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Cognitive Models at Work Symposium

Symposium Aims

Cognitive models arc used in the design of aircraft
and industrial plant; operator tasking; user
interface design; and for operations research into
the behaviour of complex sociotechnical systems.
The purpose of their use is to account for human
performance in shaping work environments,
developing cognitive aids, evaluating systems and
designs, and predicting the outcomes of courses of
actions. These models come from a number of
intctlectual traditions, and the papers included here
arc {rom and across disciplincs. Rather than
focusing on a particular model, this symposium
sceks to explore some of the uses to which
cognitive modcls are put, to find which models arc
being used and to draw some conclusions as where
advances has been made and the technical
challenges still in front of the cognitive modelling
community.

Simon Goss
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Introduction

In the military environment the physical systems
components are there to facilitate operator mission
objectives. While analysts have traditionally paid
considerable attention to fidelity when modelling
physical entitics, the physical characteristics of
system components arc not sufficient to describe
operational systems in sociotechnical environments;
the human operators contributc significantly to
systcms outcomes [ I]. In supporting operational
usage after a capacity acquisition it is in the
domain of mission parameters and operator
procedures that the scope for change to improve
performance lies. In operational rescarch there has
been a shift in focus from modelling an operator
performing a task in an environment to modelling
an entity with a social role performing actions in a
dynamic social environment. This involves the
recognition of the intentions of other entities. 1t
could be said that the focus has shifted from
computational theory of mind to computational
theory of other minds.

Two aspects of modelling uscrs are addressed in
this presentation : the first, “grey box modelling” is
applied to documenting a user’s model of
simulation software; the second concerns a method
for learning to recognise the intentional behaviour
of players or simulated agents in an agent-oricnted
virtual environment.
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Testing Models

Grey box modelling, the process whercby a user by
mcans of cxploration develops a causal modcl of a
partially undcrstood system is the problem of
legacy code maintenance and black box model
commissioning. It is the process of acquiring
cxpertise with a system to the point of function
practicality. In our current work a method
developed for the verification of knowledge based
systems is applied to the testing and documentation
of a devcloping user modcl of software |2-4]. The
context is operations research where large models
are used; often with large components externally
sourced and less than well documented.
Considerable investment of staff time is required in
learning and using these systems. An explicit
documentation ot the mental model the uscr has of
the systcm has significant potential as a guide and
aid to the acquisition of expertise, and the retention
of this expertise independent of staff movement,

Learning Plans

In this work the experimental aim was to
demonstrate a method of constructing procedures
from spatio-temporal data which describe action
plans of agent/cntitics in a virtual environment [5-
6]. These are required for testing candidate
opcrator intentions against operator action history,
and are interpretable as partial instantiations of
intentionality. The capacity of situation awarcncss
possesscd by human operators in dynamic social
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systems requires is the recognition of plans whilst
in cxccution in addition to than casual physical
processes in train. A desirable incidental benefit is
a summary method for the massive amount of data
obtainable in a human-in-the loop simulation.

We explore this experimentally in the context of
flight simulation, and offer a method for Iearning
action plans. This rcquires thrce components: an
appropriate ontology (modcl of operator task
performance), an appropriate virtual environment
architecture (accessibility of data and image
generation databases) and a learning procedure
(which relates the data stream to the domain
ontology).

In simple terms, we are looking at the domain
of circuit flight. We have a task analysis for
circuit flight. The {light simulator has an
authentic flight model for a PC9 aircraft, and a
cockpit with generic throttle and stick
controls. It also has a particular software
architecture conferring special data recording
properties. A relational learning technique is
used 1o relate the data from the flight simulator
to the task analysis. We build relations which
describe generalised flight plan segments.

