. These frequent exposures boost the base-level
activation of the memory traces, allowing the retrieval
rules to directly recall the solutions. In contrast, in the
varied condition the model is exposed to each problem
only six times. In addition, the varied condition takes
longer because the first 72 trials can only be solved by
counting. In the consistent condition there is a chance of
recalling one or more answers after the first 12 trials.

The speed-up of participants in the consistent condition is
predicted by Equation 1, which governs retrieval latency.
It predicts that retrieval latency is inversely proportional
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lower trial times in the consistent condition.

The model predicts that speed-up in the varied condition
and part of the speed up in the consistent condition is due
to speed-up of procedural knowledge. As discussed
earlier in this section, Act-R assumes that the latency of a
rule application is inversely proportional to its strength
and the activation of the DMEs that it matches (see the
discussion surrounding Equations 1 and 2). Rule strength
is governed by the same equation that governs base-level
learning (Equation 3) except that L is the time since the
rule was created, d is a separate strength decay constant,
and n is the number of times the rule has been fired.

Strength learning, combined with the latency equations
(Equations 1 and 2), predict the speed-up in the varied
condition and why varied training produces perfect
transfer to new addition problems, whereas consistent
training shows no transfer. In the varied condition, the
model receives a lot of practice counting up the alphabet.
Thus, the rules for counting, which are not specific to a
single problem, are strengthened throughout training, and
this strengthening continues during the transfer phase. In
contrast, when the model is given consistent training, it
learns to retrieve the answers to the 12 problems, so it
rarely uses the counting rules. Once the model reaches
the transfer phase it must begin to use the counting rules
again, but their strengths will be either at or below their
initial values, producing the dramatic slowdown observed
in the data.

The model also accounts for the subtraction transfer
results. In the consistent condition, the model acquires
and strengthens DMEs representing each problem and its
solution. When transferred to subtraction, these DMEs
have a high enough activation to be retrieved and
inverted by RETRIEVE-MINUS-RESULT. The model
predicts that performance will be slower than at the end
of training, because it has not yet strengthened
RETRIEVE-MINUS-RESULT. In contrast, when the
model is in the varied training condition, the DMEs rarely
become active enough to retrieve, so they are not
available during transfer. Although the model has
strengthened its rules for counting up the alphabet, very
few of these rules are used to count down, so the model
must use counting down rules that have not yet been
used, and hence are much slower to fire.

Four parameters were estimated to fit the model to the
data. These were the base-level learning decay parameter
(d in Equation 3), production strength decay parameter,
retrieval threshold, and permanent activation noise.
Transient noise was not used. These four parameters are
critical to fitting the data. The rule strength decay
parameter affects the learning rate of procedural
knowledge. The interaction of the retrieval threshold with
the three other parameters determines the amount of
practice needed before the model can switch from
computation to retrieval. To fit the data, these parameters
must be set so that consistent training leads the model to
retrieve the answers, whereas varied training leads the
model to continue to compute the answers. In addition,
the parameters must also produce the right learning
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Figure 4: Observed and predicted mean response times during alphabet arithmetic training as a function of training
group and practice block. Observed data replotted from Rabinowitz and Goldberg (1995).

curves for the two conditions.

The best fit was obtained with base-level learning decay
set to .7, strength decay set to .5, retrieval threshold set to
.55, and permanent activation noise variance set to .15. In
addition, the total time to read the problem and type a
letter was estimated at a constant 1.25 sec. This defines
the lower bound of the model’s response times. To reflect
familiarity with the alphabet, all alphabet DMEs were
given initial base-level activations of .974, reflecting 100
uses in the last 1000 seconds. Production rule strengths
were initially set to .486, reflecting 25 uses in the past
1000 seconds. All other parameters used the default Act-
R 4.0 values. .

The model’s predictions for the training phase in
Experiment 1 are shown in Figure 4 along with the
observed data. The model predictions were produced by
simulating 15 subjects in each condition. The same model
and parameter values were used for both conditions. The
R? for the consistent condition was .89 and for the varied
condition .78. This is pretty good considering that two
different groups of subjects were modeled using the same
parameters. In addition, the model captures the
qualitative trends in the data—consistent simulations get
much faster than varied simulations.

The transfer results are shown in Figures 5 and 6. The
model closely fits the quantitative and qualitative results
for alphabet addition transfer: consistent training leads to
a large slow down in the transfer phase, whereas varied
training results in perfect transfer. The subtraction
transfer simulation matches the qualitative results, but not
the quantitative ones: consistent training leads to better
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performance on subtraction than does varied training, but
the model underestimates the latency of subtraction
problems. Overall though, the fit is quite impressive,
considering that four groups of subjects in four different
conditions are fit using the same model and parameter
values.

The modeling results raise several issues that will be
addressed in the next section. The poor fit of the model to
the quantitative subtraction data for the varied condition
is easy to fix. It is possible to increase the time to
compute a subtraction problem answer by either
decreasing the strength of the subtraction counting rules
or by switching to a different technique to solve the
problems. A decrease in the rules’ strengths is justifiable
because most people rarely need to recite the alphabet
backwards. However, it is also possible that people use a
different strategy, such as guessing an answer and then
counting forward to see if it is the right one.

The poor match to the subtraction latency in the
consistent condition is much more puzzling. Specifically,
why do the participants need over 4 seconds to solve each
problem? If they are really recalling an alphabet addition
problem and inverting it, then they should be closer to the
predicted times, but instead their times are more than
double the predictions. One possibility is that only a
subset of wvaried participants actually switched to
retrieval, whereas the remainder used computation.

The model’s good fit to the data shows that active
declarative knowledge is not needed to account for the
results. Thus, the two experiments do not discriminate
between declarative knowledge being inert or active.
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as a function of task and group.

However, it is possible that protocol data might provide
evidence concerning this issue.

PROTOCOL ANALYSIS

To better understand the strategies that people use for
alphabet arithmetic, particularly with respect to
subtraction, a variant of Experiment 2 was run at The
Ohio  State  University.  Participants were 42

undergraduate students at The Ohio State University who

received course credit for their effort. This experiment
was similar to Rabinowitz and Goldberg’s except that
participants answered a questionnaire halfway through
training and immediately after the transfer phase. Part 1
of the questionnaire contained the question: *Please
describe all strategies that you used to solve the alphabet
addition problems. If you used multiple strategies (or
changed strategies), be as specific as possible about
where and when you used them.” Part 2 (completed at the
end of the experiment) contained two questions: 1)
“Please describe all strategies that you used to solve the
alphabet ADDITION problems since the break. If- you
used multiple strategies (or changed strategies), be as
specific as possible about where and when you used
them.” and 2) Please describe all strategies that you used
to solve the alphabet SUBTRACTION problems. If you
used multiple strategies (or changed strategies), be as
specific as possible about where and when you used
themn.”

Three main strategies were mentioned during the training
phase: counting only, counting plus recall, and computing
(in an unspecified way) plus recall. Many more strategies
were mentioned in the transfer phase: counting
backwards, recall plus inversion only, computing initially
then switching to recall and inversion, and generate and
test. Table 2 shows the results in terms of the percentage
of participants in each category. For this analysis,
responses to both training questions were coded together.
The results clearly support the assumption that varied
training leads to faster counting, whereas consistent
training leads to direct retrieval. 95% of the participants
in the consistent group reported using recall during
training, versus only 32% of those in the varied
condition. Most participants in the varied group (68%)
reported that they used only counting throughout the
entire training phase, in contrast to only 5% of
participants in the consistent group.
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Figure 6: Mean predicted response times for Experiment
2 as a function of task and group.

The transfer protocol results are consistent with the
hypothesis that varied training leads to strengthened
asymmetrically accessible procedural knowledge for
counting up, whereas consistent training leads to
symmetrically accessible declarative knowledge. 70% of
the consistent group reported recalling and inverting the
addition problems, versus only 5% of the varied group.
Likewise, only 15% of the consistent group reported
counting back only, versus 36% of the varied group.
Another 18% of the varied group used the generate and
test strategy.

These results help clarify the model’s problems of
underestimating the difficulty of subtraction. First, they
show that at least 15% of the consistent group used
computation instead of recall, offering a possible
explanation for the higher than predicted response times
for this group on the transfer task. Second, the results
indicate that the model’s strategy of counting backward is
consistent with the majority of participants in the varied
group, but that the model is simply underestimating the
time required to count back. In fact, two participants who
used generate and test, mentioned that they switched to
this method because counting back was too difficult. In
contrast, counting back in the model within an alphabet
chunk is just as fast as counting forward. The model’s
slower subtraction times are due only to the increased
time needed to retrieve the previous chunk, thus
subtraction problems that do not cross a chunk boundary
are just as fast as addition problems. Resolving this
problem should bring the model’s predictions closer to
the observed data.

The protocol data provides little evidence of whether
declarative knowledge is inert or active. Only 10% of the
consistent group mentioned computing the answers to a
few subtraction problems before recognizing them as
inverted addition problems.

CONCLUSION

This paper has three main results. The first is that the
successful fit of the model to the alphabet arithmetic
results shows that the two experiments fail to
discriminate between active or inert declarative memory.
Declarative memory in Act-R is inert—it can only be
retrieved in the service of a production rule. Although the
protocol data provided little insight into this issue, it does



Table 2: Reported strategy use based on training group
and task.
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Consistent Varied
(n=20) (n=22)
Training
Counting only 5 % (1) 68% (15)
Count + Recall 80% (16) 32% (7)
Compute + Recall 15% (3) 0%
Transfer
Counting back only 15% (3) 36% (8)
Recall and Invert 60% (12) 5% (1)
Count back then 5% (1) 0%
recall and invert
Compute then Recall 5% (1) 0%
and Invert
Generate and Test 5% (1) 18% (4)
Count back + 0% 9% (2)
Generate and Test
Other 5% (1) 5% (1)
Not codable 5% (1) 27% (6)

suggest that some kind of recognition process is needed

before a participant can switch to recall and inversion.
Recent work on feeling-of-knowing (i.e., the feeling that
you know an answer to a problem) provides some support
for this claim. Schunn, et al. (1997) have shown that
feeling-of-knowing is based on similarity of the problem
to previously seen problems, not on the availability of an
answer to the problem. Since subtraction problems are so
different from the inverted addition problems, it seems
likely that solving one or two subtraction problems might
lead to a feeling of knowing based on similarity between
the solved subtraction problem and previously seen
addition problems. This feeling-of-knowing might then
prompt a person to consciously explore the similarities.

Second, the model’s successful fit to the data and the
protocol results provide additional support for separate
declarative and procedural long-term memory stores. In
addition, the model also shows that the separate
strengthening of procedural and declarative knowledge
can produce the observed results.

Finally, the paper shows that Act-R is sufficient to
capture both the qualitative and quantitative details of the
acquisition and transfer of procedural and declarative
memory. Even more importantly, the model shows that
several Act-R mechanisms working together can predict
whether training will lead to procedural strengthening or
the recall of declarative knowledge.
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Abstract

This paper presents a skill learning model
CrARrION. Different from existing models
of mostly high-level skill learning that use a
top-down approach (that is, turning declar-
ative knowledge into procedural knowledge),
we adopt a bottom-up approach toward low-
level skill learning, where procedural knowl-
edge develops first and declarative knowledge
develops from it. CLARION which follows this
approach is formed by integrating connec-
tionist, reinforcement, and symbolic learn-
ing methods to perform on-line learning. We
compare the model with human data in a
minefield navigation task. A match between
the model and hiiman data is observed in sev-
eral comparisons.

1 Introduction

Skills vary in complexity and the degree of cognitive in-
volvement. They range from simple motor movements
and other routine tasks in everyday activities to high-
level intellectual skills. We want to study “lower-level”
cognitive skills, which have not received sufficient re-
search attention. One type of task that exemplifies
what we call low-level cognitive skill is reactive se-
quential decision making (Sun and Peterson 1995). It
involves an agent selecting and performing a sequence
of actions to accomplish an objective on the basis of
moment-to-moment information (hence the term “re-
active”). An example of this kind of task is the mine-
field navigation task developed at The Naval Research
Lab (see Gordon et al. 1994). This kind of task setting
appears to tap into real-world skills associated with
decision making under conditions of time pressure and
limited information. Thus, the results we obtain from
human experiments will likely be transferable to real-
world skill learning situations. Yet this kind of task is
suitable for computational modeling given the recent
development of machine learning techniques (Sun et al
1996, Watkins 1989).

The distinction between procedural knowledge and
declarative knowledge has been made in many theo-
ries of learning and cognition (for example, Ander-
son 1982, 1993, Keil 1989, Damasio et al. 1994, and
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Figure 1: Navigating Through Mines

Sun 1995). It is believed that both procedural and
declarative knowledge are essential to cognitive agents
in complex environments. Anderson (1982) originally
proposed the distinction based on data from a vari-
ety of skill learning studies, ranging from arithmetic
to geometric theorem proving, to account for changes
resulting from extensive practice. Similar distinctions
have been made by other researchers based on differ-
ent sets of data, in the areas of skill learning, concept
formation, and verbal informal reasoning (e.g., Fitts
and Posner, 1967; Keil, 1989; Sun, 1995).

Most of the work in"skill learning that makes the
declarative/procedural distinction assumes a top-down
approach; that is, learners first acquire a great deal of
explicit declarative knowledge in a domain and then
through practice, turn this knowledge into a procedu-
ral form (“proceduralization”), which leads to skilled
performance. However, these models were not devel-
oped to account for skill learning in the absence of, or
independent from, prexisting explicit domain knowl-
edge. Several lines of research demonstrate that in-
dividuals can learn to perform complex skills without
first obtaining a large amount of explicit declarative
knowledge (e.g., Berry and Broadbent 1988, Stanley
et al 1989, Lewicki et al 1992, Willingham et al 1992,
Reber 1989, Karmiloff-Smith 1986, Schacter 1987, and
Schraagen 1993). In research on implicit learning,
Berry and Broadbent (1988), Willingham et al (1992),
and Reber (1989) expressly demonstrate a dissociation
between explicit knowledge and skilled performance
in a variety of tasks including dynamic decision tasks
(Berry and Broadbent 1988), artificial grammar learn-
ing tasks (Reber 1989), and serial reaction tasks (Will-
ingham et al 1992). Berry and Broadbent (1988) argue
that the psychological data in dynamic decision tasks’
are not consistent with exclusively top-down learning



models, because subjects can learn to perform the task
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used to perform the task. This indicates that pro-
cedural skills are not necessarily accompanied by ex-
plicit declarative knowledge, which would not be the
case if top-down learning is the only way to acquire
skill. Willingham et al (1989) similarly demonstrate
that procedural knowledge is not always preceded by
declarative knowledge in human learning, and show
that declarative and procedural learning are not nec-
essarily correlated. There are even indications that
explicit knowledge may arise from procedural skills in
some circumstances (see Stanley et al 1989). Using
a dynamic decision task, Stanley et al. (1989) found
that the development of declarative knowledge paral-
leled but lagged behind the development of procedural
knowledge.

Similar claims concerning the development of pro-
cedural knowledge prior to the development of declar-
ative knowledge have surfaced in a number of research
areas outside the skill learning literature and provided
additional support for the bottom-up approach. Im-
plicit memory research (e.g., Schacter 1987) demon-
strates a dissociation between explicit and implicit
knowledge/memories in that an individual’s perfor-
mance can improve by virtue of implicit “retrieval”
from memory and the individual can be unaware of
the process. This is not amenable to the exclu-
sively top-down approach. Instrumental condition-
ing also reflects a learning process that differs from
the top-down approach, because the process is typi-
cally non-verbal and involves the formation of action
sequences without requiring a priori explicit knowl-
edge. It may be applied to simple organisms as well
as humans (Gluck and Bower 1988). In developmen-
tal psychology, Karmiloff-Smith (1986) proposed the
idea of “representational redescription”. During de-
velopment, low-level implicit representations are trans-
formed into more abstract and explicit representations
and thereby made more accessible. This process is not
top-down either, but in the opposite direction.

2 The Model

The difference between declarative and procedural
knowledge leads naturally to “two-level” architectures
(Sun 1995). We thus developed the model CLARION,
which stands for Connectionist Learning with Adaptive
Rule Induction ON-line (Sun et al 1996). It embodies
the distinction of declarative and procedural knowl-
edge (or, conceptual and subconceptual knowledge),
and it performs learning in a bottom-up direction. It
consists of two main components: the top level encodes
explicit declarative knowledge in the form of propo-
sitional rules, and the bottom level encodes implicit
procedural knowledge in neural networks. In addition,
there is an episodic memory, which stores recent ex-
periences in the form of “input, output, result” (i.e.,
stimulus, response, and consequence).

2k

2. Compute in the bottom level the Q-value
of each of the possible actions (ai’s) associ-
ated with the perceptual state z: Q(z,a,),
Q(z,az2), ...... , Q(z,an).

3. Find out all the possible actions (by, b2, ....,
bm) at the top level, based on the the per-
ceptual information z and other available in-
formation (which goes up from the bottom
level) and the rules in place at the top level.

4. Compare the values of a;’s with those of b;’s
(which are sent down from the top level), and
choose an appropriate action a.

5. Perform the action a, and observe the next
state y and (possibly) the reinforcement r.

6. Update the bottom level in accordance with
the @-Learning-Backpropagation algorithm,
based on the feedback information.

7. Update the top level using the Rule-
Exztraction-Refinement algorithm.

8. Go back to Step 1.

In the bottom level, a Q-value is an evaluation of
the “quality” of an action in a given state: Q(z,a)
indicates how desirable action a is in state z. We
can choose an action based on Q-values. To acquire
the Q-values, supervised and/or reinforcement learn-
ing methods may be applied. A widely applicable op-
tion is the Q-learning algorithm (Watkins 1989), a
reinforcement learning algorithm. In the algorithm,
Q(z,a) estimates the maximum discounted cumula-
tive reinforcement that the agent will receive from the
current state £ on. The updating of Q{z,a) is based
on minimizing r+~vye(y) —Q(z, a}, where y is a discount
factor and e(y) = max, Q(y,a). Thus, the updating
is based on the temporal difference in evaluating the
current state and the action chosen: In the above for-

* mula, Q(z,a) estimates, before action a is performed,

the (discounted) cumulative reinforcement to be re-
ceived if action a is performed, and r + vye(y) esti-
mates the (discounted) cumulative reinforcement that
the agent will receive, after action a is performed; so
their difference (the temporal difference in evaluating
an action) enables the learning of Q-values that ap-
proximate the (discounted) cumulative reinforcement.
Using Q-learning allows sequential behavior to emerge
in an agent. Through successive updates of the Q func-
tion, the agent can learn to take into account future
steps in longer and longer sequences.

To implement Q functions, we chose to use a four-
layered network (see Figure 2), in which the first three
layers form a (either recurrent or feedforward) back-
propagation network for computing Q-values and the
fourth layer (with only one node) performs stochastic
decision making. The output of the third layer (i.e.,
the output layer of the backpropagation network) in-
dicates the Q-value of each action (represented by an
individual node), and the node in the fourth layer de-
termines probabilistically the action to be performed
based on a Boltzmann distribution (i.e., Luce’s choice,
axiom; Watkins 1989). This learning process performs
both structural credit assignment (with backpropaga-



tion), so that the agent knows which element in a state
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tion leads to success or failure. This learning process
enables the development of procedural skills poten-
tially solely based on the agent independently explor-
ing a particular world on a continuous and on-going
basis.

In the top level, declarative knowledge is captured
in a simple propositional rule form. To facilitate corre-
spondence with the bottom level and to encourage uni-
formity and integration (Clark and Karmiloff-Smith
1993), we chose to use a localist connectionist model
for implementing these rules (e.g., Sun 1992, Towell
and Shavlik 1993). Basically, we translate the struc-
ture of a set of rules into that of a network. For each
rule, a set of links are established, each of which con-
nects a node representing a concept in the condition
of a rule to the node representing the conclusion of the
rule. For more complex rule forms including predicate
rules and variable binding, see Sun (1992).

To fully capture bottom-up learning processes, we
devised an algorithm for learning declarative knowl-
edge (rules) using information in the bottom level
(the Rule-Exiraction-Refinement algorithm). The ba-
sic idea is as follows: if an action decided by the bot-
tom level is successful then the agent extracts a rule
(with its action corresponding to that selected by the
bottom level and with its conditions corresponding to
the current sensory state), and adds the rule to the
top-level rule network. Then, in subsequent interac-
tions with the world, the agent refines the extracted
rule by considering the outcome of applying the rule: if
the outcome is successful, the agent may try to general-
ize the conditions of the rule to make it more universal;
if the outcome is not successful, then the conditions of
the rule should be made more specific and exclusive of
the current case.

We perform rule extraction at each step, based on
the following information: (z,y,r,a), where z is the
state before action a is performed, y is the new state
entered after an action a is performed, and r is the
reinforcement received after action a. Rules are in the
following form: conditions — action, where the left-
hand side is a conjunction of individual conditions each
of which refers to the value of an element in the (sen-
sory) input state. Three different criteria can be used
for rule learning at each step: (1) direct reinforcement
received at a step, (2) temporal difference (as used in
updating Q-values), and (3) maximum Q-values in a
state. We adopt a three-phase approach, with each
phase lasting for a certain number of episodes. Phase
transition can be automatically determined based on
the current performance level of the model. At each
step, we apply the current-phase criterion to deter-
mine whether we should construct a rule. If so, a rule
is wired up in the rule network. After rules are ex-
tracted, at each step, the algorithm reexamines the
rules matching the current step to decide if each of
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Figure 2: The implementation of CLARION.

them should be kept, revised, or discarded. See Sun
et al. 1996 for the full details of rule learning.

Step 4 is for making the final decision on which ac-
tion to take by incorporating outcomes from both lev-
els. We combine the corresponding values for an action
from the two levels by a weighted sum; that is, if the
top level indicates that action a has an activation value
v (which should be 0 or 1 as rules are binary) and the
bottom level indicates that a has an activation value ¢
(the Q-value), then the final outcome is w; *v +ws *q.
Stochastic decision making with Boltzmann distribu-
tion (based on the weighted sums) is then performed.
Figure 2 shows the two levels of the model.

3 Experiments

In all of the human experiments, subjects were seated
in front of a computer monitor that displayed an in-
strument panel containing several gauges that pro-
vided current information (see Figure 3). The follow-
ing instruction was given to explain the setting:

I. Imagine yourself navigating an underwater
submarine that has to go through a minefield to
reach a target location. The readings from the
following instruments are available:

(1) Sonar gauges show you how close the mines
are to the submarine. This information is pre-
sented in 8 equal areas that range from 45 de-
grees to your left, to directly in front of you and
then to 45 degrees to your right. Mines are de-
tected by the sonars and the sonar readings in
each of these directions are shown as circles in
these boxes. A circle becomes larger as you ap-
proach mines in that direction.

(2) A fuel gauge shows you how much time you
have left before you run out fuels. Obviously, you
must reach the target before you run out of fuel
to successfully complete the task.

(3) A bearing gauge shows you the direction of
the target from your present direction; that is,
the angle from your current direction of motion
to the direction of the target.

(4) A range gauge shows you how far your current
location is from the target.

II. At the beginning of each episode you are lo-
cated on one side of the minefield and the target
is on the other side of the minefield. You task is
to navigate through the minefield to get to the
target before you run out of fuel. An episode
ends when: (a) you get to the goal (success); (b)



you hit a mine (failure); (¢) you run out of fuel
(failure).

