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ABSTRACT

In this paper we address the issue of how initial menu
search experiences are encoded and then used to guide
subsequent search. We report empirical data from
participants searching in a menu structure in which they
cannot use spatial strategies and are therefore required to
use just the labels to guide themselves. We then describe
two cognitive models of menu search: the AYN model
which encodes recognition chunks for tried options and
gradually acquires positive and negative control
knowledge; and an activation-based model which
increases the activation of seen and tried options and then
uses these activation levels on subsequent trials to guide
its search. The data from the activation-based model
provides the better fit to the empirical data.
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INTRODUCTION

Searching through menu structures is a common method
of interacting with computers: using software packages,
browsing the world-wide web and searching databases
are just some of the tasks that require menu search (or
interactive search). The task of interactive search can be
specified in basic terms as requiring a person to make
selections in order to find a particular goal. They can
either select an option! to move forward down a branch
of the menu structure, or select an operator to move back
up the menu structure (either back just one step or back to
the initial starting point). The task of interactive search is
therefore different from other problem solving tasks in
that people initially do not know what the outcome of
operators (moves) will be until they are tried.

In this paper we summarise an empirical investigation of
interactive search (for a full report see Howes,
Richardson and Payne, in preparation), together with two
possible cognitive models of interactive search which are
then assessed against the empirical data. We are
especially interested in understanding how memories
encoded during the initial search experience shape
behaviour on subsequent searches for the same goal. In
particular, how does a user learn the sequence of choices
that leads to a particular goal? The delay between the
time when a menu option is selected and the time when
that option can be evaluated as correct or not (when the

' We use the terms "options", "selections", "choices"
and "items" interchangeably to refer to the labels at a
menu node.
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goal is achieved) makes this task more difficult than it
might first appear. In many instances, incorrect paths
will be explored before the correct route to the goal is
found. The user must learn to distinguish those options
which were tried and found to be incorrect from those
which eventually led to the goal.

One of the most obvious guides as to which options to
select during initial search in an unfamiliar menu is the
semantics of the labels: labels which are closely related to
the current goal should be better choices than those which
are more distantly related to the goal (Franzke, 1994;
Franzke, 1995). For example, given the goal of checking
the spelling of a document in Microsoft Word, the menu
header "Tools" seems like a better choice then "Insert" or
"Font". However, the label semantics are rarely a
sufficient guide to the correct route to a goal. In the
above spell-check example, both "Tools" and "Format"
might seem equally good choices to a novice user.

There have been several previous cognitive models of
how people search in menu structures where the
semantics are not sufficient, such as, the IDXL model
developed by Rieman, Young and Howes (1996) and the
model of expert search behaviour developed by Kitajima
and Polson (1995). However, these have tended to focus
on the initial search process and the question of how to
decide which options to select. Whilst such models are
candidate models of how experts and novices search
during initial exploration of a menu structure they do not
address the problem of how memories of that search are
encoded and subsequently used: they leave open the
question of how people perform a menu search task for
the second, third or fourth time, or how performance
improves with experiecnce. A start has been made at
addressing these questions with the AYN model (Howes,
1994).

One of the first questions that we can ask is how the
initial search is encoded. The experience could be
encoded just in terms of the menu labels. For example,
the spell-check task might be encoded as selecting
"Tools" followed by "Spelling". We term this a lexical
encoding. In addition or alternatively, people might
exploit the spatial structure of the menu tree and encode
their search experience in terms of some spatial
representation of the menu structure and the spatial
location of the goal within that representation. For
example, the spell-check task might be encoded as
selecting an item towards the right of the menu bar and
then selecting the first item under it.

In addition, it is also possible that users rehearse their
choices during the initial search process. For example, at
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any one time, users colél/lloc?eattempt to rehearse the
sequence of choices leading to their current position in
the menu structure. Upon reaching the goal, the most
recently rehearsed sequence would be the correct route.
We would expect rehearsal of this type during search to
give rise to a primacy effect (improved performance for
the first items in the sequence as they will have been
rehearsed for a longer time than the later items).

Alternatively, a recency effect (improved performance for
the last items in the sequence) might emerge if users
reflect on the actions that they have just performed when
they reach the goal (e.g. Howes, 1994).

Therefore, one way to investigate the question of how
initial search experiences affect subsequent learning is to
look at the order in which the sequence of options leading
to the goal are learnt. We use the term "effect of levels"”
to refer to this differential learning of options at different
levels.

EMPIRICAL INVESTIGATION

In this experiment (described in full in Howes,
Richardson and Payne, in preparation), we wished to
investigate the order in which the choices leading to the
goal were learnt, independent of factors such as semantics
which may differentially affect different decisions. For
example, if one choice was between two semantically
plausible options and a second choice was between one
highly plausible option and one that was implausible, we
would expect the second choice to be learnt more readily
than the first. In order to avoid potentially confusing
effects of semantics such as this in our experimental data,
we used menu trees constructed entirely from labels
which had no semantic relationship to the goals. Thus, at
each node in these menu trees the level of semantic
guidance to the correct choices was the same and there
should be no differential effects.

Such semantically unhelpful menu trees are not entirely
unrealistic. As pointed out above, semantics are a far
from perfect guide in many real-life menus and users are
often faced with selecting between two (or more) equally
plausible or implausible options.

In addition, we also wished to investigate how people's
performance is affected if all possibility of forming
spatial encodings is removed and they are forced to just
use the labels. In order to achieve this we used two
groups of participants. The first group performed the
menu search task with randomised positioning of the
labels at each node (each time a participant visited a
node, the label positions might or might not be swapped
around). This manipulation should prevent these
participants from encoding their experience spatially.
The second group of participants performed the search
task in "normal"” menu trees where the positioning of the
labels at each node was kept constant over time. This
should allow us to see what the effect is on learning and
performance when participants are forming only a lexical
representation of the menu tree in terms of just the labels
as compared with when they can also encode spatial
aspects of their experiences.

Method

Thirty-two undergraduate students from the Psychology
Department at the University of Wales, Cardiff took part
in this study for course credits. The experiment consisted
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Figure 1: Illustration of the design of the trees used in
the experiment.

of seven trials. On each trial the participant was asked to
search for the first target in the first menu tree, followed
by the second target in the second menu tree, the third
target in the third menu tree and the fourth target in the
fourth menu tree. In order to produce a balanced design
the order of presentation of the four menu trees was
manipulated in order to ensure that each menu tree was
presented equally often first, second, third and fourth.
The experiment was presented on an Apple Macintosh
computer using a program written in MacProlog32. This
program automatically recorded the choices made by
participants and the time taken to make them.

Each menu tree consisted of five levels with binary
choices between a top and a bottom label at each node, as
illustrated in Figure 1. The target was one of the choices
at a leaf node. At each node there were two options that
could be selected to move forward down the tree and a
backup option to move back up the tree (except at the
top-level root node, where backup is not possible, and in
the target node, where backup would allow the participant
to review the choices leading to that target). Pairs of
semantically related words (e.g. "Carbon" and
"Charcoal") were used for the option labels at nodes in
these menu trees. These label pairs were placed in
different random positions for each participant. There
were no close semantic relationships between the label
pairs both within and between trees as determined by the
experimenters' judgement.

One between-participants factor was manipulated in this
experiments. Participants were randomly allocated to one
of two equally sized groups. For one group, at each node,
the two options were positioned randomly in the top and
bottom positions on each visit. For the other group, the
two options at each node appeared consistently in the
same positions throughout the experiment.
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Results

The main results that we are interested in modelling are
the order in which participants learnt the sequence of
choices leading to the target (effect of levels), and the
improvement in performance over trials. Therefore, we
shall only consider those analyses. (The full set of
analyses can be found in Howes, Richardson and Payne,
in preparation).

The effects of levels were investigated by seeing whether
participants selected the correct or the incorrect option at
the nodes leading to the target. For each target, there was
a correct sequence of five actions that would lead directly
to that target. For each of the nodes on this correct path,
the percentage of correct options chosen by participants
on their first visit to that node on each trial was
calculated. The action taken on the first visit to each
node on each trial was used because this should reflect
the effects of long term memory, rather than any effects
of temporary memory for recent local search sequences.
This measure should therefore show how participants’
memory for the correct actions developed with
experience,

The data for the trial 2 levels effect are summarised in
Table 1. These data were subjected to an Anova to check
for main effects of level and node label positioning and
for any interaction between these factors. There were no
significant main effects of node positioning: F(1, 30) =
0.756, p = 0.39, nor of level F(3, 90)=0.959, p = 0.42.
There was not a significant interaction between these
variables F(3, 90) = 2.15, p = 0.099. However, t-tests
revealed that there were significant differences between
levels 1 and 3 for the consistent condition, but that there
were no significant differences between any levels in the
randomised condition.

The same analysis was carried out for all trials except the
first. The data are summarised in Table 2 and were
subjected to an Anova to test for main effects of main
effects of trial, node option positioning and level and for
interactions between these factors.

There was no significant main effect of level, F(3, 90) =
0.58, p = 0.63 on the total number of correct actions.
However, there was a significant interaction between the
positioning of node options and level, F(3, 90) = 2.72, p <
0.05. There was a significant effect of levels when the
positioning of the node options was consistent: the
percentage of correct choices made at levels 1 and 2 was
higher than at levels 3 and 4. This primacy effect was
most pronounced on trials 2 and 3. There was no effect
of levels when the label positioning was random: on all

Table 1: The mean percentage of correct choices made
by participants on the first visit to nodes at levels 1, 2, 3
and 4 on the correct path on trial 2.

Node option positioning

Randomised Consistent
Level M S.D M S.D.
1 52% 35% 72% 22%
2 58% 26% 67% 27%
3 58% 26% 48% 27%
4 61% 23% 61% 21%
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Table 2: The mean percentage of correct choices made

by participants on the first visit to nodes at levels 1, 2, 3
and 4 on the correct path averaged over trials 2 to 7.

Node option positioning

Randomised Consistent
Level M S.D M S.D.
1 3%  28% 79% 20%
2 76%  22% 9%  23%
3 8%  22% 70%  26%
4 T9%  24% 72% 22%

trials there were no significant differences between
performance at different levels.

In addition, there was a significant main effect of trial,
F(5, 150) = 35.26, p < 0.05 on the total number of correct
choices made. Correct choices increased over trials 2 to 4
but not thereafter. There was no significant main effect
of node option positioning, F(1, 30) = 0.07, p = 0.79 on
the total number of correct choices. There were no other
significant interactions.

Performance over trials was calculated in terms of the
average number of actions taken to reach the goal on each
trial. These data are summarised in Table 3. These data
were subjected to an Anova to check for main effects of
trial and node label positioning and for any interaction
between these factors. There was no significant main
effect of positioning of node options, F(1, 30) = 2.09, p =
0.16. There was a significant main effect of trial, F(6,
180) = 52.99, p < 0.01. The number of actions taken to
reach the goal decreased significantly over the first four
trials but not thereafter. There was no significant
interaction between positioning and trial, F(6, 180) =
0.84, p=0.54.

Conclusions

When spatial consistency was removed the correct
choices at all levels within the menu structure were learnt
at the same rate. In comparison, when the menu structure
was spatially consistent, participants learnt the choices at
the top levels first (primacy effect). This result suggests
that participants in the spatially consistent condition
might have been carrying out some form of spatial
rehearsal whilst performing the initial search. The lack of

Table 3: The mean number of actions taken by
participants to reach the goal on each trial.

Node option positioning

Randomised Consistent
Trial M S.D M S.D
1 60.2 20.6 52.5 20.6
2 39.6 31.8 24.3 12.7
3 26.9 24.7 20.8 14.4
4 18.1 13.6 12.8 9.3
5 14.8 17.7 11.5 11.4
6 11.0 13.5 8.1 4.4
7 14.6 26.9 7.5 3.3
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either a primacy or a recency etfect when participants
were forced to rely just on the labels to guide their search
suggests that no lexical rehearsal took place.

However, even when participants had to rely just on
using the labels, they could still learn to perform the task
as quickly (in terms of the total number of actions taken
to reach the goal) as when the label positions were left
constant over time. Therefore, even though participants
in the random positioning condition did not appear to be
using lexical rehearsal, they were still able to learn the
correct choices with practice. Possible accounts of how
this might occur are discussed below in the context of
two possible cognitive models of the data.

COGNITIVE MODELLING

The initial goal was to develop a cognitive model of
learning in menu trees without spatial consistency (i.e.
label-based learning only). Such a model can then be
used as a starting point for a model of learning in the
spatially consistent menu trees, where participants
appeared to be using spatial rehearsal.

The main test of the model will obviously be its degree of
fit to the experimental data described above. The model
should therefore show a flat effect of levels (i.e. equal
rate of learning of the choices on the path leading to the
goal), together with improvement in performance over
trials. Ideally the model should not only show the same
pattern of data as the empirical participants, but also the
same values. For example, its performance (in terms of
the number of actions taken to reach the goal) should
improve over the first four trials only but not thereafter.

Two models of label-based interactive search are: (1)
The AYN model (Howes, 1994) which encodes chunks
for tried items, uses this knowledge to limit the search
space on subsequent trials and learns that the most
recently selected item is correct when it finds that it is on
the right path. (2) An activation-based model which
boosts the activation levels of the representations of tried
and seen items and then makes decisions based on the
relative activation levels to guide its selections.

COGNITIVE MODEL 1: AYN

The first model of interactive search that we describe is
the AYN model (Howes, 1994). AYN acquires two types
of knowledge as it interacts with a menu structure:
recognition knowledge and control knowledge.

The recognition knowledge consists of episodic chunks
that are encoded for every combination of goal, menu and
action that the model experiences, regardless of whether
the action in question leads to the goal or not. AYN also
acquires recognition knowledge that the goal has been
achieved.  This recognition knowledge supports
identification of the menu trees that have been previously
visited, which selections made and which goals visited.

AYN uses its recognition knowledge to help guide search
in the menu structure during both initial exploration and
subsequent searches. A set of rules determines how the
model applies this knowledge: (1) if the goal has not yet
been achieved then avoid recognised selections; (2) if the
goal has been achieved and there is a recognised selection
then it should be applied; (3) if there are no recognised
selections and the goal has been achieved then a backup
operator should be applied. These rules help limit the
size of the search space.
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AYN also acquires both positive and negative control
knowledge through its exploration of the menu structure.
This knowledge determines which menu selections lead
to the goal and which lead to dead-ends. In AYN
working memory is bounded to store only the previous
action. Thus, when the goal is achieved AYN only learns
positive control knowledge for the selection immediately
preceding the goal. On the next trial, when AYN reaches
the selection known to be right (i.e. the one before the
goal), it learns positive control knowledge for the
immediately preceding selection that led to it. In this way
positive knowledge is passed back up the structure in a
final-first way until positive knowledge has been learnt
for all the selections leading to the goal.

AYN acquires negative control knowledge in a similar
way for selections that lead to dead-ends. In fact, the
AYN model was altered slightly from the version
reported by Howes (1994) in order to get it to learn
negative knowledge from backing up, rather than from
cancelling and returning to the start state. AYN was
altered so that it learnt that a particular move was "bad"
either if that move led directly to a dead-end or if that
move led to a node where both options were rated as
"bad".

The AYN model was run fifty times (for seven trials on
each run) over a five-level binary menu tree (i.e. the same
structure as that used in the experiments) to generate the
data. The data generated from the model should therefore
be in a form that is comparable with that obtained
empirically.

Results

The effect of levels on each trial was calculated in terms
of percent correct selections made on the first visit to
each of the nodes on the correct path. The data for trial 2
only are summarised in Table 4 and Figure 2. The 95%
confidence interval was calculated for the empirical mean
obtained at each level in the menu (see Grant, 1962, for a
discussion of this type of analysis). These confidence
intervals are shown in Figure 2. None of the means
generated by the AYN model fell inside the confidence
interval at any level. At each level, the means generated
by the AYN model were higher than those of the
experimental participants.

The data for the effect of levels averaged over all trials
are summarised in Table 5. The correlation between the
percentage of correct choices made at each level on each
trial by the AYN model and by the experimental
participants was calculated. The correlation was fairly
poor, r = 0.747, r? =0.559,

Table 4: The mean percentage of correct choices made
by AYN and the activation-based model on the first visit
to nodes on the correct path on trial 2.

Activation-
AYN based model
Level M S.D. M S.D.
1 2% 45% 52% 50%
2 76% 43% 56% 50%
3 68% 47% 54% 50%
4 100% 0% 48% 50%
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Figure 2: The percentage of correct selections made on
the first visits to nodes on the correct path on trial 2 by
the empirical participants, the AYN model and the
activation-based model

The number of actions taken by the AYN model to reach
the goal on each trial was calculated. These data are
summarised in Table 6 and Figure 3. The 95%
confidence interval was calculated for the empirical mean
obtained on each trial, as shown in Figure 3. The means
generated by the AYN model fell outside the confidence
interval on trials 1, 3, 4 and 5. On each of these trials, the
means generated by the AYN model were lower than
those of the experimental participants. The correlation
between the data generated by the AYN model and the
empirical data was calculated. The correlation was very
good, r =0.991, r2 =0.982.

Table 5: The mean percentage of correct choices made by
AYN and the activation-based model on the first visit to
nodes on the correct path averaged over trials 2 to 7.

Activation-
AYN based model
Level M S.D. M S.D.
| 90% 20% 83% 29%
2 93% 14% 87% 26%
3 95% 8% 84% 31%
4 100% 0% 84% 29%
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Figure 3: The number of actions taken to reach the goal
on each trial by the empirical participants, the AYN
model and the activation-based model

COGNITIVE MODEL 2: ACTIVATION-BASED MODEL
The second cognitive model of interactive search that we
consider is a simple activation-based model which makes
more refined judgements than the AYN model. This
model does not just distinguish tried from untried options,
but makes four classifications of options: untried; seen
and possibly tried; definitely tried; and very recently
tried. Most importantly, this model does not acquire any
form of AYN-like control knowledge. Instead it simply
uses the relative activation levels to determine which
choices are correct and which are incorrect.

Table 6: The mean number of actions taken by AYN and
the activation-based model to reach the goal on each trial.

Activation-based

AYN model
Trial M S.D M S.D
1 433 26.4 56.4 38.9
2 23.6 21.6 38.0 32.8
3 13.2 15.8 30.2 35.7
4 5.2 0.6 23.1 31.5
5 5 0 12.5 21.2
6 5 0 5.6 2.7
7 5 0 5.1 0.9
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In this activation-based cognitive model, when an option
1s seen its activation is boosted by 10 units, and when an
option is selected its activation level is boosted by a
further 40 units (unseen options have an activation level
of zero). Every time a move is made (selection of an
option or selecting backup) the activation of all other
options decays by 1%. Therefore with time the activation
levels of previously tried and seen options decrease.
There are 110 decay cycles between trials (to simulate the
intervening tasks in the experiments).

The model assesses the activation levels of the options
that it encounters in order to infer whether options have
been seen or tried before. It then uses these inferences to
determine which action to select. If the activation level
of an option is less than 1 unit, then the model infers that
that option has never been seen before (= untried). If the
activation level is between 1 and 20 units then it infers
that the option has definitely been seen before and could
possibly have been tried some time ago as well (= seen-
and-possibly-tried). If the activation level is between 20
and 40 then it infers that the option has definitely been
tried before (= definitely-tried), and if the activation level
is above 40 then it assumes that the option was tried very
recently (= very-recently-tried). The model uses its
assessments of the activation of the possible options at a
node, together with knowledge of whether the goal has
already been achieved or not, in order to decide which
action to take.

If the goal has not yet been achieved, the model uses a
simple search algorithm similar to that of the AYN
model. It avoids options that are assessed as being
definitely-tried or very-recently-tried and selects those
that are assessed as being untried or seen-and-possibly-
tried. At a node with two options which are untried or
seen-and-possibly-tried, it prefers to select the untried
option. At a node with one option that is definitely-tried
or very-recently-tried and one that is untried or seen-and-
possibly-tried, it selects the untried or seen-and-possibly-
tried option. At a node with only definitely-tried or very-
recently tried options, or at a node that is a dead-end, it
selects backup. In this way the model searches efficiently
through the menu structure to reach the goal.

Once the goal has been achieved, the model again uses a
search algorithm based on that of the AYN model. It
prefers to select an option that has been assessed as being
definitely-tried before, but not very-recently-tried. If not
it will select an option that is assessed as seen-and-
possibly-tried. It does not select untried options or very-
recently-tried options. It also backs up from deadends.

The model was run fifty times over a five-level binary
menu tree, for seven trials on each run, to generate the
data.

Results

As before, the effect of levels on all trials was calculated
in terms of the percentage of correct choices made on the
first visit to each of the nodes on the correct path. The
data for trial 2 only are summarised in Table 4 and Figure
2. For this model, the means for the percentage of correct
choices made at levels 1 and 2 on trial 2 fell within the
95% confidence intervals for the empirical means. The
mean percentage correct choices for levels 3 and 4 fell
below the confidence interval: the model made fewer

9

correct choices at these levels, on average, that the
experimental participants.

The data for the effect of levels averaged over all trials
are summarised in Table 5. The correlation between the
percentage of correct choices made at each level on each
trial by the model and by the experimental participants
was calculated. The correlation was good, r = 0.917, 12
=0.840.

The number of actions taken to reach the goal on each
trial was calculated. These data are summarised in Table
6 and Figure 3. The means generated by the model fell
within the 95% confidence interval for the empirical
means on all trials. The correlation between the data
generated by the model and the empirical data was
calculated. The correlation was very good, r = 0.964, 12
=0.930.

CONCLUSIONS

The data generated by the AYN model provided a good
fit to the shape of the empirical practice data, although its
performance was higher, as would be expected given its
100% accurate all-or-nothing recognition. However, for
the effect of levels, the correlation of the AYN data to the

" empirical data was not as good: AYN showed a recency

effect in the learning of the choices on the correct path
(i.e. better performance for the last item), whereas no
such effect was seen in the empirical data. In addition,
the overall level of correct selections made by AYN at
the nodes on the correct path was much higher than that
of the empirical participants.

The activation-based model gave a very good fit to the
empirical data for learning based on labels alone. The
correlation between its data and the empirical practice
effect data was similar to that seen for AYN, However,
unlike the AYN model, the curve that it generated did not
differ in absolute value from the empirical data. The data
from the activation-based model also provided a
reasonable fit to the empirical levels effect data. Its
correlation to this data was much higher than the AYN
model. In addition, although the curve that it generated
had a slightly different shape to the empirical data, the
absolute values were not different for two of the four
means.

The activation-based model is therefore able to learn the
correct menu choices at the same speed and in
approximately the same pattern as empirical participants
without recourse to either rehearsal or the use of AYN-
like control knowledge. Learning occurs simply through
the gradual increase in activation of the correct choices
relative to other choices.

A slight, but important difference between the activation-
based model and the empirical data is that the
experimental participants showed a slight (but non-
significant) recency effect whereas the model showed an
almost completely flat levels effect. However, further
trials of the model showed that when the delay between
trials is reduced, the model begins to show a recency
effect similar to that of the experimental participants. It
would be interesting to see whether the small recency
effect exhibited by the participants alters with the delay
between tasks in a similar way. There is some evidence
in straightforward recognition tasks that delay affects
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recency effects in this way (Wright, Santiago, Sands,
Kendrick and Cook, 1985).

GENERAL DISCUSSION

The simple activation-based model provided a better fit to
the empirical data for searching a spatially inconsistent
menu structure than the AYN model. Importantly, the
activation-based model learns the correct path without
manifesting a recency effect. This is due to the fact that it
doesn't acquire explicit control knowledge. Instead the
activation levels of each of the correct choices gradually
increases relative to the other choices. On average this
rate of relative increase is the same for all of the choices
leading to the goal and so a flat effect of levels was
observed.

In addition, this result showed that making a simple all-
or-none distinction between tried and untried options (as
AYN does) led to better performance than was seen
empirically. Instead it seems likely that in reality menu
users might occasionally be unsure as to whether a
particular item has been selected before or merely seen.
Errors will therefore arise when users select items that
have merely been seen before and not tried. Such
uncertainty is akin to a feeling of mere familiarity for a
menu item and can be contrasted with definite
recollection that an item has been tried before (see
Jacoby, 1991, and Mandler, 1980, for an account of the
distinction between familiarity and recollection and
Payne, Richardson & Howes, in preparation, for an
account of the role of familiarity in guiding menu search
behaviour). There is currently some debate as to whether
familiarity and recollection are indeed separate processes
or just end-points on a continuum (see for example,
Dodson & Johnson, 1996; Jacoby, 1991). However a
simplified version of the single-process model of
recognition can be seen as analogous to the decision
process underlying the activation-based model. This
simplified model assumes that there is a single quantity
(activation levels, in our case) underlying different
recognition judgements. If the activation level is above a
certain criterion, an item will seem merely familiar,
whereas if the activation level is above another, higher,
criterion the item will be recollected. The activation-
based model can therefore be thought of as preferring
"recollected" selections over "familiar" ones. It
occasionally makes errors by selecting, on the basis of
their familiarity, items that had only been seen before and
not actually tried. This model therefore had a lower
overall level of performance that was not significantly
different from that of the empirical participants.

However, this activation-based model only accounts for
the data obtained in the situation where participants had
to rely on the labels alone and could not exploit the
spatial consistencies within the environment. In other
words, this model only simulates the possible lexical
encodings that a person might form whilst navigating
through a menu structure, it does not account for any
spatial representations that might be constructed. As
shown in the experiment reported earlier, when spatial
consistency was provided, people seemed to perform
some form of spatially-based rehearsal. The activation-
based model should therefore be extended to model this
type of performance, perhaps by adding another "layer"

80

ISBN 1-897676-67-0

which rehearses spatial location whilst searching through
the menu structure.