In practise these run in real-time and announce
attributed plan segments while the pilot is
executing them. This is a compelling
demonstration of the feasibility of real-time
recognition of intention in a user interface to
an immersive virtual environment task. We
assert that our results have wider significance
and may form part of the foundation for the
construction of agent-oriented simulations, and
more broadly, virtual environments

%1
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Abstract

In an increasingly complex and automated aircraft
environment, aircrew tasks are now more cognitive
than physical in nature. This has led to interest in the
requircments for cognitive quality in aircrew
systems, and the need for engineering principles to
guide the design of cognitive tasks. In symbiotic
systems where both human and system cognitive
quality is necessary for effectiveness, research is
needed into the requirements for cognitive control
(strategic, opportunistic) and compatibility
(usability, intuitiveness). Such joint cognitive
systems require reliable, and adaptive, cognitive -
modcls.

DERA CHS is currently developing such a cognitive
model which will provide guidance on pilot-system
dialogue structurcs, and cognitive task specification.
The model attempts to encapsulate the relationship
between human and machine at different levels of
control, communication, awarcness, and behaviour,
and draws upon contemporary psychological thcorics
such as: Rasmusscn (1983); Hollnagel (1996);
Taylor (1988). The model will provide guidance on
the nature of the relationship between human and
system. For example, the model will indicate that at
no time should the system remove the pilot’s control.
Instead, a process of critiquing is preferable where
the system is able to critique the pilot’s crrors, and
similarly, the pilot is able to critique, and improve,
the Cognitive Cockpit’s advice. This paper outlincs
the adaptive cognitive model and the factors that
cnsure that it is a practical, applicable, framework
for implementing automation in the DERA CHS
Cognitive Cockpit.
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ABSTRACT

This paper prescnts an overview of threc cognitive
models developed with the COGNET (for Cognition as a
Network of Tasks) methodology and toolsct.  The
examples illustrate the broad range of applications [or
which such models are suitable. They include a model
for an air defense gunner which was developed for the
purpose of crewstation design cvaluation. The sccond
example is a set of models for the watchstanders in an
advanced ship’s combat information center which are
being developed as part of an embedded intelligent
training system. The last example is a model of an
airborne anti-submarine warfare sensor operator which
is being developed to support an intelligent interface for
the sensor operator.

Keywords

cognitive model, design evaluation, training, intclligent
interface, COGNET, CIC waltchstander, air defense
gunner, sensor operator.

INTRODUCTION

Development of a cognitive model for a person
operating a complex system is always a daunting cffort.
At a minimum, the cognitive modeler must define the
task procedures for system operation, the complete
knowledge basc that is relevant to performance of these
tasks, including both general and task-specilic
knowledge, and the various component performance
models which characterize each aspect of human task
performance.  Construction of these cognitive models
typically entails usc of specialized Al programming
languages such as LISP and accordingly requires the
support of highly trained computer scientists. The
COGNET methodology and 1oolset for cognitive
modeling (Zachary, Ryder & Hicinbothom, in press;
Zachary ¢t al., 1992) has been developed in order to
facilitate the development ol cognitive models with a
minimum nced for support from such computer
specialists.  COGNET offers an integrated model
development environment with a graphical interface for
goal and task representation.  This paper presents an
overview of the COGNET loolset and descriptions of
three distinctly  different types of application  of
COGNET for military systems. The thrce COGNET
applications include the primary alternatives that have
been conceived for applications of executable cognitive
models — (1) detailed performance prediction [or
design evaluation, (2) an embedded cognitive model for
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an intelligent training system, and (3) an embedded
cognitive model for an intelligent operational interface.

