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ABSTRACT

We present herein a model based on a strict separation
between logical and calculation capabilities, designed to
mimic aspects of human problem solving behaviour. Our
model has been designed to be simple and
psychologically plausible. We have tested our approach
on the Tower of Hanoi task by comparing the results
provided by our model with the performance of novice
subjects. We also compared these results with the
performance of a few other computational models. These
comparisons are quite promising.

Keywords
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INTRODUCTION

In (Johnson-Laird and Byrne, 1991), convincing

evidence is presented that seems to undermine the
existence of human logical capabilities. Mental models
(Johnson-Laird, 83) would explain experimental results
on logical problem solving tasks much better than logical
models do. Evidence from the observation of natural
conversations (Dessalles, 1993) suggest however that the
ability we have to argue with each other in everyday
verbal interactions relies on genuine logical capabilities.
Our hypothesis is that the same logical capabilities are
involved in problem solving. We propose that the
problem solving behaviour of subjects can be partly
explained by the joint operation of two separate sets of
capabilities: logical and calculation capabilities.

THE MODEL

Calculation Capabilities

Calculation Knowledge Representation: Operators

The representation of calculation knowledge is based on
operators. An operator takes the following form:

(State 1, Operation, State 2)

where State 2 results from the application of Operation
to State 1. Operators are able to propose in sequence all
existing legal steps from a given situation. An operator
can be applied recursively, up to a given search depth, by
taking one of the resulting states it has proposed as a new
starting state.

Preference
We postulate a contextual preference for operators: in a
given context, the operator will propose legal steps in a
given order.

Reversibility

Operators are reversible in two ways. Given a resulting
state, an operator can propose legal steps leading to this
state and the associated starting state. Given a step, an

operator can propose a starting state in which this step
would be legal.

Logical Capabilities

The role of the logical part of the model is to evaluate
situations and design goals. Its specific form is motivated
by independent studies, particularly conversation
modelling (Dessalles, 1993).

Logical Knowledge Representation

Logical knowledge is represented by first-order logical
rules, in an extension of the negative conjunctive normal-
form:

List of terms => Mod

Each term in the list is in conjunction with the rest of the
list, and Modality (noted 'Mod') is either Undesirable
or False. Facts are stored in memory with no specific
order, in the following basic form:

(Fact, Truth Value)

where Truth Value can be either 'true’ or 'false'. Facts
with an unknown truth value are not stored in memory.

Saturation Detection

The first capability that we put forward for the logical
part of our model is the systematic detection of rule
saturation. A rule is said to be saturated when all the
terms of the rule are known to have the truth-value with
which they appear in the rule. Depending on the
modality, an undesirable or paradoxical situation will be
detected in this case. We call such a situation a
problematic situation.

Counter-Factual Production

To get out of a problematic situation, the subject has to
change the truth-value of one term of the saturated rule.
This is done by producing a counterfactual. A
counterfactual is a term with a truth-value that is known
to be false but that cancels the problematic aspect of the
current situation. This counter-factual generation can be
done repeatedly until the situation is no longer
problematic.

Coupling logical and calculation capabilities

Problem representation

The problem representation is split into two parts. In the
logical part, the situation is represented by facts. In the
calculation part, the situation is represented by states.
Goals are represented by undesirability rules in the
logical part, and are not represented in the calculation
part.
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Goal-Oriented, Preference-Oriented Exploration
The strategy used to solve the problem is to explore the
search space until reaching a state where the current
undesirability is no longer saturated. It can be written in
the following form:
OPERATORS: EXPLORE PROBLEM SPACE WITHIN SEARCH
DEPTH
[F CURRENT UNDESIRABILITY SATURATED
CONTINUE EXPLORATION
ELSE
PLAY PROPOSED MOVE(S)
[F NEW UNDESIRABILITY NEW_UND
CURRENT UNDESIRABILITY = NEW_UND
ELSE
STOP
With a restricted search depth, the set of reachable states
is limited. It often happens that all of them are
uninteresting. In this case, the preferred move of the
operator will be played, and the search process will start
again from the new state reached. After a few steps made
along according to mere preference, and if no interesting
state is reached, the search stops: this is a dead end.

Getting Out of Dead End: ‘Counter-factual’ and Operator
Reversibility
A dead-end situation is characterised by the fact that the
current undesirability is out of reach of the operator. The
strategy used to get out of dead ends can be sketched this
way:
SELECT A TERM OF THE CURRENT SATURATED RULE
INVERT THE TRUTH VALUE OF THIS TERM
IF A NEW RULE BECOMES SATURATED
REPEAT THE PROCESS
ELSE
CALL OPERATOR WITH
CURRENT STATE AS STARTING STATE
DESIRED STATE AS ENDING STATE
TURN SITUATION RETURNED BY OPERATOR
INTO UNDESIRABILITY RULE
RE-START SEARCH PROCESS

EXPERIMENTS

Our experiment is based on the comparison between
solutions given by our model and by human subjects. We
performed a step by step comparison between both
solutions. In order to be able to compare the solutions
after the first difference in move, our solution is bound to
follow the subject’s solution. At each step, our model
computes its next move, which we compare to the human
move. The human step is always the one played.
Differences are counted, and whenever the erroneous
move was chosen due to operator preferences, the
involved preference is inverted.

We tested the system on 40 protocols, produced by seven
novice subjects, and totalling 1462 steps. We also tried
different others models. Besides random strategies (pure
random, random without moving the same disk twice,
preferences replaced by random'), we experimented with
a model inspired by (VanLehn, 1991).

' That is, our model where the operator preferences were replaced by

random choice.

n this latter model, three steps out of four are forced
steps. Each time the model moves Disk 1, the next
allowed move is to take the only other legally moveable
disk and to put it on the only legal peg. Each time the
model moves Disk 2, the next allowed step is to put Disk
1 back on it. The model chooses the optimal move for
each unresolved move. Without correction, this algorithm
always gives the optimal solution.

RESULTS AND DISCUSSION

For each model, we computed the percentage of correctly
predicted moves out of the total number of moves. The
results obtained after these trials are:

Random: 33.68%
Random without backtrack: 68.88%
Our model without preferences: 73.76%
Inspired by VanLehn: 78.66%
Our model: 80.71%

The results given by models involving random may vary
by 1%. Results given by our model also vary by 0.7%
around the value we give, because initial preferences are
fixed at random. The results of the VanLehn inspired
model do not vary.

The differences between the three first models and ours
are significant (chi? = 15.49, p < 0.0005, for the
comparison between our model and the random and logic
model). The difference between our model and the
VanLehn inspired model is not significant (chi?z = 1.51,
p < 0.25). The VanLehn inspired model gives good result
principaly because it takes avantage of task specific
constraints. Yet, the VanLehn inspired model generates
by itself only the optimum solution, and cannot be, as
such, a good model of human behaviour.

The comparison with the three random models is
interesting. Our model without preferences is much better
that random alone and is significantly better than random
without backtrack. This confers an independent
validation to the logical part of our model. Also, the
results given by the complete model are better than those
obtained by replacing preference by random, which
indicates that, on the calculation side, preferences better
account for human behaviour than random choices do.
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ABSTRACT

This paper presents a numeric rather than symbolic
approach to the chunking problem. The application area
is the expert recall of chess board configurations. It is
shown that a relatively low number of ‘skilled’ chunks is
enough to explain the chess players recall of chess
positions.

Keywords
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INTRODUCTION

Chess players’ recall of chess positions has been one of
the major experimental paradigms in basic cognitive
skills research (Chase and Simon 1973, Djakov,
Petrovski and Rudik, 1926, de Groot 1965, 1966). In this
research it was shown that expert chess players are
superior to novices in recalling real game positions but
not essentially better in recalling their randomized
versions. The finding has been generalized over a large
number of cognitive skills and it has proven to be very
stable.

Perhaps the only issue of real concern has been the
number of chunks experts have to learn to achieve their
skill. Simon and Gilmartin (1973) argued that they must
have learned, at least, 50,000 to 100,000 chunks. The
evidence was based on simulation. However, Holding
(1985) noticed that in these models the locations of the
pieces were absolutely coded. Consequently, it was
possible to assume that much lesser a number of chunks
could explain the performance of the subjects.
Saariluoma (1994) and Gobet and Simon (1996) have met
the "criticism by showing that chess players recall is
impaired by transposition of the chunks on a chess board,
which is critical to Holding’s (1985) argumentation.