There are several other possible avenues of development
for the activation-based model. One of the first changes
to explore might be the effect of different functions for
the rate of decay. For example, research shows that the
rate of forgetting might be governed by a power law (see
Anderson, 1995, for an account). Another possibility is
to explore the effects of adding in features such as
associations and spreading activation between the
activated representations. However, the evolution of this
model to date has been driven largely by the goal of
modelling empirical data, and any future architectural
developments will therefore be made only in response to
empirical data that challenge the model.

Finally, both the AYN model and the activation-based
model as described here do not use the semantic
plausibility of the menu items to guide their search.
Other experiments that we have carried out suggest that
people do use semantic plausibility, in conjunction with
recognition memory, to determine which choices to select
in a menu (Payne, Richardson & Howes, in preparation).
Both models have, in other versions, been altered to use
the semantics of the labels to guide their choices. For
both models the effect of this is effectively to limit the
search space to just the subset of the menu labels that are
Jjudged to be semantically plausible.
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ABSTRACT

This paper presents a model of occasional use of
functions of an application by an experienced user of an
environment like Windows 95 or the MacOS. We have
developed a simulation model, LICAI+, that assumes that
users store episodic records of correct steps discovered by
exploration or told to them during training. They then use
the application display and their goal as retrieval cues in
attempts to recall these episodes later. The model predicts,
and supporting data show, that tasks that violate the
label-following strategy are not only hard to learn by
exploration but also difficult to remember even if the
correct steps have been previously presented.

Keywords
cognitive model, learning by exploration, label-following
strategy, LICAI+

INTRODUCTION

Experienced users of an environment like Windows 95 or
the MacOS are occasional users of many applications
(e.g., a graphics package). Furthermore, many functions
of a frequently used application like a word processor are
only used occasionally (e.g., constructing and editing a
table). Thus, a large majority of the different tasks
undertaken by skilled users are performed infrequently
(Santhanam & Wiedenbeck, 1993).

Such patterns of occasional use should constrain the
design of usable computer systems. Ideally, such systems
should consistently support learning by exploration. At a
minimum, they should facilitate memory for action
sequences learned by demonstration or by being looked up
in a manual. The ease of recalling infrequently performed
functions can be a major determinate of usability. This is
not a novel claim. For example, the designers of the
Xerox Star had very similar insights (Bewley, Roberts,
Schroit, & Verplank, 1983; Smith, Irby, Kimball,
Verplank, & Harslem, 1982). This paper presents a
theoretical model of recall of tasks that have been done
once or a few times and data supporting the model.

LICAI+ is a model of recall of occasionally used action
sequences. LICAI+ assumes that users store episodic
records of correct steps discovered by exploration or told
to them during training. They then use the application
display and their goal as retrieval cues in attempts to later
recall these episodes. The resulting model of the recall
process is similar to models of text recall (Wolfe &
Kintsch, submitted).

Rodolfo Soto and Peter G. Polson
Institute of Cognitive Science
University of Colorado
Boulder, CO 80309-0345, USA
Tel: +1 (303) 492-5622
E-mail: {soto, ppolson}@psych.colorado.edu

LICAI+ is an extension of LICAI' (Kitajima & Polson,
1996; 1997) which is a model of the processes involved
in comprehending task instructions and using the
resulting goals to guide successful exploration. Both
LICAI and LICAI+ are based on Kintsch’s (1986; in
press)  construction-integration  theory  of  text
comprehension. LICAI+ adds to LICAI the processes
involved in encoding and successfully retrieving
encodings of correct actions. LICAI+ assumes that

~ successful performance of occasionally performed tasks

g2

involves a mixture of recall of episodes of correct actions
and problem solving if recall fails. The model is related to
Ross” (1984) and Rickard’s (1997) models of skill
acquisition.

Following a general description of the LICAI+ model, we
present a theoretically motivated analysis of recall of
occasionally performed action sequences. Readers
interested in a more detailed descriptions of the LICAI
model should consult (Kitajima & Polson, 1995; 1996;
1997). In support of the LICAI+ model and our
theoretical analysis we compare our simulation results
with data reported by Franzke (1994; 1995) and Soto
(1997). In conclusion, we describe design implications of
our results. We demonstrate that both ease of learning by
exploration and good recall are supported by similar
attributes of an interface.

DESCRIPTION OF LICAI+

LICAI+ simulates skilled Mac users in an experiment
where they are taught novel tasks using a new
application, Cricket Graph IIL. The task instructions are
very explicit but do not contain any information about
how to perform the task. Then, at some later time
ranging from several minutes to a week, they are tested
for retention of these skills when given the task
descriptions and the displays generated by the application
as retrieval cues. Users attempt to perform each task by
exploration and/or recalling an action sequence. However,
hints are given by the experimenter if users cannot
discover correct actions by themselves.

' LICAI an acronym of the [LInked model of
Comprehension-based Action planning and Instruction
taking. When LICAI [i  kai], the
pronunciation represents Japanese word,

is

is  pronounced
a two-kanji

B, meaning ‘comprehension.’
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LICAI simulates comprehension of task instructions and
hints, the generation of goals, and the use of these goals
to discover correct actions by exploration. LICAI+ adds to
LICAI processes that encode successful actions and
retrieve them after a delay.

Goal Formation

LICAI’s action planning processes contain limited
capabilities to discover correct actions by exploration.
These processes are controlled by goals generated by
comprehending task instructions and hints. LICAI
assumes that goal-formation is a specialized form of the
normal reading process in which task specific strategies
generate inferences required to guide goal formation.
LICAI’s goal-formation process is derived from Kintsch’s
(1988; in press, Chapter 10) model of word problem
solving.

Kintsch’s model takes as input a low-level semantic
representation of problem text, the textbase, and processes
it sentence by sentence. The result is a problem model.
Construction of the problem model makes extensive use
of comprehension schemata which elaborate the original

text representation with problem domain specific
inferences.
LICAI incorporates comprehension schemata that

transform relevant parts of the textbase for the task
instructions and hints into goals that control the action
planning process. Propositions that describe actions on
task objects in the textbase are recognized and further
elaborated by specialized task domain schemata to
generate a more complete description of a task. For
example, consider a graphing task in which the user was
given the instruction, Plot a variable named ‘Observed’ as
a function of a variable named ‘Serial Position.” LICAI
transforms this task description into the propositional
representations of two sentences. 1) Put ‘Observed’ on the
y-axis, and 2) Put ‘Serial Position’ on the x-axis. The
representations of the last two sentences are then
transformed into fask goals that control the action

planning process. Terwilliger and Polson (1997)
demonstrated that users actually perform this
transformation.

In the studies described in this paper, experimenters gave
hints of the form ‘perform a specific action on a specified
screen object’ (e.g., pull-down the Options menu).
LICALI requires that these text or verbal descriptions of an
action on an object have to be transformed into a goal, a
do-it goal, that specifies a specific object on the screen
and/or legal actions on that object. Specialized
comprehension schemata carry this transformation. See
Kitajima and Polson (1997) for extensive descriptions of
comprehension schemata.

Action Planning

The heart of LICAI is the action planning processes.
LICAI assumes that successful action planning involves
linking propositional representations of a goal (e.g.,
create a new graph), the screen object to be acted on (e.g.,
the Graph menu), and an action to be performed on that
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object (e.g., press and hold). The most critical of the three
links is the link between the goal and the correct screen
object. This link can be retrieved from memory or
generated by an exploration process.

Skilled Users

Kitajima and Polson (1995) developed a version of the
action planning process used by skilled users of an
application. This model represents an arbitrary sequence
of actions required to perform a task as hierarchical goal
structure that is retrieved from long-term memory and
used to generate the actions. A task is decomposed into a
sequence of task goals. Task goals refer to actions (e.g.,
edit) on a task object (e.g., graph title). Each task goal is
linked to an ordered sequence of one or more device goals.
Each device goal specifies a unique object on the screen
(e.g., the Options menu, the graph title) and the state of
the object (e.g., highlighted) after it has been acted on.
Thus, skilled users retrieve the critical links between goal
and screen object from memory. However, Kitajima and
Polson (1995) did not describe how such goal sequences
are learned or how they are retrieved from memory.

New Users

When a new user of an application attempts to perform a
task for the first time, Kitajima and Polson (1997)
assumed that they have a task goal but not the device
goals. LICAI can simulate exploration by generating the
correct actions for a novel task without the device goals if
the task goal can be linked to correct screen objects by
LICAT’s action planning processes.

A task goal is a proposition with two arguments
describing a task action and a task object (e.g., hide
legend). If a correct object on the screen has a label
representing either one of these concepts (e.g., a menu
labeled “hide”), the representation of the object will be
linked to the task goal. LICAI will retrieve the correct
actions (e.g., move the cursor to the object and press-and-
hold) on this object from long-term memory, completing
the necessary links to generate actions. We and numerous
other researchers have called this linking process the
label-following strategy (Franzke, 1994; Franzke, 1995:
Kitajima & Polson, 1997, Polson & Lewis, 1990;.
Rieman, Young, & Howes, 1996). Thus, the critical
links can be generated to mediate successful exploration.
The label-following strategy is the only method that
LICAI has for learning by exploration. If there is no
direct link between the task goal and the correct object,
users must be given a hint.

LICAl+'s Encoding and Recall Processes

LICAI already incorporates a model of encoding and recall
of goals based on the Kintsch and Welsch (1991) model
of text recall. They assumed that the textbase is stored in
episodic memory during the comprehension process. The
strength in episodic memory of a given element of the
textbase is determined by the number of cycles it stays in
working memory and the activation levels it achieves
during each cycle. LICAI+ generalizes this model to the
encoding and recall of successful actions. LICAI+ also
incorporates assumptions from the Wolfe and Kintsch
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(submitted) model of story recall that enables us to
compute predicted recall probabilities.

Encoding Process

LICAI+ assumes that encoding and storage of a successful
action is just a special case of the comprehension process.
The model “comprehends” the results of a successful
action during training. A comprehension schema creates a
representation of the successful action which is stored in
memory during the comprehension process.

There are two forms of this encoding. The first includes
the task goal, the object acted on, and results of the action
if the label-following strategy can discover the correct
action. The second case is defined by the failure of the
label-following strategy. The experimenter gives a hint
which is transformed into a do-it goal by the instruction
comprehension processes. A do-it goal specifies an action
on a screen object (e.g., Pull-down the Options menu).
The do-it goal is included in the encoding of the
successful action in this second case.

LICAI+’s goal formation, action planning, encoding, and
retrieval processes are implemented as special cases of
Kintsch’s (1988; in press) construction-integration theory
of text comprehension. Each process is modeled by one or
more iterations of a general construction-integration
cycle.

The following is a description of the encoding and recall
cycles. See Kitajima and Polson (1997) for detailed
descriptions of the remaining processes.

The construction phase of the encoding process generates
a network of propositions that contains the following
representations:

1) the task goal,

2) the do-it goal (if a hint was given),

3) the acted-on object,

4) its label (if the acted-on object is labeled),

5) salient changes in the display state caused by the
action (e.g., menu dropped),

the display caused by the action (e.g., a pull-down
menu),

a special encoding node that links the nodes 1, 2, 3, 4,
and 5 with the strengths defined by an analyst.

6)

7)

In addition, the fundamental linking mechanism assumed
by the construction-integration theory, the argument
overlap mechanism, is applied to connect any two
propositions in the network sharing arguments. Figure 1
illustrates a network generated for encoding a step of
pulling down the Legend menu. This action caused a
pull-down menu to appear with menu items, Hide,
Show, Movue, and Arrange.

The integration phase of the encoding process is
performed using a spreading activation process. The nodes
in the network can be partitioned into sources of
activation, targets of activation, and links between
sources and targets. In the encoding process, the
representations of screen objects, the task goal, and the
do-it goal serve as sources of activation. In Figure 1,

ISBN 1-897676-67-0

e

2) Do-ft Goal

4)L.abel of Acted-On Object
" <

SO

Figure 1. A diagram showing the propositional network
generated by the construction subprocess in the encoding
process. The dotted lines represent the argument overlap
links. The solid lines connecting nodes, 1 through 5, with the
encoding node, 7, are special links defining the encoding
process.

k4

these nodes are shaded. The encoding node is the target.
The results of the integration of the network are stored in
episodic memory.

At the end of training, episodic memory contains the
nodes representing the textbase for the task instructions
and hints, and the nodes participated in encoding processes
for the correct steps. The strengths of links between these
nodes are determined by the pattern of activation levels
achieved in respective integration processes for text
comprehension and encoding.

Recall Process

The recall process of LICAI+ assumes that users employ
the task goal and the current display representation as
retrieval cues. The recall process retrieves nodes in
episodic memory that are linked to these cues. Nodes
from episodic memory are sampled with replacement until
the model retrieves an encoding of a step or retrieves a do-
it goal (i.e., the action planning representation of a hint).

The predicted sampling distribution for retrieving nodes
from episodic memory for a given set of retrieval cues is
calculated by using a sampling probability matrix. This
matrix is a fully interconnected matrix generated from the
original episodic memory network. Following Wolfe and
Kintsch (submitted), the sampling probability matrix is
generated by two steps: 1) dividing each link strength in
the episodic memory network by the maximum link
strength, 2) for any two nodes linked by an indirect path,
assigning the product of the strength values of the link
segments in the path to their link strength.
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Any nodes that are directly linked with the retrieval cues
in the sampling probability matrix are retrievable. The
probability of retrieving a retrievable node in a single
memory sampling trial is proportional to its relative link
strengths with the retrieval cues.

Sampling is with replacement, and sampling terminates
on retrieval of one of the step encodings or a do-it goal.
These assumptions enable us to calculate the recall
probability distribution for step encodings and do-it goals
(recall targets).

Action Planning After Recall

LICAI+ attempts to act using the retrieved step encoding
or the hint. If the step encoding or the hint generates the
correct action, the model successfully recalls the current
step. However, there are no explicit order cues in the
encoding of each step, so the model can retrieve steps out
of order or retrieve hints that don’t apply to the current
display. In this case, the retrieval process fails, and the
model has to explore the interface again as on the training
trial. The exploration will succeed in performing the
correct action if the label-following strategy works for
this step.

AN ANALYSIS OF RECALL OF OCCASIONALLY
PERFORMED TASKS

The basic claim of LICAI+ is that how a step in a task is
learned, by exploration or with hints, determines how that
step is encoded and retrieved. Thus, we distinguish
between label-following (LF) steps or tasks, and non-
label-following (NLF) steps or tasks where the label-
following strategy fails for lack of linking shared
concepts.

Franzke (1994; 1995) and many others have shown that
LF steps are rapidly discovered and “accurately” recalled.
However, it is hard to distinguish between rediscovery and
recall of a step after one training trial because both recall
and discovery processes can have similar latency
distributions.

Soto (1997), in an analysis of a large number of different
graphing tasks using Cricket Graph III, showed that NLF
tasks have some LF steps, usually toward the end of their
action sequences. The task ‘hide legend’ is a good
example. The first two steps (pull-down the Options
menuy, and select Show Graph Items...) are NLF
steps. No menu label matches the task goal. The third
step (clear the check box labeled by Legend) is an LF
step. The last step (click OK) is a highly over-learned
action that closes a dialog box and terminates the action
sequence.,

Rodriguez (1997) and Soto (1997) found that the first
NLF step in the hide legend task is the source of the
difficulties that users have with this task. Almost all
users required a hint to complete the first step. Franzke
(1994; 1995) found a highly significant interaction for
number of hints between number of targets (screen
objects) for possible actions on the screen and LF versus
NLF steps. There are many targets for possible actions on
the first step of any task. Thus, we would expect first
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steps to be especially problematic. Once users are given
the hint “pull-down the Options menu” in the hide
legend task, there are only 7 menu items on that menu.

We have used two versions of the hide legend task in the
simulation described in the following sections. The first
version was a simulation of performing the hide legend
task using Cricket Graph III, Version 1.5.3 described
above. We will refer to this as the NLF scenario. The
other version of the simulated task used a hypothetical
version of Cricket Graph III that added a Legend menu
to the menu bar. The items on this menu were Show,
Hide, Mowve, and Arrange. This version of the hide
legend task requires two steps (select Hide from the
Legend menu) using this hypothetical interface. We will
refer to this simulation as the LF scenario. Our
discussion will focus on recall of the first step for each of
the two versions.

SIMULATION

A Mathematica program was developed implementing
processes incorporated in LICAI+ and simulating
responses from Cricket Graph III for correct actions in the
hide legend task. Training was simulated by assuming
that each step was performed correctly with hints given
for the first NLF step. The following processes are
simulated for the training: the comprehension process that
generates goals and comprehends hints, storage in
episodic memory during comprehension, retrieval of goals
from episodic memory, and action planning, encoding of
successful actions, and storage in episodic memory.

Representations of the task instructions, hints, and
interface displays were coded and input to the simulation.
The simulation also incorporated extensive knowledge
about the basic Macintosh interface conventions for each
screen object. For example, the Options menu item
affords pull-down, and the Options menu item causes
menu-selection, and so on. Other knowledge about
actions, including moving and dragging the mouse
pointer, and single- and double-clicking the mouse
button, etc., was incorporated into the model.

Simulation of Training

Training on each of the scenarios for the hide legend task
was simulated in several encoding conditions as described
below. At the end of training, episodic memory included
nodes representing the task instructions, the hint (for the
NLF scenario), the acted-on object and its label for each
step, and the display generated by the application. The
link strengths of nodes in episodic memory are
proportional to the activation level of these nodes
obtained in the encoding cycle.

Encoding Bias

In encoding cycles, we manipulated the relative strengths
of the links between the rest of the network and the links
between the network and the task and do-it goals. The
motivation for such manipulations is a fundamental
property of the action planning process. The action
planning process will not work unless the links between
the current task, or do-it goal, and the rest of the network
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are much stronger than the rest of the links in the
network. These strong links cause a goal to dominate the
integration subprocess. This subprocess selects the object
to be acted on and the action to be performed on each step
of the task. Manipulating relative strengths of the links
between the goal and the rest of the network enables us to
explore the hypothesis that the goal may dominate both
action planning and encoding processes.

Encoding processes have been simulated under three
conditions. In task goal biased encoding condition (TG),
we generated a network by multiplying by a factor of 4
the strengths of links from the task goal. The strengths of
the links from the do-it goal were not changed. In Figure
1, three links from the task goal (hide legend) are
strengthend by a factor of 4. In do-it goal biased encoding
condition (DIG), the strengths of the links from the do-it
goal were multiplied by a factor of 4, and those from the
task goal remained unchanged. In the neutral encoding
condition (N), no multiplication factor was applied. The
NLF scenario was simulated using the TG, DIG, and N
conditions. The LF scenario was simulated for the TG and
N conditions since hints are not required and there is no
do-it goal for the LF scenario.

Simulation of Recall

The recall cues are the task instruction and the
representation of task goals used in the action planning
process in training trial, and the initial display for the
first step. In each simulation, nodes in the episodic
memory that match the representations of the cues were
identified, and then the probability distribution of
retrieving the recall targets were calculated. The recall
targets were two encoding nodes for the LF scenario, and
the do-it goal and four encoding nodes for the NLF
scenario.

Recall after LF training

The probabilities of recalling the encoding of the first
step for the LF scenario for TG and N bias conditions are
given in Table 1. In the LF scenario, the encodings of the
first and second steps are linked to the task goal. In the
TG condition, the probabilities of recalling the encoding
for each of the two steps was nearly equal since the task
goal dominated the encoding process, reducing the
influence of the application display. Thus, the model
retrieved the representation of the first step a little more
than 50% of the time. In the remainder, the model
retrieved representation of the second step blocking the
successful retrieval of the first step.

Correct performance of both steps is mediated by the
same task goal, and the encodings are linked strongly to
the common task goal in the TG condition. One
implication of these results is that the encoding of a
multi-step LF task will not reliably be retrieved by the
combinations of task goal and display cues on each step.
Thus, correct performance will depend on a mixture of
successful recall and the label-following Strategy.
However, by lessening the biasing on the task goal in the
N encoding condition, the display cues made a much
stronger contribution to the encoding process and
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Table 1. Probabilities of recalling the do-it goal or the
encoding of first step for the LF and NLF scenarios. TG,
N, and DIG stand for task goal biased, neutral, and do-it
goal biased encoding condition, respectively.

LF Scenario NLF Scenari;
G N e N DIG
Probability of recalling ]| N/A | NJA | .027 | .253 | 618

the do-it goal
Probability of recalling { .551| .736{ .251 | .446| .177
first step encoding

Total 5511} .736 1 .278 1 .698] .795
Predicted Hints N/A | NA | .722 | .302} .205

significantly increased the probability of correctly
recalling the encoding of each step.

Recall after NLF training
The probabilities of recalling the encoding for the first
step and the do-it goal for the NLF scenario in the TG,

_ DIG, and N bias conditions are given in Table 1. For the

8o

NLF scenario, the row labeled Total gives the probability
of correctly performing the first step. LICAI+ cannot
perform the first step without recalling the encoding or
the do-it goal. The entries for Predicted Hints are, 1—
Total.

Manipulation in the NLF scenario of the bias has a huge
impact on recall performance. In the TG biasing
condition, the probability of recalling the do-it goal is
small. The task goal dominates the encoding process and
the do-it goal has very weak, indirect links to the task
goal. The task goal does have links to all four encodings
of each step. The probabilities of recalling each step
encoding are almost equal, .251, .227, .180, and 315,
respectively.

In the N encoding condition, both the recall probabilities
for the do-it goal and the first step encoding increased
compared with the TG encoding condition. The reason is
the same as the LF case. The display cues become more
effective in recall process. Included in these cues is the
label for the Options menu which is directly linked to
the do-it goal. Thus, the initial display is a more effective
retrieval cue for both the encoding of the first step and the
do-it goal.

On the other hand, in the DIG condition, all links
involving the concept Option are very strong. This
enhances the effectiveness of the representation of the
Options menu as a retrieval cue and strengthens the
representation of the do-it goal in episodic memory,
making it easier to retrieve.

COMPARISONS WITH USER PERFORMANCE

Franzke (1994) and Soto (1997) have done studies
relevant to evaluating LICAI+’s recall predictions. For
NLF steps, the model predicts that users will require a
hint to successfully perform the step if they fail to recall
the correct step encoding or hint. We used the best
available measure of recall, proportion of subject
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Table 2. Proportion of times at least one hint was
required for steps categorized by link type, training
(exploration) and recall trial (short or long delay). From
Franzke (1994).

Link Type Training | Short Delay | Long Delay
Exact Match .07 .00 .14
Synonym .08 .02 .18
Inference 42 .07 .29
No Link .88 .05 .60

ISBN 1-897676-67-0

Table 3. Observed proportions of tasks requiring at least
one hint as a function of task type and training and delay.
From Soto (1997).

Session 1 Session 2
Task Type | Training | Short Delay|Long Delay|Short Delay
LF/C .01 .00 .00 .00
LFU .19 N/A .12 N/A
PL/C .84 .26 .46 .11
PL/U .58 N/A .29 N/A

requiring a hint on a task or step. However, this variable
does not provide an unambiguous measure for evaluating
the recall predictions for LF steps and tasks. Both
successful recall and the label-following strategy can
generate correct actions within 10 seconds.

For LF steps and tasks, LICAI+ predicts that no hints
should be required during training or on recall trials.
However, Rieman (1996) and Rieman, Young, and
Howes (1996) found that users will explore an interface
before taking the initial correct action predicted by the
label-following strategy. This initial exploratory behavior
can lead to long latencies and hints on LF steps that are
outside the scope of LICAI+.

Description of Available Experimental Data
We first present experimental data from Franzke (1994)
and Soto (1997) focusing on the proportion of hints
required on training and recall trials.

Description of Franzke (1994)

Franzke (1994) had four groups of 20 participants create a
graph and then perform 9 editing tasks on the graph using
one of four graphics applications, Cricket Graph I or 11,
or one of two versions of EXCEL. During training,
participants did the task by exploration, receiving hints
when necessary. Half the participants in each group were
tested for retention after a 5 minute delay (short delay),
and the remainder were tested after a 7 day delay (long
delay).

Franzke classified each step in each task into one of four
categories according to the relationship between the task
goal for each step given in her instructions and the label
of the object to be acted on for that step. Her exact match
and synonym categories are examples of LF steps. In her
third category an inference is required to link the correct
object and the task goal. In the fourth category (no link)
there is no meaningful link between the screen object and
task goal. The latter two categories are both examples of
NLF steps.

The results relevant to LICAI+ from Franzke’s (1994)
experiment are shown in Table 2. The table shows the
proportion of times that at least one hint was required on
a step, with the steps categorized by link type, training
(exploration) and recall trial (short or long delay).

Description of Soto (1997)
Soto (1997) performed a study replicating and extending
Franzke’s results. Soto’s 19 participants were trained on a
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series of 33 graph editing tasks using Cricket Graph III
and were tested for retention after a 2 or a 7 day delay. All
participants were experienced Macintosh users who had
not used a graphing application. Editing tasks were carried
out on three types of graphs: histograms, pie charts, and
bar charts. The 11 histogram editing tasks and the first of
the 11 bar and pie chart editing tasks were used as warm-
up tasks, and these data are not included in the results
described below.