DESIGN EVALUATION - GUNNER MODEL

The application of COGNET for design cvaluation
concerns the development of a simulation model for the
operator of the U.S. Army’s  mobile air defense
weapons system known as Avenger. The Avenger is an
operational mobile Forward Area Air Delense (FAAD)
element consisting of a High Mobility Multipurpose
Wheeled Vehicle (HMMWYV) having a rotatable turret
and cight ground-to-air Stinger missiles.  Avenger is
manned by a driver and operated by a gunner.  The
gunner sits in the turret where he scarches for air targets
through a transparent windscreen and also with a
forward-looking infrared (FLIR) display. Upon
detecting a target, the gunner aims the turrct optical site
al the target by rotating the turret using a control yoke,
and then, upon verification of a hostile identification, a
missile can be fired using control buttons on the yoke.
The simulation of the Avenger gunner was developed to
operate in the software environment of a simulation-
based traincr for the Avenger system, called the Avenger
Institutional Conduct of Fire Trainer (Avenger [COFT).
This simulation elfort was originally conducted in order
to enable simulation-based evaluation of contemplated
modilications to Avenger, but interest has also
developed in the potential usc of this simulation for DIS
applications.  The gunner model includes distinct
component performance models for visual search, target
detection and identification, target tracking, and
associatcd cquipment operation and decision making.
The model was developed initially through a task
analysis of gunner performance in the ICOFT and later
through collection of detailed performance time data in
the ICOFT to use for model parameter calibration.

TRAINING APPLICATION - CIC MODELS

The COGNET application for intelligent training
involves a series of models to simulate both the
behavioral and cognitive activities of the watchstanders
comprising the Anti-Air Warfare (AAW) tecam in the
Combat Information Center (CIC) on an Acgis-bascd
Cruiser (sec Zachary ct al., 1997 for a more detailed
summary). This was done to construct simulation-based
Advanced Embedded Training Systems for shipboard
team training. The various members of the AAW tcam
must identily and appropriately respond to air tracks so
as to maintain the sell-defense of own-ship and any
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protected assets. This is a particularly difficult task in
complex geo-political environments characterized by
low-intensity conllict such as the Persian Gull. Modecls
for four different watchstanders have been developed —
the AAW Coordinator (AAWC), the Tactical Action
Officer (TAO), the Electronic Warfare  Supervisor
(EWS), and the Identilication Supervisor (IDS). Each
simulation model is able to:

operate the actual watchstation (or a high-fidelity
simulation) in the same manner and with the same
level of performance as a human expert;

* generate and respond to voice interactions with other
members of the AAW team and other CIC personnel;

* reason about and solve tactical problems as they
arise; and

* (akc appropriate taclical actions.

The simulations were built to support shipboard team
training based on the embedded training simulation
capability of the Acgis Weapon Control System. While
an  Acgis cmbedded  simulation is  running, the
behavioral models work the simulation scenarios in
parallel (0 human trainces, generating expert level
behaviors that are used as a dynamic benchmark for
diagnosing  both  the  behavioral —and  cognitive
performance of the trainees. This diagnosis is then used
to provide (real-time or deferred) feedback. Other dirccl
applications of these models include supporting mission
rehearsal and tactics development.

INTERFACE APPLICATION - SENSOR OPERATOR
MODEL

COGNET has been used in a planned design for an
intelligent interface for the U.S. Navy’s new SH-6UR
multi-mission helicopter, designated as the  Task-
Oriented Interface Layer (TOIL). TOIL is envisioned as
separate from the basic crewstation interface planned for
the SH-60R and is intended as an alternative means for
the sensor operator SO to accomplish essentially all
functions provided by the crewstation. TOIL is offered
as an option to the SO who may use it as much or as
little as scems appropriate given the knowledge and
skills that that operator has with the crewstation and
tactical domain. Thus, TOIL represents an alternative
interface layer for operator interaction with the system.
TOIL is implemented in the form of various menu and
data windows that appear in the data strip region of the
SO’s mission display. TOIL is structured to provide
interface options and guidance that are specifically
tailored to the momentary tactical and task context, and
is  henee  task-oriented. Additionally, TOIL will
incorporate intelligent agent soltware which will enable
automation of some interface or tactical functions as
part of TOIL.