Another, theoretical presupposition in the original Simon
and Gilmartin (1973) argumentation is the reliance on
symbolic modeling. It might be possible that the whole
philosophy of symbolic modeling is not adequate
approach to the problems of human memory. As is well
known various types of neural networks have challenged
very deeply the idea of symbolic modeling. The evidence
is today vast and it should be discussed in the context of
chess players’ memory recall as well.

In this paper one specific type of neural network model is
used to simulate chess players’ recall. The outcome of
simulation shows that if neural networks are used the
number of chunks could be reduced substantially.
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Thinking of the large support neural network models
have in modeling human memory processes, the neural
simulation makes it necessary to rethink the explanatory
validity of Simon and Gilmartin (1973) argumentation
and all models of the same type.

In this experiment, the framework differs very much from
the traditional symbolic setting. For example, the chunks
are now numeric and real-valued; and rather than
expanding, they become more and more specialized as
the training goes on. This view of chunks is in contrast
with the original chunk idea.

ADAPTATION ALGORITHM

There are various neural network algorithms for pattern
classification and feature extraction tasks available (see
Bishop, 1995). The following approach’ is specially
tailored for self-organizing search of correlation
structures. In statistical terms, it is a special combination
of cluster analysis and principal component analysis; the
resulting set of features can also be interpreted as
sparsely coded, non-orthogonal factors.

The memory structure is a derivation of the Kohonen
self-organizing map (Kohonen, 1984). There are N nodes,
each of which is tharacterized by a prototype vector 6;,
where 1<i < N . The dimension of the vectors is n. The
prototype vectors should represent the observed input
vectors as accurately as possible — to reach this goal, the
standard self-organization algorithm has been modified:
rather than constructing only a set of N cluster centers
characterized by the prototype vectors, the prototype
vectors are interpreted now as ‘coordinate axes’ in the
input data space, spanning a rather low-dimensional
subspace. The algorithm can be implemented as follows.

1. Take the next input vector sample f .

2. Select the node with the best correlation with the
input vector f, that is, determine the ‘winner’
index ¢ such that the absolute value |9¢|, where
@, = 9,~T f, reaches its maximum value.

3. Calculate the ‘neighborhood’” parameter A, ;
between the network nodes i and the winning
node c¢. This parameter has value near 1 if the
nodes are ‘near’ each other in the net, and lower
value otherwise, as presented in (Kohonen, 1984).

' The analysis and other applications of the algorithm are presented in
Hyotyniemi (1997) and (1998).



f

input. That means, for each network node : update
the vector 6; as 6; < 0; +1; @ f —0;). The
parameter y is a decaying function of time to
assure that the network finally converges.

Normalize the feature vectors: 8; < 6, /\/9,.7'0,-
forall 1Si<N.

Eliminate the contribution of the feature number ¢
by setting f < f —¢.-6,.

If m features have not yet been extracted, go back
to Step 2, otherwise, go to Step 1.

After the network has converged, the prototype vectors
represent features that can be used to construct the input
patterns. That means, given an input vector £, find the

sequence of @; values as presented in Steps 2 — 7 above

(ignoring the updating steps 3 — 5), so that the estimate
for fcan be constructed as a weighted sum of the features

F=00(f)+ - +Oyon(f).

In this context, it is assumed that the extracted features
are the chunks, conveying the dependency relations
between the input elements. The number N stands for the
capacity of the long-term memory, while the parameter m
is the size of the short-term memory. It is also assumed
that at any instant only the references to the static
memory structures and the respective weights are
operated on.

SIMULATION EXPERIMENTS

To apply the presented algorithm, the input data is first
coded appropriately. This means that one must present
the chess piece configuration as a vector of real numbers.
The coding is now location-based and rather trivial.

It is assumed that the lower-level processing has
produced the component level constructs, that means, the
visual image has been analyzed and atomic information
about the board has been extracted — these information
atoms are now something like ‘white king in g1’, etc. For
simplicity and for generality, it is assumed that each of
these information atoms spans a dimension of its own in
the input data space — this means that the input vector is
768 dimensional (six pieces of two colors, together 12
alternatives, for each of the 64 board locations).
Naturally, this coding is far from optimal - the
complexity of different modalities is changed to the high-
dimensionality of the input vector space.

In the experiments, 5000 samples were iteratively used
for training the network model. These samples were
successive piece configurations during real chess games,
given in random order. The simulation was implemented
in a Matlab environment. The huge size of the data
structures made the simulations rather capacity-
demanding.

Three chunk models were extracted: the first with only 9,
the second with 25, and the third with 100 chunk
prototypes available, so that N =9, N =25, and N = 100,
respectively. Five chunks were used to reconstruct the
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board and the chunks, the numerical values of the vector
elements were thresholded — that means, if the value of
the element exceeded 0.5, it was assumed that the
corresponding piece was there; otherwise its contribution
was ignored. No rules of chess were incorporated - in
principle, it is possible that, say, two white kings will be
displayed simultaneously, but because of the ‘skilled’
chunk prototypes, this seldom happens’.

CONCLUSIONS

In the presented approach, the chunks are not ‘crisp’ -
rather, their constituents have continuous (or fuzzy)
values. This is one reason why scalability seems to apply,
so that allocating more resources results in better
reconstruction of the piece locations. For the 868 chunks,
the average recall rate was about 75%.

Because of the numerical nature of the chunks, they are
flexible and they can be added together in a natural way.
Due to the possibility of combining chunk prototypes, a
rather low number of ‘skilled’ chunks seems to be
enough to reach relatively high level of accuracy.
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ABSTRACT

In this article we present an interactive activation simula-
tion framework for mental image reinterpretation. By
varying central parameters in this framework, two quali-
tatively different models have been emulated: One in
which reinterpretation is obtained via a series of symbolic
inference steps, and one in which reinterpretetation is
driven by parallel operations on a depictive mental im-
age. The simulations are run with the following objec-
tives: 1. To minimally verify that the models can produce
reinterpretations. 2. To verify that the parametric rela-
tionships predicted by the models hold in the face of
empirical constraints on the simulation outcome. 3. To
expose unforeseen parametric constraints which are en-
tailed by the two models.

INTRODUCTION

When we close our eyes and mentally image a capital
“X’, superimpose a capital ‘H’ on it, and recognize a
“bow tie” in the resulting image, we generate, manipu-
late, and reinterpret mental images. Psychological ex-
periments on human performance reveal interesting

_ anomalies in how easily mental images are reinterpreted.

Are mental images reinterpretable because they supple-
ment symbolic structures with new affordances? These
and related matters lie at the heart of ‘the imagery debate’
(e.g., Kosslyn 1994; Pylyshyn, 1981). This article inves-
tigates the role of visual versus symbolic representations
as a mediating factor in mental reinterpretation tasks.

Two models of mental image reinterpretation have been

higher level cognition

counterstream
feedback

downstream

O perceptual input
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compared using McClelland & Rumelhart’s interactive
activation model (1981; 1994/1988) as a parametric
framework. Our ambition has been to keep the set of
working hypothesis concerning the neural architecture
and processing style employed to a minimum, and in-
stead explore the gaps which are left unspecified by em-
pirical data.

Both models are discrete and deterministic, and can be
conceived of as a set of constraints on inter-parameter
dependencies within the envelope of the simulation
framework. The two models stipulate that different
parametric relations should hold in order for the simula-
tion outcome to conform to the empirical constraints.
Simulation outcome is measured as the relative confor-
mance with empirically based constraints on how reinter-
pretation performance should change when simulation is
switched from perceptual to mental mode.

Experimental data on mental image reinterpretation
Contrary to the classical findings on mental image rein-
terpretation difficulties, Finke, Pinker and Farah (1989)
demonstrated that mental images can be as easy to rein-
terpret as perceptual images when the interpretations
generated comprise verbal descriptions of geometric
patterns contained in the image. Two types of reinterpre-
tations seem to be involved: Geometric reinterpretations,
when the composite image is described in simple geo-
metric terms, for example, “two adjacent triangles point-
ing towards each other”, and symbolic reinterpretations,
in which the image is freely associated with an object or
concept, for example, “a bow tie”. In experiment 1
(Finke et al. 1989) relative performance rate for symbolic
reinterpretations was on the average 30-50% of the pos-
sible total produced during imagery and perception. As
opposed to this, up to 80-90% of the geometric reinter-
pretations were detected in the mental images proper.

VISUAL VERSUS SYMBOLIC REPRESENTATIONS

In a very general sense, qualitatively different styles of
computation is afforded by symbolic representations as
opposed to visual representations, with the main differ-
ence being that of accessibility in a linked versus a di-
rectly addressable data structure.