Four out of the 10 experimental pie and bar chart editing
tasks were unique (U) to that graph type and occurred once
during training and testing. An example is “stand out a
pie slice.” Six of the tasks were common (C) to both
graph types and occurred twice during training and recall
sessions. An example is ‘hide legend.” The delay between
the two presentations of the common tasks averaged
about 7 minutes. In Soto’s data analysis, the second
occurrence of a common task was treated as a recall trial
with a short delay. His participants had no trouble
recognizing the second occurrence even with a change in
graph type.

Soto classified his editing tasks into three categories.
Label-following (LF) tasks required acting on objects
whose labels were semantically related to the goal. Thus,
all steps in these tasks were equivalent to Franzke’s direct
match and synonym step types. Direct-manipulation
(DM) tasks required acting on the task object (e.g. pie
slice) mentioned in the task goal. These data are not
discussed as it is beyond the scope of this version of
LICAI+. Poorly-labeled (PL) tasks did not support either
label-following or direct-manipulation violating the label-
following strategy. Occasionally, a task supported label
following as well as direct manipulation (e.g., ‘Change
the graph title to “Year of Production”). For this reason,
the tasks were classified based on the method used by the
subject, rather than on a priori criteria.

Soto’s analysis is by task rather than by the step level.
The typical PL task has one or two initial NLF steps.
Soto’s findings and Franzke’s (1994) results suggest that
the initial NLF step has the largest impact on users’
performance. Previously, we summarized Franzke’s result
showing that there is an interaction for the number of
hints needed between LF versus NLF and the number of
possible targets for action on a screen. The difficulty of



Ritter, F. E., & Young, R. M. (Eds.). (1998). Proceedings of the Second European Conference on Cognitive

Modelling. Thrumpton (UK): Nottingham University Press.

NLF steps increases dramatically as a function of the
number of targets.

Comparison With LICAl+'s Predictions

Training Performance

LICAI+ predicts perfect performance for both training and
recall trials at all delays for LF steps. If we use the
proportion of users requiring hints as our measure, a large
majority of Franzke’s (1994) results (shown in Table 2)
and Soto’s (1997) findings (shown in Table 3) support
this prediction. The largest deviation that we know of is
in the data from LF/U, Soto’s condition where 19% of
the participants required hints on the training trial.

The model makes equally strong training performance
predictions for tasks and steps that do not support the
label-following strategy (NLF tasks). LICAI+ predicts
that these tasks and steps cannot be learned by exploration
without hints or information looked up in a manuaf or
help system. However, this prediction for NLF tasks is
not sound. The observed proportions of tasks or steps
requiring at least one hint ranges from less than .5 to .9
in different conditions of the Franzke and the Soto data.

However, the pattern of deviations in both the Franzke
and the Soto data is instructive and supports the claim
that the LF-NLF distinction is a useful design heuristic.
LICAI+ makes incorrect predictions for learning by
exploration in NLF tasks because of the model’s simple
exploration process. First, the model cannot perform
exploratory activities like pulling down a menu to see if
any items on that menu link to the tasks goal.
Experienced Macintosh users carefully explore menus
(Rieman, 1996) and act upon matching labels uncovered
during such explorations.

Second, users seem to be able to use elimination
strategies when dealing with a small number of screen
objects like the items on a menu. For example, when
participants are given the hint to pull down the Options
menu in the hide legend task, they correctly select Show
Graph Items... by a process of elimination. The other
items on this menu are more specific and clearly have
nothing to do with the hide legend task. LICAI+ can
perform this step if it is given the knowledge that ‘show
is the opposite of hide’ and that ‘the legend is a graph
item.’

The above arguments suggest that an interesting test of
the model would be to consider NLF tasks in which the
first two steps violate the label-following strategy. ‘Hide
legend’ is such a task. Rodriguez (1997) shows that 100%
of his subjects required hints to be able to perform this
task. Franzke (1994) found that approximately 90% of the
participants required hints for steps where there was no
link between the task goal and the correct object’s label.

Recall at Short Delays for NLF Tasks

LICAI+ predicts that successful performance on recall
trials is possible only when users retrieve a hint or an
encoding of a step from episodic memory. However, the
model does not make predictions about the effects of
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delay. We have assumed that LICAI+’s recall predictions

apply to delays of one or more days.

Franzke’s (1994) and Soto’s (1997) results show that
immediate recall of NLF steps is quite good. Franzke
(1994) found that about 90% of NLF steps can be recalled
after a 5 minute delay (see Table 2). About 75% of Soto’s
PL tasks were performed correctly, without a hint, after a
short delay (See Table 3).

Recall at Long Delays for NLF Tasks and Steps

LICAI+ predicts that successful recall performance can
vary from .722, to .205 as a function of the encoding bias
for NLF tasks and steps. Franzke’s and Soto’s results at
long delays are hard to interpret because of the results
from training trials for NLF tasks. Users’ learning by
exploration is better than that predicted by LICAI+. Thus,
contrary to the predictions of the model, users will be
able to discover the correct action on a recall trial even if
they fail to recall a hint or encoding of the step.

We reanalyzed both Franzke’s no link and inference steps
at the long delay shown in Table 2 and Soto’s recall data

- from his PL conditions shown in Table 3 at the long
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delay. We made the assumption that the probability of
requiring hints on recall trials, Poquire_nime » 18 just the
probability of failing to recall a hint or step encoding,
Prit_recan - times the probability of failing to discover the
correct action by exploration, P rit_esplorations ASSUMIng that
the two events are independent. If we assume that
P it exploraion €Stimated by the probability of requiring
hints on the training trial, Priit_recan €an be estimated by
P Sfail_recall =P require_him/ P, Jfail_exploration®

The estimated values of P, .., for Franzke’s no link
steps is .68, and .69 for the inference steps. These values
are close to the predicted value for the TG condition
shown in Table 1.

The estimated values of P .. for Soto’s poorly labeled
tasks at a long delay is .50 for the unique tasks and .55
for the common tasks. These results suggest that the task
goal has a strong influence on the encoding process but
that it is not as strong as the 4:1 bias assumed in
computing the predictions for the TG conditions shown
in Table 1.

CONCLUSIONS
PRACTICE

We have asserted that most users are occasional users of
many applications, and they routinely use only a small
fraction of the functionality of their frequently used
applications. A model of routine cognitive skill is not a
good description of users” actual patterns of use. The
action sequences for occasionally performed tasks are
generated by a mixture of recall of previous episodes of
use and of problem solving processes that attempt to
reconstruct missing action knowledge. Performance of
these tasks is more like the reconstructive processes
involved in recalling a story rather than the execution. of a
rule-based representation of a routine cognitive skill.

AND [IMPLICATIONS FOR

LICAI+ is a model of occasional users. This model
suggests the partitioning of all steps executed in
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performing a task into two categories: steps that support
the label-following strategy and those that do not. Steps
and tasks that support the label-following strategy can be
performed by exploration. We know that users have
strong preferences for learning by exploration (Carroll,
1990; Rieman, 1996), which the label-following strategy
supports.

Experienced users can make effective use of manuals
(Rieman, 1996) to perform tasks that are not supported
by the label-following strategy. However, users will have
continued trouble with steps not supported by label
following (NLF steps). These steps once correctly
performed with the assistance of hints are difficult to
remember over long delays (2 or more days). We estimate
that the probability of recall failure is at least .5.

The data from the short delay recall conditions also
suggests a possible limitation of empirical usability
tests. Test users will have trouble with the initial
versions of common tasks that don’t support the label-
following strategy. Second and third versions of these
tasks that are given to test-takers later in a session will be
performed correctly, and evaluators may incorrectly infer
that there are no problems with the interface for these
later versions.

In summary, the theoretical and empirical results
presented in this paper and in numerous other studies
demonstrate the wide applicability of the label-following
strategy. It supports rapid learning of all kinds of
applications, not just walk-up-and-use applications like
automated teller machines. We have shown in this paper
that label following is also a major contributor to the
usability of occasionally performed tasks.
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ABSTRACT

Current cognitive user models enable interface designers
to describe, analyze and predict aspects of user cognition.
However, none of the major cognitive user models such
as ICS, MHP, or CCT tackle the human error aspect of
cognition explicitly. The represented operator perfor-
mance is constrained to be error-free, expert performance.
This paper argues that usability and design analysis will
greatly benefit from representing a cognition-based error
model within a cognitive architecture, such as ICS. The
Netscape Internet browser acts as a case study throughout.
The resulting approach is shown to aid the analysis of
human error. Reasoning about potential error causes as
well as the generation of design recommendations can
thus be grounded in cognitive theory.

Keywords
Human Error, Netscape, Cognitive User Modeling, ICS
INTRODUCTION

Integrating Error Models and Cognitive Architectures

Cognitive architectures seek to represent the building
blocks of human cognition. They provide the basis for
cognitive user models, which strive to represent some
aspects of the user’s understanding, knowledge, or
cognitive processing. These models can then contribute to
our understanding of the cognitive limitations of an
operator performing a task, for example the effects of
cognitive load on user performance (Barnard and May,
1993; Ashcraft, 1994).

Erroneous task performance highlights precisely these
limitations of human cognition. It is surprising, therefore,
that the major cognitive user models do not explicitly
tackle issues associated with erroneous performance
based on cognition. They strive to represent error-free
performance, assuming expert performance in some
perfect context (see for instance Simon, 1988; Grant and
Mayes, 1991; Booth, 1991). This idealizes real-life
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conditions of task performance.

User error can point to problems in human-system
interaction that need to be resolved in order to enhance
the system’s usability. Human error taxonomies aid the
prediction and detection of error classes. They can thus be
exploited for error prevention and recovery mechanisms
(Reason, 1990; Taylor, 1988). Those can then be
incorporated into the interface design.

On the other hand, stand-alone human error theories
highlight possible sources of erroneous performance
without providing a language in which to express these
error tendencies when applied to human cognitive task
performance. This paper will use a cognitive architecture
as a vehicle for expressing not only expert task
performance but also the more realistic error-prone
thought and action sequences processed by the human
operator. By doing this, the error modeling capability
implicit in the comprehensive ICS cognitive architecture
is made the focus of inquiry into the underlying cognition
of user performance. Such explicit modeling of erroneous
performance can thus help to communicate user cognition
analyses, and to ground design decisions in a cognitive
theoretical framework.

As a running example, error modeling will be applied to
tasks concerning the use of Netscape Navigator™. This
example is appropriate because it represents a mass-
market application where errors frequently lead to high
levels of frustration during common tasks (Johnson, C.,
1997).

Interacting Cognitive Subsystems (ICS) and Reason’s
Model of Human Error

We will use Interacting Cognitive Subsystems - (ICS)
(Barnard and May, 1993) to illustrate the modeling of
human error within a cognitive architecture. ICS provides
a comprehensive account of human cognition. It has
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proved powerful in explaining cognitive phenomena such
as the stability of users’ mental models during dual task
interference effects (Duke, et al. 1995). It has been
applied to real-life systems and tasks, such as
cinematography (May and Barnard, 1995). Alternative
cognitive user models, such as Task Analysis for
Knowledge based Descriptions (TAKD) (Johnson, P. et
al., 1994), User Action Notation (UAN) (Hartson et al.,
1990), or Soar (Newell, 1990) might have been used.
However, they lack the level of detail in ICS’s
representation of cognitive processes, or, in the case of
Soar, the inherent constraints these have to satisfy
(Wilson et al., 1988; Kjaer-Hansen, 1995). ICS was
designed to provide a theoretical framework within which
to place user cognition. It attempts to "satisfy the need for
applicable theory" (Barnard, 1987). ICS, therefore,
bridges the gap between theory-oriented cognitive
architectures and task-oriented cognitive user models
(Grant and Mayes, 1991; Simon, 1988).

Reason’s taxonomy of human error (Reason, 1990)
represents a conceptual classification of error, as opposed
to a contextual or a behavioural one. The latter,
exemplified for instance by Hollnagel's (1991)
classification of error phenotypes, does not lend itself to
the in-depth analysis of the underlying cognitive sources
of error. For instance, a behavioural error category might
include errors that exhibit the same surface characteristics
without sharing the same cognitive basis. '

An Interactive System: Netscape Navigator

According to user population estimates, the Internet is
gaining roughly 150,000 new users per month, joining 20
million existing Internet users (Pitkow and Recker, 1994).
Internet browsers facilitate global communication by
providing supporting hypertext navigation. Familiarity
with such browsers, and therefore their usability
constitutes a prerequisite for taking part in this novel
information  exchange. Maximizing this usability
therefore represents a continuous concern for designers of
successively modified versions of Internet browsers. The
Netscape Interface (see Figure 1) will be used for
illustration throughout this paper.

Content and Structure of this Paper

The following section will take a closer look at the ICS
architecture and Reason’s theory of human error. The
modeling capacities of ICS will be illustrated by a
representation  of an error-free user performance.
Reason’s error classification scheme will then be
introduced. Readers familiar with ICS and Reason can
move straight to the third section, where the benefits of
this combined modeling approach are pointed out. ICS is
used as a framework within which Reason’s classification
of human error can be expressed.

9/

A COGNITIVE ARCHITECTURE AND A HUMAN ERROR
MODEL
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Figure 1. The Netscape Internet Browser

This section describes Barnard’s ICS model and Reason’s
human error taxonomy. This provides the framework in
which the representation of erroneous operator interaction
can be placed.

Interactive Cognitive Subsystems (ICS)

Cognition is represented in ICS as the flow of information
between a number of different subsystems, and the
processing performed on this data. Each of the
subsystems has associated with it a unique mental code in
which it represents the information it receives and
processes. It will transform its data output into the
corresponding mental code of the subsequently receiving
subsystems. Each subsystem can receive several input
streams and achieve a blending of these data streams
under certain circumstances as described below (May and
Barnard, 1995). Each subsystem also has at its disposal a
local image store. This serves as an episodic memory
buffer of infinite size. A copy of any input the subsystem
receives will automatically be copied to the local image
store, before being further processed.

The nine subsystems can be grouped into four categories.
Figure 2 presents an overview.

Modeling a Netscape Task in ICS

Figure 3 illustrates how the error-free performance of a
task of locating an object (an Up-Arrow, such as shown in
the visual subsystem) is modeled in ICS in terms of
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Sensory subsystems:

VIS visual: hue, contour etc. from the eyes
AC acoustic: pitch, rhythm etc. from the ears
BS body-state: proprioceptive feedback

Effector subsystems:
ART articulatory: subvocal rehearsal & speech
LIM limb: motion of limbs, eyes etc.

Structural subsystems:
OBJ object: mental imagery, shapes etc.
MPL morphonolexical: words, lexical forms

Meaning subsystems:
PROP  propositional: semantic relationships
IMPLIC implicational: holistic meaning

Figure 2. The Cognitive Subsystems

information flow between the subsystems, and thus the
different resources that are employed. Visual information
concerning the target arrives at the visual subsystem and
is copied into the local store. It is then transformed into
object code (1). The propositional subsystem has
generated a representation of the target of the location
task (by conferring with its local buffer) and transforms
this into object code (2). This is sent to the object sub-
system, and can there be blended with the incoming struc-
turally encoded visual information (3). The matching rep-
resentation can be sent back to the propositional sub-
system — the target has been located.

Thus, Figure 3 illustrates how human mental processing
underlying error-free performance can be represented
within ICS. In the case of erroneous performance,
however, usability designers might resort to an error
classification scheme in order to analyse this particular
instance of user behaviour. The following section will
introduce one such taxonomy. We will then go on to show
how a more detailed, cognitive analysis can be based on
initial error classification, and thus provide a further
perspective on user behaviour.

Reason’s Classification of Human Error

Reason (1990) investigated the more general underlying
error production mechanisms within human cognition and
produced a conceptual classification of error types which
is widely referred to in research into error modeling
(Green, 1985, Rasmussen, 1983; Rouse and Morris, 1987;
De Keyser, 1989). He bases his error classification skill-
based slips and lapses on the one hand, and rule- and
knowledge- based mistakes on the other (see also
Norman, 1981, and Rasmussen, 1983).

Reason furthermore asserts that instances of his three
basic error types are indirect results of what he calls the
‘underspecification’ of cognitive operations. In case of an
ambiguity of the situational requirements, the cognitive
system defaults to contextually appropriate, high frequ-
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ency responses. This idea of default assignments features
in most other cognitive theories, such as Bartlett’s (1932)
theory of schemata, and is well backed up by empirical
evidence.

This scenario particularly lends itself to being expressed
in the ‘cognitive language’ provided by ICS. The
limitations of human cognition in the face of information
overload, or cognitive strain, is built into ICS as the
architectural constraint of subsystems not being able to
process simultaneously inputs which belong to distinct
configurations. Using ICS might help expressing the
details of Reason's 'underspecification' more precisely.

Skill-based Slips and Lapses
Slips and lapses are error types that these manifest them-

selves as actions or states that deviate from the current
intention due to execution failures (slips) and/or storage
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Figure 3. Processing associated with the task of locating
an icon on Netscape

failures (lapses). Slips and lapses are observed at the skill-
based level of performance, and originate from either the
omission of attentional checks (inattention) during the
routine action sequence or making an attentional check at
an inappropriate moment (overattention).

A slip caused by inattention occurs in particular when
current intention is to deviate from common practice. For
instance, entering a well-known URL of a website cons-
titutes a routine task. If the URL is changed and the user,
although aware of that change, still happens to enter the
old URL, then this is a typical example of an action slip.
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A lapse might arise from what Reason calls Reduced
Intentionality’. For instance, if selecting a link on the
current site results in a considerable delay for this site to
be loaded, the users might become distracted, and then
experience disorientation upon facing the loading site.
This can be seen as one of Reason’s described reduced
intentionality states, such as a ‘what-am-I-doing-here’
experience (see below).

Skill based errors such as these contribute to the sources
of user frustration when accessing the World Wide Web
(as described in more detail in Johnson, C., 1997). These
errors need to be taken into account in future design
decisions. Applying Reason's categorization of error helps
to identify error classes and presents a step towards
dealing with the underlying usability problems of the
system.

However, error taxonomies such as Reason’s typically
confine themselves to broad error categories such as slips
and lapses. A more detailed, lower level description of
such classes might aid the further investigation of its
instances. Thus, the design process might be tuned more
finely to the usability needs pointed to by the user error.

Cognitive modeling techniques such as ICS can provide a
more precise vocabulary to augment the general descrip-
tions of error taxonomies. Examples of this lower level
modeling of classes of human error are given below.

Rule-based Mistakes

Mistakes are apparent in actions that may run according
to plan, but where the plan is inadequate to achieve its
desired outcome. For any task, rules must be selected by
the cognitive system which describes methods to reach a
given (sub)goal. The selection occurs according to certain
criteria. These include best match, specificity, and rule
strength. Rule strength is defined to be the number of
times a rule has performed successfully in the past.
Occasionally, rule strength might override the other
factors resulting in misapplications of otherwise ‘good’
rules to inappropriate situations.

As an example, an animated icon at the bottom of a page,
near the contact information is quite often the mail-me
icon (commonly found are self-folding envelopes, self-
writing letters, or moving mailboxes). A corresponding
rule will be formed and strengthened over several
successful applications. In the case of a home-page icon
being animated and located at a similar position in the
screen layout, this rule might be applied and could lead to
non-intended actions such as clicking on the icon when
intending to mail the author of the page.

Such error classes can be predicted as increasingly adding
to usability deficiencies as the use of animated icons
accelerates in web page design (Nielsen, 1997). By being
able to predict these errors, preventative measures can be
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taken and further user frustration (Johnson, C., 1997;
Ramsay et al., 1998) can be curbed.

USING ICS TO EXPRESS REASON'S ERROR TYPES

In this section, we will examine more closely the
modeling of errors as identified by Reason’s taxonomy
within the ICS architecture.

Commonly occurring errors and usability problems when
interacting with Internet browsers’ interfaces gave rise to
numerous design guidelines and principles’. Interface
design issues such as the use of counter-intuitive icons
and download delays are all well known to aggravate
usability problems (see for instance Nielsen, 1996; John-
son, C., 1997; Ramsay et al., 1998). Rarely, however, are
the errors resulting from those usability problems
described in detail, or even analyzed in terms of
underlying psychological factors (Johnson, C., 1998).
Expressing such errors within a cognitive model will
allow us to investigate and reason about their underlying
psychological causes. The model is thus used as a tool for
reasoning about user error on a further, more detailed
level.

Analysis of Errors and their Underlying Cognition

High download latency of web pages was identified as
major source of frustration and decreased satisfaction
with the downloading site and also as attenuating user
performance (Ramsay, Barabesi and Preece, 1998;
Johnson, C., 1997). For instance, as introduced above, if
selecting a link on the current site results in a
considerable delay for this site to be loaded, the users
might become distracted, and then experience
disorientation upon facing the loading site.

This disorientation can be classed as the effect of a
phenomenon  which  Reason  termed  ‘Reduced
Intentionality’. If a delay occurs between the formulation
of an intention to do something and the time for this
activity to be executed, the intention needs to be
periodically refreshed. Other cognitive processes such as
secondary intentions will otherwise claim the workspace
resources. This mechanism can lead to lapses in the form
of reduced intentionality states, the above described
surprise and disorientation.

The cognitive processes underlying this scenario can be
represented in ICS as shown in Figure 4.
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! See for instance Yale C/AIM WWW Style Manual (URL:
"http://info.med.yale.edu/caim/manual/index.html" current at
08.12.1997) or The Ten Commandments of HTML
(URL:"http://www.visdesigns.com/design/commandments.ht
ml" current at 08.12.1997
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Figure 4. Reduced Intentionality: A Lapse

After processing the goal hierarchy for selecting a link,
the cognitive system shifts its focus back onto the current
page (3 and 4). If novel external (1) and the current inter-
nal input are not coherent, and thus cannot be blended (2),
a decision must be made as to which of those to accept as
valid input. The longer the delay, the stronger the influ-
ence of the novel input grows, with it eventually replacing
the internal propositionally influenced representation (3).
The recognition of this mismatch will lead to a lapse as
described above.

By modeling the underlying mechanisms of
manifestations of attenuated performance, such as user
error, and the causes of decreased satisfaction within ICS
we can shed some light on the processes fundamental to
the production of the user error as mediated by the
described usability problems.

Reasoning about Alternative Analyses of Error Causes

Misinterpreting user interface icons is a common source
for user error in interactive systems (Norman, 1988,
1993). However, the mistake might be grounded in
varying cognitive processes, and not stem from one kind
of cognitive mechanism alone.

Typically, user interface design manuals and textbooks
stress the importance of intuitiveness of the icons chosen
(Preece, 1994) and thus identify counter-intuitiveness’ as
a source of faulty identification of icons. However, further
insight into the source of such user error can be obtained
by investigating it in greater detail. As will be shown

below, mistaking for instance a mail-me button with a
homepage icon can be modeled in respect to two differing
underlying cognitive mechanisms.

Unless these two different causes are considered these
designs might misdiagnose an important problem in user
utilization of icons. Using a cognitive architecture to
reason about the potential underlying cognitive error
production processes allows designers to investigate the
detected usability problem in a systematic way.

The above described user error could according to
Reason’s scheme be classified as a slip termed
‘Perceptual  Confusion’. In perceptual confusion,
something that looks like the proper object, is in the
expected location, or does a similar job is accepted as a
match for the proper object. These slips could arise
because, in a routine set of actions, it is unnecessary to
invest the same amount of attention in the matching
process. Thus acceptance criteria concerning the expected
input might degrade, and result in rough and ready
matches.

The processing carried out can be modeled in ICS as
shown in Figure 5.
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Figure 5. Perceptual Confusion: A Slip

The visual data is received at the visual subsystem (1),
sent to the object subsystem for the recovery of a
structural description (2), and finally interpreted by the
propositional subsystem (3). A loop is entered in order to
maintain a stable cognition. The resulting interpretation
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on the propositional level influences the further view of
the object. If, however, the object subsystem receives
ambiguous visual information, it will make use of its local
image record and fill in the assumed missing information.
This principle of ICS resembles closely what Reason
describes as the cognitive system’s reaction to
underspecification of a mental operation as described
above.

The data thus acquired from the image record of the
object subsystem might also fit in with the propositional
interpretation of what is perceived, and thus stabilize in
the cognitive system. If the assumption underlying the
choice of what data is used to eliminate the
underspecification is wrong, however, the representation
of what is thought to be perceived will also be incorrect.
The wrong icon will be chosen, and the information
necessary for a mouse click sent to limb subsystem (4).

This represents one possible underlying cause of the
described error. However, the same manifestation of user
behaviour might also point towards a second, different
underlying cognitive mechanism. Employing Reason's
taxonomy, the mistaking of an icon can be classed as a
perceptual slip as modeled above. On the other hand, it
could also be classed as a rule based mistake. Using ICS
to model the underlying cognition of the error provides a
means to further investigate the behaviour trace and its
associated usability problem.

Thus, the error described above could be classed as a rule-
based mistake as opposed to a slip. Identifying the home-
icon might well be based on rules that are utilized by the
cognitive system in order to discriminate different sets of
icons. Features which positively discriminate icons
fulfilling one function from those fulfilling another might
be listed in the set of conditions which when matched
cause to fire the rule. Indiscriminative features in icons
might thus lead to a rule wrongly being fired.

This can be modeled in ICS (see Figure 6) similar to the
modeling approach applied to the perceptual confusion
approach, but this time with the implicational subsystem
playing the major role in accepting information
augmented wrongly by the propositional subsystem and
its local image store. Thus for the goal ‘press home
button’, a subgoal hierarchy can be formulated as ‘if
locate home button, move cursor to click on it’, and ‘if
object has X features, it is the home button’. By mistaking
the icons on a propositional level, the mail-me button
might be clicked instead.