A random mine layout was generate
episode. This setting is stochastic and non-Markovian.
Five training conditions were used:

e The standard training condition. Subjects re-
ceived five blocks of 20 episodes on each of five
consecutive days (100 episodes per day). In each
episode the minefield contained 60 mines. The
subjects were allowed 200 steps.

o The verbalization training condition. This condi-
tion was identical to the standard training con-
dition except that subjects were asked to step
through slow replays of selected episodes and
to verbalize what they were thinking during the
episode. Subjects received replays on the first,
third, and fifth days of training. The subjects
were replayed five episodes after the first block of
20 episodes and five episodes after the fifth block
of 20 episodes on these days.

o The over-verbalization training condition. In this
condition subjects were presented replays of 15
of their first 25 episodes, and asked to verbalize
during the slow playback. Replay of an episode
occurred immediately after the subject finished
the episode.

e The 30-to-60 transfer condition. This condition
was also identical to the standard training condi-
tion except that subjects performed the task with
30 mines on the first two days of training and
switched to 60 mines starting the third day. ..

o The mixed training condition. “Mixed” refers to

the fact that mine density was manipulated dur- |

ing training. Subjects performed the task with
30, 50, 70, or 90 mines. Subjects received eight
blocks of 10 episodes per day over five days, two
at each mine density. Order of presentation was
randomized.

In CLARION each gauge was represented by a set
of nodes that corresponded to what human subjects
would see on screen. This input setup yielded a total of
43 primary perceptual inputs. Thus, there were more
than 10!2 possible input states. Thus the model had
to deal with the problem of high dimensionality. As a
result, a lookup table implementation for Q-learning
at the bottom level was not possible (Tesauro 1992,
Lin 1992). To deal with the situation. a functional
approximator such as backpropagation networks must
be used. Also in correspondence to the human exper-
imental setting, the action outputs consisted of two
clusters of nodes representing turn and speed.

The model started out with no more a priori knowl-
edge about the task than a typical human subject,
so that bottom-up learning can be captured. The
bottom level contained randomly initialized weights
(with a pre-chosen, fixed topology). The top level
started empty and contained no a priori knowledge
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Figure 3: The Navigation Input
The display at the upper left corner is the fuel gauge; the
vertical one at the upper right corner is the range gauge;
the round one in the middle is the bearing gauge; the 7
sonar gauges are at the bottom.

about the task, either in the form of instructions or
instances. The episodic memory was empty at the be-
ginning. There was no supervised learning (i.e., no
teacher input). The reinforcement signals embodied
some a priori notions regarding getting close to tar-
get and avoiding explosion that were also provided to
human subjects through instructions. The learning al-
gorithm with all the requisite parameters was pre-set,
presumably reflecting the learning mechanisms in hu-
mans.

The results of the experiments are analyzed as fol-
lows.

The standard training condition. We obtained
performance data over 500 episodes per subject. We
averaged the data over 10 human subjects. We did
the same with the model: Each model run was ini-
tialized with different random number sequences and
thus produced different results; we averaged 10 such
runs in exact correspondence with human experiments
(i.e., we did not tune the random number sequences to
generate a match, but randomly set seeds for random
number generators, analogous to random selection of
human subjects in this experiment). We compared
average success rates because in this way we can elim-
inate the uninteresting impact of individual differences
and instead focus on essential features of learning in
this task. These data are presented in Figure 4. Both
sets of data were best fit by power functions (for fail-
ure rate). The degree of similarity is evident. A Pear-
son product moment correlation coefficient was calcu-
lated (treating blocks as individuals and human ver-
sus model as the X and Y variables). The analysis
yielded a high positive correlation (r = .82), indicat-
ing a high degree of similarity between human subjects
and model runs.

The verbalization training condition. Obvi-
ously, we could not require verbalization from the
model. However, we posited that much of the effect of
verbalization on learning was associated with rehears-
ing previous steps and episodes (although there may
be additional factors involved). Thus for the model,
we used episode memory playback (Lin 1992) in a first
attempt to capture this effect. Episode memory play-
back involves training the model with previously per-
formed episodes between blocks of actual trial episodes
in exactly the same manner as in human experiments.
In this case, the data from 5 human subjects was com-
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Figure 4: The learning curves in terms of success rates
in the standard condition. The right side is the human
data and the left side is the model data.
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Figure 5: The learning curves in terms of success rates
in the verbalization condition.

pared to that of 5 model runs. Data was averaged
for each of 25 blocks (see Figure 5). Again, both sets
of data were highly similar and both were best fit by
power functions. We also calculated a Pearson product
moment correlation coefficient, which yielded a high
positive correlation (r = .84).

We subsequently compared the changes in perfor-
mance due to verbalization for the human subjects and
the model runs. This was done by averaging failure
rates across blocks separately for each human subject
and for each model run and subjecting that data to
a 2 x 2 ANOVA. The analysis of these data indicated
the both groups exhibited a significant increase in per-
formance due to verbalization (p < .01), and that the
changes due to verbalization for the two groups were
not significantly different (52 to 25 percent failure rate
for the human subjects versus 53 to 38 percent fail-
ure rate for the model runs). The effect of explication
of implicit knowledge which likely results from verbal-
ization was captured through the usual rule learning
process, which was also at work during episode replay.

The 30-to-60 transfer condition. Subjects were
first trained on 30-mine minefields, and then trans-
ferred to 60-mine minefields. The model was tested
under the same condition. Both human and model
data were averaged over 10 subjects. Comparing the
human and model data (see Figure 6), we noticed that
both learned well at 30 mines, although human data
was slightly better. When transferred to 60 mines,
both exhibited a significant drop in performance, al-
though the model exhibited a deeper drop. Specifi-
cally, we compared performance of the last block be-
fore the change in mine density and the first block after
the change. Success rates were 98% and 79% for the
human subjects and 83% and 26% for the model runs
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Figure 6: The 30-to-60 transfer data in terms of suc-
cess rates.

Figure 7: Average success rates for each mine densities
in the mixed condition.

respectively. The drops were both statistically signif-
icant. At first look, it might appear that the drop in
performance for the model runs was much greater than
that for the human subjects. However, this might not
be a fair assessment in that we did not allow the model
runs to reach the same performance as the human sub-
jects before changing the mine density. Indeed, the 5
highest performing of the model runs before the change
performed 8 times better after the change than did the
5 lowest performing ones.

The mixed training condition. We plotted

» learning curves in terms of success rates for each mine

density separately. The data were averaged over 8 hu-
man subjects and 8 model runs, respectively. The av-
erage curves are shown in Figure 7. We calculated
overall success rates for each of the mine densities.
Both the human subjects and model runs performed
best with the lowest mine density and performance
decreased with each increase in the number of mines.
Thus, we observed a similar pattern. The drop in per-
formance was roughly the same for human subjects
and model runs between the 30 and 50 mine densi-
ties (16% versus 13%, respectively). We do not know
for sure what accounts for the failure of the model at
the 70 and 90 mine densities. However, questionnaires
completed by the human subjects indicated that they
treated the higher density conditions as different from
the lower density conditions. Because the model runs
did not “start over” at each density, they were ap-
plying what was learned to conditions in which it did
not work. In contrast, human subjects could sense the
change in conditions and discard their old strategies.
The over-verbalization condition. Human sub-
jects under the over-verbalization condition failed to
learned. During the 25 episodes of training, their suc-
cess rates were well below 10%, compared with the



33% performance for the subjects under the (sparse)

We also compared the verbalizations of good per-
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who performed at 60%, the resaaimingrisu
achieved approximately 3% success rate. CLARION ac-
counts for this phenomenon by positing that too much
verbalization (e.g., verbalizing for more than half of
the training episodes) caused the learner to switch to
a completely explicit mode of learning; they tended to
rely completely on the top-level learning mechanism
and shut down the bottom level. This is consistent
with the similar hypothesis by Stanley et al (1989), for
explaining their findings regarding the difficulty their
subjects had in learning a dynamic decision task after
being given instructions that encouraged them to be
explicit. Schooler et al (1993) also reported that re-
quiring verbalization impaired subjects’ ability to solve
problems that require “insight”, by forcing them to be
overly explicit. CLARION explains the findings readily
with the shut-down mechanism. The top-level learning
mechanism when disconnected from the bottom level,
clearly has trouble learning this kind of sequential task,
because of its lack of a temporal credit assignment pro-
cess (comparable in power to Q-learning) and its all-or-
nothing learning process. On the other hand, in the
bottom level, the distributed network representation
and learning process that incorporates gradedness and
temporal information handle complex sequences well.

Verbalization segments indicating bottom-up
learning. The verbalization data we collected from
the subjects (under the verbalization training condi-
tion) were consistent, in an informal sense, with our
assumption of bottom-up learning being prominent in
this task setting, as exemplified by the following seg-
ments.

S: I thought about it after I started doing it.
I said, look at me .... look what I’'m doing. I
didn’t start thinking about it until I started
doing it. I figured out that it started helping
me and that’s when I started doing it myself.
(subj.38)

S: When Istarted off ...... 1 didn’t understand
at all .... I couldn’t grasp the whole sonar
concept at all. (subj.38)

S: So, basically what I do — not thinking
about driving a submarine or mine. (subj.38)

S: When you get in a situation like this,
where there are gaps, it’s purely instinctual.
(subj.37)

S: That’s pretty much I've done the whole
game [being instinctual], with the exception
of a couple of patterns I’ve started to recog-
nize. (subj.37)

In sum, the verbalization by the subjects suggested
that some degree of bottom-level (implicit) learn-
ing/decision making and gradual bottom-up learning
existed. This is the kind of learning CLARION was
meant to capture.

28

higshg L0 Kottingisas WdieasigdPrasiacisBN

2667:0 we failed to no-
tice any significant difference across a variety of mea-
sures (such as length of verbalization, detailedness,
and types of statements uttered). We suggest that this
is one more piece of evidence that indicates the impor-
tance/prominence of bottom-level (implicit) learning:
The performance is mostly determined by implicit pro-
cedural learning, which cannot be easily verbalized,
while verbalized explicit knowledge is nonspecific and
has relatively minor impact during learning.

4 Conclusions

In sum, we discussed a hybrid connectionist model
CLARION as a demonstration of the approach of
bottom-up skill learning, which consists of two levels
for capturing both procedural and declarative knowl-
edge and performing bottom-up learning. Some degree
of match with human data was found across a number
of different experimental conditions.
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ABSTRACT

In this paper a memory perspective on young children's
performance at a particular false belief task, the Smarties
task, is described. The theoretical analysis focuses on the
computational conditions that are required to resolve the
Smarties task, on the possible limitation in the developing
memory system that may lead to a computational break-
down resulting in a failure to resolve, and on ways of
bypassing such limitations to ensure correct resolution. A
symbolic model of this analysis implemented using the
COGENT modelling environment is described, and its fit to
the data considered.

Keywords
Developmental modelling, false belief, memory updating,
COGENT

INTRODUCTION

One of the many constraints identified by Newell (1990) on
any form of cognitive architecture which attempts to model
human cognition is that it should be capable of arising from
earlier forms by a process of developmental maturation.
Developmental constraints, and discrete developmental
stages, have received surprisingly little attention from
symbolic modellers, although questions of how a mature
system might develop from a relatively simple template are
now being considered within the connectionist research
program (e.g., Elman et al, 1996). The present study
considers a developmental stage believed to be crucial to the
maturation of memory processes, and aims to demonstrate
how the failure of 3- and 4-year olds at a task which adults
find trivially easy (the Smarties task; Pemer, Leekam &
Wimmer, 1987) can be modelled using a destructive-
updating process. A subtle alteration of the memory
encoding characteristics of this task enables 3- and 4-year
olds to perform the task correctly. The patterns of children's
performances are modelled as discrete developmental stages
using the COGENT (Cognitive Objects in a Graphical
EnvironmeNT) modelling environment of Cooper and Fox
(in press).

The Smarties Task
The basic procedure for the Smarties task is as follows. The
subjects are shown a tube of Smarties (a popular brand of
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sweet) and asked what the tube contains. Children of around
the age of four are usually both able and willing to provide
an answer to this question. The top is then taken off the tube,
and its contents are shown to the child. The contents of the
tube are pencils rather than the anticipated Smarties. The top
is then replaced on the tube, and the child is asked two

" questions, the reality question (what is in the tube?) and the

belief question (when you first saw the tube, what did you
think was in the tube?). Typically, 70% of 3-year-old
children who are able to answer the first question correctly
(pencils) now also give the same answer to the second
question.

A Memory-Updating Explanation

The original form of the Smarties task implies some peculiar
memory characteristics. Children who fail this task are
incorrectly reporting a belief which they had held, and told
to the experimenter, only seconds previously. Although a
conceptual deficit, an inability to comprehend false belief,
can be put forward to explain these results, it seems strange
to suppose that this deficit manifests itself in the child's
inability to correctly recall the contents of this belief, even
though they were able to report to the experimenter what the
contents of this belief were immediately before it was shown
to be false. Instead, it 1s argued (Barreau, 1997, Morton,
1997) that the child's inability is centred around a memory
updating system, such that the false belief (that the tube
contains Smarties) is never encoded as a stable, long-term
representation, and so is immediately supplanted by the
incoming information that the tube contains pencils. Thus,
when such children are asked the belief question, the only
source of information available to them is the representation
of the current state of reality: in(tube, pencils).

The Bag Experiment.

A variation on this experimental procedure designed to
maximise the possibility that the contents of the tube are
translated into a long-term format is described by Barreau
(1997). Immediately after showing the tube to the child, and
asking the child what they believed the tube to contain, the
contents of the tube were emptied into a bag. Although the
child witnessed this operation, at no time were they able to
see the contents of the tube either at first or during the
transfer. The tube was then shown to the child to
demonstrate that it was empty, and then ostentatiously
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hidden from view. The child is then asked what they believe
to be in the bag. All children replied "Smarties". The
contents of the bag were then shown to the child. In this
case, the bag contained marbles, rather than Smarties. The
child was then asked five questions concerning the contents
of the bag and the tube:

1. Before I opened the bag, what did you think was in the
bag? (BAG.BELIEF: PAST)

2. What is really in the bag? (BAGREALITY: PRESENT)
3. When I first showed you the tube, what did you think was
in the tube? (TUBE: BELIEF: PAST)

4. What is inside the tube now? (TUBE: REALITY:
PRESENT)

5. What was really inside the tube? (TUBE: REALITY:
PAST)

In Barreau's (1997) experiment, twenty-four children were
questioned in this manner, the results of this experiment are

shown in the table below:

TABLL 1: Table of answers to the tube and bag qucstions.

Questions | Correct Reversed | Double
BAG 8 8 8
TUBE 15 3 6

In order to be scored correct, both the bag questions, (belief
and reality) had to be correctly answered. To be scored
correct in the tube condition, the belief questions and at least
one of the reality questions had to be correctly answered. A
“double" score refers to a repeat answer, ie. a reality
response to a belief question. This category also includes
one child who gave belief answers to reality questions. The
reversed response indicates a reversal between the belief and
reality answers in the bag questions, and the belief and one
of the reality answers in the tube questions.

The assumptions underlying this experiment were that when
the tube was removed from view, the tube— bag transferral
episode would be coded as ended, and details of the whole
episode would be translated into long-term memory. Thus,
when the current representation of the bag's contents is
updated, the representation of the tube's contents will be
invulnerable.

The data has also been analysed as suggesting that three
qualitatively ~ different developmental processes are
occurring amongst the children tested (Barreau, 1997).The
children were divided into three groups on the basis of the
scores they were given for the bag questions. Of the 8
children who were scored as correct for the bag questions,
7 were also correct for the tube question, and | gave a
"double” response. Of the 8 children who gave reversed
responses for the bag question, 6 were scored as correct on
the tube question, there was 1 reversed response, and 1
double response, and for the 8 children who scored "double”
responses for the bag questions, 2 were correct on the tube
questions, 2 gave reversed responscs, and 4 gave double
responses. This pattern of data was considered to be a little

" too complex to be easily handled by a traditional verbal

theory.

A COGENT IMPLEMENTATION

To properly test the theory against the data, a family of
models were produced using the COGENT modelling
environment. The basic architecture used in this approach is
reproduced below: In this figure, hexagons represent
processes, rounded rectangles represent buffers, and
diamonds represent data boxes. Square boxes represent
compounds, which may contain buffers and processes.
Arrows with standard heads indicate message sending.
Arrows with black triangular tails indicate buffer reading.
Compound arrows (which are denoted by triangular and
standard heads) allow both functions.

Experiment

»-9

Current
State

Long-Term Interpreter i
Memory Buffer

figure 1 - the COGENT object-level representation of the simulation

3
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For the purposes of this paper, the "Experiment” compound
is used only as a means of feeding information to the system
simulating the child’'s mental processes, and will not be
discussed in any great detail. Note that for the bag
experiment, the simulation must include the correct
answering of three “belief establishing” questions prior to
the five questions of main interest within the experiment.
The belief establishing questions were included within the
experiment to ensure that the child had formed the correct
representations of the state of the world prior to being tested
on their memory for the sequence of events. These questions
include the initial question of the Smarties task (What do
you think is in the tube?), a repeat of the question to
ascertain that the child believes the tube is empty (What is
in the tube now?) once the transfer operation has taken
place, and a question to ensure that the child has tracked the
transferral of the supposed Smarties (What do you think is
in the bag?). In the experiment, after asking one of the
belief establishing questions, the experimenter waited until
the child had answered before continuing with the
procedure. Accordingly, in the simulation, no further input
was fed to the system until the cycle after the system had
output the answer to the previous question. This protocol
was observed throughout all the simulations.

The Smarties Simulation.

We assume that the 30% of 3- and 4-year olds who pass the
Smarties test do so by accessing a long-term memory (LTM)
representation of the likely contents of a Smarties tube, so
we do not attempt to deal with this question in any detail
here. This is consistent with the developmental literature,
which has focused only upon those children who fail. The
initial simulation then, must be one that gives a "reality”
answer to a "belief" question under the circumstances of the
Smarties experiment. The experimental procedure " is
modelled by adding propositions about the current state of
the environment a cycle at a time to an "environment'
buffer, within the Experiment compound, which is read by
the updating process. The Current State Buffer is a
representation of current envirorunental contingencies. This
is kept up-to-date by destructive updating which occurs by
the operation of the following rules:

RULE 1.

IF: A is in Experiment: Environment
not A is in Current State

THEN: add A to Current State

RULE 2.

IF: in(X,Y) is in Experiment: Environment
in(X,Z) is i Current State

THEN: delete in(X,Z) from Current State

Thus, if in(tube,smarties) is in the Current State and
in(tube,pencils) appears in  the  Environment,
in(tube,smarties) is deleted from the Current State by the
second of the above rules and is replaced by
in(tube,pencils).

The basic workings of the model of the Smarties task are as
follows:
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In L%M there 1s a generic representation of past experience

of Smarties tubes,
g(in(tube,smarties)),

and a further rule in the integration process that states the
contents can be matched to their containers on the basis of
such past experience:

RULE 3.
IF: g(in(X,Y)) 1s in Long-Term Memory
object(X) is in Current State
not in(¥X,Z) s in Current State
THEN: add in(X,Y) to Current State

This rule is refracted, so that it only fires the first time its
conditions are satisfied within a COGENT run. When a tube
representation is added to the Current State Buffer, this rule
fires and the inference is made that the tube contains
Smarties. This information 1s overwritten, however, when
the further information is added from the environment that
the tube contains pencils. Thus, when the question regarding

" the contents of the tube is presented to the system

question(present(in(tube, What))),

the present representation of the current contents of the tube
in the Current State Buffer instantiates the unknown variable
in the question, and provides the only possible answer:
in(tube, pencils).

Questions are dealt with by being passed immediately over
from the Current State Buffer to the Interpreter Buffer. Once
a question is received in the Interpreter Buffer, it activates
the relevant search processes according to the following
rules:

RULE 4.

IF: question(present(X)) is in Interpreter Buffer
X 1s in Current State

THEN: clear Interpreter Buffer
add answer(X) to Interpreter Buffer

RULE 5.

IF: question(past(X)) is in Interpreter Buffer
record(Y) is in Long-Term Memory

X is a member of Y

not X is in Current State

clear Interpreter Buffer

add record (Y) to Interpreter Buffer

add answer (X) to Interpreter Buffer

THEN:

Thus, the unknown variables within the question are
instantiated either in the Current State Buffer or in LTM,
and translated into an answer format. All answers within the
Interpreter Buffer are immediately sent to the output
processes represented in the diagram by the triangular
"Answers" block. .

The Bag Simulation.
In the case of the bag experiment, the simulation is a little
more complex. In particular, we have to tackle the creation



Ritter, F. E., & Young, R. M. (Eds.). (1998). Pr(_)ceedings of the Second European Conference on Cognitive
of event records. To do thisMPERlEN U TRrEPiRY ot Bledtipgham YniyersBy ATEFBE I IR TBP7@7AST-Gand TUBE: REALITY:

is perceived to end. This rule translates all information
currently being processed (the contents of the Interpreter
Buffer), together with the current representation of the
environment (the contents of the Current State Buffer) into
an LTM format. In the hypothesis underlying the
experimental procedure, the event was signalled to be at an
end by a contextual change, the removal of the tube. In the
simulation, a record is closed if there are more objects
represented in the Current State Buffer than are present in
the environment. This is captured formally by the updating
rule:

RULE 6.
IF: Objects is the list of all object(X) such that
object(X) is in Experiment: Environment
Representations is the list of all object(X)
such that object(X) is in Current State
A is the length of Objects
B is the length of Representations
B>A
THEN: send close_record to Integration

Upon receiving the close_record trigger, a further rule fires
within the integration process which transforms the
information within the Current State Buffer and the
Interpreter Buffer into a list structure in LTM. The
Interpreter Buffer is then cleared.

Simulation Results.

The basic simulation can easily handle the results of the first
group of children, those who were scored correct on the bag
question (group A). When asked the bag questions, the
simulation of this group of children has a record available
containing the previous belief concerning the bag's contents,

in(tube, smarties)

which it can use to answer the first question (BAG:
BELIEF: PAST), in accordance with rule 5. When asked the
second bag question (BAG: REALITY: PRESENT), a
Current State representation of the bag's current contents is
employed to answer this question in accordance with rule 4.

Seven out of eight of this group of children were also scored
as correct for the tube question. In the model, the tube
question is handled by the existence of a record available in
LTM which can be retrieved to answer the question. The
creation of this record was triggered by the removal of the
tube. Note that the record does not contain a verbatim
representation that the tube contained marbles. Instead, the
record contains the representation that the contents of the
tube were emptied into the bag:

action{empty(tube,bag)),
that the tube is now empty:
in(tube,[]) (where [] denotes the empty set),

and that the bag contained marbles. To correctly answer
questions regarding the initial contents of the tube (questions
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PAST) a further rule is necessary to allow the inference that
the tube's contents can be ascertained by backwards
reasoning from the bag's contents, and the fact that the
contents of the tube were entered into the bag. Formally, this
rule is:

RULE 7.

IF record(Y) is in Interpreter Buffer
question(past(in(A,B))) is in Interpreter Buffer
action(empty(A,C)) is 2 member of record(Y)
in(C,D) is a member of record(Y)

THEN: clear Interpreter Buffer
add answer(in(A,D)) to Interpreter Buffer

This rule is triggered if the current representation of the
tube's contents is identical to the retrieved LTM
representation. Since the child is presumably not expecting
to answer a "present" question at this point, the rule allows
the search, via inference, for an alternative "past" answer.
Note that the simulation demonstrates that Morton's (1997,
p. 938) comment that "the conditions are the same" for the

". tube questions of the bag experiment and for the same

questions in the Smarties experiment is not strictly necessary
when analysed in terms of the underlying theory. In this
simulation, when the inference rule regarding the transferral
operation is manually prevented from firing the default
answer from the system to the tube questions is that the tube
was empty. Since the child was shown the empty tube
during the bag episode this forms part of the same record.
The full contents of this record are displayed below:

record([[in(bag,smarties), in(tube,[]), object(bag),
action(empty(tube,bag)), object(tube)]
action(remove(tube))]).

With this set of rules, the simulation therefore produces the
same answers in the bag experiment as seven out of eight of
the children in group A.