We operationalize these different assumptions, and
would like to examine whether visual representations are
needed as a mediating link between old and new interpre-
tations in an interactive activation model. We have two
possible hypothesis:

1. The subjective experience of "seeing mental images”
is a non-functional side-effect of symbolic knowl-
edge being activated in associative long term mem-
ory. No “real” image is formed in the visual buffer
during imagery, so mental reinterpretations have to
be based on inferences using “lateral” associations
between symbolic representations.

2. A mental image is recreated in the visual buffer, and
this image plays a pivotal role in mental reinterpre-
tation. In this case, it is the image that drives process-

ing towards a new interpretation, while the image’s
symbolic content acts as a source for indexing and
sustaining, and thereby locking, the current interpre-
tation.

Methodology

We evaluate the two representational hypothesis by
freely exploring parametric variants of a simulation
framework (Fig. 1) and by evaluating these variants
against the empirical constraints of Finke, Pinker and
Farah (1989). Simulation outcomes depend at the outset
on the parameter constraints imposed by the individual
models plus the following minimal assumptions about the
neural architecture and processing style of the human
visual system:

e Visual subsystems are hierarchically organized into
processing levels.

e Adjacent processing levels in the visual system
communicate with each other reciprocally.

s Visual processes operate in cascade.

e Mental imagery reuses parts of the visual system. In
particular, images formed during mental imagery are
assumed to reside in the visual buffer.

What is measured?

Keeping exploration of the parameter space within the
envelope of the simulation framework and within the
parametric constraints imposed by a particular model,
simulation of the models should substantiate that when-
ever the system’s transition behavior between perceptual
and mental modes conforms to the empirical constraints,
the parametric relations predicted by the models hold.
Based on the interdependencies which can be detected
when simulation results are systematically plotted against
parameter combinations, the soundness of the two models
can be evaluated and additional properties which neces-
sarily follow from the two models can be exposed.

For a preliminary analysis of our simulation results, see
www.ida.liu.se/~ritko
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ABSTRACT

The serialist-holist learning style distinction has received
renewed interest due to its predictive power with regard to
students’ responses to new learning situations. In
particular, individual differences in students’ computer use
indicate an area where knowing about style differences is
of theoretical interest and practical import. This study
concerns the differing responses of students to a computer-
based logic program — Hyperproof — where serialist-holist
style differences emerge spontaneously in the proofs
produced by students. Proof style and strategy change are
found to relate to independent measures of reasoning
ability. These different strategies are analysed in terms of
working memory load, and this points towards potential
methods of modelling the serialist-holist learning style.

Keywords
Serialist-holist, reasoning, working memory, learning.

INTRODUCTION

Students use different strategies when they solve
problems. Certain patterns of behaviour in new learning
situations have been expressed in terms of the serialist-
holist distinction. However, the environments where these
differences have been diagnosed and observed have been
complex, subjective, and lengthy, hence assessing
contributing factors that influence performance has been
difficult.

Currently, we have been studying a computer-based
environment for problem-solving called Hyperproof
(Barwise & Etchemendy, 1994) where serialist and holist
strategies emerge spontaneously. This environment has the
advantage over previous studies of learning strategies in
that it is a constrained context within which variables can
be manipulated, and detailed data on performance can be
collected as students’ interactions with the problem are
logged by the computer.

This paper presents the background necessary for
modelling serialist-holist learning styles, and offers a
preliminary model of the interaction between changing
problem requirements and strategy selection. Modelling
differences in strategies within the restricted domain of
Hyperproof will help to define what the serialist-holist
distinction means from a cognitive perspective.

THE SERIALIST-HOLIST DISTINCTION

Pask (1976) used the serialist-holist distinction to describe
the different strategies used by students in new learning
situations. Serialists concentrate on concrete instances
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within the learning framework, building up an overall
understanding of the situation by forming links between
low-level features. In contrast, holists prefer to focus on
the global structure of the learning situation, filling out
the details once the structure has been explored.
Roughly speaking, the serialist is a ‘bottom-up’ learner,
whereas the holist's approach is ‘top-down’.

Versatile students will select the strategy that is most
appropriate to the task, and this requires a combination
of awareness of the task constraints and of the
individual's own resource limitations and aptitudes.
Pask has found that most students are inflexible in their
approach to problems — a student that always uses one
particular strategy when solving problems is said to
have a learning ‘pathology’.

These differences have proved to be ubiquitous and
pervasive in a variety of different learning situations. In
research on human-computer interaction, for example,
the distinction does much to classify and predict the
different responses of students to alternate interfaces
(for a review see Helander, 1990, pp.541-580). Though
important to learning, little computational or cognitive
rescarch has been directed towards defining or
describing the different processes that underly each
learning strategy.

HYPERPROOF

Hyperproof is a multimodal computer-based tool
designed to teach first order logic through the dual
presentation of a graphical situation and sentential
descriptions of elements of the situation. The graphical
situation is made up of objects of varying size and
shape taking up positions on a chess-board. One
particular type of problem requires the student to
concretise an abstract situation: in order to solve the
problem, the student must express graphically
information that is given in a sentential (propositional
calculus) form. A simple example of this type of task is
illustrated in Figure 1.

In this problem the student is required to display all
situations that are consistent with the given
information. In short, the several ways that the labels
‘a’ and ‘b’ and the predicate information ‘object a is a
dodecahedron’ and ‘a and b are in the same row’ have
to be illustrated one after another in the graphical part
of the window. There are two distinct strategies by
which all the situations can be constructed. One method
will apply all pieces of sentential information
simultaneously in each situation, thus the strategy is a
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Figure 1: The Hyperproof problem.

case-by-case method and therefore serialist. The
alternative method applies one piece of information at a
time, with the second piece of information being
superimposed onto the situation formed from applying the
first sentential expression. As this proof is less concrete, it
is interpreted as reflecting a holist strategy. This latter
method is akin to constructing nested assumptions in a
logical proof.

TOWARDS A COMPUTATIONAL MODEL

Serialist and holist strategies, as described with respect to
the problem in Figure 1, have been observed in the proofs
of students on a Hyperproof course (Cox, Stenning &
Oberlander, 1994; Monaghan, 1998). These different uses
of strategy have been related to an independent measure of
reasoning ability (derived from the analytic reasoning
section of the USA graduate recruitment exam (GRE)).
Two Hyperproof problems solved under exam conditions
were analysed. These questions contained as a main
subtask the above type of problem, one question requiring
the construction of three situations, the other requiring
nine situations to be indicated. Students using a serialist
strategy on the simpler problem and a holist strategy -on
the complex problem were better GRE reasoners than
other groups, including the ‘pathological’ students who
rigidly used only one strategy on the Hyperproof problems
(F(3, 18) = 5.69, p<0.01). This suggests that there are
general strategic approaches to complex problem solving
situations that are more successful than others.

A preliminary model of the Hyperproof problem assessed
the working memory load at each step in the proofs as a
result of applying the different strategies. The holist
strategy minimises working memory load, but more steps
in the proof are required: seven to the serialist’s five for
the Figure 1 example. For students that are good at solving
problems, strategy choice seems to be a pay-off between
working memory load and the effort required to structure
the solution. For simple problems, like the one illustrated,
a serialist method may be more efficient. For more
complex problems, a holist proof will reduce the working
memory load.

The Hyperproof environment provides a suitable domain
for studying serialist-holist strategies from a
computational perspective. It also allows for a study of
learning pathologies and strategy change under different
conditions. A cognitive model of serialist-holist strategy

use will have implications for several areas of
cognitive science research. Principally, it will provide
a formalism of what the different strategies mean from
a computational perspective allowing better provision
of resources in areas such as human-computer
interaction. Also, insight into the cognitive properties
of substeps in problem-solving procedures would
result (Catrambone, 1996). Finally, the cognitive
properties of external representations during problem-
solving can be assessed (Scaife & Rogers, 1997).
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ABSTRACT

We investigated the degree of discounting and
augmentation of a target cause given varying frequencies
of a competing cause. Several experiments showed that
greater frequencies by which the competing cause
covaried with the effect resulted in greater discounting or
augmentation of a target cause. These competition size
effects cannot be explained by current attribution theories
in social psychology, but can be accounted for by a
feedforward connectionist framework (Van Overwalle,
1998).

Keywords
Connectionism, Causal Judgments, Blocking.