The examples elaborated above show clearly how one
overt form of user error can stem from several different
‘errors’ within the cognitive processing taking place. This
M:N relationship between cause and error might have
gone undetected if systematic error modeling within a
cognitive architecture had not taken place, this helps

analysts to explicitly consider the detailed causes of
usability problems.

Generating Design Recommendations

Since underspecification proved the major source of error
in the above example, once for perceptually and then for
semantically discriminative features of the icon, this
should be targeted by designers to remedy misidentifica-
tion of icons. Thus, two functionally dissociated sets of
icons should not share the same superficial perceptual
features.
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Figure 6. Rule Strength: A Mistake

Features commonly used to discriminate one set of icons
from another should be taken into account when
designing future sets (Moyes, 1995). These feature
considerations should not limit themselves to ambiguity
concerning structural characteristics of icons, but also to
features such as those mentioned in the examples earlier.
This included as discriminative features of mail-me
buttons not only their shape and internal composition, but
also for instance the location of the icon on the screen,
and characteristics commonly unique to mail-me buttons
such as animation as present in self-folding envelopes,
self-writing letters, or moving mailboxes.

The important point to highlight here is that the modeling
approach described does present a method for providing a
grounded rationale for design decisions, and can guide the
designer in making informed choices when faced with
design alternatives.

Another example of how this modeling technique can aid
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the generation of design decisions is introduced as this
section progresses.

Johnson (C., 1997) describes how download latency of
web pages affects the usability of the World Wide Web.
The effects range from user dissatisfaction with time
investment to the psychological devaluation of the
anticipated page (Ramsay et al., 1998). Consider the
following scenario of user error resulting from download
latency: After having selecting a link on the current site, a
delay in downloading might lead to attention being
focused on reading the current page. An intention to scroll
down the page just before the new page is downloaded
might lead to the scrolling action being carried out on the
new page instead.

This scenario fits Reason’s description of ‘behavioural
spoonerisms’, namely slips based on interference errors.
As defined above, a slip is an action that deviates from
intention due to failure in the execution stage of
processing operations. An interference error occurs, when
two concurrent actions compete for control over cognitive
processing and a transposition of actions within the same
sequence takes place. For instance, intending to speak and
perform an action at the same time can lead to
inappropriate blends of speech and action. In our
example, waiting for the new page to load, and scrolling
the old page can be seen as two concurrent actions
interfering and leading to an execution failure, the
scrolling of the new page.

This can be modeled in ICS very similarly to the skill-
based example of reduced intentionality. Only this time
the focus is not on the delay but on the shift of focus back
to the current page. A ‘mental model’ of the current page
will be constructed (or reactivated). The unexpected
appearance of the new page might lead to a blending of
representation and the action included in one cognitive
configuration carried out as part of a secondary one.

As a consequence, future browser designers should
beware of the error-inducing character of non-interrupted
browser functionality when downloading a site.
Alternatively, browser functionality should only be
available to the current site accessed. A clear distinction
should be made when transferring functionality to the
downloading site to alert users to the new context. This
design flaw in Internet Browsers has not received much
attention. We hypothesize that it may become
increasingly important as the interweaving of the user
population of the Internet grows and the World Wide
Web becomes an increasingly common tool for
communication and information exchange. Detailed,
error-oriented cognitive analysis of such design problems
can help to predict future generations of interface
problems.
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CONCLUSION AND FURTHER WORK

Cognitive user modeling enables engineers to gain a
deeper understanding of the complexities of human task
performance. Current techniques typically constrain this
performance to be idealized, error-free and often at an
expert level. However, human error during performance
represents a major source of insights into the workings
and limitations of operator cognition, and therefore into
usability problems. By being based on cognitive models,
the possibility of representing erroneous performance is
inherent in these techniques. Few modeling techniques to
date explicitly represent human error precisely, as
embedded in cognitive theory. This paper showed the
adoption of Reason’s error taxonomy and Barnard’s ICS
for the systematic representation of operator error within a
theoretical cognitive framework. The utilization of such a
combined approach was illustrated to benefit several areas
of application. User error can be described more precisely
by linking it to its underlying cognition. Analysis can
reach beyond surface categorization, and it is made
possible to reason about the actual causes of error. As a
consequence, an informed choice concerning competing
design options is facilitated. This paves the way for
usability design that takes full advantage of the insights
expressed in cognitive theory.

Embedding human error modeling into a cognitive
theoretical framework helps to express designers'
understanding of the error sources. Communication of
their reasoning, based on expertise and experience, is
illustrated in this paper by using Reason’s taxonomy and
ICS. Further work might also take issues such as 'learn-
ability' and level of complexity into account in the choice
of the cognitive architecture employed. More easily
learnable cognitive modeling techniques will further lend
themselves for integration into the design process.
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ABSTRACT

We have recorded the behaviour of several users solving
the same tasks with an interactive database program and
were able to identify several distinct strategies. Since the
number of users exceeds the number of strategies,
multiple users will have a strategy in common. Our aim
was to find groups of users sharing the same strategy.
Following each of the three methods (correlation, inter-
section, and exclusion) we define a metric among task
solving sequences. For multiple users, we represent these
measures by a matrix system, in order to find groups of
users with common behaviour. Direct interpretation or
multi dimensional scaling of such matrices indicates
distinct user groups. The common denominator for each
group can be interpreted as a strategy. A few distinctive
solution strategies were found to exist.

Keywords
Mental models, observable behaviour, plan recognition,
user strategies, statistical analysis, repetitive behaviour

1 MODELLING APPROACH

Humans express themselves in many ways. One of these
ways is everyday problem solving. We will focus on
problem solving in the domain of human computer inter-
action. In particular, we will examine how multiple users
solve various tasks with a relational database application.
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N\ode\\'\“g

Human problem
solver (HPS)
REALITY

authenticity

Mental model
MODELS OF REALITY

User mental model '\
(UMM) J a\\da\\O
—
complexity

Fig. 1: A scheme showing the differences between models of
reality and real humans (HPSs). Models are meant to
represent objects and processes existing in reality.
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It is hard to grasp how human problem solvers (HPS)
really express themselves, since the persons we study are
live beings. Nevertheless, a mental model (see Fig. 1)
may give us an idea of the real HPS. Since we are
interested in computer mediated, everyday task solving,
we introduce a special case of mental models, cailed user
mental model (Tauber, 1985) (UMM, see Fig. 1). UMMs

" can bring understanding about the strategies people use

when solving specific problems. UMMs can be represen-
ted in many ways, using plain text, Petri nets or state-
transition vectors. We choose the latter representation to
elaborate UMMSs based on observable task solving
behaviour.

In general, we observe a lot of task solving behaviour
that is not strictly task related. If we study one user
solving a task, we are hardly able to single out the
successful strategy from the remaining behaviour. One
approach may be to study many users solving the same
task. Since they all solve the same problem, we suppose
that their common behaviour is what was required to
solve the task. If there are several successful strategies,
some users may have one strategy in common, other
users a second one.

Successful strategies are most often defined by the given
task-system combination. For users to accomplish a task,
they must follow one of these strategies. As soon as a
successful strategy has been accomplished, user behaviour
is finished.

Which strategy a user prefers, as well as other kinds of
user behaviour can tell us something about the particular
HPS; for instance how the successful strategy was
acquired. Given a behavioural task solving sequence, we
want to separate the strategy (which is more related to the
task-system combination) from the remaining behaviour
(which is more related to the HPS). In the rest of this
paper, strategy will mean one (of many), possibly error
free, task solving behavioural sequences.

The aim of our work is to find which strategies are needed
to solve a given task. We are looking for automatic
methods to find these strategies. Under certain conditions,
strategies may also be obtained by protocol analysis
(Ericsson and Simon, 1984). Protocol analysis implies
manual inspection of video and verbal utterances in
addition to logfiles. With simple tasks, this work can be
overcome. For more complex tasks, protocol analysis be-
comes cumbersome. Semi-automatic generation of
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process models was studied by Ritter and Larkin (1994).
Motivated by their work, we wish to suggest further prin-
ciples for automatic recognition of user strategies and
plans.

In this paper, human perception and verbalisation will not
be considered as part of the problem solving. Hence,
purely based on observable task solving behaviour, we set
out for automatic methods, applicable with simple as
well as with complex tasks. We only consider protocol
analysis as a mean to validate the automatic methods we
elaborate.

2 SYSTEM DESCRIPTION

The system we study is a relational database program
with 153 different dialogue states. The possible
transitions of the system are represented by a state-
transition vector space. A state-transition-vector (STV)
summarises a subject's task solving behaviour for one
task. It has length n, where n is the total number of
transitions (n=978) for the complete database program.
Each STV element tells how many times a certain
transition was activated to solve the task.

Since the order of activated transitions is not contained in
the STV, the order of user behaviour is only partly
conserved. It is stored in an implicit form, given by the
system dialogue structure and is embedded in the structure
of the STV.

To reduce complexity, it is possible to replace each STV
element >1, by 1. We call the result binary-state-transi-
tion-vector (B-STV). It tells us which transitions were
activated, but nothing about repetition.

3 TASK DOMAIN

An empirical investigation was carried out to compare
different types of expertise (Rauterberg, 1992). For the
reconstruction of UMMs we used logfiles of six novice
and six expert users, all solving the same task. The task
was to find out how many data records there are in a given
database consisting of three file. An example UMM of a
task solving process, based on one of the experts, is
presented in Rauterberg et al. (1997). In that example, 15
different transitions (number of positive STV elements)
were activated to solve the task. However, since some of
them were activated repeatedly, the fotal number of
activated transitions (the sum of STV elements) is 25.

4 INTERPRETING BEHAVIOURAL SEQUENCES
Studying an STV of one user can tell us which system
states the user passed by, which transitions that were
triggered in those states and how many times that
happened. Different users working with the same system
are directly comparable, since their behavioural sequences
only differ by the value of the vector elements.

5 BASIC QUESTIONS AND METHODOLOGY

First, we want to find out how the behavioural sequences
of two users can be related. A classical method is that of
correlation. An alternative is to look for analytical
methods. The user STVs can be represented by ellipses as
in Fig. 2. The area of an ellipse corresponds to the sum
of the STV element values. Intersection area can be
understood as symmetric similarity between two user
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STVs. Exclusion areas can be understood as the
asymmetric difference between two user STVs.

Based on such considerations, we raise the following
questions and suggest corresponding methods as answer:

1) What is the proximity between two behavioural
sequences? Method suggested: correlation.

2) What do two behavioural sequences have in common
(similarity)? Method suggested: intersection (Fig. 2).

3) What do two behavioural sequences not have in
common (difference)? Method suggested: exclusion (Fig.
2).

user1 STV

Area of
useri STV

excluded from
user2 STV

Fig. 2: Intersection area and exclusion areas between userl
and user2 STV.

For each method, we elaborate a metric (Table 1). The
order of the metric may be symmetrical (the metric
applied from user] STV to user2 STV is the same as the
metric applied from user2 STV to userl STV) or asym-
metric (the metric applied from userl STV to user2 STV
is not the same as the metric applied from user2 STV to
user]l STV). Based on the metrics applied between all the
user STVs, we then apply a grouping algorithm.

With each group suggested by the grouping algorithm, a
strategy may be approximated. The procedure is to create
a STV with a maximum number of non-zero elements
common to all the users of the group.

In the following presentation, we will proceed from more
statistically based to more analytically based methods.

Table 1: The three suggested methods and their characteris-
tics. CORR means a standard correlation method, the other
metrics are defined by Formula 1,2 and 3.

Method Metric Metric Grouping
name nature algorithm
Correlation | CORR Statistical | Statistical
Intersection | M fq M :,{f Analytical | Statistical
Exclusion | M f; , Analytical | Analytical

5.1 CORRELATION METHOD
In this method the metric between user STVs is the
degree of proximity. The metric values are analysed by
multi-dimensional-scaling (MDS, Systat, 1989) to
indicate groups of users. .
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5.1.1 METRIC

Correlation is one way to measure the proximity between
behavioural sequences. We apply Pearson correlation as a
measure for proximity between two STVs. By this
procedure, we get an mxm (m=12) diagonal dominant
symmetrical matrix with possible values between minus
one, via zero (no proximity) and one (equality). For Fig.
3 the observed values are between -0.003 and 0.948
(without considering the diagonal elements).

5.1.2 GROUPING ALGORITHM

The correlation matrix is interpret by MDS, giving the
plot of Fig. 3. We have chosen to apply two dimensional
MDS to allow visual interpretation of the plots.

2 I [ I
1 - -
o N3 E2
5 M tSons ANz
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g cE%ES
&
1L NG o _
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") L I |
2 -1 0 1 2
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Fig. 3: MDS (r=1, Kruskal, Mono) plot with a Pearson corre-
lation matrix gives RSQ=0.870.

5.1.3 OUTCOME

From the plot in Fig. 3 we see how the users may be
grouped: {N1, N4, N6, E4}, {N2, N3, El, E2, E3, E6}
and {N5, E5}. Some of these user STVs may well con-
sists of parts of several strategies in addition to the suc-
cessful one.

According to the proportion of variance (RSQ=0.870),
MDS explains some of the variance of the user data, but a
significant part remains unexplained.

5.2 INTERSECTION METHOD

This method is based on the observation that if two users
followed the same strategy, that strategy will belong to
the intersection of the two users STVs. The order of the
an intersection metric is symmetric, since both user
STVs have the same in common. These metric values are
analysed by MDS to indicate groups of users.

5.2.1 METRIC
Similar behaviour is measured by summing up the
smaller STV elements of the two user STVs, thus
considering the number of activated transitions common
to both users.

It is reasonable to normalise the degree of intersection by
the smaller of the sums of the STVs elements (which
would be the maximum possible value for the
intersection).

Formula 1:
n
D mm(ep,,. ) eq,,.)
s _ i=1
Mp,q -

n n
min 2 ep,i ? 2 ep,i
i=1 i=l

where:
M fq : Intersection metric between user p and q
i : Summing Index STV elements
n : STV length, upper summing limit
e i : STV element i for user p
e : STV element i for user q

We may ignore repetitive behaviour, using B-STVs in-
stead of STV. Results based on B-STVs are called binary.

Formula 2:

where:
BIS . . . .
M 'Y Binary infersection metric between user p and q
i : Summing Index B-STV elements
n : B-STV length, upper summing limit
e i : B-STV element i for user p
e : B-STV element i for user q

By this procedure, we get an mxm (m=12) symmetrical
matrix with elements based on STVs (Formula 1) or
B-STVs (Formula 2). The elements take possible values
between zero (no similarity) and one (equality). For Fig.
4, based on STVs, the observed values are between 0.078
and 0.929 (without considering the diagonal elements).
For Fig. 5, based on B-STVs, the observed values are
between 0.182 and 0.882 (without considering the
diagonal elements).

5.2.2 GROUPING ALGORITHM

We interpret the symmetrical exclusion matrix by MDS,
obtaining plots like Figs. 4 and 5. The users seem to re-
present three groups, {N1, N4, N5, N6, E4}, {N2, N3,
El, E2, E5} and {E3, E6}. E3 and E6 may as well be
combinations of several strategies.

/00
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Fig. 4: MDS (r=1, Kruskal, Mono) plot with a normalised
intersection matrix gives RSQ=0.975.
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Fig. 5. MDS (r=1, Kruskal, Mono) plot with a binary
normalised intersection matrix gives RSQ=0.995.

5.2.3 OUTCOME

According to the RSQ of Fig. 4 (RSQ=0.975) and of Fig.
5 (RSQ=0.995), we can explain most of the variance
among user data. However, the binary based plot of Fig.
5 (RSQ=0.995) is slightly better than that of Fig. 4
(RSQ=0.975). That is surprising, since the method
ignores information about repetitive behaviour. Maybe
such information is redundant in the context of this
method.

5.3 EXCLUSION METHOD

This method is based on the exclusion as a metric of
difference. Exclusion among two users is always given by
two areas. The area of one user STV (user 1, Fig. 2)
excluded from the area of a second user STV (user 2, Fig.
2), is not the same as the area of the second user STV
excluded from the area of the first one. Since the two
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exclusion areas are asymmetric, the method does not
allow for MDS as grouping algorithm.

5.3.1 METRIC
This method measures the difference between two STVs
by estimating how much of one user STV (column index

in Table 2) is excluded from a second one (row index,
Table 2).

Formula 3;
n
EX __ .
Mp,q = Z rmn(ep,,. €, O)I
i=]
where:
M f ); : Exclusion metric between user p and q
i : Summing Index STV elements
n : STV length, upper summing limit
e i : STV element i for user p
e 0. : STV element i for user g

Following this procedure for all users, we get an mxm
asymmetrical matrix (Table 2), where each element is a
measure of exclusion (Formula 3). Since there were six
novices (N1-N6) and six experts (E1-E6), m is 6+6=12.

Table 2: Numerical representation of exclusion matrix.

Eé 6 43 47 51 70 50 47 35 73 5 1M 0
ES 17 15 14 69 48 67 23 7 64 21 0 24
E4 9 44 47 56 70 55 47 35 73 9 171 8

E3 17 41 41 68 77 62 28 28 0 21 162 24
E2 17 15 16 68 81 67 19 ] 66 21 143 24
El 20 16 19 13 85 72 0 7 54 21 147 24
Né 3 41 4“4 28 48 0 47 30 63 4 166 2
N5 3 39 42 41 0 33 45 29 63 4 132 7
N4 2 41 4?2 0 55 27 47 30 68 4 167 2
N3 16 11 0 68 82 69 19 4 67 21 138 24
N2 18 0 15 71 83 70 20 7 71 22 143 24
N1 0 41 43 55 70 55 47 32 70 10 168 10
NI N2 N3 N4 N5 N6 ET EZ E3 E4 E35 E¢

5.3.2 GROUPING ALGORITHM

The grayscale representation (Fig. 6) of the exclusion
matrix (Table 2) is generated by Mathematica (Wolfram,
1991) ListDensityPlot with the negative, inverted
exclusion matrix as input. We use the negative matrix to
obtain a consistent plot. Fig. 6 is only meant as a visua-
lisation of Table 2, and is not an exact mapping. Since
division by zero is not defined, the diagonal elements of
Table 2 were directly mapped to the darkest graytone. Fig.
6 shows to what degree a column user STV is excluded
from a row user STV. Darker matrix elements correspond
to lower degree of exclusion.

To interpret the degrees of exclusion in Table 2, we
suggest an iterative predictor-corrector algorithm. The
corrector is an estimator for the threshold value so that
only considering exclusion measures between that value
and zero will give the predicted number (predictor) of user
groups. The stop criterion for the iteration method is that
the number of user groups given by the corrector, equals
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the value of the predictor. Research on converge criteria is
part of our future work, so now we simply assume
convergence. For each iteration the corrector is modified
in order to meet the stop criterion, according to the
following rules: If we consider too few exclusion
relations (i.e. the corrector is too close to zero), the
number of groups will be higher than the predictor. If we
consider too many exclusion (i.e. the corrector is too far
from zero), many or all of the users will be related by
exclusion statements, and the number of groups will be
lower than the predictor. We give our predictor the value
predictor=3. By visual inspection of Fig. 6 it appears
reasonable to consider the darkest matrix elements only.
Since these elements have numerical values equal to or
below 8 (Table 2), we choose the initial value of the
corrector to be 8.

Nt N2 N3

N4e N5 N6 E1 E2 E3 E4 E5 E6

Fig. 6: Grayscale representation of exclusion matrix. Darker
elements mean higher exclusion of column user STV from
row user STV.

Diagonal elements are ignored, since each STV is fully
similar to itself.

Since small differences indicate similarity, we can derive
(based on Table 2) four similarity relations (Table 3).

Table 3: We can derive these four similarity relations.

ISBN 1-897676-67-0

5.3.3 OUTCOME

Hence, the algorithm gives the following groups: {NI1,
N4, N5, N6, E4, E6}, {N2, N3, El, E2, E5} and {E3).
We assumed that the number of groups should be three,
so the stop criterion has already been met. If our predic-
tion had not been met, we would have to try with a
higher or lower corrector (according to the above men-
tioned rules) and go back to the start of the predictor- cor-
rector algorithm. This algorithm is repeated until the stop
criterion is met (convergence).

6 DISCUSSION

In order to validate the outcome of these three automatic
methods, we performed a protocol analysis (Ericsson and
Simon, 1984) of the task. This is manual work, based on
analysis of video and verbal utterances in addition to
logfiles. This is mostly feasible for simple tasks, where
users basically follow one or a few strategies. This
analysis showed that there are three distinct strategies
solving the task. We call these strategies S1, S2 and S3.
Table 4 shows the users according to their successful
strategy.

Table 4: Manual protocol analysis of the task shows three
distinct strategies and gives information about which user
succeeded by which strategy.

Strategy | Users according to strategy
S1 N1, N4, N5, N6, E4, E6

S2 N2, N3, E1, E2, E5

S3 E3

Similarity | User STVs of each relation
relation

1 N1 € N4, N5, N6, E6

2 E4 € N4, N5, N6, E6

3 E6 € N4, N5, N6, E4

4 E2 e N2, N3, El, E5

All users that are related by an similarity relation are
defined to belong to one group. Since the three first
similarity relations (Table 3) are interrelated, this gives
one group. The remaining, fourth similarity relation
(Table 3) gives a second group. Users not appearing in
any similarity relation define a separate group.

The strategies are represented as STVs and have the same
qualitative interpretation as the STVs of the users (N1-
N6) and (E1-E6). We see that the correlation method and
intersection method do not correspond fully with the
outcome of the protocol analysis. The exclusion method,
however, gives exactly the same results. So, the
exclusion method is the best one with our combination of
system, task and users behaviour. In the future, we want
to find out how the different methods, especially the
exclusion method, perform with other, more complex
tasks.

We have seen that for a relatively simple task, the method
which is purely analytical (exclusion method) is the best
one. Measured by the RSQ-values, the intersection
method is better than the correlation method, which is
purely statistical. This indicates that in our context, sta-
tistical methods offer less explaining power than the
analytical methods for strategy and plan recognition.

7 CONCLUSION AND FUTURE PERSPECTIVES
We have acquired results for one task only. To make our
methods more reliable, we need to evaluate several tasks.
For each task, we will validate our methods by manual
protocol analysis.

We also plan to study learning experiments, in order to
recognise the acquisition process of strategies.

JOZ
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ABSTRACT

In this paper, we describe a model of en-route air traffic
controllers' cognitive activities in a dynamic man-machine
system. The implementation of the model MoFl (Modell
der Fluglotsenleistungen) is based on a production system
in the programming language ACT-R (Adaptive Control of
Thought - Rational, Anderson, 1993).

KEYWORDS
ACT-R, dynamic mental representation, air traffic control

INTRODUCTION
For various reasons, it can be useful to have a computer
model of the operator's cognitive skills (see e.g., Opwis &

Spada, 1994). The implementation of complex

psychological assumptions

. can provide a more detailed and explicit description
of every cognitive process involved than a verbal
description,

. can test a theoretical framework by showing if the
anticipated effects can be reproduced,

. can serve as a framework for generating hypotheses

that support the empirical work, and

. can be used to analyse and predict the effects of
future technological changes on the operator's
cognitive activities in complex man-machine
systems. These insights into the consequences
affecting cognitve performance can be helpful for
future system design or training concepts.

On the basis of a broad empirical work - interviews,
simulation experiments, memory tests, and a card sorting
task with experienced and less experienced en-route air
traffic controllers and of theoretical considerations, the
interdisciplinary research group “En-route Controller's
Representation” (EnCoRe) constructed a model MoFl
(Modell der Fluglotsenleistungen) of the cognitive
activities of experienced en-route air traffic controllers.
The air traffic control domain serves here as an example to
model cognitive processing during control of complex and
dynamic situations. The focus has been on issues
concerning problems inherent to dynamic situations:
mental representation of the changing situations, and the
context-dependent flexible coordination of concurrent

cognitive tasks. In comparison to other research (Freed &
Johnston, 1995, Bass et al., 1995) in our approach we
concentrated on modelling the cognitive abilities of air
traffic controllers rather than perceptual and motor skills.
According to the rate at which traffic situations changes,
and the cognitive task of air traffic controllers, perceptual
and motor skills were only treated in order to ensure a
realistic model - environment interaction.

The implementation of the model is based on a production
system in the programming language ACT-R 3.0 (Adaptive
Control of Thought - Rational, Anderson, 1993). As
programming environment, ACT-R includes a broad and
detailed theoretical framework of human cognition. For the
most part, ACT-R is suitable for modelling the cognitive
performance of en-route air traffic controllers. But, for
some aspects of dynamic situations ACT-R does not
provide convincing solutions.

The aim of this paper is to present the construction and the
implementation of the model. This includes the principles
of construction and implementation of our model, and the
discussion of two special issues concerning the cognitive
architecture of ACT-R: “dynamic representation” and
“executive control”. This paper is divided into three
sections:

. short description of the air traffic control task

. the framework for the implementation: the cognitive
architecture ACT-R

. description of the psychological assumptions of the
model and its implementation

THE AIR TRAFFIC CONTROL TASK

On the basis of different sources of information (e.g.,
radarscreen, flight strips, head-phone communication with
pilots), air traffic controllers have to control complex,
dynamic, and time-constraint traffic situations in order to
diagnose risky relationships between aircraft and to solve
potential conflicts. Therefore, they have to perceive,
comprehend, and anticipate multiple characteristics of
many aircraft while new incoming aircraft create new
traffic relationships for evaluation. It's a common
assumption, that in complex technological systems of a
dynamic nature operators develop a mental representation
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of the task environment with which they interact.
Diagnosis, decisions on future cognitive activities and
actions are based on these insights into current and
anticipated structures of the changing situation. Air traffic
controllers express with the term picture (€.g., Whitfield &
Jackson, 1982; Falzon, 1982) what is often described as
situation awareness (e.g., Endsley, 1995; Flach, 1995): a
mental representation of the current and future traffic
situation.