The initial results of those children who were scored as
giving "reversed" answers (group B) to the bag question
need to be explained differently. Recall that these children
gave reality answers to belief questions and vice versa. The
simulation of this situation uses the same basic structure as
the simulation of group A (the "corrects"). However, it is
assumed that the group B children attempt to answer all
questions initially from their current state representation of
the world. Arguably this is less effortful than retrieving
information from LTM (see Morton, Hammersley &
Bekerian, 1985 for a discussion of the complexities of
retrieval from LTM). In effect, we assume that the tagging
of questions as referring to past and present is not as well
established in this group as in group A. The group B
children, then, are not forced to search LTM m response to
a PAST question. Rather, they only look in LTM when the
Current State search has failed. Since the Current State
Buffer representation is one of reality rather than belief,
these children's default strategy results in a reversal of belief
and reality answers.
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follows. The "past” and "present” modifiers in the input are
ignored in the integration process by rules 4 and 5, and,
instead, all questions are followed by an initial search in CS.
This leads to the initial mistake: The reversal of the situation
with the next question is simply implemented by making
that the look-up rule for information in Current State into a
refracted rule so that it cannot be used as a default when the
next question is asked. This is the "present” reality
question, and the only way the child can answer the question
is by searching for a long-term memory representation with
information about the contents of the bag. This is found in
the record which specifies

in(bag,smarties)
resulting in a reversed pattern of results.

This simulation works well when only the bag question is
considered, but runs into problems when the tube questions
are also added to the simulation's input, since it produces a
further "reversed" pattern of results for these questions. In
fact only one child in this group was scored as giving
"reversed” responses to the tube question, and six were
scored as correct. This failing will be considered in more
detail later.

The final group of children to be considered (group C) gave
the "reality" answers to "belief" questions. Working on the
logic employed in the simulation of group B's results it is
assumed that these children also ignore the past/present
modifiers and attempt to answer the question in the simplest
way possible, by retrieving an answer from the Current State
Buffer representation. However, for these children the
assumption is that the search rule for the Current State
Buffer is not refracted. Accordingly, the simulation
produces repeated answers from the Current State Buffer,
which are identical to the "double" responses given by this
group. Of the eight children who were scored as "doubles"
on the bag questions, this simulation matches the repeated
"double" scores of four of these children on the tube
questions.

GENERAL DISCUSSION

Successes and Failings

The memory-updating explanation of the Smarties task is
outlined by Morton (1997), and the 3-buffer architecture
used here to simulate this theory was derived from Barreau
(1997), (see Barreau, 1997 for an account of why a 3-buffer
system is necessary). The resulting simulation, however,
differs in significant ways from either of these accounts. It
is intended to be a forerunmer of a number of such
simulations, building up a set of mutual constraints on later
models of on-line processing by this age group (c.f.
Barnard, 1985). As such, it has a number of distinct
successes and flaws. Not least amongst its successes is that
it is - to our knowledge - the only fully specified
computational theory of 3- and 4- year olds failings at "false
belief" tasks. Other accounts of these phenomena rely upon
the assumption that children of this age suffer from a
conceptual deficit in representing the beliefs of others, and
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(e.g., Hogrefe, Wimmer & Perner, 1986; Perner, Leckam &
Wimmer 1987), or else are in other ways not as completely
specified as the account given here (Halford, Wilson &
Phillips, in press).

Viewed as a modelling project in its own right, a number of
flaws become evident with the current account. Firstly, if it
is considered to be a straightforward account of the current
data independent of theoretical statements put forward
elsewhere (Barreau, 1997; Morton, 1997), then it suffers
from a rather poor fit to the data in the case of group B, the
"reversed" response children. The mechanism which allows
for a reversed response to the bag questions should also
produce reversed responses for the tube questions. However,
the majority of children in this group (six out of eight) were
scored as correct in this case.

Elsewhere, the fit to the data is better. The account given by
the basic bag simulation is also able to account for the
failure of children at the Smarties task with no change to the
model, merely altering the input to simulate the change in

- task. This simulation correctly produces the same results as

the "correct” group (A) on all the questions. The modified
simulations for groups B and C also give the identical
patterns of results to the children they were intended to
model for the bag questions, and in the case of group C (the
"double" responses) this success is repeated with the
simulation giving the same results as the largest subset of
these children.

The conclusion to be drawn from this pattern of success and
failure is that although there is a large degree of agreement
between the performance of the children and that of the
underlying model, there is a flaw in the manner in which the
model operates. In particular, it should not function in the
same way in response to the tube questions as it did to the
bag questions. There are two broad ways of accomplishing
this. The first is to add other rules which would interpret the
material in the record in response to questions concemning
the tube. A backwards inference using rule 7 concerning
belief could take

action(empty(tube,bag))
in(bag,smarties)

and come up with
m(tube,smarties)

to go along with the in(tube,[]) already available in the
record. The ordering of these two contradictory options in
the buffers could give rise to the differences in responding
to the tube questions among the children in group B.

The second general approach to the mismatch is to change
the way in which the Group A children solve the questions.
One approach is to create records of questions and answers.
This would make the answer to the initial belief question
available, even though the primary representation
in(tube,smarties) has been deleted. Use of the record
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action(empty(tube,bag)), object(tube)]
action(remove(tube))]).

would then be restricted to questions about the tube. This
resembles the account given by Barreau (1997). To achieve
all this, we will have to characterise the differences among
the three groups of children somewhat differently. Both
these options will be explored in the next phase of
simulation.
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ABSTRACT

In this paper, we describe a cognitive modelling fra-
mework for common-sense psychology. We’ll show a
number of comparable cognitive models for different
theories of common-sense psychology, and show that
these models can help to illuminate some of similari-
ties and differences between the differing theories.

Keywords
Common-sense psychology, theory of mind, false be-
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INTRODUCTION

Common-sense psychology — or people’s common
sense ability to think about our own and other
people’s minds — is currently being researched active-
ly in several different disciplines. While this interdis-
ciplinary collaboration can be very productive, it can
lead to its own problems. This is exacerbated by com-
plexity, both methodological and theoretical, of com-
mon-sense psychology itself.

Much of the problem is that nobody is really sure
what common-sense psychology is, theoretically. As-
tington and Gopnik (1991), for example, distinguish
between six different possible interpretations, all of
which are subtly different. There are many different
theories of common-sense psychology. Unfortunate-
ly, there is no common ground which allows these dif-
ferent theories to be compared and contrasted. In
this paper, we’ll introduce a cognitive model that can
begin to play that role.

To compare the different theories, we’ll use a stan-
dard tool from common-sense psychology, Baron-
Cohen et al.’s (1985) false belief test. We’ll begin by
introducing and describing this test, and one of the
theories of common-sense psychology, Leslie’s (1987)
‘decoupler’ model. Although common-sense psycho-
logy is hugely complex, and can only be modelled in
the most sketchy form, we’ll show how Leslie’s theory
can be implemented as a cognitive model. Finally,
we’ll show how alternative theories of common-sense
psychology can be represented as small variations on
this model, and that we can draw some conclusions
about the similarities and differences between the the-
ories with this modelling framework.
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. the work of Shultz (1988, 1991).

MODELS OF COMMON-SENSE PSYCHOLOGY

While common-sense psychology has been a focus for
recent research, most work in this either has either
been experimental or purely theoretical; there are few
cognitive models in this area, even though it is preci-
sely the kind of area that modelling has proved so
helpful for in the past (Samet, 1993). The exception is
All the models
which have been developed, though, focus on small
parts of the problem; for example, studying how
people assess whether or not planned actions were in-
tentional (Shultz, 1988).

We propose a different strategy. Instead of a narrow
but deep model, we propose using a broad but shal-
low one; one which can be used to compare theories
on a grand scale. With this level of modelling, we be-
lieve that even in the limited false belief test, we can
help to clarify the similarities and differences between
some of the grand-scale theories in the field.

THE FALSE BELIEF TEST

The false belief test has its origins in Premack and
Woodruff’s (1978) experiment to determine whether
or not chimpanzees could reason about one another’s
mental states — whether or not they had a “theory of
mind”, another term for common-sense psychology.
Unfortunately, there was a methodological problem
with this experiment; their chimpanzee subject, Sarah,
could use her own beliefs rather than reasoning about
another’s, because the two were identical. To prove
that Sarah was really able to reason about another’s
beliefs, they had to show that Sarah could still predict
another’s behaviour when her beliefs were different
from that other’s — that is, when the other had be-
liefs which Sarah believed to be false.

Following these problems with Premack and Woo-
druff’s experiment, Wimmer and Perner (1983) de-
vised a false belief test, which evaluated a (human)
subject’s to ascribe definite but false beliefs to an-
other. Baron-Cohen et al. (1985) fater simplified
Wimmer and Perner’s test so they could compare au-
tistic, Down’s syndrome, and normal children at dif-
ferent ages. Baron-Cohen et al.’s simplified false be-
lief test is shown in figure 1.
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Baron-Cohen et al.’s false belief test is presented as a
simple story. There are two puppets, Sally and Anne.
Sally has a marble, which she keeps in a basket. Then
Sally leaves the room, and while she is away Anne
takes the marble out of the basket and hides it in the
box. Sally comes back into the room.. The child sub-
ject is then asked the question: “where will Sally look
for her marble?” Older children say that she will look
in the basket, because although they know the marble
is in the box, they know that Sally doesn’t know it has
been moved from the basket, and they can distinguish
Sally’s (false) belief from their own (true) belief.
Younger children, on the other hand, and autistic
children, do not distinguish between the two They
simply say that Sally will look in the box. The false
belief test, therefore, explores the change that hap-
pens as common-sense psychology develops.

Baron-Cohen et al’s theory was that a failure in the
development of common-sense psychology might be
responsible for autism, and the results from their ex-
periment (and others which followed) certainly
seemed to bear that out. As a result, there has been a
focus of interdisciplinary research which has led to a
number of different hypotheses about the nature and
development processes involved in common-sense
psychology.

Figure 2 shows a model for one possible theory of
common-sense psychology, Leslie’s ‘decoupler’
model. At the heart of Leslie’s model is a manipula-
tor that is capable of pretence — of decoupling beliefs
from one context and applying them in another. Itis
this that makes reasoning about false beliefs possible,
because a child can use this decoupling mechanism to
separate someone else’s beliefs into a different context
from their own.

Given this simple theory of common-sense psycho-
logy, we will now turn to the cognitive model, and
show how Leslie’s ‘decoupler’ model can be represen-
ted in a model. But first, a few words on the model-
ling environment that we’ll be using,.

1 2
Sally
laces x
er .
marble @ @ Exit
in Sally Anne Sally
basket
IR 7 &
O] [ O) O
Basket@ Box ©
3 4
Where will Re-enter

Sally look for

Sally
her marble?

/

@ Anne [Y/
transfers
27T A Sally’s l
O 11 | marble O O
© to box ©

Figure 1. Baron-Cohen et al.’s (1985) false belief test
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THE MODELLING ENVIRONMENT

Before we can build the models adequately, we need a
representation language that is strong enough to do
the physical and psychological reasoning required. In
practice, the psychological parts of the model require
the ability to reason about different contexts, distin-
guishing one agent’s false beliefs from another agent’s
true beliefs. Something like a modal logic, therefore,
is going to be required (Leslie, 1988, makes a direct
comparison between the requirements for common-
sense psychology and the properties of modal logics).

The model we present borrows this from McCarthy’s
(McCarthy & Hayes, 1969) ‘situation calculus’, where
the effects of an event are described as a consequence
relation between one state and another. At the core
of McCarthy’s calculus is a special function result,
which represents the effects of an action on a situa-
tion by returning a new, modified, situation. The
function result(p, G, s), where p is a person, ¢ is an ac-
tion, and s is a situation, has a value which is a new si-
tuation representing the effects of p doing 6 ins. For

- example:

inside(marble, X, s) A 7 inside(marble, box, s) =
inside(marble, box, t) A~ inside(marble, X, t)

where ¢t = result(alison, putin(marble, box), s)

This says that if marble is inside something that isn’t
box in situation s, the effect of alison putting marble
in box is a new situation ¢ such that marble is no long-
er where it was (in X), but is now inside box.

The full situation calculus is more powerful and more
complicated than this implies, but this subset of it is
sufficient for the purposes of this model, and further,
it doesn’t need the heavy inference machinery that a
complete modal logic would. The situation calculus,
then, is strong enough for the model, fairly easy to use
computationally, yet it retains the referential proper-
ties of modal logics (McCarthy & Hayes, 1969).

DECOUPLER
PERCEPTUAL .
PROCESSES §§¥§l§ SION
A
CENTRAL
COGNITIVE
SYSTEMS
Y Y
MANIPULATOR
v INTERPRETER I PRETEND

ACTION

J

Figure 2. Leslie’s (1987) ‘decoupler’ model

e maibAbi



Ritter, F. E., & Young, R. M. (Eds.). (1998). Proceedings of the Second European Conference on Cognitive
Modelling. Thrumpton (UK): Nottingham University Press. ISBN 1-897676-67-0

The model implements a modified subset of the situa-
tion calculus in a Prolog-like language embedded in
Common Lisp. Apart from the Lisp-like syntax,
there is only one significant difference from standard
Prolog — variables are normally prefixed with a 2
question mark, but output variables in a clause head
are prefixed with a ~caret. 2valueand “value refer to
the same variable.

MODELLING LESLIE’S ‘DECOUPLER’
The base model for the false belief test comprises a
number of separate modules. There include;

» a physical environment model,

« a basic physical reasoning module,

« a basic psychological reasoning module, and
« a script for the false belief test.

The Physical Environment Model

The first part of the modelling environment is a physi-
cal environment model which implements an event-
driven simulation environment. As objects are phy-
sically moved from one place to another events are
generated and passed to all objects equipped with suf-
ficient perceptual apparatus to be aware of them.

The Physical Reasoning Module

Even in the false belief test, physical reasoning is nee-
ded. The basic physical reasoning module is shown in
figure 3. This implements the rules that Alison (as

;5; If we see 2object in a place container, then we find out
;;; where it was in the situation, and return a new situation
;;; so that it is now in 2container.

((result yes ?stance-to (place ?object ?container)
?situation “new-situation) :-
(member (inside Zcbject Zouter) ?situation)
(difference ?situation
((inside ?object ?outer)) ?situationl)
(append ?situationl
((inside ?object ?container)}) ?new-situation))

;;; If we see an object being put into a new place, econtainer,
;;; then again we find out where it was before in the situation,
;;; and return a new situation so that it is now in 2container.

((result yes ?stance-to (put-in ?object ?container)
?situation “new-situation) :-
(member (inside ?object ?outer) ?situation)
(difference ?situation
((inside ?object Zouter)) ?situationl)
(append ?situationl
((inside ?object ?container)) ?new-situation))

;;; If we see an object being taken out of a place 2container,
;;; we return a new situation so that it is no longer in
;; 2container, but is now outside it, in Pouter-container.

({result yes ?stance-to

(take-out ?object ?container)

?situation “new-situation) :-
(member (inside ?container ?outer) ?situation)
(difference ?situation

({inside ?object ?container)) ?situationl)
(append ?situationl

((inside ?object ?outer)) ?new-situation))

Figure 3. The basic physical reasoning module
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we’ll call the subject in the false belief test) uses to
make predictions about what happens as a result of
physical actions and events.

As far as physical reasoning is concerned, only three
result actions are of interest. First, people can see an
object being put into a container. Second, people can
see an object being taken out of a container. And
third, if a person enters a room, they can see all the
objects (but not contained, or hidden, objects) within
that room. All three of these actions serve to keep a
person’s model of the physical

The Psychological Reasoning Module

At the core of the model is a representation of one
person’s ability to reason about other people’s mental
states. This basic psychological reasoning module,
corresponding to Leslie’s theory of mind mechanism,
is shown in figure 4. There are three result rules. The
first rule is associated with perceived events; this is
where the essence of psychological reasoning hap-
pens. The other two rules are associated with believes
events, and are used for modelling the answering of
questions; for this reason they print out an answer.

The first result rule uses the ascribe rule to keep all the
notional worlds up to date with the perceived event.
The ascribe rule implements the decoupler model in
figure 2. It works like this. First, the those procedure
is used to get all of 2self’s beliefs out of the situation;
this corresponds to 2selfs notional world. Next, the
requote procedure is used to raise all the expressions
in the notional world, to create a new situation,
Zsituation2. Then, the rule passes this new situation
to the interpreter; through the manipulator. The
manipulator is played by the in-stance procedure,
which ‘pretends’ to be in the right context to handle
the given event. The interpreter is called by the nested
call to the result procedure. Finally, the nested call to
result returns a new situation, 2situation3, which is
passed to requote again to restore its expression status
in 2new-self-notional-world. This is then used to re-
place the old notional world in the situation, and the
modified situation is returned.

Perhaps this will be clearer with a more concrete ex-
ample. Imagine that we ask (result 2response sally
(perceived sally (put-in marble box) 25, 2NewS), in a
situation 2S. Because this is a perceived event, the first
result rule will be applied, calling ascribe. The those
and require procedures are used to go through the si-
tuation 25, decoupling all the relations (believes sally
2X) and generating a new situation 25’ Then the
model applies the physical reasoning rules in this new
situation 25 to generate an updated physical situa-
tion 2R". The second requote call goes through 2R'to
restore its quotation status to normal, and returns 2R.
Finally, 2R is used to replace ali Sally’s beliefs in ¢S,
and the final situation returned in 2NewS. '

The Script for the False Belief Test
The final component of the model is a script for the
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false belief test. This is shown in figure 5. There are
two parts to this script. First, there are a serious ac-
tions which corresponds more or less to the move-
ments of the characters in Baron-Cohen et al.’s story,

shown in figure 1.

Second, there are a number of

questions; these are the kind of questions that an ex-
perimenter might ask a subject after acting out the
scenario. It is the answers to these questions which
reveal whether or not, or how, the child passes the

false belief test.

So far, we have described a basic version of the theory
of mind mechanism, a version which successfully
models the passing of the false belief test. With this in
place, we can now begin to compare this with some of
the alternatives. In this paper, we will only look at
three alternative theories of common-sense psycho-
logy, the simulation theory, the copy theory, and the

;2> The rules for handling perceived events. When you
;;; perceive something and see that 2someone, sees the
;;; same thing, get someone’s notional world into 2self-
;5 notional-world, and then, in that world, predict its

;;; physical effects. Then map these physical effects into
;;; changes to 2someone’s notional world.

;»: Rule perceive
((result “response ?someone
(perceived ?object (?action ?other-object ?event))
7situation *riew-situation) :-
(ascribe ?someone “response ?someone
(perceived ?object (?action ?other-object ?event))
?situation “new-situation))

::; Rule ascribe
((ascribe ?someone “response ?other
(perceived ?object (?action ?other-object Zevent))
?situation “new-situation) :-
(those (believes ?someone ?something) ?situation
?notional-world)
(requote (believes ?someone ?something)
?notional-world ?something ?situation?)
(in-stance ?other-object ?action
(result ?response ?other-object
(?action ?other-object ?event)
?situation2 ?situation3))
(requote ?something ?situation3
(believes ?someone ?something) ?new-notional-worid)
(difference ?situation ?notional-world ?situationl)
(append new-notional-world ?situationl
ew-situation))

;3 These are the rules for answering questions about

;3 people’s beliefs. In effect, all that happens is that we
;5 look for the truth of the question in 2object’s notional
;5 world.

;5 Rule answer-yes
((result yes ?someone (believes ?object ?something)
?situation “situation) :-
(member (believes ?object ?something) ?situation)
(write-1ist (yes ?object believes ?something)))

;3; Rule answer-no
({result no ?someone (believes ?object ?something)
?situation “*situation) :-
(not (member (believes ?object ?something)
?situation))
(write-1ist (no ?0bject does not believe ?something)))

Figure 4. The basic psychological reasoning module
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situation theory.

COMPARING MODELS 1: THE SIMULATION THEORY
The first alternative theory to be compared against

- Leslie’s is the ‘simulation theory’, which is typified by

a ‘role taking’ or ‘perspective taking’ approach. Gor-
don illustrates this by saying that “Smith believes that
Dewey won the election” should be read as “let’s do a
Smith simulation. Ready? Dewey won the election”
(Gordon, 1986, original emphasis).

According to the simulation theory, young children
are simply unable to take other people’s points of
view. This can be modelled by dividing the main per-
ceive rule into two — one for self, and one for others.
In young children, the perceive rule for self functions
as before, but the perceive rule for others does noth-
ing. This is shown in figure 6.

When run, this seems to fail the false belief test cor-
rectly in that Alison doesn’t give answers at all for ei-
ther Sally or Anne; before Alison can pass the test she
needs to acquire the ability to simulate, or take the

- role of, other people. This corresponds to the deve-

lopment of a simulation ability: “before internalising
this system, the child would simply be unable to pre-
dict or explain human action [but] after internalising
the system the child could deal indifferently with ac-

;;; Start by introducing the characters. The order doesn’t
:;; matter much. Alison will become aware of all the other
;;; objects as soon as she enters the room.

(tell-model
(tell-model
(tell-model

(put-in basket room))
(put-in box room))
(put-in.marble room))

(tell-model
(tell-model

(put-in sally room))
(put-in anne room))

(tel1-model (put-in alison room))

;;; Put the marble in the basket
(tell-model (put-in marble basket))

515 Sally leaves the room
(tel1-model (take-out sally room))

;;; Move the marble from the basket into the box

(tell-model (take-out marble basket))
(tell-model (put-in marble box))

;;; Sally comes back into the room
(tell-model (put-in sally room))

;;; Where does Alison think that the marble is?

(ask-object-if alison
(believes alison (inside marble ?where)))

;;; Where does Alison think that Sally thinks the marble is?

(ask-object-if alison
(believes sally (inside marble ?where)))

;;; Where does Alison think that Anne thinks the marble is?

(ask-object-if alison
(believes anne (inside marble ?where)))

Figure 5. Actions and questions for the false belief test
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tions caused by true beliefs and actions caused by
false beliefs” (Gordon, 1986). This is why the kind of
failure in the simulation theory is interesting; Alison
simply fails to give answers for either Sally or Anne,
because she failed to take their roles properly.

The second stage in the model, then, is the complete
simulation rule, which implements a role taking strat-
egy through the in-self primitive. This primitive has
the effect of temporarily pretending to be a different
self, and then handling the whole event in that context
instead. It is this replacement second rule that allows
Alison to pass the false belief test. The replacement
rule which models this strategy is shown in figure 7.

There are a number of important conclusions to be
drawn from this idea. First, in the simulation theory
the behaviour involved in ascribing mentality to one-
self is different from that involved in ascribing men-
tality to others. This contrasts with the theory of
mind mechanism described earlier, where there is no
difference between first person and third person
ascription. This is shown by the rules’ sensitivity to
the self relation, which shows that there is an egocen-
tricity involved in the simulation theory. The second
point to note is that, in practice, the behaviour of this
system is the same as that of the basic psychological

;. Here are the rules for the simulation theory. Initially, if
;;; we are seeing something ourselves, then we do the right
;;; ascription, otherwise we leave the situation alone. These
51 two rules, together, replace the perceive rule in figure 4.

;;; Rule perceive-self, compare to perceivein figure 4
((result “response ?someone
(perceived 7object (?action ?other-object Zevent))
?situation “new-situation) :-
(self ?someone)
(ascribe ?someone ?response ?someone
(perceived ?object (?action ?other-object ?event))
?situation ?new-situation))

;;; Rule perceive-other, compare to perceive in figure 4
((result *response ?someone
(perceived ?object (Zaction ?other-object ?event))
?situation “situation) :-
(not (self ?someone)}))

Figure 6. Rules for the simulation theory (first version)

;;; The replacement second rule for the simulation theory. If
;;; we are not seeing something for ourselves, then we

::; “pretend” to be someone else through the in-self primitive,
;;; and process the event as if we were that person. This rule
;;; Teplaces the perceive-other rule in figure 6.