INTRODUCTION

According to Kelley (1971), perceivers take into account
not only how a possible factor covaries with the event,
but also how this factor competes with rival factors that
serve as alternative explanations. Despite the central
place accorded to the covariation principle in attribution
theory, Kelley (1971) argued that this principle in itself is
insufficient to explain how perceivers select between
competing causes. To account for such competition,
Kelley (1971) proposed two complementary principles of
discounting and augmentation.

The discounting principle specifies that if the influence of
a cause is clearly established, perceivers will disregard
other possible causes as irrelevant. The opposite tendency
is described in the augmentation principle which specifies
that if the inhibitory influence of a cause is firmly
established, perceivers will overestimate the strength of a
facilitatory cause to compensate for the inhibitory effect.

Our major question was whether discounting and
augmentation of a target cause would be influenced by the
frequency (or size) by which the competing cause
covaried with the outcome. Based on a novel feedforward
connectionist approach of causality (Van Overwalle,
1998), we predicted that greater frequencies would result
in greater discounting or augmentation. Such competition
size effect is not anticipated by current attribution
theories in social psychology.

METHOD

In three experiments, the strength of competition was
manipulated by varying how often the competing cause
covaried alone with its outcome : Either one time (small
size) or five times (large size). In contrast, the frequency
of the target cause remained constant throughout all

conditions. Type of competition was manipulated by
pairing the competing cause with an outcome that was
either similar to the target outcome (discounting) or
opposite (augmentation). In addition, we manipulated
the order in which the target information was presented
(backwards or forwards) and the format of presentation
(sequential trial-after-trial or summarized in short
sentences).

RESULTS

Our results confirmed the feedforward connectionist
account. First, in all experiments, we found that a higher
frequency of covariation of a competing cause reliably
increased the amount of discounting and augmentation of
a target cause. These results are problematic for statistical
models based on the notion of probability (e.g., Cheng &
Holyoak, 1995) or of constraint satisfaction (Read &
Marcus-Newhall, 1993). Second, the size effects were
stronger when the information was presented in a
sequential format, which is consistent with the
feedforward connectionist view that the most natural way
of processing causal information occurs on a trial-by-trial
incremental basis. Third, there were no differences
between forward and backward competition, supporting
the notion that missing factors must be coded as absent as
proposed by Van Hamme and Wasserman (1994).
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We were interested in understanding and comparing
how ACT-R (Anderson & Lebitre, in prep.) and
SOAR (Newell, 1990) could each model a given
dataset. We analyze and compare two models in
their ability to account for a classical 2 person
game, including the effort necessary to create and
run them. In comparing the models and their results
we provide two sample models and start to explore
the potential role of abstract models and different
types of data.

Game description. In two player, 2x2 games
each player can choose one of two alternatives in
each round. The players are rewarded according to a
payoff matrix. The prisoner's dilemma is an exam-
ple of such a 2 person game.

We used data from a classical experiment (Suppes &
Atkinson, 1960) of how people learn when they
play a normal form, two player 2x2 game with a
nontrivial unique mixed strategy equilibrium. Table
1 shows the payoff matrix used in the experiment
that we model here. This matrix has a unique mixed
strategy equilibrium point, that is, a stable set of
strategies, when Player 1 chooses option Al with
probability 1/3 and player 2 chooses option A2
with probability 5/6. Figure 1 shows the empirical
choice frequencies of option A for player 1 (A1) and
player 2 (A2) aggregated in 5 blocks with 40 rounds
each, of 20 pairs of participants playing the game
for 200 rounds (Erev & Roth, 1998).

ACT-R model. Figure 2 shows the structure of
the ACT-R model used to account for this data. For
a full description of the ACT-R model see Bracht,
Wallach and Lebiere (1998). The model consists of
two simple productions for each player representing
the options available:

Rule1: If Player 1 chooses => choose Option A.
Rule2: If Player 1 chooses => choose Option B.

In every round, both of these productions are appli-
cable for each player modeled. ACT-R’s subsym-
bolic cost learning mechanism learns the relative
payoff of each production rule and updates their ex-
pected gain based on the outcome of the round. In
general, ACT-R selects the production rule with the

Player 2
Option A Option B
Player 1 Option A 72 4 6, 0
Option B 3,3 1,5

Table 1. Payoff matrix used by the models here.
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Figure 2. Description of the ACT-R model.

highest expected gain. Two architectural parameters
were used to fit the model to the data (expected gain
noise and number of previous production applica-
tions). The model with the same parameter settings
has also been applied successfully to data from three
other experiments taken from Erev and Roth (1998).

SOAR model. The easiest way to explore a SOAR
model of this task is to create an abstract model. An
abstract model is based on an information process-
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ing model or architecture. It predicts what a running
model would do, without implementing the internal
behaviors (e.g. Langley, 1996; Ohlsson & Jewett,
1994).

An abstract model of the simplest SOAR model
could start with a single operator representing each
choice. Each round, an operator is randomly chosen
to apply. After each round, the expected values of
each of the four payoffs occurring can be computed
for each player. Operators that do better than the
average payoff can be duplicated through a reflec-
tion-like process (not specified, but similar to the
process in Bass et al., 1995). Various other ways of
duplicating operators are possible (e.g. duplicate
operators as many times as their payoff). In SOAR
these processes are determined not by the architec-
ture but by knowledge. It is fairly straightforward to
implemented a program to compute the expected
population of operators on each round. The results
of this program are shown in Figure 3. While this
model is not currently based on a running Soar
model, creating such a model should be straightfor-
ward. Deriving its predictions is much simpler as an
abstract model, for programming an interface to
record multiple rounds and games would be less
straightforward.

100
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Figure 3. The evolution of strategies in the two
models on the Table 1 matrix.

Comparisons

Model fit. As Figure 1 shows, the ACT-R model
captures the general tendencies in the empirical data
quite nicely. In addition to this short term predic-
tion, the model converges asymptotically to the
equilibrium of classical game theory in the long
term (after >1500 rounds). The initial Soar model,
on the other hand, does not match the subject data
(short term) nearly as well, but instead appears to
quickly converge to near the equilibrium.

Effort. Both models took about the same time to
implement (4-5 hours), including the ability to

automatically run and trace the model. Both models
can run 200 rounds of 20 subject pairs in under 30s.
Abstract models. The Soar model would not be
as easy to run if it was implemented in Soar produc-
tions. It would not be straightforward to implement
an abstract version of the ACT-R model based on
its current mechanism, but it is easy to create an
abstract model of the operator population model in
ACT-R (as a rule population), or an ACT-R model
directly based on this principle. The difficulty of
creating abstract models within each architecture
varies by task, but appears to be generally easier in
SOAR. Creating full models appears, however, to be
more difficult. In this task, the SOAR architecture
appears to have less to say than ACT-R because it
lacks architectural mechanisms to account for the
learning observed here. While the Soar model does
not match nearly as well (yet), it allows the space
of possible models to be explored quite quickly
(about 5 min. per model).

Conclusions

These results are very interesting, for they start to
suggest possible trade-offs in modeling; between
abstract and information processing models, and
between architectures. This work also emphasizes
the role of usability as a necessary precondition for
explorations of this kind.
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ABSTRACT

Ilusory correlation occurs when perceivers make an
erroneous judgment of a relation between two or more
unrelated categories.  In this study, subjects read
information about members of 4 groups, which differed in
size : Group A contained twice as much behaviors as
group B, group B twice as much as C and so on. The
behavioral information about these groups was identical,
in that 33% of the behaviors engaged in by the members
were undesirable and 67% desirable. Preliminary results
show that a greater amount of members in each category
leads to a decrease of the illusory correlation effect.
These results can be readily accounted for by a
feedforward connectionist framework (Van Overwalle,
1998).

Keywords
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INTRODUCTION

Illusory correlation occurs when perceivers make an
erroneous judgment of a relation between two or more
unrelated categories. The original demonstration by
Chapman (1967) showed how subjects overestimated the
co-occurrence of long words in the context of a list of
relatively short words. Presumably, the distinctiveness of
the long word pairs led to a more thorough processing,
which led to the illusory correlation effect.

Hamilton and Gifford (1976) applied this mechanism to
the formation of group stereotypes. In their study subjects
read statements about members of a majority group,
labeled A, and a minority group, labeled B. Both groups
revealed the same ratio of desirable to undesirable
behaviors.  After reading the statements, subjects
overestimated the frequency of negative behaviors by
group B members and also had a more negative
impression of group B. According to Hamilton and
Gifford, the less frequent and therefore more distinct
undesirable group behaviors apparently received more
extensive encoding.  This probably led to greater
accessibility in memory, leading to errors in frequency
estimation and impression formation.