By modifying the framework of cognitive task analysis
(the “decision ladder”, Rasmussen, 1986), extensive
interviews with seven experienced controllers provided a
first explorative functional analysis of main tasks used to
build up and maintain this mental picture of the traffic
situation.

According to verbal reports of the air traffic controllers,
the diagnosis of potential conflicts between aircraft
contains stages, which are characterized by an increasing
restriction and specification of the problem space. These
stages are: observing the whole situation, analysing the
parameters of selected aircraft, and anticipation. In the
first step (observation) the operator monitors the whole
situation in order to get a quick overview of the whole
traffic situation. The goal of conflict detection demands
selection strategies during radar-screening to structure the
representation (see e.g. Amaldi & Leroux, 1995).
According to the verbal reports, experienced controllers
classify the aircraft on the basis of these signals
(proximity, vertical movement, etc.) into two groups: those
aircraft which have to be further analyzed (analysing the
parameters) and anticipated (anticipation) in order to
check for future conflicts, and those which are separated
safely during that moment. The initial steps towards
intervention and conflict resolution could be described

according to Rasmussen’s stages (define task, fomulate
procedures, and execute).

In order to model the air traffic controller's picture and the
processes used to build up and to maintain this mental
representation of the changing traffic  situation,
experiments provided a more detailed analysis of the
following topics:

. information selection and recall,
. relational structure of the representation, and
. anticipation and conflict management.

The experimental work with real time simulation was
based on a realistic simulation system of the control task
called “En-route Controllers Representation - Pro-
grammable  Airspace Simulation” (EnCoRe-PLuS)
(Bierwagen, 1996). This system simulates air traffic
control scenarios providing radar screen runs, electronic
flight strips, and head-phone communication with a ghost-
pilot; it also allows the user to set up experimental
procedures and to keep logfiles of all system activities.

The results of this empirical work led to the
conceptualization and the implementation of a model that
describes the cognitive activities of air traffic controllers.

The implementation of the model is connected with a
modified version of EnCoRe-PLuS. EnCoRe-PLuS
provides a real-time simulation environment. Predefined
traffic builds up a simulation scenario that interacts with
the model:

. The model can actively access new information
about the changing traffic situation and can integrate
it to its representation of the current situation.

. The model is informed about events within the task
environment (e.g., incoming aircraft)

. The model can intervene with the
environment in order to solve conflicts.

traffic

MODELLING MENTAL PROCESSES OF EXPERIENCED
OPERATORS DURING CONTROL OF A DYNAMIC MAN-
MACHINE SYSTEM

For modelling mental processes of experienced air traffic
controllers during control we have used the production
system ACT-R 3.0. ACT-R provides a suitable framework:
1. as a psychological framework of human cognition, it
also describes an environment for implementation, 2.
ACT-R is based on explicit and very detailed assumptions
about the cognitive architecture, and 3. as an environment
for implementation, it is available in the public domain at
1o costs. In addition ACT-R has been applied to modelling
a great number of problem solving tasks and is still in
progress (e.g., ACT-R Perceptual - Motor Layer, RPM).

Even within such a framework, the conceptualization and
implementation of mental processes in dynamic
environments, as in the case of air traffic control, demand
additional assumptions about three aspects of the dynamic
task environment. 1. The continous changes of the
situation. These changes do not allow fixed sequences of
cognitive processing, they rather call in a cyclic update of
varying relations as a basis of situational awareness. 2. The
necessity to predict future states of the situation in order to
predict potential conflicts. Such predictions alter the goals
of ongoing control activities. 3. The demands to coordinate
and to sequence simultanious requirements of the control
task.

Widely used concepts for adaptive control of complex task
enviroments (e.g., Anderson, 1993; Rasmussen, 1986;
Hacker, 1978) concentrate on rather static tasks and on
invariant goal structures. For example the cognitive
architecture of Anderson's ACT-R does not take into
account that in dynamic situations the operator has to
continuously update her or his mental representation. In
addition, such production systems are directed by a fixed
goal hierarchy. But in the case of the changing and
complex situation requirements, the controller has to
coordinate the cognitive activities. This coordination is
context-dependent: it does not follow a pre-defined goal
hierarchy.

Recently there are some promising attempts to formulate
cognitive architectures that deal with the specific demands
of a dynamic task environment. For example, as a
conceptual neighbor to ACT-R and SOAR, a new
computational framework, the executive - process
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interactive control (EPIC), is proposed for this kind of
human performance (Meyer & Kieras, 1997a,b; Meyer et
al., 1995). Perceptual, cognitive, and motor processors
have been built up for modelling cognitive processes
during the performance of multiple concurrent tasks. The
perceptual processor provides a continously update of the
task environment. Within the cognitive processor,
concurrent tasks can be scheduled by flexible executive
processes that control relative task priorities. Also the
architecture for human representation in complex system,
“Man Machine Interactive Design and Analysis System”
(MIDAS), promises a modelling environment that provides
an updateable mental representation of the task
environment and flexible scheduling of multiple task
performance (Corker & Smith, 1993).

The implementation of the model “MoFl” (Modell der
Fluglotsenleistungen) is based on ACT-R 3.0. The basic
assumption is that cognitive skills are composed of
production rules. A production rule is a modular piece of
knowledge. Combining these rules into a sequence
represents complex cognitive processes. ACT-R includes
two kinds of knowledge representation: declarative and
procedural knowledge. The basic units in declarative
memory are so-called working memory elements (WMEs5).
A WME is an object with identity. It has named slots that
can be filled with Lisp objects or references to other
WMESs. References to other WMEs can be interpreted as
relations, so that a semantic net with WMEs as nodes and
references for relations is spread out. ACT-R defines an
object-oriented structure for declarative memory. Every
node in the net is an object of a certain class. A class is
declared by naming all slots an object of this class will
have. Subclassing is possible. Every WME has an
activation level. It is manipulated by the programming
environment. A special structure within the declarative part
of the memory is the goal-stack. WMEs can be pushed
onto and popped from this structure. The topmost WME is
the current goal.

Production rules are the procedural part of memory. They
consist of a condition and an action part. Conditions and
actions refer to WMEs. The application of a production
rule is realized by a simple pattern-matching mechanism.
In order to support goal-directed performance, the first
condition of every production rule must match the current
goal. If all conditions of a production rule are true, then the
action part is executed. Possible actions are: manipulation
of the goalstack (push and pop), creation and deletion of
WDMEs, and modification of the slots of already retrieved
WMEs. An ACT-R run consists of the continous
application of production rules.

The prioritizing of processing is controlled by the
activation parameter in ACT-R as well as by the current
goal. A production is applied if it fires. A rule can fire if
all conditions are fulfilled. Typically the fastest production
will fire. The speed of application is mainly computed by
the time it takes to retrieve the condition WMEs.

Activation signifies the current relevance of a WME for
the processing of information. Sources of activation are the

encoding process, execution of a production (addition of
new WMEs), and creation of a goal node. The more
activated a WME is, the faster it is retrieved. This means
that if various WMEs match the pattern of a production
rule, the most activated WME is retrieved. If various
production rules can be applied, that production rule fires
that retrieves the most activated WMEs. A WME can only
get retrieved if its activation is above a certain level. But in
the case of air traffic control there are three cases in which
an inactive WME also has to be retrieved. In the first case,
the controller has to update his mental representation
continuously. Empirical work showed that controllers
reduce the problem space by paying attention to
meaningful signals for conflict detection during radar-
screening, Because of these signal features, aircraft
become focal. That means that they are attention
demanding objects, therefore highly activated. Aircraft
without these features are extrafocal (less activated). For
these extrafocal aircraft there is no further demand for
processing and they become inactive. But, in contrast to
ACT-R, these inactive WMEs have to be retrieved in order
to update them. Second, activation is increased not only by
the encoding process. It is also guided by the encoding of
signal features of aircraft. The third case concerns the
context-dependend coordination of a goal. The high
activation level of a goal that targets the solution of a
detected conflict between aircraft can be decreased, it may
be put aside for a while if there is enough time remaining
for the solution. But at a certain point, activation has to
increase suddenly in order to retrieve this WME and to
apply the appropriate production rule in order to solve the
conflict. Otherwise the both inactive aircraft will collide.

Additional features of ACT-R are learning mechanisms to
adjust WME and production parameters, partial matching,
and the aggregation of production rules. These features are
not used in our model.

THE MODEL

In this section, the psychological assumptions, based on
experimental work and theoretical considerations, and the
implementation of the main components and functions of
the model MoF!1 are summarized.

MoF1 describes three main cycles of information
processing, (i.e., monitoring, anticipation, problem
resolution) operating on different parts of the situation
representation, called the picture (see Figure 1). The
coordination of these processes is driven by control
procedures. Monitoring and anticipation are diagnostic
processes (conflict detection), problem resolution is the
preparatory step for intervention by the controller.

The Monitoring Cycle: Data Selection and Update

The monitoring cycle includes data selection procedures
and the regular update of aircraft features. In an
experiment on data selection, 36 en route controllers had
to control familiar and unfamiliar dynamic airspace
situations. In order to investigate information selection,
data of aircraft on the radar screen and the flight-strip-
system were masked, but could be unmasked by moving
the pointer of the mouse to the respective location.
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Figure 1: The structure of the air traffic controller's model of cognitive activities

Frequencies and durations of the unmasking were
recorded. The data showed, that the representation of the
current traffic situation was build up under considerable
reduction of information. The controller selects relevant
features of aircraft, especially identification codes, the
horizontal and vertical positions of objects, and flight
directions. In addition, our interviews and the literature
indicate that the controller searches for meaningful signals
in order to detect conflicts during radar-screening. These
are aircraft features like vertical movements, proximity to
other aircraft or to points in airspace where conflicts
frequently occur (e.g., Niessen et al., 1997; Amaldi &
Leroux 1995).

According to these signal features, aircraft become focal
(highly activated), that means that they are attention
demanding objects. Aircraft without such features are
extrafocal (less activated). In the dynamic environment of
air traffic control, objects have to be updated continuously.
There is a relationship between the semantics of objects
and the frequency of updating: focal, attention-demanding
objects demand a higher monitoring frequency than
extrafocal objects. This assumption has been supported by
results of a memory test: positions of extrafocal
(inrelevant) aircraft were reproduced back in time, whereas
positions of attention demanding objects (e.g., conflictions,
and climb or decend) were reproduced correctly (for
similar results, see Boudes et al., 1995). This bias
indicates, that there is an interaction between the semantics
of objects and the updating frequency: the more the current
position of aircraft demands attention the better they were
reproduced.

The communication between the controller and the task
environment, and the data selection were implemented as
follows: Communication between MoFl and EnCoRe-
PLuS is realized by socket communication. Two ways of
communication are provided:

. asynchronous communication: Special events in the
task environment, like pilot-initiated radio
communication or signals suddenly appearing on the
radar-screen, are announced to MoFl by EnCoRe-
PLuS. After every application of a production rule,
a Lisp function hooked to the ACT-R specific
production-cycle-hook, checks for new messages and
triggers appropriate Lisp call-back functions that
create new WMEs for further processing.

. synchronous communication: MoF! identifies an
internal demand for new information about a
specific object within the task environment or the
internal control-flow suggests to update aircraft
information. This demand is fulfilled by an active
request to the simulation environment. The response
is integrated into the picture by call-back functions.

If the data selection procedures are triggered, appropriate
goals are put onto the goal-stack to enable the following
processing sequence:

1. choose aircraft: according to aircraft focality and
state of the picture, decide which aircraft has to be
updated.

2. make an information request: according to the state
of the object which is going to be updated, choose
which information has to be requested, and trigger
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the appropriate Lisp function. The response of

EnCoRe-PLuS is handled by a call-back function
that generates a goal.

3. take new information into the picture: This goal is
processed by a production that modifies the WME
representing this information.

4.  test new data for signal features: the updated WME
is tested for changes of signal features such as
changing flightlevel (vertical movement), or
proximity to other aircraft.

Anticipation

The next step in diagnosis consists of an anticipation cycle
which operates on the focal objects. For each
attention-demanding  (focal) aircraft or aircraft
relationships, a future state is anticipated seperately. The
goal of the anticipation cycle is to create new cognitive
processing information about aircraft. Depending on the
results of anticipation, aircraft with signal features can then
be represented as events. An event reflects the type of
relation between aircraft or relations between aircraft and
airspace features in future time and space. The anticipation
allows to decide (decision) if the future trajectories of
aircraft result either in a conflict, in a safe separation, or
the demand for more monitoring. In an experiment on
conflict-management, different types of clearcut and
potential conflicts were varied in a 70 minutes traffic
scenario according to the Eurocontrol Air Space Model
(EUROCONTROI, 1994). The EUROCONTROL classification
has two dimensions: 1. different tracks (same, opposite,
crossing), and 2. level- or climb/ decend-flight. 36
controllers had to detect and to solve the conflicts. The
data showed that controllers did not differentiate between
conflicts (separation minimum: 5 nautical miles) and
potential conflicts (10 nautical miles): they intervened in
all cases. This indicates that conflict detection is not based
on a calculation but on fuzzy estimation. The controllers
always chose the safer way by overestimating the risk.

We assume that, if a conflict is detected, the event conflict
includes an estimation of the time remaining for conflict
solution (timestamp). Relations which have proved to be
safe, are no longer in the focal part of the picture and
become extrafocal at this time. This indicates that there is
almost no demand for cognitive processing, except for
updating. If the operator is not sure about the potential
conflict, the event monitoring becomes focal, indicating
both a higher frequency of monitoring and also a high
demand for further anticipation. This distinction of aircraft
relationship has been supported by the results of a card
sorting task with 18 air traffic controllers. As expected the
controller showed a tendency to classify traffic scenarios
on the basis of anticipation.

The anticipation cycle is implemented by sequenced

production rules testing four questions:

1. Are aircraft on the same airway, or on crossing
airways?

2. Have aircraft the same altitude or is at least one in
climb or descend?

3. Simulation of the future movement of aircraft using
velocity leaders. A velocity leader is an graphical
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arrow element on the radar screen showing the
estimated movement of aircraft for a certain lapse of
time. Will there be a violation of the separation
criterion {anticipation)?

4. How certain was this simulation? Certainty is
measured by the time remaining for the violation of
the separation criteria. In addition the latest time for
conflict solution is calculated (timestamp).

According to this sequence focality of aircraft-WMEs is
modified, or events are created.

The Picture

The resulting picture is characterized as a representation of
objects, events, and objects with reference to other objects,
and / or airspace structure. Objects with signal features are
represented focally, objects without these features
extrafocally. In addition, events which indicate the
meaning of aircraft relations in future time and space are
represented focally. Within the air traffic control domain,
the term picture describes the idea of a global mental
representation of the current and future traffic situation in
working memory. From a psychological perspective, we
assume the picture as an analogous non-symbolic mental
representation of the situation. There is some empirical
evidence that experienced controllers anticipate future
states of aircraft without calculating the trajectories. This
indicates that they build up a non-metric, analogous
representation of the situation. In assuming such an
analogous representation, we follow Craik's (1943) and
Johnson-Laird's (1983) basic ideas of a functional internal
model that parallels processes of the external world.

The picture

. is understood as an active knowledge-based
construction ‘of meaningful relations between
elements of a situation, and not as an addition of
perceptions.

. is incomplete with regard to the content of
information and is temporary. The representation is
build up by schemata in order to serve current
functions, and is not stored in long term memory.

. can be manipulated by drawing inferences, by
making predictions, by understanding phenomena,
by deciding what further processing or action to
take, and by controlling the execution.

The implementation emulates the picture as the totality of
the cognitively available objects at a given time, their
features, and their perceived and infered relations in actual
and future time and space in terms of WMEs. Since it is
not possible to model an analogous representation of space
on digital computers, the implementation's picture is a
semantic net of airspace objects, anticipated events, and
inferenced actions that are represented as WMEs. Some of
these objects have spatial positions that make it possible to
define them by positions. More sophisticated operations
such as retrieval by distance to other airspace objects have
to be emulated.
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We used the object-oriented features of ACT-R to define
the structure of the picture (see, Figure 2). Every airspace
object has a position on the radar screen. Derived classes
are airways, sector boundaries, and aircraft which have
additional slots including callsign, speed, and altitude.
Aircraft are specialized to incoming, changing altitude,
and near to another airspace object (proximity). For every

anticipation, conflict resolution, and action) is driven by
control procedures. We assume that the different
processing components cannot be interrupted. The
controller has to switch between them: for example,
between the solution of a conflict and further monitoring
(update including data selection). On the basis of the state
of the picture, control procedures select the most important

class, instances are and most urgent
generated and modified processing de-
as WMEs in working mand.

memory by data III
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Figure 2: Simplified class hierarchy for the working memory elements
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Conflict Resolution

If conflicts are detected, the problem resolution cycle
initiates several steps to prevent an impending conflict.
The controller has to select the most urgent conflict in
order to generate or recall solutions (alternative solutions).
Next, the operator has to check that the solution does not
generate new follow up conflicts (decision). We assume
that the controller checks by running a mental simulation
of the solution (as in the anticipation cycle). The results of
this model are executed (action).

The implementation uses a predefined set of standard
solutions fitting certain types of conflicts. To use this set
the class of the conflict is determined by production-rules.
According to this classification some solutions are
generated from the standard solution set. The production
rules of the simulation in the anticipation cycle are
triggered by goals indicating the solutions that have to be
taken into account. If a solution does not produce follow-
up conflicts a solution-WME is generated. A solution
consists of a sequence of actions that have to be executed
by the model. The time remaining for the first intervention
of the sequence is stored in the solution-WME. To execute
an intervention sequence Lisp functions interact with the
task environment EnCoRe-PLuS.

Control Procedures

The multitude of represented objects, relations, and
features within the picture demands that the controllers
prioritize the processing at any one time. The coordination
of the above describes modules (data selection and update,
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within working
memory.
Processing is controlled by the current goal, which is the
first element of the goalstack. The current goal spreads
activation among its neighbors in the semantic net. The
system focusses only on this top goal at this time. But,
because of the dynamic task environment of air traffic
control, there is no fixed hierarchical goal structure.
Therefore, the continuously changing situation demands
another prioritizing of the processing of simultaneously
on-going events at any particular time. In addition, time
contraints in this context force a flexible and appropriate
selection of the most relevant demand for processing. In
order to model this contextualized scheduling of
processing, we had to postulate a different concept. Our
assumption is that the scheduling of processing is
determined by the state of the whole mental representation
of the traffic situation.

Several tasks are active at every moment. Every task is
done by one of the modules data selection, anticipation, or
conflict resolution. The superior control procedures
module has to build up an ad hoc process flow depending
on the current structure of the picture. To achieve this, we
assume that the modules cannot be interrupted and are
exclusive. The process flow is done by meta productions in
the control procedures module that trigger a module with
an object or event as parameter. In order to trigger a
module and make it not interruptible, we introduced a new
class of WMEs. These control-WMEs are the only ones
that get onto the goalstack.

The start of every module is a top level production. It is
triggered by a top level goal. This kind of production will
push new subgoals onto the goalstack that will trigger
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other productions of that mo“ﬂ%?ee!lﬂ%ery production has to
clean the goalstack by popping its trigger-WME. When a
module is finished the goalstack should then be clean. The
productions of the control procedures are triggered by the
controlflow-goal, which has no parameter. This goal is
never popped. Thus when the goalstack is “clean” it is on
top of the goalstack and thus the current goal triggers the
control procedures-module again. Processing radio
communication when a plane announces that it is going to
enter the sector, is the only reason to interupt a module,
make a mark in the working memory, and continue the
module. The mark has a high priority so that it will be
processed soon.

The meta production rules of the control-flow-module for

the air traffic controller model use this prioritizing rules:

[. if a solution-WME exists in the picture and it is
time to solve, then do action on this solution, else

2. if a conflict-WME exists and it is time to do, then
conflict resolution, else

3. if a monitoring-event or an aircraft-WME with a
signal (incoming, changing altitude, or proximity)
exists in the picture, then do update and anticipation
on this WME, else

4, if an aircraft-WME exists, then do monitoring on it.

Every solution-WME and every conflict-WME has a slot,
where it represents when it is supposed to happen. The
control productions use a function, that compares this ideal
time with the current time. It fires the appropriate action
according to a predefined bias.

If the current goal is controlflow, only the
meta-productions are able to fire. They match patterns
against the picture according to the prioritization scheme
listed above. The chosen action will generate a new
control-WME (CF) of the appropriate subclass. It refers to
the detected aircraft-WME or event-WME. The goalstack
consists now of (controlflow,CF). This triggers the
toplevel production for CF. It will produce new
control-WMEs probably refering to the detected WME,
pop CF, and put the new control-WMEs onto the
goalstack. They trigger new sublevel productions that all
pop their trigger. When the module for CF is finished, the
goalstack is (controlflow), meaning that only the
meta-productions are able to fire.

The model deals well with the dynamic environment by
using this control scheme. If another task needed
interruptible modules, the control procedures would have
to be triggered after every production cycle within the
module, and the controlflow WMEs would have to be
stored in the picture, when they are inactive. The meta
productions would then trigger the most important
controlflow-WME or generate a new one.

CONCLUDING REMARKS: EVALUATION OF THE
MODEL

The construction and implementation of the above
described model is based on a broad experimental work.
Early in 1998 we will evaluate our model with empirical
data. Three simulation experiments with experienced air

traffic con are planned 1n or%er to investigate time
parameters of conflict detection, the content of the picture,
and the distribution of activation within the controller's
picture. These data will be compared to the results of
model simulation runs using the same task environment.
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ABSTRACT

This paper describes a computational model of spatial
learning and localization. The model is based on the
suggestion (based on a large body of experimental data) that
rodents learn metric spatial representations of their environ-
ments by associating sensory inputs with dead-reckoning
based position estimates in the hippocampal place cells.
Both these sources of information have some uncertainty
associated with them because of errors in sensing, range
estimation, and path integration. The proposed model in-
corporates explicit mechanisms for information fusion from
uncertain sources. We demonstrate that the proposed model
adequately reproduces several key results of behavioral
experiments with animals.

Keywords: cognitive modeling, cognitive maps, Hip-
pocampus, probabilistic localization.

INTRODUCTION

Animals display a wide range of complex spatial learning
and navigation abilities (Schone, 1984; Gallistel, 1990),
far more impressive than the capabilities of contempo-
rary robots. Considerable research effort has been de-
voted to understanding different aspects of these spatial
behaviors through cognitive, behavioral, neurophysiolog-
ical, and neuropharmacological studies. This has resulted
in a large corpus of experimental data, a number of the-
ories and models of animal spatial learning, and several
implementations of such models in robots and other arti-
ficial automata (Mataric, 1992; Kuipers and Byun, 1991;
Kortenkamp, 1993; Bachelder and Waxman, 1994; Recce
and Harris, 1996). However, animal spatial learning is still
far from being completely understood or successfully imi-
tated.

Based on a large body of experimental data it has been
suggested that rodents learn cognitive maps of their spa-
tial environments (Tolman, 1948). These cognitive maps
have been postulated to contain metric information, i.e.,
the places in the environment are represented in a met-
ric coordinate system, allowing the animal to take novel
short-cuts and measured detours. In addition, there is also
a vast body of experimental data from lesion studies of hip-
pocampal regions and cellular recordings of hippocampal
cells that directly implicate the hippocampal formation in
rodent spatial learning (O’Keefe and Nadel, 1978). Based
on this data, O’Keefe and Nadel proposed the locale sys-
tem hypothesis, suggesting that the hippocampal place cells
learn metric cognitive maps by associating sensory inputs

with dead-reckoning' position estimates generated by the
animal.

In the two decades since the locale hypothesis was
first proposed, a number of computational models of hip-
pocampal spatial learning have been developed (Trullier
et al., 1997). Surprisingly, only a few of the models sup-
port metric spatial representations. Furthermore, the few
models that are based on the locale hypothesis make the
unrealistic assumption that the two information streams,
‘namely, sensory inputs and dead-reckoning, are largely
error-free. However, sensory and dead-reckoning systems
of animals are prone to several sources of errors (e.g., errors
in place recognition, distance estimation, dead-reckoning
drifts, etc.), and any computational model of hippocampal
spatial learning and localization must therefore be capable
of satisfactorily dealing with these associated uncertainties.

In this paper we develop a computational model of hip-
pocampal spatial learning that allows the animal to learn
a metric place map (or a cognitive map) and that explic-
itly addresses information fusion from uncertain sources.
Following a brief discussion of experimental data support-
ing the model, we present the key features of the model and
simulation results that demonstrate that the proposed model
satisfactorily reproduces the results of behavioral experi-
ments on gerbils reported by Collett et al., (1986). We
also discuss the relationship between this neuro-cognitive
model and some approaches to spatial learning that have
been employed in contemporary robotics.