;;; Rule perceive-other, compare to perceive-otherin
;;; figure 6.
((result “response ?someone
(perceived ?object (?action Zother-object ?event))
?situation “new-situation) :-
(not (self ?someone))
(in-self ?someone
(result ?response ?someone
(perceived ?7object (?action ?other-object ?event))
?situation 7new-situation)))

Figure 7. Replacement rule for the simulation theory
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reasoning module shown in figure 4, because the re-
placement second rule combines with the first to be-
have just as if there was a single rule using the ascribe
action, a rule identical to the first result rule in figure
4. This is in accord with Perner’s (1994) suggestion
that, in practice, the difference between a theory and
a simulation may be at worst one of emphasis.

COMPARING MODELS 2: THE COPY THEORY

The second model I’ll compare against Leslie’s theory
of mind mechanism is Chandler’s ‘copy theory’.
Chandler and Boyes describe younger children as be-
having “as though they believe objects to transmit, in
a direct-line-of-sight fashion, faint copies of them-
selves which actively assault and impress themselves
upon anyone who happens in the path of such
‘objective’ knowledge” (Chandler and Boyes, 1982).
They argue that this is the precursor to a complete
theory of mind such as Leslie’s, and therefore I'll only
show the version which fails the false belief test — a
version which passed the test would be identical to the
complete model in figure 4.

" From the complete model of the theory of mind

mechanism corresponding to an adult theory of mind,

::: Here are the ascription rules for the copy theory. Initially,
;12 if we are seeing something ourselves, then we do the right
;;; ascription, otherwise we leave the situation alone. These
;1 two rules, together, replace the perceive rule in figure 4.
;:; Note that these replacement rules are identical to those
;5; in figure 6.

;;; Rule perceive-self, compare to perceivein figure 4
((result “response ?someone
(perceived ?object (?action ?other-object Zevent))
?situation “new-situation) :-
(self ?someone)
(ascribe ?someone ?response ?someone
(perceived ?object (?action ?other-object ?event))
?situation 7new-situation))

;;; Rule perceive-other, compare to perceivein figure 4
((result “response ?someone
(perceived ?object (7action ?other-object Zevent))
?situation “situation) :-
(not (self ?someone)))

;;; Here are the answering rules for the copy theory. They
;;; have the effect of considering the target’s notional world
;;; to be a ‘copy” of the ascriber’s. These rules replace the
;»; Tules answer-yes and answer-no in figure 4.

5 Rule answer—yes-se/f, compare to gnswer-yesin

;5 figure 4

((result yes ?someone (believes ?object ?something)
?situation “situation} :-

(self ?self)

(member (believes ?self ?something) ?situation)

(write-1ist (yes ?object believes ?something)))

;;; Rule answer-no-self, compare to answer-no in figure 4
((result no ?someone (believes ?object ?something)
?situation “situation) :-
(self ?self) .
{not (member (believes ?self ?something) ?situation)
(write-1ist (no ?object does not believe ?something)))

Figure 8. Rules for the copy theory
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we can modify the psychological reasoning module
slightly to represent a child with a copy theory of be-
lief. The main point of the copy theory is, in effect,
that instead of ascribing beliefs to others, a ‘copy’ of
one’s own beliefs is used instead. Instead of building
different notiona! worlds for Sally and Anne, both use
the same, a copy of Alison’s.

According to the copy theory, children simply do not
ascribe real beliefs to others. This is shown by the
modified result rules in figure 8, which replace the re-
sult rule in figure 4 so that beliefs are only ascribed to
oneself. Note that these result rules are identical to
the first (before full theory of mind) version of the si-
mulation theory in figure 6. This is to be expected —
Chandler’s theory is an account of how children es-
cape the kind of egocentricity that marks a simulation
theory. But this is not the whole story in the copy
theory; when children are asked about other people’s
beliefs, they answer by drawing on their own. For
this, we also need to change the result rules for the be-
lieves relation; these are the rules which model how
the child answers the kind of questions used in the
false belief test. These changes are also shown in fig-
ure 8. Both the question rules are changed from fig-
ure 3 by using the self relation to find and use one’s
own beliefs, rather than anybody else’s, to answer the
given question, Because of this dependence on the
self relation, this model shows that the copy theory,
like the simulation theory, has an implicit (if rather
better hidden) egocentricity.

There are more complex variations on the copy the-
ory; for instance, Wellman (1990) argues that younger
children have a copy theory of belief, but not of de-
sires. This is outside the scope of this model because
desire psychology isn’t yet part of the modelling en-
vironment — this is an area for future work. But
while the copy theory works to the extent that, when
run, it correctly fails the false belief test, the model is
quite radically different from an adult theory of mind,
and it does seem to require a developmental jump of
significant magnitude. All the egocentricity of the
rules in figure 8 must be lost, and the child needs to
learn to extend notional worlds to other people. This
matches all the empirical evidence that is against a
copy theory; Perner (1991) has argued convincingly
that experiments involving inference from parts to
wholes show that the evidence is against children hav-
ing a copy theory at any age. Even so, this is some-
thing which could, in principle, be investigated further
quite easily with this modelling approach.

COMPARING MODELS 3: THE SITUATION THEORY

The third reference comparison I'll make against the
theory of mind mechanism is Perner’s (1991)
‘situation theory’. Perner’s theory is substantially dif-
ferent from those presented so far because he draws a
hard distinction between real and non-real situations,
or contexts. The notional world an agent has of itself

1

has a unique status. This is not mirrored in the basic
psychological reasoning module in figure 3.

Perner argues that the reason younger children don’t
pass the false belief test is because the child subject
applies the verbal form of questions incorrectly to the
situation corresponding to reality, not to the non-real
situation which has been played out by the puppets.
According to the situation theory, unlike the copy
theory, young children do have notional worlds, but
they are not so good at understanding that a real
question can apply to a non-real situation. Perner
uses this distinction to explain why children who fail
the false belief test are still capable of sophisticated
notional world reasoning, such as that required by
Zaitchik’s (1990) ‘false photograph’ test.

Figure 9 shows the rules for the first version of the si-
tuation theory model — the version which models a
child who cannot yet pass the false belief test. Note

;- The key to Perner’s model is a clear distinction between
.- the status of one’s own notional world, and those of others.
;;; This is represented in these models by adding a status flag
:-: to the rules which ascribe those notional worlds. This
.- status value is knows for one’s own notional world, and
::: believes for other people’s. These two rules, together,

;;; replace the perceive rule in figure 4.

;;; Rule perceive-selﬁ compare to perceivein figure 4
({result “response ?someone
(perceived ?someone (?action ?other-object 7event))
?situation “new-situation) :-
(self ?someone)
(ascribe ?someone knows ?response ?someone
{perceived ?someone {?action ?other-object 7event))
?situation ?new-situation))

::: Rule perceive-other, compare to perceive in figure 4

({result “response ?someone
(perceived ?object (?action lother-cbject 2event))
?7situation “new-situation) :-

(not (self ?someone))

(ascribe 7someone believes ?response ?someone
(perceived ?someone {(?action ?other-object 7event))
?situation ?new-situation))

;;: The ascription rule is extended to take the additional

;;; status value. This value is used, instead of the fixed status
. value believes, to distinguish between one’s own notional
::: worlds and other people’s. This rule replaces the ascribe
;;; rule in figure 3.

.- Rule ascribe; compare to ascribe in figure 4
((ascribe ?someone ?status *response ?other
(perceived ?object (?action ?other-object ?event))
?7situation “new-situation) :-
(those (?status ?someone ?something)
?situation ?notional-world)
(requote (?status ?someone ?something)
7notional-world ?something ?situation2)
(in-stance ?other-object ?action
(result ?response ?other-object
(?action ?other-object ?event)
?situation2 ?situation3))
(requote ?something ?situation3
(?status ?someone ?something) ?new-notional-worid)
(difference ?situation ?notional-world ?situationl)
(append ?new-notional-world ?situationl

new-situation))

Figure 9. Ascription rules for the situation theory
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that the main result rule has been split into two: one
for self and one for others. Superficially, this might
look like egocentricity again, but this time the only
difference between them is in the status they assign to
different notional worlds, knows for self, and believes
for others. Initially, as shown by the modified answer
rules in figure 10, children can only link verbal ques-
tions to the world for self beliefs — the notional
world with the status knows. Other notional worlds
can and do exist, though; it is just that they cannot be
accessed through verbal questions.

Perner claims that the principal change in children be-
tween the ages of two and a half and four is the acqui-
sition of a representation theory, which allows them
to recognise that questions can refer not to reality,
but to worlds or situations that are represented —
that is, worlds or theories with the believes predicate.
This corresponds to the child’s development from a
situation theorist into a representation theorist,
shown in the modified rules in figure 11.

Perner argues that this change isn’t a radical over-
turning of the existing theory — the kind of radical
change that makes the copy theory implausible. In-

;;; These are the rules for answering questions about one’s
;;; own beliefs, In this group, the “believes” question is

;;; coupled to the knows predicate of a notional world. These
;;; implement the ‘self” half of the answer rules in figure 4.

;;» Rule answer-yes-self, compare to answer-yes in figure 4.
((result yes ?someone (believes ?self ?something)
?situation “situation) :-
(self ?self)
(member (knows ?self ?something) ?situation)
(write-list (yes ?self believes ?something)))

;;; Rule answer-no-self, compare to answer-no in figure 4.
((result no ?someone (believes ?self ?something)
?situation *situation) :-
(self ?self)
(not (member (knows ?self ?something) ?situation))
(write-1ist (no ?self does not believe ?something)))

;3: These are the rules for answering questions about other
;5 people’s beliefs. This is a model of what happens before
;;; the representation theory is acquired, where the effect is
;;; to link into the knows predicate instead of the believes

;;; predicate. These implement the ‘other’ half of the answer
;5; rules in figure 4.

;3 Rule answer—yes—other, compare to answer-yes in
;3 figure 4.
({result yes ?someone (believes ?cbject ?something)
?situation “situation) :-
(not (self ?object))
(member (knows ?self ?something) ?situation)
(write-list (yes ?object believes ?something}))

;53 Rule answer-no-other, compare to answer-noin
5; figure 4.
((result no ?someone (believes Zobject ?something)
?situation “situation) :-
(not (self ?object))
(not (member (knows ?self ?something) ?situation))
(write-list (no ?object does not believe ?something)))

Figure 10. Answer rules for the situation theory

stead, he suggests that the change that happens is a
“theory extension” (Perner, 1991), a relatively minor
change to the existing theory. This character if theory
extension is important to any developmental account
of common-sense psychology, because the empirical
evidence is that common-sense psychology develops
gradually, not in big jumps (Carey, 1985).

DISCUSSION

These models highlight several of the most important
features of the common-sense psychology that under-
lies the false belief test, and show that these features
can be emphasised by models that represent the dif-
ferent and competing theories in this field. Of the
models presented, the one that seems to work best in
this modelling framework is Perner’s ‘situation the-
ory’ model. The principal reason for this is that the
apparent distance between passing and failing the
false belief test is much smaller. For both the simula-
tion theory and for Chandler’s ‘copy theory’ there
must be a radical development to the ascription of no-

~ tional worlds. Perner’s model clearly shows the char-

acter of theory extension which he suggests should be
expected of a theory which matches the empirical psy-
chological data on the development of these theories
(Carey, 1985).

The simulation theory is quite similar to the version
of Leslie’s theory of mind mechanism that we have
used as a base model — but both it and Chandler’s
copy theory show an apparent egocentricity. In prac-
tice, as I’ve argued, there are good reasons for sup-
posing that in any real common-sense psychology,
both theory and simulation aspects will be required
and, therefore, a simulation theory will actually be
complementary to, rather than alternative to, the
models presented here (Perner, 1994). However, most
of the people who have argued for a simulation the-
ory have argued for it as an alternative to something

;;; These are the rules for answering questions about other
.;; people’s beliefs. In this group, the “believes” question is
;;; correctly coupled to the believes predicate of a notional
;»; world. These rules override the default which gives the
;;; wrong answer in the first version of the situation theory.

;;; Rule answer-yes-other, compare to answer-yes-other
;;; in figure 10,
((result yes ?someone (believes ?object ?something)
?situation “situation) :-
(not (self Zobject))
(member (believes 7object ?something) ?situation)
(write-1ist (yes ?object believes ?something)))

;;; Rule answer-no-other, compare to answer-no-other
;5 in figure 10.

((result no ?someone (believes ?object ?something)

?situation *situation) :-
(not (self ?object))
(not (member (believes ?object ?something)
?situation))
(write-1ist (no 2object does not believe ?something}))}

Figure 11. Changes from the situation theory to the re-
presentation theory

h2
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like Leslie’s ‘decoupler’ theory of mind mechanism,
and therefore don’t give much thought to how a simu-
lation theory and a theory of mind mechanism might
be combined in practice. But there is a twist to the si-
mulation model; although it shows an apparent ego-
centricity, it can actually be functionally identical to
Leslie’s ‘decoupler’ model. This further backs up the
arguments that the distinction between a theory and a
simulation is one of interpretation rather than a real
difference in behaviour (Perner, 1994).

It is, of course, possible to pursue this strategy still
further developing models of some of the other mod-
els of common-sense psychology. Unfortunately, for
an accurate model many of these require more com-
plex models of perceptual apparatus (e.g. Baron-
Cohen’s, 1995, shared attention mechanism), or more
complete models of common-sense psychology (e.g.
Wellman’s, 1990, simple-desire psychology) than have
yet been developed within this framework. Even so,
as a first attempt at the problem, the technique does
seem to back up the existing points and arguments re-
markably well, and to clarify the distinctions between
the models which have been developed so far. And
apart from anything else, at least within this limited
scenario, it seems to work!

The usefulness of the modelling approach as a tool
for studying common-sense psychology is a topic
which deserves fuller discussion than is possible here.
Even so, we believe that these models show cognitive
modelling can help in this area.
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;;; Trace output for Leslie’s ‘decoupler’ model, simulation
;;; theory (final version), and situation theory (final

;;; version). Compare to the results of Baron-Cohen et al’s
5;; (1985) false belief test.

yes alison believes (inside marble box)
yes sally believes (inside marble basket)
yes anne believes (inside marble box)

;;; Trace output for simulation theory (first version).

yes alison believes (inside marble box)
no sally does not believe (inside marble ?where)
no anne does not believe (inside marble ?where)

;;; Trace output for copy theory and situation theory (first
;; version).

yes alison believes (inside marble box)
yes sally believes (inside marble box)

yes anne beljeves (inside marble box)

Figure 12. Trace output from the different models
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ABSTRACT

We modified a cognitive architecture (ACT-R) and an
attached interaction architecture (the Nottingham
interaction architecture) to simulate developmental
changes in problem solving. We started with an exist-
ing model that fits adult data on a blocks world task
used to study the development of problem solving in
children. We modified the model and architectures in
three, independent ways to simulate a younger problem
solver: (a) reduced the working memory, (b) deleted a
piece of knowledge, and (c) reduced the accuracy of
vision. We found that our modifications allowed the
model to fit 7 year old's data better but not perfectly.
These results suggest that cognitive models and their
architectures can help answer the question of "What
develops?”

Keywords
Cognitive architectures, development, problem solving,
working memory, vision, ACT-R, interaction.

INTRODUCTION
As children grow older, they tend to be more able to

learn new strategies and tasks, and be more efficient at,

those strategies and tasks that they knew previously
(e.g. Siegler, 1986). What changes are occurring in
order for this to happen? It would be useful to be able
to specify in information processing terms how the
behaviour seen at each age is achieved, and therefore
what the differences are between ages (Simon, 1962).

The solving of physical puzzles is a good area in which
to examine differences in behaviour. A detailed analysis
of the task behaviour is possible via videotape. Many
strategies will be readily visible, reducing the need for
the experimenter to infer what mental structures and
strategies are being used. For this reason, a physical
problem solving puzzle, the “Tower of Nottingham”, is
used to study differences in children’s behaviour and the
factors influencing them.

The Tower of Nottingham

The Tower of Nottingham task involves building a
pyramid from 21 wooden blocks (see Figure 1). There
are six layers to the pyramid, the lower five consisting
of four blocks each, with a single block as the top
layer. The blocks in the lower five layers all share the
same characteristics, differing only in size. Each layer
is normally formed via two sets of paired blocks. For
example, placing the peg of block A into the hole of
block B brings the two half holes together to form a
pair having a hole (a hole-pair). Similarly, placing

H i
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Figure 1. The blocks, on the left, that make up each
layer, which are then stacked to create a tower, shown
on the right.

block C and block D together forms a pair with a peg (a
peg-pair).
Other strategies for creating a layer also exist, however,

such as forming a pair having two pegs (blocks A and
C) and a pair having two holes (blocks B and D).

There are two other features that may give rise to addi-
tional construction strategies. Each block has a quarter
circle indent on top and a quarter circle depression under-
neath. When a layer is created, the quarter circles form
circles in the centre such that layers can be stacked on
top of each other by placing the circular depression of
the upper layer onto the circular indentation of the lower
layer. Constructions can be created by aligning the
quarter circles so that they form a semi-circle.

Behaviour on the Task Varies with Age
Children of three are able to complete the Tower of
Nottingham, yet performance improves with age all the
way up to adulthood. For example, older children on
the task accomplish more correct operations, produce
less errors and take less time than their younger
counterparts (Murphy & Wood, 1981; Wood &
Middleton, 1975). Studying performance across ages on
this task allows us to examine problem solving
behaviour at each age and the differences in problem
solving between ages.

The Use of Cognitive Models and Cognitive
Architectures

Computational modelling across ages requires defining
the behaviours that occur at each age (or performance
level), because the model will require the knowledge and
procedures that children may be using at each age.
Where the behaviour cannot be defined in these terms,
the model makes predictions about the missing ele-
ments. Therefore modelling task behaviour can help
provide a means of defining how the different
behaviours are generated.
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This enables a method for examining to what extent
changes in task performance can be attributed to differ-
ences in knowledge and to what extent changes in task
performance can be attributed to developmental pro-
cesses. Existing models of development have only
really considered differences in knowledge as the reason
for changes in task performance, and have largely ig-
nored the developmental processes that various devel-
opmental theories put forward (e.g. changes in working
memory).

Early production system models of development, such
as that of Young (1973), model differences in task
performance by altering the rule set (i.e. the knowledge)
within the production system. Klahr and Wallace (1976)
implement possible developmental factors in their
production system model of development (such as
visual memory), but do not explore their effects.

Modelling techniques which have not used the produc-
tion system style view development as being experience
with the task, which can be seen as implicit knowledge.
In the connectionist model of McClelland and Jenkins
(1991), improved performance is attained by further
training of the network on the task. In Siegler and
Shipley's (1995) Adaptive Strategy Choice Model,
improved performance is achieved by the model learning
through experience of the task which strategies to
employ for which sums.

All of these models have had success when they have
been compared to subject data. However, developmental
theory suggests that there are further changes occurring
that also influence development. To what extent are
these changes able to influence performance?

Two approaches stand out for creating a model of our
task. One method is to model a lower performance
level and see if that model can then progress to the
higher performance levels that we see on the task. The
other method is to begin at the highest performance
level (that of adults), and then see if reduced versions of
this model show behaviour that looks like lower
performance levels. We have chosen to start with the
simpler (adult) behaviour and work towards the more
chaotic (child-like) behaviour.

We wish to examine how changes in both knowledge
and development can influence task performance. To do
this, we will begin with an adult model of our task and
then impair it in theoretically motivated ways. By
examining performance of the model after these
changes, we hope to see to what extent the impairment
can account for lower performance levels (those of
children).

Cognitive architectures are important here as well, for
they should also guide us (together with developmental
theory) as to what are the sensible changes to make to
the architecture. However, the role of change in
architectures, with particular reference to development,
has been rarely studied. The first definitions and
implementations of cognitive architectures stressed that
architectures do not change across tasks (Newell, 1990,
p. 81). Newell (1990) argues that within Soar,
development is just learning, and the architecture
remains the same. Development is not mentioned with
respect to ACT-R (Anderson, 1993). For these reasons

45

A ISBN 1-897676-67-0
we will look towards developmental theory as to what

changes to make to the architecture.

Overview of the Paper

In the remainder of this paper, we will first describe the
adult model upon which we base the other models. We
describe its structure and the set of blocks that it inter-
acts with. The model has been improved since it was
last reported (in Jones & Ritter, 1997), and although the
fit to the data is not improved substantially, it does
enable the model to be broken in more theoretically
motivated ways. We therefore describe the model in
detail here. The stage is thus set for describing the three
changes we make to the architecture. Each of the
changes is described in terms of why they are suggested
by developmental data, how they have been
implemented, either in ACT-R or the Nottingham
interaction architecture, and the effect they have on the
model's behaviour. We conclude with a summary of
these changes and the implications they have for the
disentangling of what changes in cognitive
development.

THE ADULT MODEL

The adult model is based on the ACT-R cognitive
architecture (Anderson, 1993). In the development of
the adult model the architecture has in part been used as
a vehicle for the development of our own theories of
performance on the task, although the model is
consistent with most of the principles of ACT-R such
as being goal driven, giving activation to memory
elements, subjecting activation to both decay and noise,
being rule based, and so on.

A simulation of the task also exists (see Figure 2),
which is written in Garnet (Myers, et al., 1990). The
simulation contains a full graphical representation of
the task (all blocks and features), which is 2 1/2
dimensional—blocks cannot be turned on their side or
held in mid-air, but can be face-up or face-down.

The simulation also represents an eye and two hands.
The eye and hands are designed to meet a set of
requirements identified for creating a psychologically
plausible architecture for interacting with an external
task (Baxter & Ritter, 1996).
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Figure 2. The Tower of Nottingham interaction
interface.
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The eye is able to saccade and fixate, and passes to the
model what it sees with regard to blocks and construc-
tions (e.g. a peg-pair will be represented as a construc-
tion having two blocks that are flush on their outer
edges and have their quarter circles and halfpegs aligned).

The visual information passed to the model is based
upon where blocks are positioned in relation to the
fovea. Three areas are defined: fovea, parafovea and
periphery. Full information is passed for blocks or
features in the fovea and parafovea, though the parafovea
subjects features and block sizes to noise. For items in
the periphery, the eye only returns to cognition a block
ID. The hands are able to pick up, drop, rotate, turn
over, fit, and disassemble blocks.

The model contains 226 rules which allow it to
complete the task. The rules also interact with the
simulation of the task, directing the eye and the hands.
Within the model, all blocks and block features have an
associated activation level. When several rules are
instantiated, the one with the highest activation is
selected. Therefore, in general, rules fire whose
conditions have the most active blocks and block
features in them. The activation levels are subject to
decay each cycle, such that when they fall below a
specified level (the retrieval threshold) they can no
longer be matched in conditions of rules. Activation is
raised based on what the goals of the model currently
are, and by what blocks the fovea is looking at.

The learning mechanism that we included in the
architecture is a simple method of increasing the
chances of fitting blocks by specific features if a
previous fit using the same features was deemed a
success. Success is determined by the blocks in the
construction being flush on their outer edges and having

their quarter circles aligned (this is consistent with adult

data on the task). Therefore, on some occasions the
model may believe a successful construction has been
made when in fact it has not (e.g. aligning the quarter
circles of blocks A and B such that the blocks are not
connected via a peg/hole). This learning mechanism
approximates adult learning on the task (Jones & Ritter,
1997).

The model contains working memory and visual
memory. Working memory contains all blocks and
block features that are active enough to be matched in
the conditions of rules (i.e. their activation is above
retrieval threshold). Therefore, working memory is
variable based on how active blocks and block features
are in the model. Visual memory means we can
remember some of the blocks that have been looked at
previously even though they are now in the periphery.
Visual memory is static (it is set at seven items), and
compliments working memory since blocks in visual
memory that are not in working memory can also be
matched in conditions of rules.