Recently several studies challenged the distinctiveness-
paradigm (Smith, 1991, Fiedler, 1991). These studies
claim that the phenomenon is not so much the
consequence of mere distinctiveness of the stimuli, but
simply reflects the general working of the human
memory. Although this critique is well elaborated, it
leaves certain question unanswered. The aim of the
present research is to answer these questions by

approaching the illusory correlation phenomenon form a
connectionist angle.

The aim of the present research is to approach the illusory
correlation phenomenon from a connectionist angle. Our
connectionist approach depicts learning as a gradual
process, during which associations between group
membership and desirability are formed instantaneously.
Every time a member of a certain group performs a
(un)desirable behavior, the association between that
group and (un)desirable behavior in general becomes
stronger. As more learning takes place, these associations
become stronger and are easy to discriminate, so the
perceiver can form a relatively correct impression of a
group based on these associations. However when these
associations between group membership and desirability
are weak, they are hard to discriminate and judgments
will be prone to illusory correlation effects. Therefore,
the main prediction of our connectionist model is that an
increase in the amount of behaviors will lead to a
decrease in the illusory correlation effect. Although
apparently trivial, this effect is not a straightforward
prediction of the distinctiveness hypotheses or any other
recent model.

METHOD

Methodology and instructions followed the Hamilton and
Gifford (1976) paradigm. Table 1 summarizes the
distribution of the behavioral information for the 4

groups.

Table 1
Number of desirable and undesirable behaviors

assigned to each group

Group : A B C D

Desirable behaviors 16 8 4 2

Undesirable behaviors 8 4 2 1

Subjects sat at individual computers and were told that
the experiment concerned “the way people process and
retain information”. Furthermore they were told that they
would receive information concerning four groups (A, B,
C and D), these groups represented groups in the ‘real
world and that group A was bigger than group B, group B
bigger than group C and so on. Finally they were told to
read each statement carefully. Each statement remained
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on the screen until the subject pushed the space bar. After
reading all statements, subjects completed a filler task, a
free recall task, a group assignment task, a frequency
estimation task and a group evaluation task.

RESULTS

Overall, the results confirmed our hypotheses. We
expected that groups with more members (or behaviors)
would be less subject to illusory correlation. Specifically
this means that as the groups became smaller, group
evaluations would become less favorable and relatively
more undesirable behaviors would be attributed to these
groups.

Likability Ratings. The main effect of group was
significant, F(3, 72) = 4,62, p < ,005, revealing as
expected that groups were rated less favorable as they
became smaller.

Frequency Estimation. There was no significant main
effect of group (p > ,1). However, contrast analyses show
that subjects tended to attribute less undesirable behaviors
to Group A than to other groups, F(1, 24) = 3.93, p <.06.
This might indicate that only for group A the association
between group membership and desirability was well
established, enabling subjects to make a fairly accurate
judgment.

Group Assignment. Analyses showed that subjects were
more likely to assign desirable as opposed to undesirable
behaviors to group A, F(1,24) = 4.419, p < .05. This
confirms our prediction that for group A the associations
between group membership and desirability are strong
and therefore easy to discriminate.  As subjects
experienced more desirable group A behaviors then
undesirable, the association between group A and
desirable behavior is stronger than the association with
undesirable behavior, leading to a tendency to assign
more desirable behaviors to group A. The contrast
analyses show the reverse effect for group D, in that more
undesirable as opposed to desirable behaviors were
assigned to this group, although this was only marginally
significant, F(1,24) = 3.841, p = .06. This is probably due
to the fact that there was only 1 undesirable behavior in
group D, which would have made it very distinctive.

Free Recall. Two separate proportions were used :
General free recall reflects the recalled behaviors
regardless of whether they were correctly associated with
a group. Correct free recall reflects only those behaviors
correctly assigned to a group.

With respect to general free recall we see as predicted
that relatively more undesirable behaviors are attributed
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to groups B,C and D in comparison with group A, F(l,
57) = 5.11, p < .03. This can be due to the overall
response bias to attribute negative behaviors to smaller
groups in parallel with the likability of those groups. As
stated before, this confirms our prediction that the
associations between group membership and desirability
are weak for the smaller groups, leading to illusory
correlations.

There is however another possible explanation.
According to our connectionist model, during learning
strong associations tend to suppress weaker associations
(competition effect). For instance, that would mean that
the strong association between group membership and
desirability for group A would suppress the associations
of the unique behaviors with that group. This would be
less the case for the smaller groups, where the
associations between group membership and desirability
are weaker. As a result, more unique behaviors should be
recalled by the subjects as the groups become smaller. In
fact this is partly confirmed by the data for correct free
recall : undesirable behaviors were recalled better than
desirable for group D, F(l, 57) = 5. 82, p <. 03.
However, the data for the other groups show no sign of
this competition effect as recall is weak in all these cells.
This is nonetheless an important aspect of connectionist
learning models, as it easily explains distinctiveness

effects. Hence further research into this matter is
required.
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Abstract. We present a computational
approach to the acquisition of problem
schemes by learning by doing and to their
application in analogical problem solving.
Our work has its background in automatic
program construction and relies on the con-
cept of recursive program schemes. In con-
trast to the usual approach to cognitive
modelling where computational models are
designed to fit specific data we propose a
framework to describe certain empirically
established characteristics of human prob-
lem solving and learning in a uniform and
formally sound way.

1 Introduction

The use of analogies is a powerful and ubiquitous
strategy in human reasoning and problem solving. A
lot of (symbolic, connectionist & hybrid) computa-
tional models have been proposed with the aim of
getting more precise insights in the underlying pro-
cesses (Anderson & Thompson, 1989; Falkenhainer,
Forbus, & Gentner, 1989; Hummel & Holyoak, 1997)
and with the aim of exploiting this strategy in Al
applications (cf. case based reasoning).

Most of the computational models are focusing on
analogical access and mapping thereby neglecting two
crucial aspects of analogical problem solving: (1) gen-
eration of problem representations which are suitable
for analogical problem solving (i.e. problem schemes),
and (2) solving a target problem by adapting a - not
necessarily isomorphical - source problem.

The model proposed by Anderson and Thomp-
son (1989), for example, relies on schemes for rep-
resenting the structure of problems and solutions
which are available to the system from the beginning.
Thereby the authors suppose that the system has
already knowledge about the structure of the prob-
lem domain. But the crucial deficit of novices is that
they have no knowledge about the structural charac-
teristics relevant for problem solving (Novick, 1988;
Schmid & Kaup, 1995). Otherwise, there would be
no need for analogical problem solving. The problem
could be solved by applying already acquired automa-
tisms (production rules) or abstract schemes.

The examples Anderson and Thompson (1989) give
for analogical transfer are restricted to generalized
problem isomorphs, i.e. identical structures where
predicate and operation symbols can be substituted
in a unique way. There is no statement whether
the model could be extended to adaptation of non-

isomorphical structures. In everyday reasoning, avail-
ability of isomorphical source problems is the ex-
ception. Empirical studies demonstrate that people
also can use partially isomorphical source problems
(Pirolli & Anderson, 1985; Schmid & Kaup, 1995).
We are proposing a framework for analogical prob-
lem solving which overcomes the limitations described
above: First we present our concept of problem
schemes and a method for inferring such schemes from
problem solving experiences. Than we describe our
approach to analogical transfer which works for both
isomorphical and non-isomorphical source problems.

"2 Induction of Problem Schemes

The central concept of our approach is the notion
of recursive program schemes (RPSs; see Schmid &
Wrysotzki, 1998 for the formal definitions). An RPS
represents the structure of a problem as (recursive)
equation. On the left side the name of the RPS and
its parameters are given. The right side represents a
operations together with their conditions for applica-
tion. An RPS representing the knowledge of clearing
a block is

clear-one-block(z, s) = if cleartop(topof(z)) then put-
table(topof(z)) else s.

The variable s (“situation variable”) represents the
current problem state (for example on(A, B), on(B,
C), cleartop(A)). This RPS can only be applied if one
block is lying on block z. For the problem state given
above it can be applied to block B only. An RPS
representing the knowledge of clearing an arbitrary
block in a tower is

clearblock(z, s) = if cleartop(z) then s else put-
table(topof(z), clearblock(topof(x, s))).