CONCLUSIONS

The three example applications of COGNET described
above provide an indication of the diverse ways that
cognitive models are beginning to contribute (o complex
military systems. With the emergence of such “main
stream” applications, it is becoming increasingly
important to provide tools and methods to lacilitate such
model devclopments. COGNET represents a candidate
model development environment that is designed to
support modeling of the kinds of real-time, multi-tasking
jobs involved in military crewstations such as are
described here, but it is also designed to be relatively
casy to use by people with minimal special computer
training.  Clearly, therc are still many further
cnhancements and aids that are feasible and warranted
for COGNET, as well as other similar cognitive
modeling cavironments, to improve their usability. Two
such arcas of particular current interest are a graphical
visualization tool for thc COGNET declarative
knowledge base (i.c., blackboard) and an aid for
COGNET-oricnted knowledge engineering (c.g., [or
guiding interviews and  supporting information
management). '
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ABSTRACT

The work reported here has been led in a collaboration
which took place in the framework of “taskforce 1:
Representation Change” of a european project “Learning
in Humans and Machines” sponsored by the European
Science Foundation during the years 1994-97.

This interdisciplinary and international collaboration has
gathered Psychologists and Education Scientists, who
collected and analyzed data about the knowledge of
students in elementary mechanics, and who hypothesized
mental models explaining the data; Computer Scientists
specialized in Knowledge Representation who designed a
language tailored to express the above models; and
Computer Scientists specialized in Machine Learning,
who investigated the behaviour of two systems on (part
of) the data collected, and evaluated the relevance of the
formal study of theory revision to the modelization of the
conceptual changes that take place in students.

Keywords

conceptual change, force, knowledge representation,
machine learning, mechanics, mental models, validation
of cognitive models

INTRODUCTION

We report on a collaborative and interdisciplinary work,
which took place in the framework of a project called
“Learning in Humans and Machines” sponsored by the
European Science Foundation. The objective of the
authors in this research was to effectively bring together
the know-how from the fields of cognitive psychology
and machine learning in view of the fulfilment of two
main goals. The first, mostly relevant for cognitive
psychology, is to propose a theory of the development of
knowledge acquisition in mechanics, with the help of
computational models, clearly formalised and precisely
testable. The second one, relevant for machine learning, is
to obtain powerful guidelines for a more effective design
strategy of learning systems, starting from the very basic
issue of what knowledge they should handle and how to
represent it.

All the research works that are presented have been
conducted from the same data that has been collected on
Greek students of various ages concerning their concept of
force. The format of the present paper will be as follows.
It will start with a short presentation of the empirical data

which led to the identification of a small number of
mental representations of force in students ranging in age
from 5 to 15 years of age. It will continue with a
presentation of a computational model which tries to
reproduce the conceptual changes that take place when
children develop the concept of force with reference to the
theoretical framework proposed by the psychology team.
We will then proceed with another short presentation of a
process model of the solution of three problems in
mechanics by elementary school students before and after
a six week experimental program of instruction in
mechanics. It will be followed by a presentation of a

. computer model designed to represent accurately the
" characteristics of the psychological model.

MENTAL MODELS OF FORCE
(Christos loannides & Stella Vosniadou)

The purpose of the research reported in this section was to
investigate the development of the concept of force in
young children and propose a theoretical framework
within which we can explain this development.

A total of 105 children ranging in age from 5 to 15 years
were interviewed individually using a questionnaire
consisting of 27 questions. Each question referred to a
drawing depicting objects of different weights and sizes
(e.g. big stones and big balloons vs. small stones and
small balloons), some stationary and some moving, and
were asked about the kinds of forces that were exerted on
these objects. Following a methodology developed by
Vosniadou and Brewer (1992; 1994), we were able to
identify eight mental models of force which were used
consistently by 70.6% of the students in order to answer
the questions. The mental models of force are presented in
Table 1. The younger children in our sample used mental
model 1, according to which there is an internal force
within big and heavy objects regardless of their kinetic
state or position. Older children’s responses (about 9 - 10
years), could be mostly explained by assuming that they
had used mental model 4, according to which there is an
acquired force only within moving objects. This force was
thought to be imparted to the objects by an external agent
which set them in motion and serves to explain this
motion. Mental models 2 and 3 were based on
combinations of the above two interpretations of force
(internal and acquired ). In contrast to model 4, the
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children who used mental model 5 believed that there is a
force of push or pull exerted on objects pushed or pulled
by an agent (even in the absence of movement). The same
interpretation of force is also present in model 7. Most of
the children who had received instruction in mechanics
developed mental model 6 according to which the force of
gravity is exerted on all the objects. The force of gravity
model was usually added to an already existing acquired
force model. Various alternative interpretations of the
word gravity have been identified. For example, some
children believe that the force of gravity increases with
the stability of the objects, others that gravity increases
as the distance of an object from the ground becomes
greater.