HIPPOCAMPAL SPATIAL LEARNING

The hippocampal formation is one of the highest levels of
association in the brain and receives highly processed sen-
sory information from the major associational areas of the
cerebral cortex (Churchland and Sejnowski, 1992). It is
composed of the dentate gyrus (Dg), and areas CA3 and
CAI of Ammon’s horn as shown in Figure 1. It receives
input primarily from the entorhinal cortex (EC), which is a
part of a larger convergence area called the parahippocam-
pal cortical area, and outputs to the Subiculum (Sb) and
back to the EC (Churchland and Sejnowski, 1992). (For
other anatomical and physiological details the reader is re-
ferred to (Churchland and Sejnowski, 1992).)

The hippocampal formation has been strongly impli-
cated in animal spatial learning and localization based on
evidence from hippocampal lesion studies and cellular

lDead-reckoning or path-integration refers to the process of
updating an estimate of one’s position based on self-knowledge
of time, speed, and direction of self-motion.
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Figure 1: Anatomy of the hippocampal formation.

recordings. While hippocampal lesions have been found to
produce severe deficits in learning spatial tasks such as the
object-place task (Churchland and Sejnowski, 1992), and
the ability of rodents to traverse complex mazes (cf. ap-
pendix of O’Keefe and Nadel, (1978)), cellular recordings
have led to the discovery of place cells and head-direction
cells which demonstrate highly correlated firings during
the execution of such tasks. Pyramidal cells in regions
CA3 and CAl of the rat hippocampus have been found
to fire selectively when the rat visits particular regions of
its environment. These cells thus appear to code for spe-
cific places and hdve been labeled place cells (O’ Keefe and
Dostrovsky, 1971). Cells with such location-specific firing
have been found in almost every major region of the hip-
pocampal system, including the EC, the Dg, regions CA3
and CAl, the Sb, and the postsubiculum.

In addition to place cells, head-direction cells have also
been discovered in the hippocampal region (Taube et 4l.,
1990). These cells respond to particular orientations of the
animal’s head irrespective of its location in the environment
and fire only when the animal faces some particular direc-
tion (over an approximately 90 degree range) in the hori-
zontal plane. These cells thus appear to function as some
sort of an in built compass.

A number of experiments have served to identify cru-
cial properties of place cells and head-direction cells (see
McNaughton et al., (1996) for a detailed exposition of the
properties). In brief, these cells have been found to re-
spond to sensory as well as path-integration inputs. Fur-
ther, places appear to be represented by an ensemble of cell
firings, with the cells being active in multiple environments
and often at multiple places in the same environment. The
firing of these cells is conserved in darkness, provided the
animal is first allowed to orient itself under lighted condi-
tions. Further, any restraint on active motion ceases the cell
firings.

HIPPOCAMPAL COGNITIVE MAP

Based on extensive experimental evidence it has been sug-
gested that rodents learn cognitive maps of their environ-
ments (Tolman, 1948). These cognitive maps are metric
in nature, i.e., the spatial representation encodes distances
and directions between the environmental cues. Against

Httinpton (UK): Nottingharniversity Fsasd, '@8"KESRY 6766 %@del, 1978) forwarded

the locale system hypothesis (based on an immense corpus
of neurophysiological and behavioral data) suggesting that
the cognitive map resides in the hippocampus and that the
place cells use sensory and dead-reckoning inputs ta en-
code the metric map. A computational implementation of
this locale system hypothesis of hippocampal spatial learn-
ing has been developed which allows the animal to learn
its environment in terms of distinct places, with the center
of each place also being labeled with a metric position es-
timate derived from dead-reckoning. A detailed treatment
of this model can be found in (Balakrishnan et al., 1997);
here we will only present a brief summary.

As the animal explores its environment the model creates
new EC units that respond to landmarks located at partic-
ular positions relative to the animal. Concurrent activity
of EC units defines a place and CA3 place cells are cre-
ated to represent them. These sensory input-driven CA3
place cells are then associated with position estimates de-
rived from the dead-reckoning system to produce place fir-
ings in the CA1 layer. Thus, the firing of CAl cells is de-

. pendent on two information streams: sensory inputs from
CA3 and the animal’s dead-reckoning position estimates.

The dead-reckoning input is used to learn the center of the
place in terms of metric coordinates.

When the animal revisits familiar places, incoming sen-
sory inputs activate a place code in the CA3 layer that cor-
responds to a familiar place. Since multiple places in the
environment can produce the same sensory input (called
perceptual aliasing in robotics), the CA1 layer uses dead-
reckoning estimates to disambiguate between such places
and produces a unique place code that corresponds to the
current place. The hippocampal system then performs spa-
tial localization by matching the predicted position of the
animal (its current dead-reckoning estimate) with the ob-
served position of the place field center (dead-reckoning es-
timate previously associated with the activated CA1 place
code). Based on this match, the dead-reckoning estimate
as well as the place field center are updated as shown in
Figure 2.

Prediction

State

Predicted
estimate m

/ easurement

Sensor model
or Measurement function

Match
b, State estimate

Observed Update

measurement

Actual
state

/

Observation

Figure 2: A schematic of hippocampal localization.

Thus, not only does the hippocampal model learn a met-
ric cognitive map of the environment, but it also permits
the metric estimates to be updated when the animal revisits
familiar places. Further details of the model may be found
in (Balakrishnan et al., 1997).
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Hippocampal Kalman Filtering

In the locale system hypothesis of hippocampal spatial
learning, information is integrated from two streams: the
sensory inputs and the dead-reckoning system (O’Keefe
and Nadel, 1978). It should be noted that information pro-
vided by both these streams is uncertain because of errors
in object recognition, distance estimation, and path inte-
gration. For instance, the firing of place cells and head-
direction cells drift in darkness, suggesting errors in path-
integration. Thus, in order for the hippocampus to perform
robust spatial localization using these uncertain informa-
tion sources, it must have adequate mechanisms for han-
dling uncertain information sources. Although several hip-
pocampal models of spatial learning have been proposed,
including some that are closely related to the model de-
scribed above, none of the models are capable of explicitly
handling such uncertainties.

As with animals, mobile robots too have to deal with
uncertainties in sensing and action. This has led to many
probabilistic localization approaches for mobile robots.
One such localization tool is the Kalman filter (KF) (Gelb,
1974) (or some extension or generalization of it), which al-
lows the robot to build and maintain a stochastic spatial
map, propagate sensory and motion uncertainties, and lo-
calize in optimal ways (Ayache and Faugeras, 1987). A
schematic for a KF is shown in Figure 3.

Prediction

State
estimate

Predicted
measurement

Sensor model

Observed
measurement

Actual
state

Observation

Figure 3: A schematic of Kalman filtering.

As can be observed from Figures 2 and 3, the computa-
tional model of hippocampal function and KF both embody
the same predict-observe-match-update principle. Further,
KF provides a framework for performing stochastically op-
timal updates even in the presence of prediction and obser-
vation errors. Based on the similarities between the two,
Balakrishnan et al. (1997) developed a KF framework for
uncertain information fusion in the hippocampal localiza-
tion model described above. In this framework, KF helps
the animal in maintaining and updating an estimate of its
own position as well as the estimates of the place field cen-
ters. These estimates, referred to as the state, include:

X = [mo,k,xl, e ,:L'n]T

where zg r denotes the position of the animal at time in-
stant k, z; denotes the center of place field ¢, and n is the
number of distinct places that have been visited by the ani-
mal. Without loss of generality, these position estimates are
assumed to be specified in 2D Cartesian coordinates, i.e.,

ISBN 1-897676-67-
i = (zi,,T;, ). Theanimala so%or%putes and updates the

covariance matrix associated with this state vector, denoted
by P, which is given by:

Cw Coi - Con
Cio Cuu - Cin
P, = . . .

CnO Cnl . Cnn

Ciy = ( gilzj:z gi.u:, >
Jzi= Jyly
denotes the covariance between the 2D Cartesian represen-
tations of the state elements z; = (:1:,-=,xiy) and ; =
(5., Tiy )-

When a new place is visited, the state vector is aug-
mented by the center of this new place and the state esti-
mate and its covariance matrix are modified accordingly. If
the animal motions are assumed to be linear and the mea-
surement function in Figure 3 is also a linear function of the

where

state, a framework for hippocampal Kalman filtering can

be developed that updates the place field centers and the
animal’s position estimate in stochastically optimal ways.
These details can be found in Balakrishnan et al., (1997).

Frame Merging

The procedure described above allows the animat® to learn
a metric place map. However, it does not allow the animat
to learn and integrate independent local metric maps corre-
sponding to different regions of the environment, or to learn
and integrate a 7ew map into an existing one. We have de-
veloped an extension of the computational model described
above that permits the animat to learn separate place maps
in different frames and to merge frames together in a well-
defined manner.

Suppose the animat has learned a place map, labeling the
places with metric position estimates derived from its dead-
reckoning system. Let us refer to this frame as foia. Sup-
pose the animat is now reintroduced at another place. The
animat stores away foig in its memory, and begins a new
frame fnew at the point of reintroduction. It also resets
its dead-reckoning estimates to zero, thereby making the
point of reintroduction the origin of its new dead-reckoning
frame. Now it proceeds as before, learning places and cre-
ating EC, CA3, and CA1 cells using the algorithms detailed
in (Balakrishnan et al., 1997). At each step it also checks
to see if sensory inputs excite CAl cells residing in fora- If
this happens, the animat is at a place it has seen earlier in
the older frame (forq). It then merges the two frames, la-
beling the places in the two frames in a uniform coordinate
system as follows.

Suppose CA1 unit ¢ fires in frew and m fires in f,;4. The
goal is to merge foiq Nt frew. We do this by changing the
position labels of all CA1 units in fota to equivalent labels
in fnew. Let Xfne» and ®/2t¢ denote the estimated center of
the animat’s current place in the two frames frew and fold.
Since £f~<» and &J¢'¢ correspond to the center of the same

A simulated animal
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denotes the amount by which frame foi4 has to be trans-
formed to coincide with f,.,. Assuming a metric coordi-
nate representation, we can update the place field centers
of foiq 0 frew via the transformation:

ghrew = gforr — Ax Vi € foud ()

The covariances between units in fog and frey can
be updated using the following expressions (details of the
derivations can be found in (Balakrishnan et al., 1998)):
Case I: i and j were both units in fo4

fnew — fO fO fa o new
O =C -Crt O + Clas +CL;
Case II: i was a unitin fy. and j wasin foiq

fnew pa— fnew
Cij = Cy

where Cifj refers to the covariance between units ¢ and
in a particular frame f.

Once these updates have been carried out, frame fo4 has
been effectively merged into fpew. However, it must be
borne in mind that this frame merge procedure is currently
blind to perceptual aliasing. Consequently, the animat lo-
calizes to the first place that sensorily matches a place it has
seen before. If multiple places in the environment produce
similar sensory inputs, this procedure will lead to localiza-
tion problems.

Goal Representation

Since the computational model of (Balakrishnan et al.,
1997) allows the animat to learn places in a metric frame-
work, goals encountered by the animat can also be remem-
bered in terms of their metric positions. Thus, when an
animat visits a goal location, it computes an estimate of
the goal position based on its current dead-reckoning esti-
mate. However, since dead-reckoning is error prone, the
remembered (or computed) position of the goal is also er-
roneous. We need a procedure that explicitly handles this
uncertainty, much like the KF for updating place field cen-
ters. We have developed a mechanism that maintains and
updates the goal location estimate and its variance using the
expressions in equation 2

2 2
A o . o .
XGg = 202XG+ 202x0 (2)
oy + o5 oy + o5
2 2
2 9G-%
9G 2 1 o2
gy T0G

where X is the estimated goal position and ¢ its vari-
ance, Xg is the current dead-reckoning estimate with asso-
ciated variance oZ. It can be shown that this update expres-
sion minimizes the variance of the goal position estimate
(Balakrishnan et al., 1998). These update expressions are
applied each time the animat reaches the goal. If the ani-
mat has never encountered the goal before, the goal vari-
ance crzG is set to oo. Thus, when the animat encounters
the goal for the first time, the above expressions result in
the setting of the goal position estimate to the value of the
dead-reckoning estimates.

tions through two means. If the goal is visible, the animats
directly move towards the goal (goal approaching). How-
ever, if the goal is not visible but the animat has previously
visited the goal location and thus remembers its position,
it simply moves in a fashion that reduces the discrepancy
between its current position estimate and the remembered
position of the goal. We call this the goal seeking behavior.
The goal seek behavior takes the animat along the shortest
path to the goal. It is possible that the direct short-cut to
the goal is blocked or has obstacles that the animat must
then avoid. However, for the purposes of the experiments
described in this paper the environments are assumed to be
largely open and obstacle-free.

SIMULATION DETAILS

In this paper we attempt to simulate the behavioral experi-
ments of Collett et al.(1986) using the computational model
of hippocampal spatial learning described earlier. The ex-
perimental setup of Collett et al. consisted of a circular
arena of diameter 3.5 meters placed inside a light-tight
black painted room. Gerbils were trained to locate a sun-
flower seed placed in different geometric relationships to a
set of visible landmarks. The floor of the arena was cov-
ered with black painted granite chips to prevent the gerbil
from spotting the seed until it was very close to it (Collett
et al., 1986).

In our simulations, we used a square arena of size 20 x 20
units. The walls of the arena were assumed to be impen-
etrable and devoid of any distinguishing sensory stimuli.
This is in keeping with the original experiment in which
the walls were in complete darkness and presumably not
visible to the animal. The landmarks, on the other hand,
were assumned to be visible to the animat from all points in
the arena. The animats could also estimate landmark posi-
tions relative to themselves, but this estimate was assumed
to be corrupted by a zero-mean Gaussian sensing error with
standard deviation og = 0.01 units per unit distance. Sen-
sory inputs obtained in this fashion were used to generate
the activations of the EC layer as well as the place firings
of the CA3 and CA1 layers, using the algorithms described
in (Balakrishnan et al., 1997). The animat motions were
also error-prone, with motion error modeled by zero-mean
Gaussians with oy = 0.5. The animats possessed means
for fairly accurate dead-reckoning with errors being mod-
eled as zero-mean Gaussians with ¢p = 0.05 units. Ani-
mats could approach a visible goal and were said to have
consumed the goal if they entered a circular region of ra-
dius 0.33 units around it.

The experiments of Collett et al. were simulated by first
setting up the arena with the landmark(s) in the appropriate
positions. The animat was then introduced into the arena
at a random position and allowed to perform 500 steps of
sensing, processing, and moving. In this mode the animats
learned places by inducting EC, CA3, and CAL1 units in ap-
propriate ways, and updating the position estimates using
the Kalman filtering mechanism described in (Balakrish-
nan et al., 1997). If the animat happened to see the goal
during these sessions, it was made to approach and con-
sume it. This constituted one training trial. Once a trial
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ment and reintroduced at another random position for the
next trial. Each animat was subjected to five such training
trials. In each trial the animat learned places in a new frame
and merged frames if they lead to the same place. The firing
threshold of CA3 units (CA3Threshold), which signals
place recognition based on sensory inputs, was set to 0.75
during training.

Once training was complete, the animat was subjected to
ten testing trials in which the landmarks in the arena were
manipulated in specific ways and, importantly, the goal was
absent. During these tests the animat was released at pre-
determined positions in the arena with its dead-reckoning
variance set to co. Further, spatial learning was turned off
in these animats and they were only capable of localizing.
The animats had a maximum of 150 steps within which to
localize by visiting a familiar place. Un-localized animats
were removed from the environment, with that testing trial
being dubbed a failure, and the process continued with the
next testing trial. During testing, CA3Threshold was
lowered to 0.25 to enable the animats to localize even if
the landmark arrangements had been changed in critical
ways. A localized animat was allowed a maximum of 300
timesteps to navigate to the goal using the goal seek behav-
ior described earlier. Since the goals were absent during
testing, the animats searched in the region of the remem-
bered goal location. If the animat reached a circular region
of radius 0.5 units around the predicted goal location, it was
allowed to spend 25 timesteps searching for the goal. Af-
ter this, the variance of the position estimate of the animat
was once again set to oo and the animat was permitted to
re-localize to enable it to correct its localization if it had
wrongly localized earlier. This had interesting behavioral
consequences as will be explained later. '

For the training as well as testing trials, the trajectories
followed by the animats were recorded. Also, the 20 x
20 arena was decomposed into cells of size 0.33 x 0.33
and a count of the amount of time spent by the animats in
each cell was kept. These statistics for training and testing
were computed for five different animats. The cell with the
largest value (amount of time spent by the five animats)
was used to normalize the values in the other cells, and was
plotted in the form of a search histogram. Thus, darker
cells in the histogram indicate that the animats spent more
time in that region of the arena compared to the regions
corresponding to the lighter ones. It must be mentioned
that the arena size, the histogram cell size, as well as the
goal visibility range were roughly chosen to correspond to
actual values used by Collett et al.

EXPERIMENTS AND RESULTS

In this section we present simulations of Collett et al.’s
behavioral experiments, using the computational model of
spatial learning and localization detailed in (Balakrishnan
et al., 1997; Balakrishnan et al., 1998).

One Landmark Experiment

In this experiment, Collett et al. placed the seed at a con-
stant distance and orientation from a single landmark and

/] 6
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found that well-trained gerbils run directly to the seed when
introduced into the environment. Further, in testing trials
the gerbils were found to concentrate their search efforts at
the-expected location of the seed even though the seed was
absent (Figure 1 in (Collett et al., 1986)). In our simula-
tion of this experiment, the goal location was 4 units to the
south of a single landmark, as shown by the search distri-
bution concentrated in that region (Figure 4, Left). In these
figures, filled squares represent landmarks. This compares
rather well with the observations of (Collett et al., 1986).

Figure 4: Left: One landmark experiment. Middle: Two
landmarks experiment. Right: Two landmarks experiment

‘with one landmark removed.

Two Landmark Experiments

In the next set of experiments, Collett er al. trained gerbils
to locate a sunflower seed placed to the south of a line con-
necting two identical landmarks. In this case, the goal was
equidistant from the two landmarks. In our simulations, the
goal was placed 4 units to the south of the line connecting
two landmarks placed 4 units apart. As seen in Figure 4
(Middle), the search effort of the animats is reliably con-
centrated in a region rather close to the position of the goal
in the training trials. This figure compares well with Figure
7b in (Collett et al., 1986).

Collett et al. also trained gerbils on the two landmark
task and tested them with one landmark removed. They
found that the gerbils searched on both sides of the sole
landmark apparently matching the landmark either to the
left or the right landmark of the original configuration (Fig-
ure 7c in (Collett et al., 1986). Our animats demonstrated a
similar behavior as seen in Figure 4 (Right).

Figure 5: Left: Two landmarks experiment with landmark
distance doubled. Middle: Three landmarks experiment.
Right: Three landmarks with one removed.

Also, when the gerbils were trained with two landmarks
and tested with the landmark distance doubled, Collett
et al.  found that the gerbils searched predominantly at
the two interior locations each at the correct distance and
orientation from one of the landmarks (Figure 7d). We
observed similar search histograms in our experiments,
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animats that first searched at the outer locations later
searched in one of the interior two locations, when asked
to relocalize. Further, most animats that first searched at
the interior locations, did not search at the outer locations
upon relocalization.

Three Landmark Experiments

In this experiment, three identical landmarks were arranged
to form the vertices of an equilateral triangle with the goal
located at the centroid of the triangle. Animats trained in
this environment produce search histograms concentrated
reliably at the correct position of the goal, i.e., the centroid
of the triangle as shown in Figure 5 (Middle). This com-
pares favorably with Figure 6b in (Collett et al., 1986).
Collett et al. also trained the gerbils on the three land-
mark task and tested them in environments with one or two
of the landmarks removed. With one landmark removed
they found that the gerbils searched at a location at the cor-
rect distance and orientation from the two remaining land-
marks (Figure 6¢). As can be seen from Figure 5 (Right),
our animats demonstrate largely similar search behaviors.

Figure 6: Left: Three landmarks with two removed. Mid-
dle: Three landmarks with one distance doubled. Right:
Three landmarks with an extra landmark added.

With two of the three landmarks removed, Collett et al.
found that the gerbils distributed their search time between
three sites, one for each of the three possible matches of the
sole landmark (Figure 6d). This can be compared directly
with our simulation results in Figure 6 (Left). Similarly,
when the gerbils were trained on the three landmark task
but tested with one landmark distance doubled they were
found to search at a goal location at the correct distance
and bearing from the two unmoved landmarks (Figure 8 in
(Collett et al., 1986)). Our animats display similar behav-
iors (Figure 6 (Middle)).

When gerbils were trained on the three landmark task,
but tested in an environment with an additional landmark
placed so as to create another equilateral triangle with a
different orientation, Collett er al. found that the gerbils
reliably searched at the goal location within the correctly
oriented triangle. Our simulation of this experiment pro-
duced similar results as shown in Figure 6 (Right).

DISCUSSION

In this paper we have extended the spatial learning and lo-
calization model developed in (Balakrishnan et al., 1997)
along several significant directions. We have developed
mechanisms to learn local place maps in disjoint frames,
and to merge these frames to produce global place maps.

117

remembering goals in terms of their metric positions, with
an associated mechanism for updating goal positions in a
stochastically consistent manner. With these additions, an-
imats can not only learn maps of environments in a piece-
meal fashion but also learn and reliably navigate to goals in
the environment.

This allowed us to simulate the behavioral experiments
of (Collett et al.,, 1986). The primary goal was to test
whether our computational model of hippocampal spatial
learning and localization was capable of explaining their
behavioral data with gerbils. We simulated a number of
their experiments and the search histograms generated by
our animats were found to be very similar to those pro-
duced by the gerbils in their experiments. This is especially
interesting because our animats did not remember goals in
terms of independent vectors to individual landmarks, as
suggested by (Collett et al., 1986). Our results indicate that
if goals are remembered in terms of metric position esti-
mates, localization errors are enough to explain the search
distributions of the gerbils observed in environments with

landmark configurations changed.

To the best of our knowledge, the only computational
simulation of the (Collett et al., 1986) experiments, apart
from the work presented in this paper, is that of (Redish
and Touretzky, 1996). In their simulations, the animat was
placed at different random positions in the arena and was
given its position relative to the goal (which was assumed
to coincide with the origin). The animat then created place
cells using a combination of this position estimate and sen-
sory inputs from the visible landmarks. Ego-centric angles
between landmarks were also encoded in the place cells,
which allowed the animat to initialize its head-direction if
it happened to be disoriented. In test trials they introduced
the animat at a random position and allowed it to localize,
i.e., the animats performed head-direction and position esti-
mate resets. Once the animat had localized, it could predict
the goal location which was simply the origin of the coor-
dinate frame with respect to its current localized position.
They repeated this process a number times and calculated a
histogram of predicted goal positions (Redish and Touret-
zky, 1996).

Our computational model of hippocampal spatial learn-
ing is closely related to that of (Redish and Touretzky,
1996) (referred to hereafter as the RT model) since both
models are based on the cognitive map concept of (Tol-
man, 1948) and its implicated substrate in the hippocam-
pus (O’Keefe and Nadel, 1978). Further, both these mod-
els make use of the locale system hypothesis of (O’ Keefe
and Nadel, 1978) with places being learned using a combi-
nation of sensory inputs and dead-reckoning information.
Finally, both simulations represent goals in terms of metric
position estimates derived from dead-reckoning.

Despite these similarities, there are some significant dif-
ferences between the two models and the behavioral re-
sults generated by them. Our model assumes that errors
exist in the sensory and dead-reckoning input streams and
our computational framework explicitly addresses the is-
sue of information fusion from erroneous (or uncertain)



Ritter, F. E., & Young, R. M. (Eds.). (1998). Proceedings of the Second European Conference on Cognitive
. odelling. Thrumpton : Ngttingham University P! ., ISBN 1-:897676-67-0 .
sources. By formulating the Me p&acge learmr’ig ar%ﬁ)oczﬁ- g map theo ofe(slsolman, M;‘?g) and the locale hypothesis of

ization problem within the framework of Kalman filtering,
we have been able to derive update expressions that can
be proven to be stochastically optimal. The RT model in-
corporates a mechanism for initializing the head direction.
However, doing so makes the place cells directional, which
appears to be at odds with experimental results that sug-
gest the non-directionaliry of the CA3 and CAl pyrami-
dal cell firings. Our model assumes that the place cells are
non-directional and this requires that the animats have re-
liable head-direction information, i.e., we assume that the
animals have not been disoriented. Further, animals learn
and remember multiple goal locations, and plan and exe-
cute multi-destination routes. Extending our model to han-
dle learning and representation of multiple goal locations
is rather straightforward. However, it is not clear how one
could represent multiple goals in the RT model consider-
ing that goals in their model correspond to the origin of
the dead-reckoning system. Finally, animats in our simu-
lations were capable of actually moving in their environ-
ment, whereas the animats used in the RT simulations do
not move. Consequently, the histograms reported in (Re-
dish and Touretzky, 1996) correspond to predictions of the
goal position rather than the time spent by the animat in dif-
ferent regions of the environment. Thus, a dark histogram
cell that is far from the goal in the RT model implies that
the animat has a completely wrong estimate of the goal po-
sition and hence a completely wrong localization, while a
similar cell in the histograms of Collett et al. simply means
that the animal spent some time in that region localizing (or
moving slowly on its way to the goal), and does not neces-
sarily imply that the animal’s localization or its prediction
of the goal position is wrong. Since the animats in our sim-
ulations were capable of navigating, the search histograms
generated in our experiments correspond more closely to
those reported by Collett et al. (1986).