Comparing the models with the data

1t would be useful to compare subject performance on
the Tower of Nottingham with the performance of
models of the task using a metric that cannot be set as a
parameter of the architecture. One such metric is the
proportion of productions fired in the construction of
each layer compared to the proportion of time subjects
take in the construction of each layer. However, the task
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involves interaction with an external world, so timings
for subjects include their perceptual and motor actions
whereas the model production firings do not. This
means timing estimates for interaction must be used in
part of our model/subject comparisons.

We use the ACT-R default timing of 50 ms per
production firing, which increases to 250 ms (Baxter &
Ritter, 1996) for productions involving perceptual
actions (eye movements and fixations), and 550 ms
(Jones & Ritter, 1997) for productions involving motor
actions (fitting and disassembling blocks). This enables
a more complete comparison between model and subject
timings. Production firing latencies in ACT-R also
take into account activation of memory elements. In
order for the influence of memory elements on
production firing latencies to be negligible, the base
level activation of memory elements was set to 10.0.
Where other ACT-R parameters were used (decay,
retrieval threshold), we adhered to the suggested default
settings. The models begin with the initial knowledge
of the task that subjects had, such as blocks of the same
size go together, pegs go in holes, etc.

For every run of the model, the activation noise
parameter within ACT-R was set to 0.005. This causes
the activation of constructions and features in the model
to differ, making the model's behaviour variable.

For comparisons between the model and subjects,
measurements are given on an overall and layer-by-layer
basis. The reason for reporting times and errors per layer
is that subjects learn throughout the task. Since the
model includes a learning mechanism, we want to see
not only the effect that impairment to the model has
upon overall behaviour, but also the impact it has upon
the learning of the task.

We provide r-squared estimates for correlations between
the model and subjects on a layer-by-layer basis, and t-
test comparisons for summary data. These should only
be taken as initial guides to the quality of the fit
between the model and the subject data.

Comparison of the model with adult subjects
The adult subjects (N=5; taken from Jones & Ritter,
1997) had completed the task once. We compare 5 runs
of the model to the 5 adult subjects.

The comparison of the adult model to the adult subject
data is favourable. On the measures we will be using
when we break the adult model, it fits the adult subjects
reasonably well (see Table 1), although the model
makes more incorrect constructions than subjects.

If we compare the times to complete each layer for the
adult model and the adult subjects (see Figure 3), the
trend of the model is the same as subjects—the time to
complete each layer decreases until the final layer where
the time increases slightly (r? = 0.92). The model takes
more time to complete the task because it makes
slightly more errors (see Figure 4; 2= 0.67).
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Figure 4: Construction attempts to complete each layer
for adult subjects and the adult model.

The model provides a reasonable fit to the adult subject
data in most of the behaviours that we are presently
interested in. An exact fit on every measure is not
essential because we will be examining the relative
increases and decreases of these measures that result
from the alterations that we carry out. The model fits
the data well enough that it is fruitful to start exploring
how problem solving changes when the architecture is
changed to reflect that of younger problem solvers.

CHANGES TO THE ADULT MODEL

In order to examine how problem solving could change
with development, we created three changed versions of
the adult model. These changes are the most plausible
based on the developmental literature and our knowledge
of children’s performance on the task. (a) We reduced
the working memory capacity. (b) We removed a piece
of knowledge. (c) We altered the accuracy of the
parafovea. There are further changes that should be
explored as well, such as basic processing speed, fovea
size, and further changes to knowledge.

In this initial exploration we made each of these
changes independently in order to keep the first order

effects clear. For each change we explain its
implementation, its rational, and its effect on problem
solving.

The seven year olds we use to compare the altered
models against were assisted on their first attempt at
completing the Tower (contingently tutored, Wood &
Middleton, 1975), and so we compared the model with
their second attempt where they received no help in
completing the Tower.

Reduced Working memory capacity model
Why

Several developmental theories suggest working
memory capacity may influence task performance (e.g.
Case, 1985; Halford, 1993). On the Tower of
Nottingham, children have been noted to search with
replacement (D.Wood, personal correspondence), a
characteristic which may well be linked to working
memory in that the children forget which blocks they
have tried fitting together. On the Tower of
Nottingham, seven year old children fit the same blocks
together an average of 3.68 times, whereas this
behaviour never occurs for adults completing the task.

- How

Our model provides an easy way to manipulate working
memory capacity to see what effect it has upon
performance. In order to get a large, initial effect, we
implemented this change to the model in three ways
(the first two are parameters in ACT-R and the third is a
parameter in the Nottingham interaction architecture).
First, raising the retrieval threshold (from 0.0 to 2.5)
means that constructions need to be higher in activation
than in the adult model in order to be matched in rules.
Second, raising decay (from 0.05 to 0.15) means
constructions are forgotten more quickly than in the
adult model. Third, reducing the number of items in
visual memory (from 7 to 3) means that visual memory
provides less support to working memory. The ACT-R
parameters and mechanisms that we manipulate have
also been used by Lovett, Reder and Lebiere (1997) in
their ACT-R model of working memory differences,
although they kept the parameter values constant and
manipulated a third parameter. In this way they were
able to model individual differences in working
memory.

Measure Adult Adult Model t-score
Subjects
Total time taken to complete the Tower 80.6 s (13.3) 92.2 5 (9.47) t(8)=1.59
p>0.05

Total number of errors (incorrect constructions) 0.2 (0.45) 2.4 (1.14) t(8)=4.017
made p<0.05
Errors where the blocks involved are of the same 0.2 (0.45) 2.4 (1.14) 1(8)=4.017
size p<0.05
Errors where the blocks involved are of different 0 0 N/A
sizes
Number of times a construction attempt is made 0 0 N/A
using the same blocks

Table 1: Mean (standard deviation) and t-scores for adult model and adult subject comparisons.
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Measure 7yo Reduced WM t-score
Subjects Model

Total time taken to complete the Tower 214.4 s (95.81) | 134.0s (24.1) t(8)=1.82
p>0.05

Total number of errors made 7.6 (2.41) 5.4 (2.88) t(8)=1.31
p>0.05

Number of times the same blocks are fitted together 1.75 (0.96) 2.0 (1.41) t(4)=0.27
p>0.05

Table 2: Comparison between seven year old subjects and the reduced working memory model. Standard deviations,

where

appropriate, are given in parentheses.
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Figure 5: Time taken (seconds) to complete each layer.
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Predicted effect

Less working memory should lead to more search with
replacement—the same pairs of blocks should be fitted
together more often. A side-effect of searching with
replacement is that the task should take longer and
involve more errors.

Effect

Table 2 shows the summary statistics for the seven year
old subjects and the reduced WM model. Figures Sand 6
show comparisons on a layer by layer basis.

As predicted, reducing the working memory capacity in
the adult model leads to fitting the same blocks together
more often (from 0 in the adult model to 2.0 in the
reduced WM Model). Increases are seen in both the time
to complete the task (from 92.2 s in the adult model to
134.0 s in the reduced WM Model) and the number of
errors (from 2.4 in the adult model to 5.4 in the reduced
WM Model). This increase is not enough for the reduced
WM Model to appear like a seven year old on the task.
Although there are no reliable differences between the
reduced WM Model and seven year olds in the total time
taken and total number of errors, there are clear
differences in the magnitude of these totals.

On a layer by layer basis, the reduced WM Model can be
seen to not differ greatly from the adult model in terms
of time and construction attempts made. However, the
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learning mechanism seems to be affected by the
reduction in working memory capacity, because the
original adult model provides a better fit to the seven

year old subject data (times r% = 0.85; constructions
12 = 0.74) than the reduced WM Model does (times

12 = 0.24: constructions r? = 0.63). The original adult
model and the reduced WM Model do not correlate at all

(times 12 = 0.07; constructions r2 = 0.05).

Reducing the working memory capacity has allowed the
model to fit the seven year old data a lot better than the
adult model for overall times and errors, but at the cost
of impeding the learning mechanism. This is probably
because of the type of learning mechanism we use: there
are less block features to be raised in activation upon
success because working memory capacity is smaller.
This suggests that further learning mechanisms must be
used in order to fit the seven year old subject data better.

Less Knowledgeable model

Why

Children have a much smaller knowledge base to draw
upon than do adults (e.g. Siegler, 1986). It is quite
possible that children's knowledge of the Tower of
Nottingham is less than that of adults. Examination of
how seven year olds produce correct constructions
compared to how adults produce correct constructions
reveals that the children fit pegs into holes to produce a
pair on 37 occasions yet only fit a halfpeg into a
halfhole on 6 occasions. Adults fit via a peg and hole
on 26 occasions as compared to fitting by halfpeg and
halfhole 14 times. It is a possibility that children only
learn about halfpegs and halfholes fitting together
whilst they are completing the task.

How
Previously the model knew that halfpegs could fit into
halfholes. This knowledge was deleted from the model.

Predicted Effect

The effect this will have upon performance is unclear.
The number of constructions made via a peg and hole
will rise sharply; however, the current learning
mechanism offers no opportunity for learning that
halfpegs and halfholes can fit together, and therefore it
is expected that fitting by halfpegs and halfholes will be
dramatically reduced. It will not be eradicated because
there are other ways in which constructions -can
indirectly be made via a halfpeg/halfhole (e.g. quarter
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Measure 7yo Subjects Less t-score
Knowledge-
able Model
Total time taken to complete the Tower 21445 (95.81) | 164.8 5 (40.4) t(8)=1.07
p>0.05
Total number of errors made 7.6 2.41) 5.6 (3.36) t(8)=1.08
p>0.05
Ratio of correct constructions fitted via 37:6 31:6 N/A
peg/hole:halfpeg/halthole

Table 3: Comparison between seven year old subjects and the less knowledgeable model. Standard deviations, where
appropriate, are given in parentheses.
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circles can be aligned in such a way that the halfpeg and
halfhole fit together). We predict that the number of
errors will remain the same. This is because fitting
random blocks of the same size by a peg/hole
arrangement and by a halfpeg/halthole arrangement offer
the same chances of success. The time to complete the
task should not change, because no more errors are
expected.

Effect
Table 3 shows the summary statistics for the seven year
old subjects and the less knowledgeable (Less K) model.
Figures 7 and 8 show comparisons on a layer by layer
basis.

As predicted, deleting the knowledge that halfpegs fit
into halfholes meant that fitting by pegs and holes rose
sharply (from 14 in the original adult model to 31 in
the less K Model), and fitting by halfpegs and halfholes
dropped but was not eradicated (from 15 in the original
adult model to 6 in the less K Model). The ratio of 31:6
compares favourably with the 37:6 ratio of seven year
olds.

There were increases in both the total time taken to
complete the task (from 92.2s in the original adult
model to 164.8s in the less K Model), and the number
of errors produced in completing the task (from 2.4 in
the original adult model to 5.6 in the less K Model).
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This helps the less K model to fit the seven year old
data (there are no reliable differences between the
summary measures for the less K model and seven year
old subjects, although there are clear differences on the
layer-by-layer plots). Part of the increase in time can be
attributed to more search being required (as we now have
a reduced feature set because we no longer know that
halfpegs fit into halfholes). However, most of the
increase in time is because more errors are made. We do
not yet have a valid reason for why this occurs.

As with the reduced WM model, we again see that the
original adult model correlates better with the seven year
old data on a layer by layer basis (original model and
seven year olds: r? =0.85 for times and r?=0.73 for

constructions; less K model: 12 =0.73 and r? = 0.44
respectively). This again suggests that the learning
mechanism is impeded by the removal of knowledge.
The type of knowledge removed means that learning
must now occur over a reduced feature set. However,
the reduced feature set still has the same chance of
success as the old set, and it is therefore difficult to
explain why the less K model does not learn as well as
the original adult model.

Reduced Parafovea accuracy model

Why

Children find it more difficult to select blocks by size in
the Tower of Nottingham task (Murphy & Wood,
1981). Although this is more pronounced for children of
five years of age and below, seven year olds still average
1.8 constructions involving different sized blocks; the
adults do not make any constructions involving blocks
of different sizes.

How

We set the parafovea noise parameter for size to be 30
percent, representing a 30 percent chance that a block in
the parafovea will be perceived as being a different size
than it actually is (there are other possible mechanisms
to implement this).

Predicted Effect

The increased size noise should mean that more
incorrect constructions are produced involving blocks of
different sizes. This increase in error should also lead to
an increase in the time taken to construct each layer.

Effect

Table 4 shows the summary statistics for the seven year
old subjects and the parafovea accuracy model. Figures 9
and 10 show comparisons on a layer by layer basis.
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Measure 7yo Subjects Reduced t-score
Parafovea
Accuracy
Model
Total time taken to complete the Tower 214.4 5 (95.81) | 126.2 s (24.6) t(8)=1.99
p>0.05
Number of errors involving blocks of the same size 5.8 (2.59) 3.4 (1.34) t(8)=1.84
p>0.05
Number of errors involving blocks of a different 1.8 (2.68) 0 N/A
size

Table 4: Comparison between seven year old subjects and the reduced parafovea accuracy model. Standard deviations,
where appropriate, are given in parentheses.
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Figure 9: Time taken (seconds) to complete each layer.
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The results found go against our main prediction that
there will be a greater number of constructions made
which involve blocks of different sizes (neither the
original adult model or the reduced parafovea accuracy
model produce any). In hindsight, the reason for this is
that when picking up a block, the model fixates upon
it. Since at this point the block is in the fovea, the
correct size is returned, and therefore if the block is the
wrong size it is replaced. This provides an interesting
result because it indicates that seven year olds either do
not examine the block again once they have decided to
pick it up, or their fovea vision is not as accurate as
adults.

As predicted, there is an increase in the overall time
taken (from 92.2's for the original adult model to
126.2 s for the reduced parafovea accuracy model) and
the number of errors produced (from 2.4 for the original
adult model to 3.4 for the reduced parafovea accuracy
model). This increase is not sufficient enough to make
the reduced parafovea accuracy model appear to be like
seven year old subjects on the task, although there are
no reliable differences for either measure.

The reduced parafovea accuracy model does not correlate
well with either the original adult model (> = 0.05 for
times; 12 = 0.03 for constructions) or the seven year
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old subjects (r>=0.13 and 2 = 0.29 respectively).
The increase in overall timings is probably due to the
increase in visual search that is required due to the
parafovea being less accurate. There should be no reason
other than chance that there is an increase in
construction attempts over the original adult model.

SUMMARY

We took an initial adult model and broke it in three
ways to simulate a younger problem solver: cognitively
(reducing working memory capacity), via knowledge
(removing knowledge), and perceptually (reducing
parafovea accuracy). All of these impaired the
performance of the model to differing degrees and in
different ways. None of the alterations was sufficient to
produce behaviour similar to seven year old subjects,
and all of the alterations indicated that more than one
learning mechanism is required to fit the seven year old
data properly. However, in breaking the adult model, we
were able to show that changes that have been
hypothesised to exist in younger problem solvers (i.e.
developmental factors) do lead to different problem
solving behaviour.

Further work must modify the model and its architecture
in additional ways, motivated by developmental theory.
There are several other ways to degrade the model's
performance that we have not yet explored, such as
changes in processing speed. These explorations will
allow us to see how much each factor influences
performance. The extent to which each factor
contributes toward the observed behaviour indicates
where our attention must lie in creating a complete
model of seven year olds that is comparable and related
to adult behaviour on the Tower.

However, we cannot simply consider each influencing
factor independently because we have shown that this is
not sufficient to produce the behaviour of seven year old
subjects. The adult model will need several interacting
changes to its architecture before its behaviour appears
realistically to be like a younger problem solver.
Therefore, not only will we be breaking the model in
additional, independent ways, we will also be looking at
combinations of modifications that interact. We expect
the interactive effects to reveal more about performance
at different ages, but simple changes are still required for
our understanding and initial explorations. ’

This work indicates that the role of change in
architectures, which has been little studied since the first
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definition, can be a fruitful way to use architectures.
ACT-R includes many parameters. Before these
parameters can be easily used for modelling
development and abnormal problem solving, they need
to be explored (or explained) to the extent that ranges
for normal individual differences are known (e.g. Lovett,
Reder, & Lebiere, 1997), and then that the interactions
of these parameters are understood. A way to predict the
performance of ACT-R models without running them in
this area would be useful.

This work will eventually lead to models of five year
old’s and seven year old’s behaviour solving the Tower
that are based on modifying the adult model. We hope
that these models will be able to explain individual
differences within age groups as well as to explain the
progression between ages (in terms of differences
between the models rather than transition mechanisms).
In both cases, we should be able to highlight the
knowledge differences or architectural changes that lead
to the differences in behaviour. Further learning
mechanisms are also required in order that each model
can learn from the task in order to perform to the
standard of the older models. Explaining how and why
problem solving changes with development is difficult,
so further work will have to look at more than just this
task.

We are now in a position to look at how problem
solving changes across development. We have a
cognitive model that performs the task. We can add and
remove knowledge from the cognitive model and we can
modify the architecture to represent developmental
changes in cognition (the cognitive model based in
ACT-R) and perception (the Nottingham interaction
architecture). In the future we may be able to more
directly answer “What develops?”
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ABSTRACT

In this paper, an ACT-R model of mental fatigue is
presented. This model is loosely based on Hockey’s state
regulation model of compensatory effort (Hockey, 1997).
It appears that when spreading of activation is reduced,
the ACT-R model can predict the performance changes
Hockey describes, and furthermore, show how these may
depend on the motivation of the participant. In a model
of the Sternberg memory-search task, a reduction of the
spreading of activation results in a change in strategy.

Keywords
mental fatigue, strategy use, cognitive control, ACT-R

INTRODUCTION

This paper describes a computational approach towards
the investigation of mental fatigue. Mental fatigue is
defined as the deterioration of mental performance due to
preceding exercise of mental or physical activity
(Meijman, 1997). As Meijman explains, it can be
conceived of as a problem of keeping attention focused
on task goals, or as a deficit in the cognitive-energetic
control mechanisms. From his research it appeared that
in some task conditions fatigued participants could
protect their performance by means of compensatory
effort, but in the most unfavourable conditions of the
experiment (after 8 hours of work combined with sleep
loss) people were no longer able to prevent deterioration
of their performance. According to Shiffrin & Schneider
(1977) there are two types of information processing:
automatic and controlled. It appears that tasks that require
more controlled processing are more sensitive to mental
fatigue (Meijman, 1997). However, which cognitive
processes are responsible for the changes in behaviour
which are observed when people have to perform tasks
for an extending period of time is a question that has not
been answered yet. Bartlett (1943) hypothesised that the
processes involved in planning, which is often ascribed
to prefrontal functioning, are the ones responsible for
these changes in behaviour. West (1996) subdivides the
functioning of the prefrontal cortex into three processes.
The first one is the inhibition of interfering processes and
stimuli. The second process is a working memory
process which enables the retrieval of information. The
third process involves the preparation of responses.
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Summarising, there is some evidence that indicates
mental fatigue is related to problems with cognitive
control.

From many previous studies we already know
that people seldom show a total breakdown of
performance when they become mentally fatigued. A
possible explanation for maintaining adequate task
performance is that people change their strategy. More
than 20 years ago, Shingledecker and Holding already
hypothesised that when people become mentally fatigued

- they will shift their strategy of task performance towards

a strategy that requires less mental effort (Shingledecker
& Holding, 1974). In 1997, this hypothesis was brought
out again by Hockey (1997). So, some people have
hypothesised that mental fatigue involves a change in
choice. However, a controlled study that investigates the
details of this possible relation between mental fatigue
and strategy use, still has to be done.

In order to predict and explain the role of
cognitive control and strategy choice on the performance
changes associated with mental fatigue, it is necessary to
construct a detailed model of how these processes take
place, and how they are influenced when people become
fatigued. As the models mostly used in this field are
mainly descriptive, the main purpose of this paper is to
show how the valuable aspects of one of these models
can be used to construct a computational model of mental
fatigue, from which it will be possible to derive useful
predictions of participants’ behaviour. To this end, the
next paragraphs will describe Hockey’s compensatory
control model (Hockey, 1997), which is a commonly
known descriptive model of mental fatigue, and a
cognitive architecture, ACT-R (Anderson, 1983; 1993).
Together these components will be the basis for a
computational model of mental fatigue.

A DESCRIPTIVE MODEL OF MENTAL FATIGUE

A model currently used for the investigation of mental
fatigue is the state regulation model of compensatory
control (Hockey, 1997). It is based on the concept of
resources, which is described as "the availability of one
or more pools of general-purpose processing units,
capable of performing elementary operations across a
range of tasks, and drawing upon common energy"
(Gopher, 1986; Kahneman, 1973; Wickens, 1984). The
model makes three assumptions. Firstly, it assumes that
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control process is normally self-regulating. And, thirdly,
the model assumes this regulation has costs (expressed in
use of mental resources, levels of subjective strain, and
physiological changes). An overview of the model is
presented in figure 1.

supervisory ¢
| controller
effortimonitor
e ———

task goals external

load

l LOOPB l
action O >
monitor 1 overt

LOOPA performance

Figure 1. The state regulation model of compensatory
control (Hockey, 1997)

The model distinguishes between two levels of
control: a lower level, representing routine regulation
(loop A), and an upper level, representing effort-based
regulation (loop B). The effort-monitor monitors the
level of demands in the lower loop. When the demands of
the situation change, control will shift to the higher level
(here called the supervisory controller) where several
options for regulation are available. The model requires
two levels for the effort monitor: a lower setpoint and an
upper setpoint. This is the part of the model in which
resources play an important role, for the upper setpoint
represents the maximum level of effort that can be
mobilised, which is dependent on motivation. Referring
to Holding (1983), Hockey argues that this upper
setpoint can be influenced by fatigue. When the perceived
demands are too high, the maximum level of effort that
can be mobilised should be increased, or the performance
will decrease. Hockey describes four kinds of changes that
can happen when people protect their performance. The
first change he mentions is subsidiary task failure, for
example the neglect of subsidiary activities or narrowing
of attention. Second, people can make strategic
adjustments as less use of working memory and greater
use of closed-loop control. Third, maintaining
performance could require compensatory costs. People
would have to increase mental effort to attain the same
performance. Finally, if no changes during task
performance are observed, it is possible that people will
show after-effects, for example express feelings of
fatigue, or show a post-task preference for low-effort
strategies.

To summarise, according to this model, task
performance normally relies on routine regulation. In
situations with high demands (e.g., stressful situations,
situations in which the operator is mentally fatigued),
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Thus, the model would predict that when people become
mentally fatigued they would need a more effortful
manner of control for the same task as before. However,
it is not clear how that would lead to the four kinds of
change Hockey predicts. It could be the case that when
people become fatigued, they invest more effort in the
task, change their strategy of performance, neglect
subsidiary activities, or show after-effects. The model
does not provide predictions about what people will
actually do in these situations that require higher level
control. A computational model is needed to refine these
processes and deliver useful predictions for different
situations. To this end, a rather brief explanation will be
given of ACT-R (Anderson, 1993), an architecture of
cognition, from which it is possible to construct a
computational model of fatigue.

ACT-R

The reason for choosing the ACT-R architecture for the
construction of a model of mental fatigue is twofold. For

" the investigation of mental fatigue the measurements of

performance that are used most often are the reaction
times for completing tasks, the (strategic) choices made
during task performance, and the number of errors made
by participants. A very attractive aspect of ACT-R is that
it can make very detailed predictions about these three
kinds of measurements. Furthermore, ACT-R is equipped
with global parameters which, when changed, can cause
qualitative, task-specific, changes in behaviour. These
global parameters make ACT-R suitable for the
construction of a model of mental fatigue.