Table 1: Frequencies and percent of mental models of
force as a function of grade.

Mental Models of Kind/ [4" 6" 9"
Force garten grade |grade |grade
1. INTERNAL 40% 6.7% |0% 0%

FORCE: There is an
Internal Force within
stationary and
moving heavy
objects

& @R

2. INTERNAL and 20%
ACQUIRED FORCE:
There is an Internal
Force within
stationary heavy
objects - There is an
Internal and an
Acquired Force
within heavy objects
that are moving

& >

26.4% |20% 0%

3. INTERNAL
FORCEIN
STATIONARY
OBJECTS: There is
an Internal Force
within stationary
heavy objects only

& O

13.3% |6.7% |0% 0%

4. ACQUIRED 0%
FORCE: There is an
Acquired Force
within moving
objects only

6.7% {30% 10%

Q

)76

Mental Models of Kind/ |4" 6" 9"
Force garten grade |grade |[grade
5. ACQUIRED 0% 0% 13.3% | 16.5%
FORCE and FORCE

OF PUSH/PULL.

There is an Acquired
Force within moving
objects - Force from
an external agent on
all objects that are
pushed or pulled by
the agent

O

6. GRAVITATIONAL | 0% 3.3% |0% 39.6%
FORCE and
ACQUIRED FORCE:
There is the force of
gravity on all
stationary and
falling objects -
There is the force of
gravity and an
acquired force within

moving objects

ORKC 4

7. FORCE OF 0% 0% 0% 3.%
PUSH/PULL: There is
a force only on
objects that are
pushed or pulled by

an agent
ONK€. -

8. SUSPENDED and | 6.7% 16.5% | 13.3% |3.3%
ACQUIRED FORCE:
Objects at high and
unstable positions
have “more force”
then objects at a
lower or more stable
position (Suspended
Force)- There is an
Acquired Force
within moving

objects

;( ((

9. Mixed 20% 33.3% |23.3% | 26.4%

Mental models are assumed to be formed as children
attempt to explain their everyday observations and
information (verbal or other) they receive from the culture
under the constraints of certain ontological and
epistemological presuppositions, such as that force is a
property of physical objects, and that the motion of an
inanimate object requires an explanation in terms of a
causal agent (see Figure 1). The process of conceptual
change seems to be a slow affair that proceeds through the
gradual suspension or revision of well entrenched beliefs
and presuppositions. For example, the older children seem
to have differentiated weight from force. Nevertheless, the
presupposition that force is a property of physical objects
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and that the motion of physical objects requires an
explanation, do not seem to have been changed in the
conceptual system of the 9" grader, despite the fact that

these students have been exposed to systematic
instruction in Newtonian mechanics.
Framework theory Specific theory

Presuppositions

- There are physical
objects. There are
animate and inanimate
physical objets.

Observations or
other information in
the cultural context

- Humans that push

or pull other humans or
objects, exert force.

- Heavy objects resist
the push, pull of other
objects or humans.
Light objects do not.

- Physical objects have
properties. Force is a
property of inanimate
or animate objects etc.

Heavy objects have
internal force

Mental model

There is an internal
force in heavy objects,
moving or stationary
not affected by motion
or position

Figure 1: Hypothesised conceptual structure underlying
the internal force mode.