The representation format of an RPS simultaneously
catches the structure of a problem and its executable
solution strategy (cf. Rumelhart & Norman, 1981).
In our program IPAL (Schmid & Wysotzki, 1998)
we are modelling the acquisition of RPSs by a two-
step process: In a first step some initial states of a
problem are solved by applying predefined produc-
tion rules using heuristic search. That is, without ex-
perience in a problem domain the system has to use
a general purpose strategy which can be inefficient

~ because search may lead to dead ends and there is

need for backtracking. The solution sequences found
for the initial states are composed into a so called
initial program generalizing over the application con-
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ditions of the predeﬁned production rules and over
the constants occuring in the initial states.
An initial program which represents the experience

with towers up to three blocks is

if cleartop(x) then s else
if cleartop(topof(x)) then puttable(topof(x),s)
else if cleartop(topof (topof(x)))
then puttable (topof(x),
puttable (topof (topof (x)),s)).

Building initial program corresponds roughly to
chunking and refinement of production rules.

By using a method for inductive program synthesis

initial programs can be generalized to RPSs (Schmid
& Wysotzki, 1998). The general idea of our algorithm
is to identify a pattern and a substitution in the ini-
tial program which makes it possible to reproduce
the whole structure. For the initial program given
above the pattern is if cleartop(z) then s else put-
table(topof(x), m) with the substitution z ¢ topof(z).
If found, the pattern and substitution are extrapo-
lated to an RPS. This process describes a fundamen-
tal aspect of human intelligence: the ability of induc-
tion as for example described by (Holland, Holyoak,
Nisbett, & Thagard, 1986).

3 Transformation Based Adaptation

RPSs formally are elements of a term algebra. That
means, they represent syntactical structures only. The
semantics of an RPS is gained by interpretation of
the symbols in accordance to some domain model.
Thereby an RPS represents the class of all struc-
turally identical problems. This is a characteristic ex-
tremely suitable for analogical reasoning.

In IPAL already inferred RPSs are stored in mem-
ory. An RPS can be “unfolded” to an initial program
again. If a new initial program is gained by investigat-
ing some problem states, the memory is checked for
an RPS whose corresponding initial program is sim-
ilar to the new one. In that case inference of a gen-
eral solution strategy for the problem (represented by
an RPS) can be omitted and the known RPS can be
adapted to the new problem instead.

In our approach mapping and adaptation is per-
formed by means of tree transformation. An initial
program of an already known RPS is transformed to
a new initial program by substitution, insertion and
deletion of symbols. The set of transformations can
than be applied to adapt the known RPS. Two ini-
tial programs are isomorphical if one can be trans-
formed into the other by a set of unique substitutions
only. We give an example of adaptation in the non-
isomorphic case (see fig. 1). To transform “clearblock”
into “factorial” we have to perform the unique sub-
stitutions cleartop/equal0, s/1, puttable/mult. Addi-
tionally we have two transformations for the “topof”
symbol: substitute topof/pred and delete topof. By
using contextual information, we can decide at which
position in the RPS topof has to be deleted (in the
first argument of puttable rsp. mult).

R N i~
X X squalo 1 o x topol cleasiop & [l
od x
. L

Fig. 1. Initial programs for (a) factorial and (b) clearblock
(“g” represents the conditional “if-then-else”; £2 stands for
“undefined”)

4 Discussion and Further Work

We believe that our framework can be of use for the
cognitive modeling community for two reasons: (1) it
addresses the problem of scheme acquisition often ne-
glected in computational approaches, (2) the notion
of RPSs as representation format makes it possible
to describe the structural characteristics of problems
in a way which makes it possible to perform precise

~ analyses of the structural similarity of problems. This

can be useful to construct source-target relations for
empirical studies of the conditions of successful adap-
tation in analogical problem solving.
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ABSTRACT

A categorization of three types of knowledge which can
be relevant for the control of dynamic systems is sugges-
ted. These are (1) input-output knowledge, (2) structural
knowledge which is subdivided in knowledge about
effects and knowledge about dependencies, and (3)
strategic knowledge. The assumptions are embedded in
the theoretical framework of the ACT-R theory. An ACT-
R model of the early stages of knowledge acquisition, and
its implications for future research are described.

Keywords
knowledge acquisition, causal relations, ACT-R, dynamic
system

INTRODUCTION

This contribution deals with the control of dynamic
systems of the following type: There are about 2-4 input-
variables which are exclusively controlled by the problem
solver, and about the same number of output-variables
whose values depend on the values of input- and output-
variables. The systems are modelled by simultaneous
linear equations. In order to minimize the variability of
domain specific knowledge, the variables have phantasy
names. As a consequence, only general prior knowledge,
e.g. knowledge about causal relations, can be brought to
bear in the problem solving process. Fig. 1 shows a
simple example of such a system.

Input Output

Ka —» Wonal
Li > TularQ

Fig 1: A simple dynamic system

A

The control of dynamic systems is a form of complex
problem solving. Unlike many other problem solving
tasks, the effects of the operators are not explained in the
instructions. The problem solver has to induce them by
analyzing self generated state-action-state sequences.

Many authors assume, that controlling systems effectively
requires structural knowledge. The notion of structural
knowledge comprises knowledge about the variables and
their causal relationships. But the results concerning the
relation between structural knowledge and control
performance are inconsistent. In some studies subjects
report considerable structural knowledge, but fail to attain
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the goals for system control (Schoppek, in prep.). In other
studies subjects are successful in controlling the system
but can hardly report anything about its structure (Berry
& Broadbent, 1984). There is, however, also evidence for
a convergence of structural knowledge and control perfor-
mance (Funke, 1992). It is obvious, that the construct of
structural knowledge is too undifferentiated to account for
the diversity of the results.

TYPES OF KNOWLEDGE FOR SYSTEM CONTROL

As a step towards an integrative explanation of these
results I want to suggest a theoretical distinction of three
different types of knowledge which can be relevant for
the control of dynamic systems.

(1) Input-output knowledge (I-O-knowledge) represents
interventions and their effects. These may be stored either
external or in declarative memory. In early exploration
phases 1-O-knowledge is the material from which
structural knowledge is induced. With extended practice,
successful I-O-sequences can be recalled directly from
declarative memory. A third possibility of using I-O-
knowledge is the successive adjustment of an input-
pattern without any induction of general rules.

(2) Structural knowledge is subdivided in two types:
knowledge about effects (E-knowledge) and knowledge
about dependencies (D-knowledge). E-knowledge is
supposed to be acquired from an early stage of practice
with the system. It can be induced quite easily from state-
action-state sequences, provided that an appropriate
input-strategy is applied. E-knowledge can be represented
by solitary chunks. It is sufficient to answer most of the
questionnaires that have been used to assess structural
knowledge.

But the exact control of a dynamic variable requires
knowledge about its dependencies. It is possible to search
memory for all E-chunks containing the goal-variable in
its output slot, but this is an error-prone procedure. In this
situation an output-centerd integration of E-knowledge
would be more effective. This is the hypothetical D-
knowledge. Successful problem solvers seem to have
access to this type of knowledge since they have no
difficulties in quickly considering all dependencies of an
output variable. D-knowledge can be deducted from E-
knowledge, but this is an additional process. Thus
deduction and use of D-knowledge takes more effort than
induction of E-knowledge.

(3) Strategic knowledge comprises knowledge about how
to acquire structural knowledge, (e.g. the strategy of
isolated variation of conditions), and knowledge about
certain input-strategies (e.g. the compensation of side-
effects).
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The three types of knowledge are differing in their
generalizability. [-O-knowledge is only applicable for a
single system and is goal specific. Structural knowledge
refers to a single system, too, but is unspecific with
respect to the goal states. Finally, strategic knowledge can
be applied in the exploration and the control of many
different systems.

THEORETICAL INTEGRATION

The assumptions are embedded in the theoretical
framework of the ACT-R theory (Anderson, 1993). All
the types of knowledge are supposed to consist of both
declarative and procedural elements, whose parameters
change with use according to ACT-R. Thus the
theoretical distinction could serve as a link between the
content-independent assumptions of the ACT-R theory
and more specified models of system control.

EMPIRICAL SUPPORT

The assumptions are largely consistent with the data.
Dissociations between verbalizable knowledge and
control performance can be explained by the notion that
most tasks for assessing structural knowledge can be
solved with E-knowledge whereas successful system
control requires more than access to single E-chunks.
Findings that initial dissociations disappear with extended
practice (Sanderson, 1989) are also in line with this
explanation. Seemingly inconsistent results of tutoring
structural knowledge, which were found in experiments of
our workgroup are interpretable in terms of different
focuses of the training procedures. A training which
focused on D-knowledge (PreuBller, 1997) lead to
improved control performance whereas a training which
focused on E-knowledge did not (Schoppek, in prep.).