The ACT-R Architecture

The ACT-R architecture distinguishes between two kinds
of memory: production memory (memory for procedural
knowledge, represented with production rules) and
declarative memory (memory for fact knowledge,
represented with chunks). Strategies are represented with
(a number of) production rules, and additional declarative
facts. The conflict resolution process selects production
rules according their expected gain, as calculated by
equation 1.

Expected gain ;=P; G - C; ey

In this equation P represents the probability of success
when using this production rule, G the value of the goal,
and C the cost to reach the goal, using this production
rule. The preliminary assumption of ACT-R is that cost
is the time needed to reach the goal. From the production
rules that match the current goal, the production rule that
has the highest expected gain is tried first, which means
that ACT-R tries to retrieve the declarative memory
chunks necessary for the production to fire. Whether
ACT-R succeeds in retrieving the chunks depends on the
activation level of these chunks. When the activation of a
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chunk drops below a cc'\xflt%(l’g””t]ﬂi'cg B‘irc?,p tt retrieva
threshold, it cannot be retrieved anymore. The activation
level of a declarative memory chunk is determined by
equation 2.
Activation, = base level activation ; +

Zj source-activation ; * associative strength ; (2)

In this equation base-level activation represents how
recently and frequently the chunk has been used before.
The second half of the equation represents spreading
activation. Source activation represents the attention
given to the elements of the goal and association strength
represents the likelihood that fact i is needed if fact j is
part of the current goal. If all retrievals succeed, the
production will fire, if not, the second-best production is
tried. Furthermore it must be mentioned that ACT-R can
learn the parameters of the model itself (e.g., the base-
level activation, the associative strengths, the probability
of success of a production and its cost).

A COMPUTATIONAL MODEL OF MENTAL

FATIGUE

In the introduction two aspects of mental fatigue were
mentioned: mental fatigue as a cognitive control
problem, and mental fatigue as a process involving a
shift in choice, a more motivational aspect. How can
these aspects be represented in a computational model of
mental fatigue? Therefore we have to determine how
global parameters can interact with knowledge-specific
parameters. In ACT-R two global parameters can be
related to these aspects of mental fatigue. In the next two
subsections these two parameters will be explained and
the third section illustrates the influence of the values of
these two parameters on the performance on a Sternberg
memory-search task.

Mental Fatigue
Cognitive Control

as a Problem Concerning

As already mentioned in the introduction, West (1996)
distinguishes three cognitive control functions:
inhibition of interfering processes and stimuli, and two
memory functions. A global parameter in ACT-R related
to these functions is the source activation, which was
described as a part of equation (2). Source activation
spreads from the goal to related chunks, thereby creating
more contrast between chunks which are relevant and
irrelevant to the current goal. When source activation is
low, the contrast between relevant and irrelevant chunks
is low. As such, source activation has the same function
as inhibition of interfering stimuli, which was described
as one of the cognitive control functions possibly harmed
by mental fatigue. When source activation is high, the
probability of interference is low. When source activation
is low, however, interfering stimuli can become
problematic. It is also possible that due to low source-
activation, the activation level of relevant chunks drops

Sk

OH UK): Nottingham

selaerst S eval throohon ,6 Oih means that relevant
facts cannot be retrieved at all. Furthermore, there are
already some indications that source activation is related
to working memory. Lovett, Reder & Lebiere (1997), for
example, found that individual differences in working
memory capacity can be simulated by changing the
source activation. Therefore, it can be hypothesised that
when people are fatigued, their source activation is lower.

Mental Fatigue as a Motivational Problem

Shingledecker & Holding (1974) and Hockey (1997)
hypothesise that mental fatigue may also involve a shift
in choice, more specifically, a shift toward strategies
requiring less mental effort. This can be related to the
motivation of the participants. The parameter closest to
the concept motivation is the G parameter described
before in equation (1), which represents the value of the
goal. Literally, the G parameter represents how much
time you are willing to invest in reaching the current
goal. When the task does not involve time pressure, the
value of the G parameter is partly determined by the

" motivation of the participant (Taatgen, 1997). So, it can

be predicted that a highly motivated participant will
favour strategies with a high probability of success,
while participants with low motivation will favour
strategies with less costs.

An Example: a Model of the
Memory-Search Task

Sternberg

The model described in this subsection is adapted from
Anderson & Lebiére (in preparation). The task the model
performs is a modified version of the Sternberg memory-
search task (Sternberg, 1969). In this task three letters are
shown on a computer screen, which the participant has to
keep in memory. These three letters are referred to as the
memory set. The time the memory set is shown is long
enough to read the letters, but not long enough to
rehearse them. After that, an attention dot is shown,
followed by a set of four letters, called the display set.
The participant has to decide whether one of the letters
from the display set was part of the memory set. The
probability that this is the case is 50 percent. A new
memory set is presented on each trial, which immediately
starts after the participant has given a response, making
the task self-paced.

The two strategies which can be used to perform
the task are described in Anderson & Lebiére (in
preparation). The strategy that generally has the best
speed-accuracy properties will here be referred to as
retrieve-and-check. When the display set is shown, the
participant focuses on the first letter in the set. He then
retrieves the letter from the memory set with the highest
activation. If this retrieved letter equals the attended letter
in the display set the participant responds with a yes, else
he moves on to the next letter in the display set. If there
is a letter in the memory set corresponding with the
attended letter, this letter will have the highest activation.
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The main production rules for retrieve-and-check are
given below. This strategy will produce fast responses,
since the retrieve-trace production will always succeed.

Retrieve-trace

IF the goal is to check if item x is in the memory set
and there is some item y in the memory set

THEN the target is item y

Retrieve-yes

IF the goal is to check if item x is in the memory set
and the target is item x

THEN say-yes

Retrieve-no

IF the goal is to check if item x is in the memory set
and target is not equal to item X

THEN move on to the next item of the display set

The second strategy focuses on accuracy, but is less
efficient. It is called specific-retrieval, since the
participant specifically has to retrieve the memory set
item that matches the current display set item. This will
result in a higher accuracy, since it is impossible to
retrieve a wrong item from the memory set. Another
consequence, however, is that the retrieve-trace
production will fail most of the time. This results in a
longer reaction time, since failing production rules use
the time it takes.to retrieve items whose activation equals
the retrieval threshold. The main production rules for this
strategy are given below.

Retrieve-trace

IF the goal is to check if item x is in the memory set
and item x is in the memory set

THEN the target is item x

Retrieve-yes

IF the goal is to check if item x is in the memory set
and the target is item X

THEN say-yes

Retrieve-no
IF the goal is to check if item X is in the memory set
THEN move on to the next item of the display set

The retrieve-no rule has a lower expected gain than
retrieve-trace, so it will only fire when retrieve-trace fails.

Source activation, which was proposed as a
global parameter concerning mental fatigue, effects the
retrieve-trace rule, since that rule tries to retrieve an item
from the memory set. In the retrieve-and-check strategy
the source activation ensures the right item is retrieved.
Lowering the source activation will increase the
probability of retrieving the wrong item, thereby
producing more errors. In the specific-retrieval strategy
lowering the source activation hardly influences the
number of errors that will be made. This can be seen in
figure 3 which presents some simulated data from the
model. The figure also shows that for the retrieve-and-
check strategy reaction times become slower when source
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activation is lowered. The reason for this is that the
activation of the items in the memory set is lower,
because they receive less source activation (see equation
2). In ACT-R it takes more time to retrieve an item
when its activation is low.

1.5 q

=—{}—retrieve and

1.4
check

1

ptB—specific
retrieval

Reaction time (sec)
-
Y

-
4

o
©

o
@

-
[N}

1 1 09 08 07 06 05 04
Source activation

0.25 1

02+

retrieval

0.15 +

otr

Proportion of errors

0.08

0
1.2 1.4 1 09 08 07 06 05 04
Source activation

Figure 3. The changes in reaction times and proportion
of errors for both strategies, as a result from lowering the
source activation.

As already explained before, expected gain determines
which strategy will be chosen in a particular situation.
When people are fit, and thus have a high source
activation, the expected gain of the retrieve-and-check
strategy will be highest. However, according to figure 3,
when source activation becomes lower, it can be predicted
that at some point in time the expected gain of the
specific-retrieval strategy will become the highest, and
therefore a shift in strategy will be made. The exact
timing of this strategy change is dependent on the
motivation of the participant. Figure 4 illustrates the
effect of motivation and source activation on the expected
gain of the two strategies. The expected gain is calculated
according to equation 1 using reaction time (from figure
3) as cost, and one minus the proportion of errors as
probability of success. ACT-R’s conflict resolution
mechanism will choose the strategy with the highest
expected gain. As can be seen from the figure, when the
motivation of the participant is low (represented by a low
value of the G parameter) and source activation is
lowered, people still maintain the retrieve-and-check
strategy, although this results in a great number of
errors. However, when the motivation is higher and
source activation is lowered, the participant will shift
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Figure 4. The expected gain of both strategies as a function of the source activation and the motivation (represented by
the value of G) of the participant. R&C = retrieve-and-check, SR = specific retrieval.

towards the specific-retrieval strategy. Furthermore, the
higher the motivation of the subject, the sooner this
strategy shift will take place.

A shift in strategy, or strategic adjustment in
Hockey’s terms, is one change Hockey describes that can
happen when people become mentally fatigued. The
ACT-R model, however, can also predict such a change
and show how this depends on the participant’s
motivation. Hockey’s model describes that performance
normally relies on routine regulation. When people
become fatigued two situations can arise: either
performance will decrease, or control will be shifted to a
higher level (loop B in Hockey’s model). What this shift
in control involves is not completely clear from the
model. The ACT-R model does show what a shift in
control involves. When people become fatigued and
routine-regulation is not adequate for task performance,
the conflict resolution process in ACT-R will select a
strategy that is less sensitive to fatigue. So, in this
model, the change in cognitive control can be directly
derived from the basic processes of the ACT-R theory.

Although an experiment to validate this model
has not been done yet, some studies support the
outcomes of the model. In two studies (Kerstholt, van
Orden & Gaillard, 1994; van Orden, Gaillard &
Langefeld, 1996) in which task instructions for the
memory-search task focused on accuracy, mental fatigue
manifested itself by increasing reaction times, which
could indicate the use of the specific-retrieval strategy. In
another study (Schellekens, Sijtsma & Vegter, in
preparation) in which both accuracy and speed were
emphasised, participants only had a fixed time to
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respond. In this experiment mental fatigue was
accompanied by an increase in the number of errors. This
decrease of accuracy can be explained by the fact that the
time subjects had to respond was too short for the
application of the specific-retrieval strategy, so
participants had to stick to the retrieve-and-check
strategy.

CONCLUSIONS AND RECOMMENDATIONS

As was shown in the previous section, the model
provides detailed predictions of performance changes
when people become mentally fatigued. Furthermore, the
changes it predicts can be directly derived from the
ACT-R theory, which allows for generalisation. Given
an ACT-R model of a certain task, it is easy to predict
the role of mental fatigue in task performance. It will be
especially interesting to study the effects of manipulation
of source activation on models of more complex tasks
that allow participants more strategic freedom, since
several authors have argued that these tasks are most
influenced when people become fatigued (e.g., Bartlett,
1943; Meijman, 1997). The model also predicts that
some tasks will hardly be sensitive to mental fatigue, for
example, if the strategy used does not rely on source
activation. However, the model has not been validated
yet, so future experiments have to be camied out to
support it.
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ABSTRACT

This paper discusses agent architectures which are
describable in terms of the “higher level” mental
concepts applicable to human beings, e.g. “believes”,
“desires”, “intends” and “feels”. We conjecture that
such concepts are grounded in a type of information
processing architecture, and not simply in observable
behaviour nor in Newell’s knowledge-level concepts, nor
Dennett’s “intentional stance.” A strategy for conceptual
exploration of architectures in design-space and niche-
space is outlined, including an analysis of design trade-
offs. The SIM_AGENT toolkit, developed to support such
exploration, including hybrid architectures, is described
briefly.

Keywords
Architecture, hybrid, mind, emotion, evolution, toolkit.

MENTALISTIC DESCRIPTIONS

The usual motivation for studying architectures is to
explain or replicate performance. Another, less common
reason, is to account for concepts. This paper
discusses “high level” architectures which can provide
a systematic non-behavioural conceptual framework for
mentality (including emotional states). This provides a
new kind of semantics for mentalistic descriptions. We
illustrate this using multi-layered architectures based in
part on evolutionary considerations. We show briefly how
different layers support different sorts of emotion concepts.
This complements work by McCarthy(1979, 1995) on
descriptive and notational requirements for intelligent
robots with self-consciousness.

We provide pointers to an uncommitted software toolkit
that supports exploration of hybrid architectures of
various sorts, and we illustrate some of the architectural
complexity it needs to support.

WHY USE MENTALISTIC LANGUAGE?

We shall need mentalistic descriptions for artificial agents
for the same reasons as we need them for biological agents,
e.g. (a) because such descriptions will (in some cases)
be found irresistible and (b) because no other vocabulary
will be as useful for describing, explaining, predicting
capabilities and behaviour. ((b) provides part of the
explanation for (a).) So, instead of the self-defeating
strategy of trying to avoid mentalistic language, we need a
disciplined approach to its use, basic mentalistic concepts
on information-level architectural concepts.

The “Information level” design stance
Dennett (1978) recommends the “intentional stance” in
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describing sophisticated robots, as well as human beings.
That restricts mentalistic language to descriptions of whole
agents, and presupposes that the agents are largely rational.
Similarly, Newell (1982) recommends the use of the
“knowledge level”, which also presupposes rationality. By
contrast, we claim that mentality is primarily concerned
with an “information level” architecture, close to the
requirements specified by software engineers.  This

" extends Dennett’s “design stance” by using a level of

description between physical levels (including physical
design levels) and “holistic” intentional descriptions.

“Information level” design descriptions allow us to refer
to various internal semantically rich short term and
long term information structures and processes. This
includes short term sensory buffers, longer term stored
associations, generalisations about the environment and
the agent, stored information about the local environment,
currently active motives, motive generators that can
produce motives under various conditions, mechanisms
and rules for detecting and resolving conflicts, learnt
automatic responses, mechanisms for constructing new
plans, previously constructed plans or plan schemata, high
level control states which can modulate the behaviour of
other mechanisms, and many more.

Some mentalistic concepts refer to the information
processing and control functions of the architecture. These
functions include having and using information about
things. E.g. an operating system has and uses information
about the processes it is running. Here semantic content
is present without full-blown intentionality or rationality.
Restricting semantic notions to global states of a rational
agent, or banning them altogether from explanatory
theories, would be as crippling in the study of intelligent
agents as it would be in the engineering design of complex
control systems. (However, not all semantic states can
be fully characterised in terms of internal functions, for
instance those that refer to particular external objects, such
as Buckingham Palace, a point beyond the scope of this
paper.)

Many of the mechanisms in such an architecture are
neither rational nor irrational: even though they acquire
information, evaluate it, use it, store it, etc. (Sloman
1994b). They are neither rational nor irrational because
they are automatic. Even a deliberative architecture
at some level needs reactive mechanisms to drive the
processing. If everything had to be based on prior goals
and justifications nothing would ever happen.

ARCHITECTURAL ANALYSIS
Different architectures can correspond to different views
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of a system, e.g. a physical architecture, composed of
the major physical parts, a physiological architecture,
corresponding to the major functional roles of physical
parts, and an information processing architecture
composed of mechanisms involved in acquiring,
transforming, storing, transmitting, and using information.

There need not be a one to one correspondence between
components in different views. A physical component may
be shared between several physiological functions: e.g. the
circulatory system is involved in distribution of energy,
waste disposal, temperature control, and information
transfer.

There is a huge space of possible designs, We make
no presumption that information processing mechanisms
must all be computational (whatever that means). Nor
is there a commitment regarding forms used to encode
or express information. They may include logical
databases, procedures encoding practical know-how,
image structures, neural nets or even direct physical
representations, as in thermostats and speed governors.

Biological plausibility requires evolvability as well as
consistency with experimental data and brain physiology.
The capabilities and neural structures of different sorts
of animals (e.g. insects, rodents, apes, humans) suggest
that different types of architectures evolved at different
times, with newer architectures building new sorts of
functionality on older ones. We suggest that human mental
states and processes depend on interactions between
old and new layers in a biologically plausible control
architecture producing various kinds of internal and
external behaviour, including “internal” processes such as
motive generation, attention switching, global redirection
in emergencies, problem solving, information storage, skill
acquisition, self-evaluation and even modification of the
architecture.

Besides the multi-layered central information processing
architecture there are sensors and effectors of various
kinds. These involve more than just transduction of energy
or information into or out of the system. We suggest
that both have evolved multiple layers interacting with the
different layers in the central system as in Figure 1. Such
an architecture can generate a huge variety of concepts
relevant to describing its states and processes. It also
supports a wide variety of types of learning, yet to be
analysed.

Indeterminacy of architecture

Often boundaries between sub-mechanisms and levels
of description are unclear, including the boundary
between the control architecture and mere physiological
infrastructure. In brains, chemical processes provide
energy and other resources, along with damage repair
and resistance to infections. However, effects of drugs,
diseases and genetic defects involving brain chemicals
suggest that chemistry forms more than a physiological
infrastructure: chemically controlled mood changes may
be an important part of an organism’s intelligent reaction
to changing circumstances, and alcohol can change “no”
into *“yes”! But we don’t know how far chemical reactions
play a direct role in information processing or high level
control,

In both perception and action the “hardware/software”

boundary is blurred. E.g. visual attention can be
switched with or without redirection of gaze, and fine-
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grained manipulation can be shared between software
and hardware, e.g. in compliant wrists, which reduce the
control problem in pushing a close fitting cylinder into
a hole. Simon (1969) pointed out long ago that there
can be information sharing between internal and external
structures.

It is too early for clear definitions of the boundaries of
architectures or their components. However, important
ideas are beginning to emerge including contrasts
between:

(a) reactive vs deliberative functions,

(b) symbolic vs neural mechanisms,

(¢) logical vs other sorts of information manipulation,

(d) continuous vs discrete control,

(e) using continuously available environmental
information vs using information stored in memory,

(P hierarchical vs distributed control,

(g) serial vs concurrent processing,

(h) synchronised vs asynchronous processing,

(i) genetically determined capabilities, those produced
by adaptive mechanisms within individuals, and those
absorbed from a culture (e.g. learnt poems and equations).

Instead of viewing these contrasts as specifying rival
options, we should allow combinations of these
alternatives to have roles in multifunctional architectures.
Work on hybrid mechanisms (e.g. combinations of
neural and symbolic systems) is now commonplace,
but in order to explore agents rivalling human or even
chimpanzee sophistication we need to understand far
more complex combinations of subsystems, including
complex sub-architectures within perceptual and motor
control mechanisms, and a deep integration of cognitive
and affective functions and mechanisms (Wright, Sloman
& Beaudoin 1996, Sloman 1998(forthcoming)). However,
there is no unique “correct” architecture: different
designs have different trade-offs, as biological evolution
shows. We need to understand the trade-offs and possible
trajectories. This includes finding good concepts for
describing systems with different designs.

ARCHITECTURES AND EMERGENT CONCEPTS

A deep conceptual framework takes account of the range of
possible states and processes supported in an architecture,
generating a system of high-level descriptive concepts for
describing an organism, software agent, or robot, just as
a knowledge of molecular architecture provides a basis
for labelling chemical compounds and describing chemical
processes.

A control architecture can support a collection of states and
processes, often indefinitely large. Concepts derived in this
way from the architecture are “deep concepts”, “Shallow”
concepts, based entirely on observed behavioural patterns
bearing no relationship to the architecture, are likely
to have reduced predictive and explanatory power, like
concepts of physical matter based on visible properties
rather than atomic and molecular structure.

Not all states require specific mechanisms in the
architecture. A computing system that is “overloaded”
does not have an “overloading” mechanism, since
overloading results from interaction of many different
mechanisms whose functions is not to produce overload.
Similarly many mental states, e.g. some debilitating
emotions, may emerge from interactions within an
architecture, rather than from an emotion module.
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If there are several coexisting, interacting sub-architectures
(e.g. reactive and deliberative sub-architectures) then
higher order concepts are needed to describe the variety of
possible relationships between them. For instance, states
in one subsystem can modulate processes in others. Such
relationships can change over time: sometimes one part
is dominant and sometimes the other. Moreover, when
training increases fluency in a cognitive skill this may shift
responsibility for a task from a general purpose module to
a dedicated module.

Familiar prescientific concepts, e.g. “emotion”, can be
ambiguous if they sometimes refer to processes in a
component of the architecture (e.g. being startled, or
terrified by a fast approaching menace, may result from
a specific module, perhaps part of the limbic system) and
sometimes to emergent interactions between subsystems
(e.g. guilt and self-reproach).

Unlike emotions which we share with rats, e.g. being
startled, which use this old global alarm system, many
human emotions involve a partial loss of control of thought
processes, (e.g. extreme grief, ecstasy or hysteria). This
presupposes the possibility of being in control. That,
in turn, depends on the existence of an architecture that
supports certain kinds of self monitoring, self evaluation,
and self modulation. Being careful or careless requires an
architecture able to control which checks are made during
planning, deciding and acting.

‘Which animal architectures can support control of thought
processes is not ¢lear. Systems lacking such underpinnings
may not be usefully describable as “restrained”, “resisting
temptation”, etc. Can a rat sometimes control and
sometimes lose control of its thought processes? Can
a rat be careless in its deliberations? Over-simple
architectures in software agents will also make such
concepts inappropriate to them.

EVOLUTION AND MODULARITY

Our discussion has presupposed that architectures are
to some extent intelligible.  Will naturally evolved
systems be modular and intelligible? In principle,
any required finite behaviour could be produced by
a genetically determined, unstructured, non-modular
architecture, including myriad shallow condition-action
rules with very specific conditions and actions providing
flexibility. However, as the diversity of contexts grows
and the need to cope with unexpected situations, including
interactions with other other agents, increases, memory
requirements for such a system can grow explosively, and
it becomes more difficult find a design which anticipates
all the conditions and actions in advance. Thus the time
required to evolve all the shallow capabilities is far greater
and the required diversity of evolutionary contexts far
greater than for a system with planning abilities.

A shallow non-modular system would not only be hard to
design, describe and explain: it would be hard to control
or modify, whether controlled from outside or controlling
itself, whether modified by a designer, or modified by
evolution. (Confrast the use of bit-strings in genetic
algorithms with the use of trees in genetic programming.)

All this suggests that for complex organisms there would
be pressure towards more modular architectures with
generic mechanisms that can be combined by a planner
to handle new situations, and adaptive architectures that
can change themselves to improve performance. Both
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the normal evolutionary pressures for modularity and
reuse, and the need for economy in high level self-
control mechanisms could have increased the pressure
towards evolution of modular control architectures, in
some organisms. So the existence of self-monitoring,
self-evaluation and self-control processes could influence
the further evolution of control architectures. Apparently
insects found a different solution.

It may eventually be possible to investigate this issue in
simulated evolution.

THE EMERGENCE OF “QUALIA”

If a system has the ability to monitor its own states
and processes, a new variety of descriptions becomes
applicable, labelling new forms of self control, including
its own discovery of concepts for self-description. The
objects of such self-monitoring processes may be virtual
machine states as well as internal physical or physiological
states.

Many of the spatial, temporal and causal categories used
in perceiving the environment have evolved to support
biological functions of organisms in those environments,
even though precise details can vary widely between
species and between individuals in a species. Likewise,
it is possible that the basic and most general mentalistic
categories that humans use in describing and thinking
about themselves and other agents are not reinvented
by different individuals (or cultures) but generated by
evolutionary processes driving development of self-
monitoring capabilities.