Other Robot Localization Approaches

Owing to the Kalman filtering framework, our computa-
tional model of hippocampal spatial learning is directly
related to KF approaches for robot localization (Crowley,
1995; Leonard and Durrant-Whyte, 1992). However, these
KF based approaches require a sensor model of the envi-
ronment (as shown in Figure 3) and often run into match-
ing problems in environments with multiple identical land-
marks and limited sensor ranges. The hippocampal model,
on the other hand, provides a place-based extension of KF
and easily addresses these problems (Balakrishnan et al.,
1997). A number of robot localization approaches based
on cognitive mapping theories (or multi-level space repre-
sentations) have also been developed (Levitt and Lawton,
1990; Kuipers and Byun, 1991; Kortenkamp, 1993). Al-
though closely related to the hippocampal spatial learning
model, they are not formulated to computationally charac-
terize a specific brain region and differ in this regard. Fi-
nally, a number of neurobiological models of robot nav-
igation have been developed (Mataric, 1992; Bachelder
and Waxman, 1994; Recce and Harris, 1996). However,
these models deal with topological space representations
(not metric ones), and are thus at discord with the cognitive

(O’Keefe and Nadel, 1978). These differences are treated
at length in (Balakrishnan et al., 1997).

Future Work

As we mentioned earlier, our computational model as-
sumes that the animat has an accurate head-direction es-
timate. This may not be the case if the animal has been
disoriented. We are currently exploring the possibility of
such a head-direction reset mechanism being implemented
by place cells in the subiculum with the correction being
performed by the head-direction cells in the post-subicular
region. We have also developed a method to incorporate
multiple goal locations in the model (Balakrishnan et al.,

" 1998).

Given the fact that Kalman filter based models of place
learning and localization satisfactorily reproduce an inter-
esting collection of results from behavioral experiments in
animals, it is natural to ask: Can the hippocampus per-
form the Kalman filter computations? If so, how? Some
suggestions have been forwarded for the neural basis of

.these computations in the hippocampus, including the role

of CA3 recurrent collaterals in the propagation and update
of estimates and covariances of the places, sharp waves in
the consolidation of position and covariance estimates, and
the CA1 region in the computation of matrix inversions re-
quired for KF (Balakrishnan et al., 1997). These issues
remain to be explored and explained, both through compu-
tational modeling efforts of neuro-physiological and behav-
ioral phenomena, and through biological studies in living,
behaving animals.
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ABSTRACT

We present a connectionist architecture to model
perceptual-motor processing of subjects engaged in the
task of drawing a reproduction of a previously observed
point on a white paper sheet. Such a task was designed to
investigate the structure of perceptual field. Computer
simulations showed a satisfactory agreement between
model’s forecastings and the experimental data obtained
from an experiment performed on human subjects.

Keywords
Perceptual field, neural networks, spatial memory

INTRODUCTION

Every model of human visual perception must take into
account the evidence, given by Gestalt psychologists
(see, e.g., Koffka, 1933), for global factors of wholistic
nature. In most cases, however, the study of such factors
was done only in a qualitative way. For this reason
Gestalt psychologists were unable to build a formalized
theoretical model of visual perceptual processing,
designed to do quantitative forecastings of experimental
data. Notwithstanding they introduced a fundamental
concept, the one of perceptual field, viewed as similar to
a vector field of forces acting within perceptual space.
The lines of force of such a perceptual field should
coincide, on one hand, with the paths followed in
apparent movement phenomena, whereas, on the other
hand, they should be orthogomal to perceived figural
contours. A semi-quantitative investigation of perceptual
field was undertaken already by Brown & Voth (1937),
and by Orbison (1939). Such a task, however, requires to
face strong theoretical and experimental difficulties in
the case of nonhomogeneous stimulus areas, due to the
great number of possible different situations, and of
factors to be controlled.

In more recent times some authors (Stadler & Kruse,
1990, Stadler et al, 1991) proposed an experimental
procedure to investigate in a quantitative way the
perceptual field structure in the case of homogeneous
stimulus areas. Such a procedure was, in some way,
inspired by Bartlett’s early observation of the wandering

point phenomenon (Bartlett, 1951). The experimental
paradigm used to detect this latter can be described as
follows. To a first subject is shown a white paper sheet

on which, in a particular position, a black point was
drawn. After the sheet has been removed, the subject is
asked to draw, on a second white paper sheet, a point
exactly in the same position in which was placed the
point previously observed on the first sheet. After the
first subject has drawn the point, the second paper shect
is shown to a second subject which, subsequently, is
asked to do, on a third paper sheet, the same task as the

first subject. Then the third paper sheet is shown to a

thirs subject, and so on. In this way it is possible to
obtain an ordered sequence of reproduced points, starting
from the first presented one. Such a sequence, once
transferred on a single sheet, evidences a wandering path,
starting from the first point, which can be considered as a
visualization of the line of force of perceptual field
passing through this point.

Bartlett’s idea appears as very appealing, mainly because
the drawn point behaves like a probe, useful to
investigate a perceptual field - the one created by sheet
boundaries - in an homogeneous stimulation condition,

without influencing in an essential way the field itself.
However, such a procedure is practically unsuitable to
study perceptual field structure in all locations belonging
to paper sheet, as it would require a too great number of
experimental subjects. A more easily implementable
method is the one which makes use of a previous suitable
sampling of locations, and, for each sampled location,
ask the same subject to reproduce the point drawn in this
location. In this way the data coming from a single
subject let us obtain the displacements (of the

reproduced point with respect to the observed point)
associated to all sampled locations. These displacements,
in turn, are proportional to the vector forces acting in
each one of sampled points. We can thus obtain a
quantitative representation of perceptual field structure
and of its lines of force.

Such a representation, omnce obtained,, should be
considered as a remarkable result, because it lets us
characterize in a quantitative way the perceptual field
postulated by Gestalt psychologists. However it raises an
important problem, conceming the origin of observed
perceptual field structure. Does this latter derive from
some general Maximum (or Minimum) Principle, such as
the one of goodness of form? Or it is a byproduct of
sensorimotor processing, required by experimental task
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neural architectures involved? In order to support the
evidence for the latter alternative we built a connectionist
model designed to represent perceptual-motor processing
by the experimental subject engaged in such a task, and
to forecast the displacements observed in an experiment
we performed, according to the paradigm presented
above, on 10 subjects. Such a model was implemented
through an architecture constituted by several different
neural networks reciprocally interconnected, each one
designed to do a particular task. Such a choice was
dictated by the complexity of the experimental situation
to be modelled. Namely this latter involves, first of all,
an acquisition system, to grant for input of stimulation
patterns, both of the sheet with the drawn point, and of
the empty sheet where the point has to be reproduced,
together with the instantaneous position of the point of
pencil used to draw the reproduction. Moreover, we need
a spatial memory , to store the information relative to the
observed point, and a motor system, able to command
hand motion in order to move pencil point up to the
location where the point should be reproduced. Such a
model was implemented through a computer program,
and the outcomes of simulations we did were compared
with the mean displacements observed in experiment
with human subjects. We found a satisfactory agreement
between computer simulation results and experimental
data. Such an effect was essentially a consequence of
general principles underlying the operation of single
neural networks belonging to the architecture we
described, rather than a consequence of ad hoc
mechanisms already embodied within our model.
Notwithstanding we feel that, in order to obtain a better
agreement, some further experimental and theoretical
problems remain to be solved.

Before undertaking a detailed illustration of proposed
model, we will describe, in the second section, the
experiment done on human subjects. The third section
will contain a description of the component of our model
we consider as the most critical one: the spatial memory.
The other networks belonging to model architecture will
be presented in a fourth section. The fifth section, then,
will be devoted to a description of simulations done, and
to a comparison between the results so obtained and
experimental data coming from human subjects. The
conclusion will be the object of sixth section.

THE EXPERIMENT

The experiment was designed with a procedure similar
to the one described, e.g., in Stadler et al: (1991), but
with a systematic control of experimental variables.

Subjects

The experiment was performed on 10 subjects, all
students of Psychology, 5 males and 5 females, all with
normal vision, or correct to normal.

The stimuli were constituted by 609 Ad4-sized paper
sheets, each one with a single point in a particular
location. Each point had a circular form, whose radius
was Imm. The set of all locations filled a lattice with 29
rows and 21 columns, in which the distance between two
neighbouring points, both along the horizontal and the
vertical direction, was 1 cm.

Procedure

To each subject were presented, once at time and each
one for a duration of 1 s, all 609 stimulus sheets. The
subject was sitting in a dark room, before a suitably built
device, constituted by a box, with an upper opening to
look inside and a lateral opening to insert subject’s hand
holding a pencil. Only the inner box was enlightened, so
that the subject was forced to focus his/her attention
only on stimulus sheet. After 1 s the sheet was removed
through a suitable opening, existing in the box, by an
experimenter , located in the dark , which substituted the
stimulus sheet with an A4-sized blank sheet. The subject
was asked to draw on this sheet a point exactly in the

. same location occuped by the point contained within the

stimulus sheet presented before. The experimenter
controlled that the initial position of subject’s hand was
always the same across all trials. Once the subject drew
the reproduction of the observed stimulus point, the sheet
was removed a new stimulation sheet was presented. The
presentation order was randomized, and different from
subject to subject. Each experimental session was
preceded by a training period, to ensure the
understanding of the task by the subject.

Results )

For each stimulus point and for each subject we measured
the difference between the position of the reproduced
point and the one of the stimulus point. Such a
difference led us individuate the vector field acting in the
location of stimulus point, and whence the tangent vector
to the line of force of perceptual field passing through
this point. Afterwards, we computed for each point a
mean tangent vector, by averaging the results relative to
the different subjects. The spatial distribution of mean
tangent vectors thus obtained evidenced a regular trend
(see Fig. 1). More precisely, the majority of straight lines
individuated by each tangent vector were crossing in a
small number of points, which Stadleret al (1991)

identified with the attractors of perceptual field. We
found a strong evidence for the presence of two attractors
located near the two comers on the upper part of the
sheet (here the attribute “upper” refers to the

observational point of view of experimental subject), in
agreement with the findings by Stadler et al. On the

contrary, we found only a weak evidence for the presence
of other two attractors located near the two corners on the
lower part of the sheet , differently from what found by
the Authors quoted above.
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Fig.1
Observed distribution of tangent vectors to lines of force
of perceptual field (averaged on all subjects).

MODELLING SPATIAL MEMORY

The general architecture of the model we proposed, to
describe perceptual-motor processing by a subject within
the experiment described above, consists of the following
interconnected neural networks: 1) a retina designed to
receive input patterns, 2) a spatial memory , designed to
process retinal output values, and to store the location of
the point to be reproduced, 3) two filtering networks,
designed to detect, respectively, the position of the point
to be reproduced (determined as output of spatial
memory), and the one of pencil point during
reproduction, 4) a motor network, designed to give the
right motor commands to the hand holding the pencil, as
a finction of the location of the point to be reproduced,
and of the instantaneous position of pencil point.

The choice of implementing the above described
subsystems through neural networks was dictated by the
following reasons:

a) neural networks algorithms appear as more suitable to
model, by using only a small number of rules of
interaction between network wunits, behaviours such as the
ones implied by perceptual or motor processing, which,
stated in terms of traditional symbolic rule systems (such
as the ones expressed through usual Predicate Calculus),
would be too difficult to describe; such a circumstance is
proved by fast diffusion, in recent times, of neural-
network-based systems which do in a very efficient way
artificial vision tasks, such as pattern recognition, visual
scene analysis, object identification, and motor control
tasks;

b) neural network structures appear as closer than usual
symbolic rule systems to biological structures involved
in visual and motor tasks, so that an interrelation between
neurophysiological study and cognitive modelling
becomes easier;

-modelling possibilities exist.

—- Mo de”'ng’ Thrumpton (UK): NottinghangyUniyaisity diresidwaie! ind§iéifieRtation of neural network

models can be faster than any serial processing of
symbolic rules; such an argument would become crucial
if our model would be used to command in real time an
autonomous robot;

d) neural network algorithms appear as more robust,
with respect to traditional symbolic rule systems, with
respect to errors, variations of input patterns, variations
of model parameter values.

We underline that the previous arguments, within this
paper, have nothing to do with the traditional
contraposition  between symbolic and subsymbolic
approach. Our neural network algorithms are symbolic,
in the same way as usual symbolic rule systems. We feel
only they are more convenient.

Within our model architecture the retina is modelled as a
planar lattice of units, each one of which can be, at a
given instant of time (henceforth we will suppose the
time be discretized: ¢t = 1, 2, 3, ...), in one of two states:
activated or non-activated (corresponding to the
activation levels 1 and 0, respectively). As regards neural
network representing spatial memory many different
They can be grouped
within two fundamental categories: models which make
use of correlation matrices, and are based on long-range
connections, and models implemented through cellular
neural networks, based on short-range connections. The
prototype of models belonging to the first category is the
celebrated Hopfield’s associative memory model
(Hopfield, 1982). There exist, however, memory models
belonging to this category, but not directly implemented
under the form of neural networks (see, e.g., Pike, 1984;
Humphreys, Bain & Pike, 1989). A more recent neural
network model of spatial memory of this type is the one
proposed by Fukushima et al. (1997). A feature
common to all these models is that spatial patterns are
stored as contributions to a matrix of connection weights,
each element of which captures the correlation between
two elements of a pattern lying in different locations.
This implies that the neural network implementing
spatial memory must be constituted by a number of units
equal to the one of pattern elements, with connection
lines linking every pair of units, independently from the
spatial distance between the elements corresponding to
the units. The presence of such long-range connections
not only is biologically implausible, but can give rise to
strong interference effects between stored patterns, if we
need to memorize more than one pattern. Such effects can
worsen in a dramatic way network performance in recall
phase. Moreover, this kind of neural networks appear as
particularly suitable to memorize complex patterns
rather than very simple ones, as it is the case in our
experiment, where the pattern is constituted by a single
point.

The second category of neural network models of spatial
memory, the one based on Cellular Neural Networks
(CNN), derives from the fundamental paper by Chua &
Yang (1988). Shortly, a CNN is constituted by a spatial
lattice of units, each one endowed with a particular
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neighbourhood function, stating what units can send
their output signals to the input lines of the unit itself.
Each line connecting a given unit to its neighbouring
units is characterized by a suitable connection weight. In
practical applications CNN showed very good
performances in artificial vision tasks relative to
processing of simple spatial patterns. For this reason we
choose this category of models to implement our spatial
memory.

Within our model spatial memory was represented as a
planar lattice whose dimensions and number of units
were identical to the ones of the retina. Each spatial
memory unit received input signals both from the retinal
unit lying immediately under it, and from its
neighbouring units within spatial memory. To this
regard, we choose as neighbourhood of a given unit the
classical 8-neighbourhood. This means that the
neighbouring units of the unit with coordinates (i, ;) were
the ones with coordinates (i-1,j-1), (i-1,/), (i-1,j+1), (i,

J-D, (G, j+1D), (i+1,j-1), (i+1,)), (i+1,j+1). If we denote

by xjj(t) the activation level of the unit with coordinates
(i, j) at the time t, we can write the activation law we
choose under the form:

(1) xjj(t+1) = a Qjj 1gh [Pij(t)] - d xjj(0),

where:
(2) Pijt) = Zr,seD wijrs Xrs(t) + g Xij(t) + 1ij(y) - s,

and D denotes the neighbourhood of the unit (i), /j;(?)

is the input signal coming from the retina, whereas is a
suitable threshold parameter. The quantities a, d, g
denote other parameters to be fixed by the experimenter.
Moreover Qi]' denotes a factor, depending on xjj(t) , we

varied, in order to investigate the effect of different
choices of activation function on spatial memory

performance. The forms of Qij we used within our
computer simulations were the following:

Ga) Q=1

@b Qjj=1-x;

(o) Qj=1-/lx)/13

Bd) Q4 =05 +x(1) - 1.5 [x;())]

The connection weights wijjps associated to the lateral

connections were varying with time according to a Hebb-
like law of the form:

() wijrs(t+1) = wijrs() + b Mijrs xij(t) xrs(t-1) +
- d wijrs(t),

0. The units whose activation level was

another factor, depending on xj;(2) and xjj(t+1), which

we modified in order to investigate the effect of different
forms of the Hebbian law on spatial memory
performance. The explicit forms of Mijrs we used

within our computer simulations were the following:

(58,) Mijrs =1
(5b) Mijps=1 - xjj(t+1) xps(t)
(SC) Mijrs =1 -IXU‘(H’U er(t)l 1/2

In all simulations we performed the operation of spatial
memory was observed for a number of time steps,
previously fixed by the experimenter. At the end of this
period, the activation levels of the units were filtered in
the following way. First of all, we searched for the units
whose activation level was the maximum one. Once
found these units, their activation level was set to 1,
whereas the activation level of all other units was set to
1 were
considered as representing what was stored within spatial
memory. In other words, they specified the locations
where should be placed the point to be reproduced. Of
course, in all computer simulations, only one unit of
spatial memory was characterized by an activation level
equal to 1. We underline that, apart from specific choices
of the factors Qij and Mijrs , the laws (1) and (4) are
nothing but an expression of very general principles
ruling neural activation and synaptic facilitation. Thus,
the effects of spatial memory operation are to be viewed,
essentially, as a consequence of the adoption of such
principles.

FILTERING AND MOTOR NETWORKS

When applying our general architecture to modelling
human subjects performance in point reproduction task,
we needed two filtering networks: one to detect the
position of the point to be reproduced, as deriving from
spatial memory processing, and another to detect the
actual position of the point of the pencil used to draw the
reproduction of the point itself. The former network
received as input the pattern of activation levels of spatial
memory, whereas the latter received as inputs the
activation levels of retinal units in presence of the pencil.
To do our simulations, we were forced to introduce a
particular schematic representation of the pencil together
with the hand holding it (as it is perceived by human
subjects in the real laboratory experiment). More
precisely, we choose to represent the hand through a
rectangular array of 3x2 units, to which was attached, in
the middle of the longest side, a line of 3 wunits
representing the pencil. We underline that both choices
of filtering networks, and of pencil representation, were
dictated by the need for proving that a neural-like, and
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from spatial memory to motor network is possible. We
acknowledge that other different representations would
be possible without changing the operation principles of
the neural architecture we proposed. However, we feel
that the representation we adopted should be particularly
suitable if we would implement our architecture through
a particular hardware to be installed within an artificial
device, such as a robot able to draw a reproduction of a
visually observed pattern.

The filtering network receiving inputs from spatial
memory was designed in such a way as to let survive
only patterns consisting of a single activated unit. It was
implemented through a 2-dimensional array of wunits
(essentially a time-discrete CNN), of slightly greater
dimensions with respect to the ones of the retina, in such
a way as to include the representation of the hand holding
the pencil. Each unit had a 8-neighbourhood and its
activation potential was given by:

(6)  Pyj(t) = xijt) - Zr,seD Wijrs *rs(t) + Lij()

where D denotes the neighbourhood, all other symbols
have the meaning defined in the previuous paragraph,
and the connection weights wjjs were all positive. The
activation law had the form:

(7) xjj(t+1) = Iif Pjjt) > 0.5, otherwise xjj(t+1) = 0.

In our simulations the operation time of this network was
limited to only one time step.

As regards the second filtering network, the one
receiving inputs from the retina and devoted to detect the
position of the point of the pencil, we designed it in sich
a way as to let survive only the unit corresponding to the
position of this latter. To this end, we adopted a 2-
dimensional array of units, whose dimensions were
identical to the ones of the first filtering network.
Moreover, by taking again a 8-neighbourhood, we
defined the activation potential as:

(8) Pij(t) =Zy,seD Wijrs xrs(t) - WOFF xij(t) + I jj(1),

where wOFF and  wjjrg were all positive. In our
simulations we choose all wjjrg values as identical to a
common value wg. The activation law had the form:

(9) xjj(t+1) = 1if 0 < Pjj(t) < (2wE - wOFF)/2 ,
otherwise xjj(t+1) = 0.

Also in this case the network operation lasted only for
one time step.

As regards the motor network, it was designed to
transform the knowledge of the actual position of the
point to be reproduced, and of the point of the pencil, in a
motor command able to induce a displacement of the
hand, and whence of the point of the pencil. To this end

from the first filtering network), and of the point of the
pencil (as deriving from the second filtering network),
were first transformed into a binary form, by using 5
binary digits for each coordinate. Thus, all knowledge
relative to the actual positions of the points quoted above
was coded through a 20-components binary vector. This
latter was used as input for a 3-layer Perceptron, whose
output layer contained two units, one devoted to code the
motor activation along the horizontal direction, and
another to code this activation along the wvertical
direction. As the allowed motions along these directions
could be both positive and negative, we choose, as
activation function of the Perceptron wunits, the
hyperbolic tangent one (with a suitable amplification
factor).

The Perceptron was trained on a sample of input patterns,
containing different relative positions of the point to be
reproduced and of the point of the pencil. The desired
output to each input pattern was obtained by putting the
wanted motor activation along a given direction as
directly proportional to the difference between the

-coordinates of the points quoted above along the same

direction. Such a choice was made in conformity with
neurophysiological  findings (cfr. Schwartz &
Georgopoulos, 1987), which evidenced a direct
proportionality between the electrical activity of motor
cortex neurons and perceived target distance. Of course,
the proportionality factor had to be considered as a
parameter to be chosen by the experimenter. The training
was done through usual error-backpropagation rule. To
avoid computational problems, the wanted outputs were
divided by a suitable scale factor.

Once trained, the Perceptron was used as a simple input-
output device, giving motor activation as a response to
the 20-component binary input vector. To compute the
effective displacement of the point of the pencil, we set
the velocity component of this latter along a given
direction as directly proportional to the motor activation
along the same direction. Such a choice was made in
conformity with recent neurophysiological findings on
the correlation between motor cortex activation and limb
movement velocity (cfr. Schwartz, 1992; 1993). Once
computed the velocity components, the new coordinates
Xnew»> Ynew Of the point of the pencil were computed

from the old ones xpJ4, yold through the relationships:
(10) Xnew = Xold + (kvx + vpx) *4t
Ynew =Yold + (kvy + vpy)*4t

where £ is a proportionality factor, vx and vy are the

components of the velocity computed as afunction of the
corresponding motor activations, vpyx and vpy are the

components of a "base” velocity, whereas 4t is the time
step amplitude. The introduction of a base velocity was
made to represent the cerebellar modulation of limb
movement, whereas the velocity obtained from motor
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movement itself, in conformity with the hypothesis put
forward by Flash & Hogan (1985).

COMPUTER SIMULATIONS AND COMPARISON WITH
DATA OBTAINED FROM HUMAN SUBJECTS

We used our model architecture to simulate the
behaviour of human subjects in the experiment
previously described. A number of preliminary trials
suggested the following parameter values: a = 0.5, d =
0.1, g=03,5=0, b=04, d= 0.05 k=1, dt=1,
vbx = 0.1, vpy = 0.1 wg = 0.15, wopF = 0.1. Moreover
all non-zero comnection weights wjjrs appearing in

formula (6) were set to 0.8. The motor network was
consisting of a 3-layer perceptron whose hidden layer
had 2 units. The proportionality factor between motor
activation and velocity was chosen as 0.6. The spatial
memory processing lasted for 10 time steps after the
disappearance of each stimulation pattern, and the hand
movement had a limit duration of 10 time steps. We
tested our model on the reproduction of the 609 points
presented to human subjects. From the positions reached
by the point of the pencil, as computed through our
model, at the end of the movement period, we derived the
tangent vectors through the same procedure used in the
case of human subjects.

We did many .different simulations with the same
parameter  values, corresponding to  different
combinations of choices relative to Qjj and Mjjys. In all
cases the results evidenced very clearly the presence of
four attractors located near the corners of the sheet, two
in the upper part and two in the lower part. As a
quantitative measure of model performance we choose
for each stimulus point, the euclidean distance between
the position reached, within the model, by the point of
pencil and the corresponding average position of the
point reproduced by human subjects. We then computed
the mean value & of such a distance, averaged on all
stimulus points. As other two measures of model
performance we choose:

1) the Bravais-Pearson correlation coefficient cy

between the vertical components of the tangent vectors,
obtained in our simulations, and the ones of mean tangent
vectors, obtained from human subjects’ data;

2) the Bravais-Pearson correlation coefficient c¢x

between the horizontal components of the tangent
vectors, obtained in our simulations, and the ones of
mean tangent vectors, obtained from human subjects’
data.

The values of &, cy, and cx obtained in correspondence

to the different choices of Qjj and Mjjys are listed in

the following (to shorten the exposition, every choice is
indicated through the numbers of the corresponding
formulae).