ACT-R MODEL

I started to put these deliberations into practice in form of
an ACT-R model which handles the static system
depicted in fig. 2. At present the model is able to explore
the system. [t induces positive effects on the base of self
generated data and creates single E-chunks for every
detected effect. With this knowledge the model can
produce judgements about effects in a fact-retrieval
paradigm. Finally the model can use its E-knowledge to
obtain simple goal states.

The main problem in this early stage of model
construction is to find an appropriate representation of
new causal knowledge. As indicated above, the model
creates a new chunk for every detected effect. The chunk-
type has three slots: ,,input®, ,,output®, and ,factor”. This
takes into account that judgements about causal relations
cannot be explained by the assumption of simple
associations between cause and effect (Waldmann, 1996).

In the fact-retrieval task the model exhibits no effect of
the number of outputs that are affected by an input (e.g.
judgements of ,Eltan-Ordal“ and ,.Bulmin-Fontil“ take
the same time, although Bulmin affects only one output
whereas Eltan affects three).

In a preliminary experiment five subjects explored the
static system shown in fig. 2 and then processed the fact-
retrieval task with pairs of variable-names. In contra-
diction to the model, there seems to be a fan effect: The

judgements for the effects of input ,Eltan* (fan 3) take
longer than the judgments for the effects of ,,Bulmin® and
»Dulan® (fan 1). This might, however, be due to the fact,
that the judgements were based on a secondary verbal
representation of a rather sensorimotor primary represen-
tation of the effect. Indeed, four of the five subjects
reported that they memorized the effects in terms of
locations and that memorizing the names was an
additional demand. In the main experiment it will be
tested if there are different effects depending on the
presentation of spatial cues.

T

Fig.2: Static system controlled by the model

OPEN QUESTIONS

Thus even the initial representation of single causal
relations can be regarded as an open question. A more
serious problem is posed by the question, how the hypo-
thetical D-knowledge is transformed into productions.
Experienced problem solvers obviously dispose of such
fairly complex productions.

Despite all those open questions I hope to have pointed
out that there is a long way between the acquisition of
single effect-chunks, including their application in fact-
retrieval tasks, and the integrated use of this knowledge
for the determination of input-values in order to obtain
specific goal states.
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INTRODUCTION

The status of polysemy as a source of lexical ambiguities
is still not clear neither among linguists, nor among com-
putational semanticists. Here, we take a step outside of
the classical debate among homonymy and vagueness
and we postulate that polysemy is at the origin of most of
the cases of ambiguity.

In this paper, we focus on a particular kind of polysemy
that we call usage polysemy. Unlike other kinds of poly-
semy, usage polysemy cannot be reduced to operations of
sense composition and selection. Usage polysemy takes
piace when a polysemous lexical unit has several closely
related interpretations, corresponding to different uses
and none can be said to be ‘the right one’. It will be fur-
ther defined in section THEORETICAL AND
EMPIRICAL APPROACHES. Our aim is to design a
cognitive model for the computation of usage polysemy,
and to implement it as an expert agent cooperating with
other agents in a Natural Language Processing (NLP)
architecture.

We present our model in the PELEAS MODEL section.
We designed it on the main postulate that interpreting
usage polysemy is a process similar to translating an

ambiguous expression. We also present the set of soft-’

ware pieces we developed around our model, along with
a qualitative evaluation we have conducted at the time
being. At last, in the CONCLUSION section, we

ive our

L

temporary conclusion about our model.

THECRETICAL AND EMPIRICAL APPROACHES

A widely spread opinion among computational linguists
is that polysemy is a false problem, and the ambiguities it
generates are but artefacts produced by our models. The
argument is that we, human beings, never fail when in-
terpreting polysemy. But what to think about sentences
like “The mother cell splits into two new identical cells™?
Which is the right interpretation for “mother”: generating,
antecedent, prior, ruling or causal source? As a matter of
fact, a iuman reader does ot féél annoyed when reading
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SucCn a sentence, because he/she unconscious

e t interpretations simultaneocusly. We will
show thereafier that this example falls in a particular
category of polysemy we call usage polysemy, which,
indeed, is not a problem once we do not require the right

interpretation for a polysemous word.

Different kinds of polysemy

Lexical ambiguity has been abundantly studied and mod-
elled by computational linguists. But what is usually
referred to as ‘polysemy’ is described as functional poly-
semy by Prince and Bally-Ipsas (1991). It involves se-
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mantic features as much as syntactic ones in order to
resolve the lexical ambiguities it generates, by restricting
the selection of the concept which is compatible with the
context. An other category of polysemy is described by
Rastier (1996) as sense polysemy’ and involves linguistic
devices known as isofopy and isosemy in differential
semantics. The last kind of polysemy we can distinguish
involves also sociolinguistics data, as conventional uses
of words, tropes and topoi. This is precisely this category
we study here.

Usage polysemy

QOur framework is composed of polysemous word occur-
rences for which there are no syntactic / semantic neces-
sary and sufficient conditions, nor intralinguistic isotopy
relationships allowing us to discriminate between the
different possible interpretations. This means that all
interpretations are closely related conceptual points of
view on the word’s meaning. They differ only by slight
shades of meaning for the word’s usage. These shades
can be established in discourse, on a cultural basis.

Such phenomena have been observed by Tanaka and
Umemura (1994) to occur frequently for common words
(representing approximatively 30% of the lexicon for any
given language). Common words are not terms: they are
not used as items of a nomenclature but rather in the

avarvdnwy diasan
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Usage polysemy of common words may arise in a various
set of situations: (i) usage transfers: when a word is used
outside of its most usual application field, mostly in order
to illustrate a technical concept, (ii) deliberate sense
overlapping: when an author play with the lexical ambi-
guity due to polysemy in order to describe a complex
situation in a limited textual space; (iil) joker words:
when a common word is so much used inside a linguistic
community that its semantic contents becomes too ge-
neric; and (iv) plays on words referring to cuitural refer-
ences shared by the locutors.

Interpretation and translation

The most adapted linguistic theory for studying usage
poiysemy seems to be the differential semantics theory.
However, it is too fuzzy to be impiemented straight away,
and does not account for the influence of sociolinguistic
data on the behaviour of lexical units. Sticking to the
interpretation paradigm of the differential theory, we

LY,

' The original ‘polysémie d’acception’ could be bettér

translated into ‘polysemy of linguistic aspects of the
senses’
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certain way. That is why we observed a team of technical
translators resolving problems raised by cases of usage
polysemy. Their procedure seems to be incremental and
hierarchical: (i) to find a general semantic direction by
probing the global context, (ii) to restrict the set of possi-
ble interpretations by finding textual markers in the local
context, (iii) to list valid and plausible interpretations by
using inhibition and reinforcement, and (iv) to produce a
synthesised translation.

THE PELEAS MODEL

The model we designed is called PELEAS (Pyramids and
Ellipses as Lexical Entries in Ambiguous Sentences). It is
a lexicon driven by lexical entries, but each entry owns
semasiological substructures.

Description of the model

The model was designed as a dynamic lexicon: it does not
contain all possible interpretations of a word, but rather
computes them from a minimalist static representation of
well acknowledged uses. That is why it is constituted of a
static part (this representation) and a dynamic part, which
handles the salience attribution process. This model is in
the same trend of representations as the Generative Lexi-
con of Pustekovsky (1991) and Edgar of Prince (1994)
Our model differs from the Generative Lexicon because it
does not try to specify the relationships between a word
and its description further than “the descriptors of a word
lexically co-occur in the close context of its occurrences”.
It also differs from' Edgar by taking the sociolinguistics
context into account, and by allowing a kind of variable
depth reasoning.

Each entry is stored as a hierarchical graph where each
level corresponds to a particular kind of description: (i)
notions are ‘general semantic directions’, (ii) domains

mark the influence of the activity fields on thc discourse,”

(i1} conceptual views are partial concepts, and (iv) fea-
mmres are pertinent properties of these concepts. Included
in the static representation are comtextual conditions and
semantic constraints. Contextual conditions are a set of
rules for initial salience attribution corresponding to very
particular and well-known influences of some morpho-
syntactic markers for this entry interpretation.

The edges between a parent node and its children nodes
correspond to an is-described-by or is-specialised-by
relationship. The semantic constraints are the edges be-
tween sibling nodes. They can be either neutral (co-
validity of descriptions), reinforcement connectors (im-
plication / increase of salience between two nodes), or
inhibition connecters {opposition / decrease of salience).