Phenomena described by philosophers as “qualia” may
be explained in terms of high level control mechanisms
with the ability to switch attention from things in the
environment to internal states and processes, including
intermediate sensory datastructures in layered perceptual
systems. These introspective mechanisms may explain a
child’s ability to describe the location and quality of its
pain to its mother, or an artist’s ability to depict how things
look (as opposed to how they are). Software agents able
to inform us (or other artificial agents) about their own
internal states and processes may need similar architectural
underpinnings for qualia.

From this standpoint, the evolution of qualia would not
be a single event, but would involve a number of steps
as more kinds of internal states and processes became
accessible to more and more kinds of self-monitoring
processes with different functions, e.g. requesting help
from others or discovering useful generalisations about
oneself. Such step-wise development may also occur
within an individual.

HOW TO MAKE PROGRESS

There are several ways in which we might try to explore
the relationship between architecture and mentality. One
approach is to push the approach based on “shallow”
behaviour-based concepts as far as possible, and analyse
where it breaks down, or where patching it is very
difficult (e.g. dealing with new unexpected combinations
of conditions where applicable rules conflict, or where no
rule applies). )
Another approach is to attempt a theoretical analysis
of the types of situations that will make development
increasingly difficult and to produce increasingly general
architectures to cope with the difficulties, using any ideas
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that work, and then conducting experiments to find out
where they break down. This approach need not be
constrained by theories of how human minds work: there
may be alternative architectures capable of producing
extremely useful or even “believable” performances.
Initially the constraints on this type of theorising will be
very ill-defined because of paucity of relevant knowledge
and the shallowness of current theories. However, it
is likely that as the work progresses more and more
constraints can come from advances in other fields, and
more and more tests can be generated to help us choose
between alternative hypotheses. (Compare the ancient
Greek atomic theory with modern atomic theory.)

Yet another approach is to use whatever direct or
indirect evidence is available from brain science,
experimental psychology, forms of mental disorder,
patterns of development in infancy and decay in old age,
evolution, folklore, introspection, common observation,
or conceptual analysis of everyday mental concepts.
Plausible architectures based on such evidence can then
be tested by running experimental implementations, or
by analysing their consequences and performing empirical
research.

Our work is based on the second and third approaches. The
architectural ideas in this paper come from a wide range of
sources.

ARCHITECTURAL LAYERS

Part of the task is to find increasingly accurate and
explicit theories of the types of architecture to be found
in various sorts of human minds (and others) to be used as
frameworks for generating families of descriptive concepts
applicable to different sorts of humans (including infants
and people with various kinds of brain damage) and
different sorts of animals and artificial agents.

We conjecture that human-like agents with powers of self-
control need a type of architecture with at least three
distinct classes of mechanisms which evolved at different
times (Sloman 1998 (forthcoming)):

(1) Very old reactive mechanisms, found in various forms
in all animals, including insects — this includes “routine”
reactive mechanisms and “global alarm” mechanisms (the
limbic system).

(2) More recently evolved deliberative mechanisms,
found in varying degrees of sophistication in some other
animals (e.g. cats, monkeys);

(3) An even more recent meta-management (reflective)
layer providing self-monitoring self-evaluation, and self-

control, using in part deliberative mechanisms of type (2), -

and perhaps found only in humans and other primates (in
simpler forms).

Such an architecture is shown schematically (without
alarms) in Figure 1 and each of the layers is described in
more detail below. Note that the layers occur in perceptual
and motor subsystems as well as centrally.

This is one among many possible designs. Some animals
or artefacts may have only one or two layers, and different
kinds of reactive, deliberative and meta-management
mechanisms are possible.

We are not claiming that these mechanisms are alike in all
humans. Deliberative capabilities seem very primitive in
new born infants, and the third layer may be non-existent
at birth, Moreover a culture can influence development
of these layers, as can effects of brain damage, disease
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Figure 1: A three layered agent Architecture
(Note: global ‘alarm’ mechanisms not shown.)

or aging. Some architectures may be possible for
synthetic agents that are never found in organisms (e.g.
solely deliberative architectures, or hybrid systems without
global alarms).

Categories and strategies in all layers may be influenced
by physical and social environments. A meta-management
layer may use both categories and values absorbed
from a culture as well as some genetically determined
categories and strategies. For instance, certain motives for
acting promote negative self-assessment and guilt in some
cultures and not in others.

Within an individual, it is also possible for different modes
of meta-management to take control in different contexts,
e.g. in a family context, in a football game, and in the
office. Individual variations might lead, at one extreme
to multiple-personality disorder, and at another extreme to
excessively rigid personalities.

Concurrent mechanisms

The layers are not assumed to form a rigidly hierarchical
control architecture. Rather the three layers operate
concurrently, with mutual influences. The reactive
mechanisms will perform routine tasks using genetically
determined or previously learnt strategies. When they
cannot cope, deliberative mechanisms may be invoked, by
the explicit generation of goals to be achieved. This can
trigger various kinds of deliberative processes including
considering whether to adopt the goal, evaluating its
importance or urgency, working out how to achieve it,
comparing it with other goals, deciding when to achieve
it, deciding whether this requires reconsideration of other
goals and plans, etc. (See chapter 6 of Sloman (1978).)

At other times the deliberative mechanisms may €ither
attend to long term unfinished business or run in a “free-
wheeling” mode, nudged by reactive processes which
normally have low priority, including attention-diverting
mechanisms in the perceptual subsystems. To allow
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direct communication with “higher” cognitive functions,
perceptual systems may also have layered architectures
in which different levels of processing occur in parallel,
with a mixture of top-down and bottom-up processing.
(Compare seeing a face as a face and as happy.)

If the internal layers operate concurrently, fed in part by
sensory mechanisms which are also layered, they may
also benefit from a layered architecture in motor systems.
For example, reactive mechanisms may directly control
some external behaviour, such as running, while the other
mechanisms are capable of modulating that behaviour (e.g.
changing the speed or style of running, or in extreme cases
turning running into dancing). Likewise proprioceptive
feedback of different sorts may go to different layers.
Where there is a global alarm system, there may be
variations as regards which components provide its inputs
and which can be modified by it. In humans connections
to and from the limbic system seem to exist everywhere
(Goleman 1996).

We now describe in a little more detail the differences
between the layers (Figure 1) before discussing their
implications for emotions. (The figure is much simplified,
to reduce clutter).

Reactive agents
It is possible for an agent to have a purely reactive
architecture, where:

e Mechanisms and space are permanently dedicated to
specific functions, and can run concurrently, more or less
independently, with consequent speed benefits. Some may
be digital, some continuous.

¢ Conflicts may be handled by vector addition, voting, or
winner-takes-all nets.

¢ Some learning is possible: e.g. tunable control loops,
change of weights by reinforcement learning. Such
learning merely alters links between pre-existing structures
and behaviours.

e There is no explicit construction of new plans
or structural descriptions or other complex internal
objects, and therefore no explicit evaluation of alternative
structures.

o Concurrent processing at different abstraction levels can
encourage the evolution of different levels of processing in
sensory and motor subsystems.

e Some of the reactions to external or internal conditions
may be internal, e.g. various kinds of internal feedback
control loops.

e If “routine” reactions are too slow a fast “global alarm”
system taking control in emergencies may be useful.

As explained above, if all the main possible behaviours
need to be built in by evolutionary adaptation or direct
programming the space requirements may explode as
combinations increase. Likewise the time required to
evolve all relevant combinations. A partial solution is to
provide “chaining” mechanisms so that simpler behaviours
can be re-used in different longer sequences. Simple sub-
goaling may achieve this, changing internal conditions that
launch behaviours. This may be a precursor to deliberative
mechanisms.

It appears that insects have purely reactive architectures,
and cannot reflect on possible future actions. Yet the
reactive behaviours can produce and maintain amazing
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construction, e.g. termites’ “cathedrals”.

There is no form of externally observable behaviour that
cannot, in principle, be implemented in a purely reactive
system, without any deliberative capabilities, though it
seems that in some organisms the evolutionary pressures
mentioned above have led towards a different solution —
which may coexist with the old one.

Combining reactive and deliberative layers

The ability to construct new complex behaviours as
required reduces the amount of genetic information that
needs to be transmitted as well as the storage requirements
for each individual. It also reduces the number of
generations of evolution required to reach a certain range
of competence. In a deliberative mechanism:

e Evaluating and comparing options for novel
combinations before selecting them requires a new
ability to build internal descriptions of internal structures.
It also needs a long term associative memory.

¢ Using re-usable storage space for new plans and other
temporary structures, and use of a single associative
memory (even if based on neural nets), makes processes

. inherently serial.
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e New behaviours developed by the deliberative system
can be transferred to the reactive layer (e.g. learning new
fluent skills).

¢ Sensory and action mechanisms may develop new, more
abstract, processing layers, which communicate directly
with deliberative mechanisms. This could explain high
level sensory experiences (e.g. seeing a face as happy).

o Even if neural nets are used, operation may be resource-
limited because learning from consequences becomes
explosive if too many things are done in parallel. Limiting
concurrent processes may also simplify integrated control,

e Deliberative resource limits may mean that a fast-
changing environment can cause too many interrupts and
re-directions. Filtering new interrupts via dynamically
varying thresholds (see Figure 1) helps but does not solve
all problems.

o A global alarm system may include inputs from and
outputs to deliberative layers.

The need for self-monitoring (meta-management)
Deliberative mechanisms may be implemented in
specialised reactive mechanisms which react to internal
structures, and can interpret explicit rules and plans.

However, evolutionarily determined deliberative strategies
for planning, problem solving, decision making,
evaluating options, can be too rigid. Internal monitoring
mechanisms may help to overcome this e.g. by recording
deliberative processes and noticing which planning
strategies or attention switching strategies work well in
which conditions. This could include detecting when one
goal is about to interfere with other goals, or noticing that
a problem solving process is “stuck”, e.g. in a loop, or
noticing that a solution to one problem helps with another.

Internal monitoring combined with learning mechanisms
may allow discovery of new ways of categorising internal
states and processes and better ways of organising
deliberation. Meta-management and deliberative
mechanisms permit cultural influences via the absorption
of new concepts and rules for self-categorisation,
evaluation and control.
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Attending to intermediate perceptual structures can also
allow more effective communication about external
objects, e.g. by using viewpoint-centred appearances to
help direct attention, or using drawings and paintings to
communicate about how things look.

The meta-management layer may share mechanisms with
the other two, including the global alarm mechanism
(limbic system?) but also needs new mechanisms that can
access states and processes in various parts of the whole
system, categorise what is going on internally, evaluate it,
and in some cases modify it. This can help with proper
management of limited deliberative resources.

ARCHITECTURAL LAYERS & EMOTION CONCEPTS
We conjecture that different layers account for different
sorts of mental states and processes, including emotional
states.  Disagreements about the nature of emotions
can arise from failure to see how different concepts of
emotionality depend on different architectural features,
not all shared by all the animals studied.

(1) The old reactive layer, with the global alarm system,
produces rapid automatically stimulated emotional states
found in many animals (being startled, terrified, sexually
excited).

(2) A deliberative layer, in which plans can be created
and executed, supports cognitively rich emotional states
linked to current desires plans and beliefs (like being
anxious, apprehensive, relieved, pleasantly surprised).

(3) Characteristically human emotional states (e.g.
humiliation, guilt, infatuation, excited anticipation) can
involve reduced ability to focus attention on important
tasks because of reactive processes (including alarm
processes) interrupting and diverting deliberative
mechanisms, sometimes conflicting with meta-
management decisions (Wright et al. 1996).

The second class of states depends on abilities possessed
by fewer animals than those that have reactive capabilities.
The architectural underpinnings for the third class are
relatively rare: perhaps only a few primates have them,

Many theories of emotion postulate a system that operates
in parallel with normal function and can react to abnormal
occurrences by generating some kind of interrupt, like
the global alarm mechanism. Consider an insect-like
organism with a purely reactive architecture, which
processes sensory input and engages in a variety of routine
tasks (hunting, feeding, nest building, mating, etc.). It
may be useful to detect certain patterns which imply
an urgent need to react to danger or opportunity by
freezing, or fleeing, or attacking, or protecting young, or
increasing general alertness. Aspects of the limbic system
in vertebrate brains seem to have this sort of function
(Goleman 1996).

In architectures combining reactive and deliberative layers,
the alarm mechanism can be extended to cause sudden
changes also in internal behaviour, such as aborting
planning or plan execution, switching attention to a new
task, generating high priority goals (e.g. to escape, or to
check source of a noise). Likewise processing patterns
in the deliberative layer may be detected and fed into the
alarm system, so that noticing a risk in a planned action
can trigger an alarm.

Where a meta-management layer exists, data from it could

also feed into the alarm system, and it too could be affected
by global alarm signals. One meta-management function
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could involve learning which alarm signals to ignore or
suppress. Another would extend the alarm system to react
to new patterns, both internal and external. Another would
be development of more effective and more focused (less
global) high speed reactions, e.g. replacing a general startle
reaction with the reactions of a highly trained tennis player.

This, admittedly still sketchy, architecture, explains how
much argumentation about emotions is at cross-purposes,
because people unwittingly refer to different sorts of
mechanisms which are not mutually exclusive. An
architecture-based set of concepts can be made far less
ambiguous.

Familiar categories for describing mental states and
processes (e.g. believes, desires, perceives, attends,
decides, feels, etc.) may not survive unchanged as
our knowledge of the underlying architecture deepens,
just as our categories of kinds of physical stuff were
refined after the development of a new theory of the
architecture of matter. Researchers need to be sensitive to
the relationships between pre-theoretical and architecture-
based concepts as illustrated in (Wright et al. 1996).

THE SIM_AGENT TOOLKIT

~ We still have much to learn about different agent
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architectures. The properties of complex systems cannot
all be determined by logical and mathematical analysis:
there is a need for a great deal more exploration of various
types of architectures, both in physical robots and in
simulated systems.

Many robot laboratories are doing the former. We work on
simulated systems so that we can focus on the issues that
are of most interest to us, involving the kind of architecture
sketched above including alarm systems, leaving details of
sensory devices and motors till later. When simulations
are well designed they can sometimes provide cheaper
and faster forms of experimentation, though care is always
necessary in extrapolating from simulations.

Many toolkits exist to support such exploration, usually
based on a particular architecture or class of architectures
(e.g. neural net architectures, or SOAR, or PRS).
We wished to investigate diverse and increasingly
complex architectures, including coexisting reactive and
deliberative sub-architectures, along with self-monitoring
and self-modifying capabilities, and including layered
perceptual and action subsystems. We also wished
to explore varying resource-limits imposed on different
components of the architecture, so that, for example, we
could compare the effects of speeding up or slowing
down planning mechanisms relative to the remaining
components of an architecture (e.g. in order to investigate
various deliberation management strategies, such as
“anytime” planning).

To support this exploration we designed and implemented
(in the language Pop-11 (Sloman 1996)) the SIM_AGENT
toolkit. It is being used at Birmingham for teaching and
research, including research on evolutionary experiments,
and also at DERA Malvern for designing simulated agents
that could be used in training software. An early version
of the toolkit developed jointly with Riccardo Poli, was
described at ATAL9S (Sloman & Poli 1996). Since-then
development has continued in response to comments and
suggestions from users (Baxter, Hepplewhite, Logan &
Sloman. 1998).

The toolkit supports a collection of interacting agents
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and inanimate objects, where each agent has an internal
architecture involving different sorts of coexisting
interacting components, including deliberative and
reactive components. Not all agents need have the same
architecture.

The key idea is that each component within an agent
is connected to other components in that agent via
a forward-chaining condition-action rulesystem. Each
agent’s rulesystem is divided into a collection of different
rulesets, where each ruleset is concerned with a specific
function, e.g. analysing a type of sensory data, interpreting
linguistic messages, creating, checking or executing plans,
generating motives, etc. Rulesets can be concurrently
active, and may be dynamically switched on and off. They
may be assigned different resource limits.

Conditions and actions of rules within an agent can refer to
databases in that agent. Thus one form of communication
between sub-mechanisms is through the databases in the
agent. It is possible for an agent to have some global
databases accessed by all components of an agent and
others which are used only by specific sub-groups. One
agent cannot normally inspect another’s databases.

An architecture for an agent class is defined by specifying
a collection of rulesets and other mechanisms, along
with the types of databases, sensor methods, action
methods, communication methods and possibly tracing
and debugging methods. It is hoped that users will
develop re-usable libraries defining different mechanisms
and architectures.

The rulesets are implemented in Poprulebase, a flexible
and extendable forward-chaining rule-interpreter. Rulesets
can be turned on and off dynamically, modelling one
aspect of attention shift, and new ones added, modelling
some forms of cognitive development. Although the main
conditions and actions use patterns matching database
components, some conditions and some actions can invoke
sub-mechanisms directly implemented in Pop-11, e.g. low
level vision or motor-control mechanisms. Other Poplog
languages (e.g. Prolog) or external languages (e.g. C,
Fortran) can also be invoked in conditions and actions. For
example, a rule condition could in principle interrogate
physical sensors and a rule action could send signals to
motors. Sockets can run sub-systems on other machines,
and unix pipes can communicate with processes on the
same machine.

To illustrate the power, a Pop-11 rule action can run the
rule interpreter recursively on a specialised rule system.

The rule-based formalism is easily extendable, allowing
different sorts of condition-action rules to be defined. For
example, one of the extensions designed by Riccardo Poli
allows a set of conditions matched against a database to
provide a set of input values for a neural net, whose output
is a boolean vector which can be used to select a subset of
actions to be run. A recent extension was a new class of
ADD and DELETE actions for automatically maintaining
sets of dependency information between database items,
so that if an item is deleted then everything recorded
as directly or indirectly depending on it, is also deleted.
A Pop-11 condition can be used to perform backward
chaining if desired.

The interpreter can be run with various control strategies,
including the following options for each active ruleset on
each cycle: (a) all runnable rules (those with all conditions
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satisfied) are run, (b) only the first runnable rule found is
run, (c) the set of runnable rule instances is sorted and
pruned (using a user-defined procedure) before the actions
are run.

When the rule interpreter is applied to a ruleset, it can be
allowed to run to completion (e.g. until no more rules have
all conditions satisfied, or a “STOP” action is executed.)
Alternatively it can be run with a cycle limit N, specifying
that it should be suspended after N cycles even if there are
still rules with satisfied conditions. Another possibility is
to set a timer and halt it after a fixed time interval. Either
of these mechanisms can be used to impose resource limits
on one ruleset relative to others, within an agent.

The design of the toolkit supports multi-agent scenarios,
using a time-sliced scheduler which in each time slice
allows each agent to run its sensory methods, its internal
rulesets, and, in a second pass at the end of the time slice,
its external action methods.

The object oriented design uses Pop-11’s Objectclass
system, which supports multiple inheritance and generic
functions.  This makes it easy for users to extend
the ontology by defining new sub-classes, with their

- own sensing, acting and internal processing methods,
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without any editing of the core toolkit code. A default
class provides a default set of methods, including the
sim_run.agent method used to run each the agent’s
rulesets, along with various tracing methods.

The object oriented approach allows a Pop-11 graphical
library to be connected to the toolkit by re-defining
tracing and other methods (e.g. move methods) to invoke
graphical procedures. The graphical facilities support not
only displays of agent actions but also asynchronous user
intervention: e.g. using the mouse to move objects in
an agent’s environment, or turning tracing and profiling
mechanisms on or off while the toolkit is running.

Scenarios implemented so far using the toolkit include a
simulated robot using a hybrid modular architecture to
propel a boat to follow the walls of an irregular room,
evolution of a primitive language for cooperation between
a blind and an immobile agent, a user controlled sheepdog
and sheep to be penned, two purely reactive “teams” of
agents able to move past each other and static obstacles
to get to their target locations, a simulated nursemaid
looking after troublesome infants while performing a
construction task, a distributed minder (Davis 1996), one
agent tracking another subject to path constraints in 3-D
undulating terrain, and, at DERA Malvern, simulated tank
commanders and tank drivers engaging in battle scenarios
(Baxter 1996). We expect to continue developing the
toolkit and building increasingly sophisticated simulations,
moving towards the architecture depicted in Figure 1 and
subsequently extended in various ways.

In particular we have plans for improving the self
modifying and self monitoring capabilities by replacing
the rulesystem, currently a list of rulesets and rulefamilies,
with database entries. Thus rule actions can then change
the processing architecture.

The toolkit is applicable to a wide range of agent
development tasks, including simplified software agents
which require only-a small subset of beliefs, goals,
plans, decisions, reactions to unexpected situations, etc.
These might be web search agents, or “believable”
entertainment agents whose observed behaviour invites
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mentalistic description whether or not the descriptions are
justified by internal mechanisms, states and processes, e.g.
the OZ project at CMU (Bates, Loyall & Reilly 1991).
The toolkit could also be used to implement teaching and
demonstration libraries, e.g. for students in psychology
or the helping professions, where students can manipulate
the architectures of simplified human-like agents, to gain a
deeper understanding of the multiple ways in which things
can go wrong.

CONCLUSION

Like software engineers, and unlike Dennett and Newell,
we assume semantically competent sub-systems, but not
rationality. Using this information-level design stance,
we have sketched a framework accommodating multi-
disciplinary investigation of many types of architecture
of varying degrees of sophistication, with varying
mixtures of information-processing capability, based
on Al, Alife, Biology, Neuroscience, Psychology,
Psychiatry, Anthropology, Linguistics and Philosophy.
This framework can extend our understanding of both
natural and artificial agents. Above all it generates systems
of concepts for characterising various types of mentality.
Information-based control architectures provide a new
framework for analysing, justifying and extending familiar
mentalistic concepts.

There is no uniquely “right” architecture.  Types
of architectures that are relevant, and dimensions of
possible variation, are not yet well understood. More
exploration and ‘analysis is required, replacing premature
(sometimes confrontational) commitment to particular
mechanisms and strategies. We need to understand the
structure of design space and niche space, and trajectories
that are possible within those spaces (Sloman 1994q,
Sloman 1994b, Sloman 1998(forthcoming)). This requires
collaborative philosophical analysis, psychological and
neurophysiological research, experiments with diverse
working models of agents, and evolutionary investigations.
Some of this exploration can be based in part on powerful
new software tools.

Such work is likely to throw up types of architectures that
we would not otherwise think of, which will force us to
invent new concepts for describing synthetic minds which
are not like our own, and help us understand our own by
contrast.
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ABSTRACT

In this article we describe a theory aiming at the inte-
gration of cognitive processes, emotion and motivati-
on. The theory describes the informational structure of
an intelligent, motivated, emotional agent which is able
to survive in arbitrary domains of reality. This agent is
,energized“ by six motives (needs for energy, water,
pain-avoidance, affiliation, certainty and competence).
The cognitive processes of this agent are modulated by
emotional states and processes. By comparing the be-
haviour of Psi with human behaviour in a complex
computer scenario, the model was tested against reali-
ty. Subjects were asked to regulate a dynamic system
structural identical to the environment of the autono-
mous agent. First results show striking similarities
between artificial and human behaviour as well as
differences.

Keywords
Attificial Life, Cognition, Emotion, Motivation, Action
Regulation.

INTRODUCTION

In cognitive science there is a focus on cognition when
considering action regulation. Emotional and motiva-
tional processes, however, play a considerable role in
human behaviour triggering cognitive processes. In a
state of anger thinking and reasoning differs from
processes under ,normal® conditions. Different emo-
tional states even influence perception in a specific
manner. — In a long lasting process of action regulati-
on, when humans have to tackle difficult problems,
neither emotions nor motives remain constant. Forese-
eing that an important problem cannot be solved an
individual will feel helpless and this feeling of
helplessness will trigger other feelings and can change
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the current motive. The motive to find a solution for an
intellectual task will be replaced by a motive to de-
monstrate ,competence® as the inability to solve the
problem threatens the self-confidence of the individual.