A) choice (3.a), (5.a):

5=21, cy=034 , cx=024

J125

5=17 , cy=043 , cx=020
C) choice (3.a), (5.b):

=48 , cy=0.16 , cx=0.17
D) choice (3.¢), (5.a):

=12 , ¢cy=0.58 , cx=-020

=11, ¢y=060, cx=-0.21
F) choice (3.d), (5.b):

6=25, cy=064 , cx=0.18

G) choice (3.d), (5.2):

=12, cy=062 , cx=0.17
H) choice (3.d), (S.c):
6=24 , cy=064 , cx=0.19

In order to have an idea of the meaning of these numbers,
we remember that a value § = 10 means that the average
distance from the points reproduced by our model and
the ones reproduced by human beings is only of one
lattice cell. We could thus hold that the results obtained
from the choices D), E), G) evidence a very good
agreement between our model behaviour and the one of
human subjects. We should, however, take into account
also the values of ¢y and cx, which show a very strange
trend. On one hand, namely, the correlations regarding
vertical components evidence a very good agreement
between our model and human data, chiefly in
correspondence to the choices D), E), F), G), H). The
choice G), then, seems to have realized the best
compromise between a high value of ¢y and a small
value of &. On the other hand, the correlations regarding
horizontal components appear as too small, in some cases
even negative. The highest value was obtained in
correspondence to the choice A), which, however,
doesn’t appear as particularly good, when we look at the
values of &and of ¢y. From simulation results it appears
as evident that neither the choice of Qij nor the one of

Mijrs , isolately considered, can improve the
performance of our model. This latter depends on both
choices. The best one appears to be G), but the
improvement in performance on c¢x, without a great
worsening on ¢y and &, suggests that a good research
strategy would be the one of investigating what happens
by replacing in (5.c) the exponent 1/2 with smaller
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how model’s performance depends essentially on general
form of laws such as (1) and (4), rather than on particular
choices of factors such as Qij and Mijrs . Another
possible explanation of the results we obtained can be
found in the existence of some bias which influenced the
performance of subjects during the experiment. Namely
the variance of their behaviours is very high. Moreover, a
comparison we did between our simulations and the
results obtained from single subjects showed, in some
cases, an agreement better than the one evidenced by a
comparison with average subject behaviours, whereas, in
other cases, such an agreement was worse. However, only
a careful repetition of the experiment with human
subjects can tell us whether this is or not the reason for
the observed trend of cx.

CONCLUSION

The computer simulations so far done evidenced that our
model was able to reproduce in a satisfactory way some
qualitative (the presence of attractors) and quantitative
features of subjects’ performance in the point
reproduction task. It is, thus, possible, to conclude that
our model was able to reproduce some Gestalt-like
properties of visual perception, owing essentially to a
suitable choice of the dynamical laws underlying spatial
memory operation. The usefulness of our proposal stems
also from the fact that the neural network architecture we
introduced is of modular nature, so that it becomes very
easy to investigate the effects on model performance of
different choices of the laws ruling the operation of each
module. Besides, our model can be easily adapted to
represent the cognitive processing of a subject engaged in
other sensorimotor tasks, different from the one of point
reproduction. A continual , and mutual, interaction
between experimental and modelling activity is,
however, needed in order that complex model
architectures, such as the one we proposed, be useful to
improve our knowledge about cognitive system.
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ABSTRACT

The neurosymbolic hybrid system ARCS, which extends
a classifier for certain kinds of visually presented objects,
generates recall images it is then capable of classifying.
The modules performing classification are exploited for
imagery, too. In particular, each weightless neural
discriminator has been modified so as to generate a non-
crisp example of the class of simple visual features it was
trained to detect; a symbolic process prescribes how to
assemble more complex patterns from such non-crisp
examples; both generated features and their compositions
are correctly classified, even though the system was
originally conceived for actual visual inputs only. These
cognitively significant aspects of the hybrid system are
examined in the framework of a more general discussion
of neurosymbolic integration for cognitive modelling.

Keywords

Hybrid systems, neurosymbolic integration, recall
images, weightless neural systems, multidiscriminators,
production rules

INTRODUCTION

"If you were going to program a computer to mimic
human imagery," Kosslyn (1995, p. 269) remarks
"perhaps the most fundamental problem the program
would have to solve is the generation of images." The
neurosymbolic system ARCS (Arches Recall and
Classification System) illustrates a way of solving this
problem, relative to images of simple features and their
compositions it is already capable of classifying.

The task domain contributes to highlighting the current
interest of neurosymbolic integration for Al and cognitive
modelling. The generation and classification of the
selected, more complex patterns, which seem to elude a
purely neural network approach, are naturally handled by
means of the hybrid neurosymbolic system. The selected
features are various line segments and angles; the more
complex patterns represent various portal shapes. ARCS
grew out of a hybrid classifier for portal shapes (De
Gregorio, 1996), embedded into an architectural expert
system for landmark building classification and
preservation (Burattini, 1994).

There are aspects of the process by which ARCS
generates recall images that are significant for cognitive
modelling. Human image generation seems to involve a
process for producing image parts, and another process for
positioning individually activated parts in the image, so
as to form more complex visual objects (Farah et al.,
1985, Kosslyn, 1994, Kosslyn, 1995, pp. 270-273). The
same division of labour applies to the image generation
mechanism of ARCS: one can distinguish between
simple visual features and more complex patterns, and
between two corresponding stages of image generation,

The first stage of image generation is carried out by the
neural module of ARCS. This module is a weightless
neural system formed by RAM-discriminators (Aleksander
& Morton, 1990). The standard weightless discriminator
model was slightly modified in order to make a wider
repertoire of behaviours available (De Gregorio, 1997). In
particular, such a modified discriminator can generate a
grey-level, non-crisp example of the class of simple
visual features it was trained to detect. The generated
example differs from, but bears a precise relationship
(spelled out in detail in the following sections) to every
binary pattern of the corresponding training set. Roughly

- speaking, the grey intensity level of each non-white pixel

in the example is proportional to the number of times
that the corresponding memory locations of the
discriminator were addressed by input training patterns.
Since this relationship shows that each image in the
training set contributes to forming the generated class
example, a question that naturally arises is whether such
recall images might be regarded as typical examples of the
classes of visual patterns detectable by ARCS. From a
computational perspective, it is worth pointing out that
the first stage of image generation is carried out by neural
nodes that are endowed with functionalities akin to (but
not identical with) those of bidirectional associative
memories (Kosko, 1988).

In the second stage of image generation, more complex
objects are formed by properly assembling the elementary
features together. This latter process is governed by the
symbolic module of ARCS, a system of production rules
determining the features to be assembled together and
their categorical spatial relationships in the complex
recall image.

In addition to generating recall images by a two-stage
process, ARCS can inspect and classify them. It achieves
this goal using a pre-existing hybrid classifier for actual
visual inputs. Thus, classification of both mental images
and actual visual inputs is taken care of by the same
process. This is consistent with the widespread conviction
(Damasio and Damasio, 1994, Finke, 1985, Kosslyn,
1994) that visual imagery exploits the mechanisms of
visual perception; more generally, that mental imagery,
in any of its modalities (visual, auditory, tactile, etc.),
exploits the mechanisms of same-modality perception.
Yet another aspect of ARCS which is worth mentioning
in this connection is the coarse internal organisation of
the (recall) image classification process, as it closely
reflects Kosslyn's protomodel of visual perception
(Kosslyn, 1994, p. 69). In ARCS, shape and location
data are handled by different processes and trigger
classificatory hypothesis formation and the hypothesis-
driven testing of proposed classifications by means of
additional perceptual clues.
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To sum up, the following claims concerning image
generation and classification in ARCS seem, in our view,
to capture the more relevant aspects of this computational
system for cognitive modelling.

(i) The recall images generated by ARCS are non-crisp
examples of the classes of visually presented features and
objects the system is capable of classifying. (This claim
is supported by (ii).)

(i) The classification of recall images is correctly
achieved by the same mechanism performing
classification of actual visual inputs.

(iii) Image generation results from the composition of
two distinct computational processes: simple visual
features are first generated and then assembled into more
complex patterns.

(iv) The coarse internal organisation of the image
generation and classification mechanisms reflects
distinguishing traits of current models of high-level
vision.

These claims are more precisely specified in the next four
sections, which describe the symbolic and neural
components of the hybrid image classifier and generator.
In the final section, the cognitively significant aspects of
this system are rehearsed in the light of a more general
discussion on neurosymbolic hybrid approaches to
cognitive modelling.

RAM-DISCRIMINATORS AND CLASSIFICATION
In this section, we briefly describe the structure of RAM-
discriminators, their training procedure, and the feature
classification task performed by the multidiscriminator
system of ARCS.

RAM-discriminators .

A RAM-discriminator consists of a set of N one-bit word
RAMs with X inputs and a summing device (£). Any
such RAM-discriminator can receive a binary pattern of
XN bits as input. The RAM input lines are connected to

the input pattern by means of a so-called "random
mapping". The summing device enables this network of
RAMs to exhibit — just like other artificial neural nets
that more directly model features of biological neural
networks — generalisation and noise tolerance. (See fig.
1 for a schematic representation of a particular RAM-
discriminator.)

In order to train the discriminator one has to set to 0 the
RAM memory locations and to choose a training set
formed by binary patterns of X-N bits (see fig. 2 in which
a possible training set for the feature vertical line is
proposed). For any training pattern a 1 is stored in that
memory location of each RAM which is addressed by this
input pattern. Once the training is completed, the RAM
memory contents will be set to a certain number of 0's
and 1's.

The information stored by the RAM during the training
phase is used to deal with previously unseen patterns.
When one of these is given as input, the RAM memory
contents addressed by the input pattern are read and
summed by X. The number r thus obtained, which is
called the discriminator response, is equal to the number
of RAMs that output a 1. r reaches the maximum value
N if the input pattern belongs to the training set (in the
present example, if the input pattern is one of the patterns
in fig. 2). r is equal to 0 if no three-bit component of the
input pattern appears in the training set (no RAM outputs
a 1). The other, intermediate values of r express some
kind of "similarity measure”" of the input pattern with
respect to the patterns in the training set.

We selected RAM-discriminators as digital neural
components for our system on the basis of the following
considerations: their training algorithm can be easily
modified as needed for image generation tasks; RAM-
discriminators are tailored for efficient implementation on
conventional computers; the use of artificial neurons
more closely reflecting biological neurons would not
make a difference at the coarse level of cognitive
modelling sketched in the introduction.

address\n
H- RAM »
*l1O01 X i : RAM o
Lill Bl ; - | Tl
X| X| + 1
5 . T ||L=g ramx
random mapping
RAM +

Figure 1 - RAM-discriminator
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Figure 2: a possible training set for the feature vertical line
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Figure 3 - a multi-discriminator system

Multidiscriminators

Multidiscriminator systems are formed by various RAM-
discriminators  (Aleksander et al, 1984). Each
discriminator is trained on a particular class of patterns,
and classification by the overall multidiscriminator
system is achieved in the following way.

When a pattern is given in input, (see fig. 3 for a
schematic representation of a multidiscriminator system
formed by 10 RAM-discriminators), each discriminator
gives a response on that input. The various responses are
evaluated by an algorithm which compares them and
computes the relative confidence ¢ of the highest response
(that is, the difference d between the highest and the
second highest response, divided by the highest response).

In ARCS, six discriminators were trained with drawings
representing variations (in angle width, size, or position)
on the simple geometric features of fig. 4. The
discriminators are organised into a multidiscriminator
system which ranks their responses.

i N

/—'—\ 3

Figure 4 - geometric features

(MODIFIED) RAM-DISCRIMINATORS
FEATURE GENERATION

RAM-discriminators were modified in what their memory
locations may hold and, correspondingly, in their training
algorithm. These changes, which produce something very
similar to the PLN nodes introduced in (Aleksander,
1988), allow one to store g-bit words in memory
locations (where ¢ is usually not greater than 8); in turn,

AND

this information can be exploited for producing recall
images (and improving in other ways the behaviour of
RAM-discriminators).

Another training algorithm

The training algorithm of RAM-discriminators Wwas
changed in one respect only: instead of storing 1's, one
just increases by 1 the memory location contents that are
addressed by the input patterns. At the end of the training
phase, the values of the memory contents will vary
between 0 and M (where M is the number of training
patterns). Fig. 5 shows the result of training the same
RAM-discriminator of fig. 1 on the patterns of fig. 2, by
means of the new algorithm.

The various memory content values can now be associated
to subpattern frequency in the training set. For instance,
the memory content of the address 010 associated to the
+-th RAM is 5. This value indicates that the subpattern
010 is present 5 times in the training set of fig. 2.
Moreover, one has to notice that the newly obtained
memory contents do not give rise to different behaviours
with respect to regularly trained RAM-discriminators, if
one replaces the T device with another summing device,
outputting the number of addressed memory locations
whose content differs from 0.

One may take advantage of the new values stored in the
RAMs in order to produce recall images (De Gregorio,
1997). This behaviour is significantly related (but not
identical) to the exact input/output reversibility exhibited
by the Bidirectional Associative Memories (BAM)
introduced in (Kosko, 1988). The form of bidirectional
behaviour we want to obtain from a RAM-discriminator
D, trained with the new algorithm to pick out the
elements of class X, must satisfy the following
conditions:

(@) in one direction, D has to perform the usual
classification process of RAM-discriminators;
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Figure 5 - RAM-discriminator of fig. 1 trained with the
new algorithm

(b) in the opposite direction, D has to provide, when
given the name of class X in input, an example of X,

It is not required that the example be identical to a
member of the training set for D. Furthermore, we regard
(b) as satisfied for any example of geometric feature in
fig. 4 if the example is correctly classified by the
multidiscriminator of ARCS.

The solution outlined here involves the construction of
grey-level (rather than black and white) images exploiting
the information held in the modified RAM memory
locations. (A mathematical framework for approaching the
reversibility problem for weightless systems is briefly
sketched in (Redgers & Aleksander, 1992).)

Generating grey-level images

The procedure for constructing grey-level images is the
following. Let by, bp, and b3 be the first, second, and
third bit forming the address of a memory location (for
instance, by =0, bp = | and b3 = 1 represent the address
of the 011 memory location). To each of these bits a
particular pixel of the image is associated (see the
mapping in fig. 1). For any RAM, let B;, fori =1, 2, 3,
be the sum of all memory location contents for which b;
is 1 and the value stored is not equal to 0. For instance,
for the o-discriminator in fig. 5 we obtain: By =1,B2 =7
and B3 = 1. Applying this condition to every RAM in
fig. 5 we obtain: Vj:je {° x,0,+},B1j=1,Bgj=T7,
B3; = 1. This regularity over the four RAMs depends on
the fact that each pixel in the left-hand and right-hand
columns of the matrix assumes value 1 (black) only once
in the training set, whereas each pixel in the central
column assumes value 1 (black) seven times in the
training set.

Now, one can set the grey intensity level of each pixel
associated to the bit bjj in such a way that it is
proportional to the corresponding value Bjj: the higher is
Bjj the darker will be its grey intensity level. The result

of this procedure applied to the modified RAM-
discriminator trained for the feature vertical line is shown
in fig. 6.

11711
11711
11711
11711

Figure 6 - the generated example of vertical line
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Figure 7 - examples generated by the modified multi-
discriminator

Let us now turn to consider the wider class of simple
visual features exemplified in fig. 5. In recognising these
features, the multidiscriminator system of ARCS (trained
by the modified algorithm described in this section) works
in a canonical way, i.e. just as any regular
multidiscriminator system. Moreover, the system may
also provide, upon request, an example of each geometric
feature it can classify. The results are shown in fig. 7.

CLASSIFYING COMPLEX PATTERNS
ARCS was originally conceived for classifying actual

photographs of portal shapes into one of the classes a to f

exemplified in fig. 8. The hybrid approach was pursued
after direct classification through a multi-discriminator
system failed.

The purely neural approach

The training set employed in the first, purely neural
approach contained several drawings varying from the
examples in fig. 8 only in the way of their position and
size. The results obtained in a test made with 85 actual
photographs of portals showed that only portal shapes
belonging to classes a and b were correctly classified in a
systematic way. The main reason for this failure emerges
clearly from fig. 9, where the differences a-b, e-f, and c-d
are shown.

While the relative complement of b in a is a rather large
set of points, the other relative complements are much
smaller and more localised. Thus, the information
enabling one to discriminate between some such classes
concerns the geometrical properties of small collections of
points. It seems that spatial reasoning about geometrical
features is crucially involved in this classification task. In
particular, the more useful geometric cues are the top, the
horizontal, and the vertical parts of portals, as exemplified
in fig. 10 for polygonal portals. (Notice, however, that
the horizontal parts are not essential for the non-linear
portals g, e, and fin fig. 8.)

In order to mimic this geometrical reasoning capability, a
hybrid system composed of a neural module and a
symbolic module was adopted (De Gregorio, 1996): a

a b c
d e f

Figure 8 - classes of portal shapes
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Figure 10

neural network for recognising geometric features was
combined with a set of production rules specialised in
classifying special arrangements of these features.

The symbolic module .
In the symbolic module one can distinguish between three
different sets of production rules.

The first set of rules enables the system to evaluate the
geometric "coherence” of the discriminator responses. For
instance, suppose that on the current input "straight
angle" and "obtuse angle" are the best and the second best
response for both left and right horizontal parts,
respectively. Then, the system uses these rules to verify
whether the left and right recognised features are almost at
the same height, almost aligned with the top, symmetric
with respect to the top. If the "straight angle" responses
do not satisfy these conditions while the "obtuse angle"
responses do, the system selects the "obtuse angle" ones
as possible responses, because they are geometrically
“coherent".

The second set rules implements an abduction-prediction-
test inference cycle (Burattini and De Gregorio, 1994)
which can be roughly described in the following terms.
From the ranked list of responses for the top feature,
which is provided by the multidiscriminator system, the
best response is picked out to start the cycle. The system
abduces the portal shapes (hypotheses) that are consistent
with the higher-ranked top feature. Given these
hypotheses on overall portal shape, the system predicts
which horizontal features may be detected, and activates
the appropriate discriminators. Then, if one of these
horizontal features is actually detected, the associated
hypothesis is selected for further scrutiny, and the system

activates the relevant discriminator to test again that
hypothesis with respect to the vertical features; otherwise,
the cycle is repeated on the next hypothesis (with the
obvious termination conditions).

The third set of rules is formed by six rules, one for each
portal shape, and enables the system to infer the final
portal classification (if any). For example, the rule
concerning polygonal portals can be informally stated as
follows:

(Rp) If top feature is in class no. 1 of fig. 4 and the
P

horizontal and vertical features are in (or are obtainable by
90° rotation or specular reflection from instances of) class
no. 4, then portal shape is polygonal (as in fig. 8, d).

The hybrid classifier has correctly classified the 85 actual
photographs of portals that showed the inadequacy of the
previously attempted, one-step neural classification
approach (see fig. 11 for an input image - left - which is
filtered - centre - and eventually classified - right; the
higher the responses the darker the lines).

GENERATING AND CLASSIFYING
IMAGES OF COMPLEX PATTERNS

RECALL

~ We have pointed out that the third set of production rules

of the symbolic module enables the system to infer portal
classification from portal components. By exchanging
condition and action parts of these rules, one obtains new
rules specifying which parts are to be assembled together
to form the recall image of a given portal shape. For
example, from rule (Rp), one obtains a rule which can be

informally stated as follows:

(Rp<~) If portal shape is polygonal (as in fig. 8, d) then
top feature is in class no. 1 of fig. 4 and the horizontal
and vertical features are in (or are obtainable, by 90°

rotation or specular reflection, from instances of) class no.
4, -

Similarly, by exchanging condition and action parts of the
"geometrical coherence” rules, we obtain rules
determining categorical spatial relationships between parts
of complex recall images (ruling that vertical and
horizontal components must be aligned and symmetrical
with respect to the top, that the horizontal components
must be aligned with the top).

An assembly problem which is not solved in the current
implementation is how to determine the proportions of
the components and their metric spatial relationships. A
dynamic solution would require the recording of the
corresponding data during the classification of actual
visual inputs — in order to set, and then progressively
refine the values of such spatial relationships as new
examples are being classified. We have not yet
implemented a process of this sort, which takes
dynamically into account all past experience of the
system. Currently, the system assigns fixed default values
to such relationships.

The grey-level recall images obtained by means of the
"assembly" rules are correctly recognised by the classifier
of ARCS (see fig. 12). As with the actual photographs of
portals given in input to the system, these recall images
are first processed by a grey-level filter, which produces a
binary image sharpening the non-crisp input image. The
latter is given in input to the hybrid classifier described in

13/
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Figure 11 - input image of a polygonal portal (left), filtered (centre) and classified by the multidiscriminator (right).

the previous section. (Let us notice, in passing, that the
existence of a filter editing visual information, by filling
in missing details or sharpening fuzzy data is postulated
in various cognitive models. See, for instance, Kosslyn
(1994, p.389) and Rocha (1997, p. 157).)

Fig. 12 shows the grey-level recall image of a polygonal
portal (left) which is filtered into a black and white image
(centre). The responses of the discriminators for the
various features (right) are represented in different
intensities of grey: darker lines correspond to higher
response values.

Is a recall image obtained in this way a fypical example
of the corresponding class? To the extent that frequency
and typicality can be assimilated, the (filtered) recall
images might be regarded as typical pictorial
representatives of their classes. The non-crisp recall image
preserves in its darker, more noticeable parts a trace of the
more frequently encountered patterns during the training
hase. In the filtered recall image (see fig. 12, centre), the

S

- sharpened trace induced by such patterns stands out even

more clearly.

Under the hypothesis that frequency and typicality are
identifiable in the domain under consideration, one can
assert that the various classes of portals in fig. 8 are
pictorially represented in the system by means of recall
images, whereas the more abstract, general class portal
can only be represented by a disjunction of statements
such as (Rp). (See Ullman (1996, p. 184) for a recent

discussion of related issues.)

In concluding this section let us notice that (complex)
recall images may be adjusted on the basis of further
experience. If, during a new training session, the memory
location contents of the various RAMs are modified, then
the grey-intensity level of the associated pixels in the
generated example will change accordingly.

: 4

Figure 12 - recall image of a polygonal portal (left), filtered (centre) and processed by the multidiscriminator (right).
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Figure 13 - system layout (RKB stands for Reverse Knowledge Base).

NEUROSYMBOLIC HYBRID SYSTEMS FOR
COGNITIVE MODELLING

The idea that visual perception and imagery share the
same underlying mechanisms is supported by various
behavioural, neuropsychological and more recently
accrued brain imaging data. ARCS reflects this
hypothesis, insofar as visual object classification and
generation of recall images in the task domain are
concerned. Notably, classification of both actual and recall
images is performed by exactly the same mechanism,
whereas just a reversing of some neural and symbolic
mechanisms involved in classification is needed to
generate recall images. This reversing might be viewed as
contributing to an abstract, purely functional modelling
of reentrant neuronal connections (Edelman, 1989, p.
195, Damasio & Damasio, 1994), which combines the
two quite different computational techniques of production
rules and weightless neural systems, that are usually
associated to the symbolic and subsymbolic paradigm,
respectively.

Neural and symbolic techniques converge into hybrid
neurosymbolic approaches to cognitive modelling
(Hilario, 1995). These approaches seem to provide
appropriate tools for modelling the interaction between
top-down reasoning processes (typically simulated by
symbolic computation) and bottom-up perceptual
processes (often simulated by neural computation). The
hybrid system ARCS is a case in point, since
classification is accomplished by the interaction of both
types of processes. We were unable to carry out this task
by means of the purely neural, one-step classification
process that was previously adopted.

Also the generation of recall images in ARCS is not a
one-step process. The neural module generates examples
of the various classes of features. Categorical spatial
information about the position of features is represented
in the symbolic module, and enables the system to
assemble individually generated features into a complex
recall image. Thus, the partition of the system into a

neural and a symbolic component corresponds to a
decomposition into functionally distinct subsystems,
which is postulated in Kosslyn's model of imagery
(Kosslyn, 1994 and 1995). A more detailed system layout
is shown in fig. 13.

In general, the cognitive models taking the form of hybrid
systems may raise a special epistemological problem
since, in principle, model and cognitive reality might be
compared at the symbolic, subsymbolic, and even
neuronal levels. The problem does not arise if the hybrid
system is proposed. as a coarse model of input/output
behaviours, relative to the major components of the
cognitive system only. At this level of comparison, it is
immaterial whether the various components are
implemented as a neural net or as a symbolic system:
only the functions computed by each component are
relevant. Claims (i)-(iv) — made in the introduction and
relating ARCS to the computational modelling of aspects
of high-level vision and visual imagery — are to be
understood just at this functional level of comparison.
Thus, the choice of a hybrid architecture for ARCS is
only pragmatically motivated: it allows one to simulate
cognitive functions that seem to elude symbolic
(respectively, neural) computation techniques in isolation.

These various observations suggest that the hybrid
approach pursued here is not in principle incompatible
with later developments possibly allowing one to
substitute a neural module for a symbolic module, salva
functional equivalence, and eventually transforming a
hybrid system into a unified neurosymbolic system. In
such unified systems, neurally implemented modules
perform symbolic reasoning, too (Hilario, 1995). In
principle, ARCS may be transformed into a unified
system, by neurally implementing the production rule
system performing geometric reasoning (adopting, e.g.,
the methodology proposed in (Aiello ez al., 1997, Aiello
et al., 1995)). It is not obvious, however, that every
hybrid system can be turned into a unified system. There
are forms of reasoning that currently go beyond unified
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approaches; these include most forms of classical
reasoning in first-order logic, which lack (efficient) neural
implementations. For discussion, see (Aiello ez al., 1997,
Ajjanagadde & Shastri, 1993, Sun, 1994).

Finally, some remarks about future work on recall images
in problem solving. One may endow the system ARCS
with an explanation module combining words and
pictures. If a user wants to know why a given house
portal was classified as, say, polygonal, the system may
justify this conclusion roughly as follows:

(a) it generates and displays examples of the visual
features detected in the input image;

(b) it verbally declares and visually exemplifies the spatial
relationships that were recognised to hold between the
displayed features;

(c) it displays an example of the overall portal shape,
obtained by properly arranging the generated features, next
to the input image.

Similar uses of multiple representations have been
recently discussed in (Tabachneck-Schijf et al., 1997).
Both in ARCS and in other contexts that we are currently
exploring (concerning simple 2-D geometric figures),
recall images may be used to complete partially occluded
pictures, so that the various completions that the system
declares as consistent with the occluded image can be
shown.
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