Interpreting a polysemous word becomes, in our model,
attributing salience rates to each node of the lexical
structure. We use four symbolic rates: (i) ignored, mean-
ing “not pertinent in this context”, (ii) valid, meaning
“possible but not very important”, (iii) salient, meaning
“important” and (iv) negated, which means “important
but in a negative way”. We use a salience propagation
algorithm, initiated by the triggering of the contextual
conditions. This algorithm is similar to the resolution of a
system of non-linear recurring equations of & variables,
which converges in & steps, if & is the number of descrip-
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terminates, in the worst case, in as many steps as there
are nodes in the descriptive structure.

Implementation of the model

We have implemcnted this model in a pack of three soft-
ware pieces: first, an engine, LightPeleas, managing the
descriptive structures of a lexicon and applying the
propagation algorithm on request. Then, a graphical edi-
tor, Melisande, to build and modify descriptive structures.
And finally, Bard, a corpus parser that helps up to gather
raw material for building the descriptive structures.

We implemented the engine LightPeleas as an ActiveX
control. It publishes in the operating system 29 classes
allowing the manipulation of any item from an entry to a
single node or edge. Entries are stored on disk in a format
we called PDL (Peleas Description Language). In order
to help us use the interpretation given by LightPeleas for
an entry, the output is a set of salient or negated concep-
tual views pondered by a “hint” between O and 1. It
evaluates the plausibility of each interpretation (0 means
‘perhaps’, and 1 means ‘rather sure’)

So far, we used our system to build five descriptive
structures (for ‘mother’, ‘father’, ‘to devour’, ‘life’ and
‘little’) and conducted a test with twenty-two sentences.
The results we obtained were all sets of propositions with
meaningful interpretations for the first or two first
‘guesses’.

CONCLUSION

So far, we have delimited a kind of lexical ambiguities
and their sociolinguistic cause: usage polysemy. We
designed a model for its processing based on the obser-
vation of some translators” behaviour. This medel is

implemented and presents encouraging results so far
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ABSTRACT

ESQIMO is a computational model for analogy solving
based on a topological formalism of knowledge repre-
sentation. The source and the target analogs are repre-
sented as simplicial complexes and the analogy solving is
modeled as a topological deformation of these complexes
along a polygonal chain.

Key Words: Analogy solving, Algebraic topology, Simpli-
cial complexes, 1Q-tests.

TOPOLOGY FOR KNOWLEDGE REPRESENTATION

A representational formalism for analogy must allow the
explicit expression of the features involved in similarity.
M. Johnson (Johnson, 1987) argues that mental images are
too close to perception and that logic approaches are too
syntactic and arbitrary for representational purposes. He
proposes to use a topological structure to represent and
solve metaphors (which he considers to be the generaliza-
tion of analogies (Lakoff and Johnson, 1930)).

Simplicial Complexes .
Cognitive models use different models of space (Freska,
1997; Johnson, 1987) and the central question is in the
choice of the basic spatial entities in a spatial representa-
tion of knowledge. We take here the elementary spatial
entities to be simplicial complexes.

A simplicial complex is a couple (V, K') where V is a set

of elements called vertices and K is a set of finite parts
of V such that if s € K, then all the parts s’ C s be-
longs also to K. The elements of K are called simplexes.
The dimension of a simplex s is equal to Card(s) — 1.
All complexes with dimension < 2 are graphs. Thus, sim-
plicial complexes generalize semantic networks and allow
the expression of hierarchies like in a relational graph.

The Q-Analysis

Atkin proposed the Q-Analysis (Atkin, 1981) to repre-
sent a binary relation \ between two sets with a simplicial
complex. Let A be the incidence matrix of a binary rela-
tion A C A x B. Let a € A, the set S4 of b; such that
(a,b;) € \. All the elements b; can be taken as vertices to
represent the element a as a simplex. The whole matrix A
can then be represented as a simplicial complex contain-
ing all the simplexes representing each element a; € A4,
we note it K 4(B, \) (see figure 1). Likewise, we can rep-
resent A~! with the dual simplicial complex.

2/2

A ai a2 as
by | 1 0 1
by | 0 1 1
bs | 1 1 1

(a) Incidence matrix of the
binary relation A

(b) Simplicial representa-
tion of A

Figure 1: Representation of a binary relation

Extension of Q-Analysis

We extend the Q-Analysis to allow the representation of
sets of predicates as a simplicial complex too. We can
take a set of predicates P = {pi, ..., pn} and represent the
binary relation A C A x P such that (a;, p;) € A if pj(a;)
holds.

In this representational formalism, the same simplex is
associated to elements of A that cannot be distinguished
with the predicates of P available in the system. More-
over, two simplexes that have a smaller k-simplex in com-
mon are said to share a k-face. In terms of representation,
it means that they have k features in common.

THE ESQIMO SYSTEM

A representational system is composed of a data structure
and programs operating on it corresponding to reasoning
tasks. We try now to model a simple analogy solving task
using the representational structure proposed before : we
chose the typical IQ-test problem. The system has to find
an element D such that it completes a four-term analogy
with three other given elements A4, B and C.

The analogy is solved in 3 steps: find a relation R4p be-
tween .4 and B, find the domain of C to apply R4 p. build
D = Rap(C).

Representing the Problem
1Q-tests are given in terms of geometrical elements so that
they can express many properties and stay simples. We
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angular; color: white, black; and size: big, small. Accord-
ing to our formalism, we build the complex C(f2) repre-
senting all the properties. The figures of the test are seen
as relations between the set of properties and the elements
of the figures, so we represent them also as sub-complexes
C(A),C(B) and C(C) of C(£). Note that this formaliza-
tion does not depend on the geometrical nature of the ele-
ments.

ESQIMO's Algorithm

To find R4p we look for a transformation T4 p between
C(A) and C(B) along a polygonal chain from C(4) to
C(B) in C(Q). A Polygonal chain is a sequence of sim-
plexes belonging to the same complex and where two suc-
cessive simplexes have a non empty intersection. An ele-
mentary step linking o; to ;4 in a chain is then viewed
as an elementary transformation Ty, 5, , -

If there are several such chains, then there are several pos-
sible relations between A and B. To minimize the number
of solutions, we give a higher priority to chains that are
short and of higher dimension. Indeed, they correspond to
transformations with less steps, and with more properties
conserved at each step.

When T4p is found, we use the same algorithm to de-
termine T4¢. This second transformation is used to de-
termine the domain of C(C) on which we can apply
T4p. Several strategies have been implemented (Valen-
cia, 1997) considering only the things that changed be-
tween C(4) and C(C), or considering only the invariants
between them, or some other hybrid methods. Finally, we
can apply T4 to this domain and build C(D). The trans-
lation of C(D) into a geometrical element of the universe
is then easy. ’

Figure 2: Analogy solving with ESQIMO

Remarks

The description of the properties of each figure in terms
of predicates can be a problem for properties such as posi-
tion. In that case, we can take only relative positions into
account. Moreover, our transformations could be called
0—degree since they preserve the minimum of topological
properties along a chain. The next step of this modeliza-
tion would be to pair higher-order structures.

CONCLUSION

Different computational models have been developed to
model analogy solving and are based on different rep-
resentational structures. Among them, the ANALOGY

s%%'f’éarﬁ " r?)i)egg’édl%?l’\tbggge’ Vahs, 1968) uses rules, the

SME system proposed by Falkenhainer to illustrate Gen-
tner’s theory for analogy (Falkenhainer et al., 1989; Gen-
tner, 1983) uses propositional structures, the ARCS sys-
tem developed by Thagard and Holyoak to simultaneously
satisfy the structural, semantic and pragmatic constraints
uses neural networks and COPYCAT uses semantic net-
works with asynchronous parallelism. Like in SME, we
focused on the structural constraint introduced by Gentner
(Holyoak and Thagard, 1989) and we modeled the steps
of analogy solving like in the ANALOGY system.

Our contribution lies in the search for a new representa-
tional structure (Valencia, 1997) that can be justified in
terms of the naturality of a diagrammatic representation
(Glasgow et al., 1995). Like in the COPYCAT project,
we are concerned with the mechanisms of enrichment of a
representation through analogy and our formalism can be
seen as an intermediate structure between a symbolic and
an analogical approach.

ESQIMO has been implemented in the ML program-
ming language, the various strategies experimented

- and some solving examples are given in details at

http://www.lri.fr/ erika.
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