THE PSI THEORY OF ACTION-REGULATION

A single theory of cognitive processes does not suc-
ceed in explaining human behaviour. Furthermore it is
necessary to include assumptions about the dynamics
of emotions and motivations. During the last years we
developed a theory — the Psi theory — concerning the
interaction of cognitive, emotional and motivational
processes. A computer program was constructed to
simulate the theoretical assumptions (see Domer &
Hille, 1995; Hille, 1997; Schaub, 1997). The Psi theory
is completely formulated in terms of the theory of
neuronal networks, but going into details about the
inner structure would exeed the aim of this paper

Fig. 1: Psi as an ,autonomous steam engine®.

The Psi theory includes more than assumptions about
single cognitive processes. It aims at a description of
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the interaction of different cognitive and non-cognitive
processes. It is a theory in the tradition of ,artificial
life - research (Steels, 1993). It exists a computer
program simulating the theory. The actual version of
this computer program is available in internet on page
http://141.13.7049. Fig. 1 shows a possible
,Jmnaterialization® of Psi as an autonomous steem engi-
ne which should care for its existential needs (water
and energy). The architecture of the model will be
explained below.

Motivation

Fig. 2 shows a rough sketch of Psi’s internal structure.
At the bottom of fig. 2 the motivational system of Psi is
symbolized by a number of ,watertanks“. These tanks
are mechanical models of ,motivators®. , Motivator®
means a system which is sensible for the level of a
variable. This should be kept within certain borders
(within a setpoint region) by the system. Such variables
could be water or energy resources of a system, tempe-
rature of a body or any other variable important for life
or welfare of a system. When a variable deviates from
its set point, a motivator becomes active. In this case
there is a need and the motivator will try to launch
activities to restore the set point value of the respective
variable.

Which motivators are necessary? First of all Psi has to
care for its existence. This means that Psi needs (for
instance) water and energy. And Psi should preserve its
structure; it should avoid pain. Additionally to these
sexistential“ needs Psi has ,jinformational® needs,
namely a need for certainty, a need for competence and
a need for affiliation.

The need for certainty is satisfied by ,certainty si-
gnals“. An important certainty signal is for example a
correct prediction. Acting in a certain domain of reality
Psi will learn regularities of its environment. Therefore
it will be able to predict the outcomes of its actions and
progress of events. If these predictions are correct they
will be certainty signals and will fill the ,certainty
tank“. If the predictions are wrong or if the chain of
events does not develop in the predicted way, however
this means uncertainty and will decrease the level of
the ,,certainty tank®.

The need for competence is a need for ,,competence
signals“. Each satisfaction of a need, for instance the
satisfaction of the need for water, is a signal of com-
petence for Psi. Satisfaction of a need signifies that Psi
is able to care for itself. On the other hand a longer
lasting period of non-satisfaction signifies inability and
therefore is an incompetence signal which empties the
competence tank.
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Fig. 2: The internal structure of Psi. SeeText.

An empty competence- and an empty certainty-tank
launch specific activities. The need for certainty for
instance can activate exploration or — depending on the
competence (level in the competence tank) — flight. A
low level of competence (it shouldn’t be too low) will
activate ,adventure-seeking®, looking for problems the
solution of which proves ones own competence.

Group integration is symbolized by the level of the
Jaffiliation tank®. This tank will be filled up by
,signals of legitimacy“ (Boulding, 1978) as for instan-
ce a smile or a clap on the shoulder. Reports of disap-
proval serve as signals for nonaffiliation and will
empty the ,affiliation tank“. — The needs for certainty
and for competence are very important for the emotio-
nal regulations of Psis behaviour.

Psi’s architecture of motivation allows several needs to
be active at the same moment. It is therefore vitally
important to equip Psi with a selection device, the
Motive Selector of fig. 1. This selection device has to
select one of the active motives for execution. The
motive selected will become the actual intention. An
intention is a data structure consisting of informations
about the goal, about the present state and normally of
more or less complete plans for achieving the goal.

The selection device works according to an expectancy
— value principle; i.e. it selects the motive with the
largest expectancy of success and the largest under-
lying need. (We call the product of expectancy of ef-
fect and amount of the underlying need the strength of
a motive. So the selection device looks for the motive
with the greatest strength.)
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Action regulation, memory and cognitive processes

After an intention has been formed, Psi will ,run the
intention® to achieve the respective goal. ,Running the
intention® can mean different processes. When Psi has
a lot of experience with the respective domain of rea-
lity its memory will often provide a complete course of
action as a chain of operations or locomotions leading
from the actual situation to the goal. If this however
fails an inbuilt planning procedure will try to construct
a course of actions by putting together single pieces of
knowledge about operators and event chains. (At the
moment this planning procedure is a forward-planning,
hillclimbing procedure.)

If planning is impossible due to a lack of information
or if planning proves to be not successfull, Psi will use
trial-and-error procedures to collect information about
its respective environment. Generally Psi organizes its
activities according to the Rasmussen - system
(Rasmussen, 1983). If possible first of all it tries its
highly automatized skills, then it changes to
knowledge-based“ behaviour and the ,ultima ratio“
are the trial-and-error procedures.

Psi learns by experience, leamns the effects of operators
in a specific domain of reality, learns goals and learns
chains of events and therefore is able to predict what
will happen in the future. But additionally we installed
forgetting in the memory of Psi. Forgetting simply is a
decay process which continuously diminuishes the
strengths of the memory traces. Traces which are rather
strong lose less of their strength in time than weak
traces which will be destroyed rather quickly. Forget-
ting has a important function for Psi’s cognitive
processes. ,,Punching holes“ into sensory and motor
schemata of Psi’s memory makes them ,abstract,
Hhollow®, so that the schemata do not represent con-
crete images any more, but equivalence classes.

The memory system of Psi is extremely simple and
(therefore) powerful. All perceptions and activities are
continously recorded. This record is a kind of log of
the changing environment, Psis activities and the cur-
rent intentions. The memory chains representing the
immediate past are very dense. Due to forgetting
however, memory will consist of single episodes and
activities. Memory traces combined with need satis-
faction or generation (for instance pain) will be rather
strong. Others are weaker and therefore more exposed
to decay. Psi has a short term memory which is simply
the head“ of the record. This short term memory
without any rupture continues into an episodic memo-
ry. Remnants of this eventually form the long term
memory. If parts of the longterm memory are reused
(in planning for instance), the strength of the respective
memory trace is enhanced.
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Emotions

The information processing of Psi is ,modulated®. This
means that all cognitive processes of Psi are ,shaped”
according to certain conditions. Such conditions are for
instance the strength of the actual intention, the overall
amount of all the different needs, the amount of com-
petence and others. These conditions set specific
,modulators“. One of these modulators is ,activation
which depends on the strengths of the needs (roughly
spoken the amount of activation mirrors, the sum of the
strengths of the needs). Activation triggers some other
modulators, for instance ,resolution level“ and
,selection threshold“. Resolution level (RL) is the
degree of exactness of comparisons between sensory
schemata. As most of the cognitive processes of Psi
comprise comparisons between schemata this modula-
tor is very important. Comparisons take a long time at
a high level level of resolution, but they will be relia-
ble. Under high pressure (when activation is high) the
resolution level is low, comparisons don’t need a long
time, but the risk of ,,overinclusiveness® is high. A low
level of exactness will automatically produce the ten-
dency to consider unequal objects and situations as
equal. (This is due to certain mathematical reasons
which will not be considered here.) Quick planning
processes and a high readiness for action will be the
result of a low resolution level, but the plans will be
rather risky.

General un-
specific Sympathicus
Syndrome

Activation /
e

from other
Motivators

Molivator

Exactness of comparlisons

: Motivalor
Ypﬂeme»le‘ml 62

Threshold for change of
Intentlon

Fig. 3: Emotional modulations. See text.

Selection Threshold (ST) could also be called ,level of
concentration®“. ST is the strength of the defence of the
actual intention against competitors, against other in-
tentions having the tendency to take over the com-
mand. The strength of the different motives is not at all
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Because of consumption the needs for energy and for
water continuously increase. But a motive can gain
strength by external factors too. If for instance Psi
notices in a certain situation that it is easily possible to
get water, a tendency to shift to the water-intention will
result as now the expectancy value for the water —
motive increased. Or if an unexpected event will occur
the ,need for certainty“ might increase and Psi will
exhibit the tendency to explore the (uncertain) envi-
ronment or will have the tendency to run away and to
hide. Or if for instance planning proves to be unsuc-
cessfull, Psi’s ,self-confidence® (level of competence)
is endangered and Psi will exhibit the tendency to try
its strength®, to prove its competence to itself, for in-
stance by looking for a task which is difficult enough
that mastery proves competence, but not so difficult
that the risk of failure is high.

If ST is high ,behavioural oscillations®, i.e. a rapid
change between different intentions will be hindered to
a certain degree (Atkinson & Birch, 1970). A high ST
prevents Psi on the other hand from using unex-
pectedly arising opportunities or from reacting to
unexpected dangers. Is ST high, the field of Psi’s per-
ception will narrow down.

Fig. 3 gives a  general impression of the emotional
regulations of Psi. We describe these regulations in
terms of neuronal networks (as it is realized in Psi).
White circles represent activating neurons, whereas
gray circles represent inhibiting neurons. The compe-
tence and the certainty - level are now represented as
the activation state of neurons. Certainty signals en-
hance the activity of the ,certainty-neuron, whereas
uncertainty - signals diminuish this activity. — Satis-
faction of a need serves as competence signal and en-
hances the activity of the ,competence-neuron®, whe-
reas non-satisfaction decreases this activity. When the
uncertainty level is low (high uncertainty) a tendency
for flight or aggressive activities will be observable,
depending on the competence level. With a high level
of competence Psi will exhibit a tendency for aggressi-
on in uncertain situations, whereas with a low level of
competence it will exhibit flight tendencies.

Activation triggers the ,,general unspecific sympathicus
syndrome®; i.e. high vigilance and a high degree of
readiness to react. Additionally it triggers RL and ST,
which modulate cognitive processes, perception, plan-
ning activities, memory search. It is obvious that Psis
emotions are the result of a rather complex interaction
of motivational and cognitive processes together with
the modulation of RL and ST.

These modulators (RL and ST) together with the need
for certainty and the need for competence produce a lot
of ,emotional“ forms of behaviour. Psi exhibits fear
(expectation of an uneasy event), anxiety (,need for

Thrumpton {UK): thtingham Un
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certainty ‘3, anger (when unexpectedly Psi is hindered

to reach a goal), surprise (unexpected event). This
theory of modulations together with the specific moti-
vational structure of Psi constitute a ,subaffective
theory of emotion. A theory, which defines emotions in
non-emotional terms. To be able to monitor Psis emo-
tions we gave a human face to Psi which alters accor-
ding to Psis emotional states. Fig. 4 shows some of the
facial expression of Psi in different situations.

@ > > @ @ e

(L (L (L

@@@

Fig. 4: Psi’s emotions. See text.

In the upper left corner a resolute Psi can be observed.
Psi has a goal and is willing to achieve it against all
obstacles. In the upper right corner Psi is seized with
horror, helplessly anticipating uneasy events. The
middle one face shows Psi in a state of pure joy. The
face in the bottom line right shows a joyfull Psi too.
You will notice, however, a slight surprise-emotion in
this face comparing it with the middle one face. The
middle one face in the bottom line shows pain, whereas
the face on the right side in the medium line exhibits a
state of caution and hesitation. — All these emotions
are observable not only in Psis facial expressions, but
in its behaviour too'.

Fig.4 shows what will happen, if you put Psi to a new
environment. First the feeling of competence and the
feeling of certainty decrease, as Psi is not able to pre-
dict what will happen and is not able to care for ist
existential needs. But after some learning the respecti-
ve schemata for appropriate behaviour will be establis-
hed and Psi is able to cope with its ,,world“.

!The procedure for the facial expressions was pro-
grammed by Jiirgen Gerdes.
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Fig. 4: An example of the ,,world“ of Psi and a single
wSituation,

This ,,world“ is a maze-like environment composed of
single ,situations“. Fig. 4 shows an example of such a
,.world“. Psi has to learn how to move from one situa-
tion to an other one to arrive at ,,water” or ,energy* -
situations to satisfy its basic needs. Additionally Psi
should learn to avoid dangerous situations. The
Situations” are composed of elements like houses,
trees, bushes etc. In the upper right corner of fig. 4 an
example of a ,situation® is visible. ,,To behave® in such
an environment means to manipulate the respective
parts of a given situation or to move from one situation
to the other one by applying the appropriate operators.

\! P - : - \h,m,,tm, [N,

mmmm.mm
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Fig. 5: Psi’s ,,fate* in a new environment.

In fig. 5 some of the internal parameters of Psi when
exposed to a new environment are visible. You may
observe that first Psi cannot avoid painfull situations
and is not able to care for its existential needs (, thirst“
for instance increases from cycle 1 to cycle 100 conti-
nually as Psi is not able to find water within this time
period). But after some learning Psi becomes able to
avoid painfull situations and has acquired the capabili-
ties to care for itself.
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Tanam UnkeebmsainsOR BeTWEER HumMAN BEHAVIOUR

ANDTHE BEHAVIOUR OF PSI IN THE BIOLAB-
GAME

The capability of understanding, explicating and pre-
dicting empirical phenomena might help to estimate
the value of a theory. The study presented is examining
whether the Psi-model succeeds in replicating human
behaviour in a complex task.

For that aim we used the scenario BioLab to compare
the behaviour of Psi with the behaviour of experimen-
tal subjects. We were interested in the similarities and
differences between ,artificial“ and human behaviour.
Differences would possibly point out that basical as-
sumptions of the theory have to be revised. Furthermo-
re the comparison helps to detect the limits of the mo-
del explaining human behaviour.

In summary the behavioural test has two objectives:
first the results may contribute to the evaluation of the
Psi model and the underlying theoretical assumptions.
Second the results can give hints to the improvement
and the completition of the model of action regulation.
By confronting the model with reality necessary
modifications and elaborations might be detected.

The scenario BioLab

In the ,Biological Laboratory for sugar-based Energy
Production® (,,BioLab“ factory) subjects are asked to
produce certain types of molasses to generate electri-
city or heat. To modify the molecular structure of the
molasses they can use different kinds of catalysts.
Under certain conditions, however, the adding of cata-
lysts may cause contaminations. As a result a cleaning
of the reactors is necessary. Neither electricity nor heat
can be produced until this work has finished. Therefore
it is useful to avoid such situations.

The BioLab-system corresponds a maze formally.
Subjects can move from one situation to another by
using catalysts as operators. They change the structure
of the molasses respectively to their actual position in
the maze. The amount of operators consists of ten
catalysts, some of them needing specific conditions to
work. The situations consist of a combination of six
dimensions each of them having two valences: either
zero or one. This will lead to 64 different situations
each represented by a specific combination of these
digits.

It is possible to divide the structure of the maze into
eight circles, each of them having the valences of the
first three dimensions in common. As the eight situati-
ons within the circles are highly combined with each
other, it is rather simple to move from one situation to
another (see fig. 6). In order to leave a circle, it is
however essential to have one specific combination of
the dimensions four to six. Only this specific situation
allows changing between the circles.
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Fig. 6: The structure of the maze consisting of eight
circles, built up by eight situations (figure shows one
of eight sections).

The subjects do not know the formal structure of the
maze. They have to explore the BioLab. The situations
are visualized by pictures showing the molecular
structure of the molasses on the screen. The situation is
shown by the characteristics of the molasses in two
tanks: they vary with respect to amount, colour and
bubbles (see fig. 7).

Fig. 7: The situations of BioLab represented by the
different structure of molasses in two tanks.

To produce energy, it’s inevitable to find a way from
electricity to heat production and vice versa. Their
need for energy is represented by two bars: one sho-
wing the actual need for electricity and the other one
showing the system’s need for heat. The urgency of
producing electricity and heat is symbolized by the
length of the bar. For example when a subject reaches a
situation which provides electricity, the bar will be
filled up, no matter how empty it was before. Until the
reload is going to happen the electricity resources will
be decremented over time.

Electricity as well as heat can be produced in each of
the eight circles of the maze. To gain energy a specific
combination of the dimensions four to six is essential.

i
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several times, they will be exhausted. Therefore it is
important to find alternatives and to adapt the
behaviour to environmental changes.

In summary, handling the BioLab requires capacities
of complex problem-solving. Subjects have to explore
and regulate a dynamic system with two appetetive and
one aversive aims. While they are working on the
BioLab game they are coping with a problem identical
to the environment of the autonomous agent Psi. Now
let’s have a look how efficient the laboratory is con-
ducted and how the subjects in contrast to the Psi-
model learn to use the catalysts in an effective manner.

The comparison of human and artificial behaviour:
efficacy of need satisfaction and of catalysts use
The results presented rely on an experiment conducted
with 12 subjects each of them playing the BioLab ga-
me for one hour. Each of the subjects had to play under
two experimental conditions: first they had to think
aloud, second they had to keep tacit. After half an hour
of playing the experimental condition changed. Variing
the sequence of the two instructions, the subjects were
randomly divided into two groups. Most of the subjects
were students of psychology from the University of
Bamberg.

In general the task was neither too easy nor too dif-
ficult for the subjects. All of them succeeded in finding
situations where energy production is possible, at least
by chance. One subject succeeded in exploring the
whole structure of the maze. He/she could intentionally
change from onme circle to another and has found a
efficient way to move from electricity to heat producti-
on within the circles.

For a useful comparison between the behaviour of Psi
with the behaviour of the subjects we had to parallelize
parameters of environment as well as of action time.
Whereas the subjects carried out about six actions per
minute, Psi conducted more than sixty at the same
time. For this reason only the first 360 actions of the
model’s behaviour protocol were evaluated.

Let us have a look upon the efficiency of managing the
BioLab problem: One value representing the
performance is the score achieved at the end of the run.
Starting with zero, the account increases with a
hundred points whenever electricity or heat is
produced. Whenever the lab is contaminated, the
account decreases by fifty points. Every thirty minutes
the account is lowered by one point and finally every
use of a catalyst costs one point either.

These statistical results illustrate that human subjects
are capable of managing the lab rather good. The mean
account is 1314 points after 60 minutes. The variance
between the subjects, however, is huge. The subject
with the best perfomance gained 2108 points, whereas
the worst performance achieved 217 points. The effi-
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manage to get 120 points in the game. The rather bad
performance does not rely on a greater number of
contaminations (see tab. 1). Moreover the results of the
Psi model show a less effective use of catalysts and
therefore a lower rate of needs satisfaction.

Subjects Psi
mean mini- maxi- value
mum mum

account of | 1314.58 217 2108 120

points
number of 10 2 16 8
contami-

nations

Tab. 1: Statistic values representing the effeciency of
needs satisfaction.

One value representing the successful use of the ope-
rators is the percentage of effective catalyses. Psi used
as much catalysts as the average subjects. In contrast to
the subjects, however, only 15% out of these caused
the molasses to change its characteristics.

The following figure shows a boxplot about the results
of the subjects and Psi. The subjects were subdivided
in two groups: one of them starting with the instruction
Hhinking aloud®, the other one tacit. The bar in the box
indicates the median, within the box there are 50% of
the subjects represented. The ,,whiskers“ of the box
mark the 25th and the 75th percentile of the distributi-
on. Remarkably the performance of the Psi model
would be placed within the area marked by the whis-
kers in the tacit group. Compared to the subjects thin-
king aloud Psi’s performance is significantly low. Its
performance is contrasted by the subject ,,Ellobo“ who
achieved the best efficacy of the whole sample.

7

6 *ELLOBO
5

A I
3

2

i +PSI

' tacit thinking aloud

Fig. 3: The percentage of effective catalyst use bet-
ween PSI and the subjects. See text.
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Comparing human and artificial behaviour with respect
to statistical values will not be sufficient to evaluate a
model. Furthermore we tried to replicate the behaviour
of each individual by varing the starting parameters of
the simulation. By this we created different personali-
ties.

As long as emotional reactions and their impact on
information processing are concerned, first results
reveal similarities between the model’s and the sub-
jects’ behaviour.

According to the assumptions of the Psi model subjects
show a specific way of action organization: at the be-
ginning they mainly apply a strategy which can be
described as ,trial-and-error®. In the following stage,
catalysts are used with respect to success or failure in
the past. As a consequence catalysts leading to need
satisfaction will be used more frequently in the future,
whereas catalysts leading to neutral situations or
without any effect will be taken less frequently. Finally
catalysts producing contamination will be used more
carefully.

As soon as environmental conditions are explored
sufficiently, the subjects as well as Psi start making
plans. Single action sequences are combined to chains.
After gaining a high competence in managing the lab,
people as well as our artificial system have an amount
of automatisms available. The Rasmussen-system
(1983) can be discovered in both: human and artificial
behaviour.

Remarkably when trying to replicate the behaviour of
single subjects we suceeded in modelling subjects with
a rather poor performance, p.e. a quite anxious person
producing contamination by the first action he/she
made. As a result the subject avoided the catalyst for
more than half an hour and as a consequence was not
able to produce electricity.

In contrast to more successful subjects the PSI-
simulation lacks the capability to reflect on its own
behaviour. For this reason strategic flexibility and
analogies (i.e. the adoption of leamed behavioural
sequences on similar situations) can not be found in the
simulation runs of out artificial system but in human
behaviour.

CONCLUSION

Exploring the similarities and differences of the beha-
viour of Psi and human behaviour, we found remar-
kably parallels between the behaviour of Psi and the
behaviour of humans. Similar situations provide dif-
ficulities for both: humans and Psi. Moreover in com-
parable situations the model’s emotional expression
resembles to the expression of the subjects.
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For instance though the planning procedure of Psi is
sometimes rather close to what is observable in human
behaviour, shows striking differences to human thin-
king. -

Mainly self-reflection is missing. Humans more or less
frequently change their thinking and planning procedu-
res by considering the records of their own thinking,
analyzing the structure of these records and altering it.
Psi is not able to do this. We believe that this is due to
the fact that Psi is not able to speak. This ,.inner dialo-
gue“ is one important aspect of higher cognitive
functioning in humans. Therefore Psi should be provi-
ded with natural language too in order to get the ability
of an inner dialogue.

References

Atkinson, J. W. & Birch, D. (1978) (2™ ed.). Intro-
duction to Motivation. New York: Van No-
strand.

Dérmer, D. (1994). Eine Systemtheorie der Motivation.
(A system theory of motivation). In: Kuhl, J.
& Heckhausen, H. (1996): Enzyklopéddie der
Psychologie -~ Motivation, Volition und
Handlung. Gottingen: Hogrefe, pp. 329 - 357.

Dérner, D. (1997). Motivation in Artificial and Natural
Systems. In: Hara, F. & Yoshida, K. (Eds.),
Proceedings of International Symposium on

73

Mechanical Engineers & Inoue Foundation for
Science, pp. 17 - 22.

Dérmer, D. & Hille, K. (1995). Attificial Souls: Moti-
vated Emotional Robots. In: IEEE Conference
Proceedings, International Conference on Sy-
stems Man, and Cybernetics; Intelligent Sy-
stems for the 21% Century. Vancouver, Volu-
me 4 to 5, pp. 3828 - 3832.

Hille, K. (1997). Die kiinstliche Seele. Analyse einer
Theorie. (An Arttificial Soul. Analysis of a
theory). Wiesbaden, Germany: Deutscher
Universitéitsverlag.

Schaub, H. (1997). Modelling Action Regulation.
Poznan Studies in the Philosophies of the
Science and the Humanities, Vol. 56, pp. 97 -
136.

Boulding, K.E. (1978). Ecodynamics. Beverly Hills:
Sage.

Steels, L. (1993). The Biology and Technology of
Intelligent Autonomous Agents. Berlin:
Springer.

Rasmussen, J. (1983). Skills, Rules, Knowledge: Si-
gnals, Signs and Symbols and Other Distincti-
ons in Human Performance Models. IEEE -
Transactions, Systems, Man, Cybemetics,
SMC 13, S.257 - 267.