ELABORATION OF A MACHINE LEARNING
MODEL

(Floriana Esposito, Giovanni Semeraro, Donato Malerba
and Stefano Ferilli)

From the Machine Learning perspective, the research
focuses on the elaboration of a computational model
which tries to reproduce the conceptual changes that take
place when children develop the concept of force with
reference to the theoretical framework proposed by the
psychologist team.

A fundamental characteristic in the use of mental models
concerns the possibility of verifying the general validity
of a reasoning process based on examples by generating a
sequence of significant examples and by applying revision
procedures on the models (Johnson-Laird, 1983).
Revision processes triggered by inductive mechanisms are
an important aspect of learning. The research focused on
the elaboration of a computational model of learning
based on theory revision. The main objective of the work
was to prove the validity of two particular Machine
Learning systems: whether they are able to simulate the
very complex phenomena related to the process of
acquiring concepts of naive physics by creating these
conceptualizations and refining them on the ground of
new evidences. This could be useful in order to supply an
artificial experimental laboratory where to test some of
the mental models proposed by the psychologists, by
observing the variations in the behaviour of the

computational models, monitoring the process of concept
acquisition and refinement.

The proposed computational model considers learning as a
process of formation and revision of a logical theory,
where a logical theory is viewed as a set of conditions
that are necessary and sufficient to explain a number of
observations in a given environment. To be useful a
theory must be able to explain past events and also
predict future situations in the same environment.

A set of concept definitions constitutes a theory: theories
are represented as sets of facts and rules, both strict and
defeasible, sufficient for proving or explaining how an
instance of a concept meets the concept definition. The
instances from which a theory is inferred are called the
training examples: these may be positive or negative. If
we assume that the only source of knowledge available is
represented by a set of examples and no prior knowledge
can be exploited, the process of formulating a new theory
is bound to be progressive. Starting from contingent
observations, it is not possible to define concepts that are
regarded as true. New observations can point out the
inadequacies in the current formulation of the concepts. In
such a case, a process of theory revision should be
activated. Revisions of a logical theory are caused by a
shift in the language and a change in the number and
meaning of the involved concepts. In the proposed
computational model the theory is refined incrementally:
this is necessary when either incomplete information is
available at the time of the generation of the initial theory
or the nature of the concepts evolves dynamically.

Artificial learning systems can be roughly subdivided into
batch and incremental, depending on whether all the
examples used to train the system are completely
available at learning time (batch) or not (incremental).
Incremental learning systems maintain the inferred set of
concept definitions consistent with all data (examples or
observations) and have to store all previous data as soon
as any backtracking is involved. In order to simulate the
cognitive models of conceptual change in children
learning elementary dynamics, two Machine Learning
systems were used: ATRE and INTHELEX. The former is
a batch system, while the latter is a fully incremental
learning system.

The aim of the study was to see whether learning systems
which learn from positive and negative examples by
inductive inferential mechanisms could reproduce the
changes in the concept of force observed in children. It
has been suggested that children develop their concept of
force on the basis of their interpretations of observations
and information from their cultural background. Given
some empirically derived hypotheses about the
development of the concept of force, it was possible to
extract the kinds of observations and/or information that
are needed for the development to take place. These
observations were used to validate the inferential power of
the above mentioned learning systems.

Two experiments were run. In the first experiment, since
ATRE can realize a shift in the representation language,
the aim was that of discovering whether the system ,was
able to relate the concept of force corresponding to
“internal force in stationary and moving objects” to that
corresponding to “acquired force in moving objects only”.
For humans the problem of learning dependent concepts
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is related to the possibility of having an ontology. For
machine learning systems the two ways of solving this
problem are to supply the system a graph representing the
concept dependency or to leave the system discover the
dependency while it learns the concepts. ATRE uses both
the approaches and some interesting results have been
obtained related to the autonomously defined order by
which it generalizes the concepts.

The second experiment concentrated on the process of
theory revision; INTHELEX was used to emulate the
transitions occurring in the human learning process when,
starting from an empty theory and providing just an
observation a time, it is possible to model and to monitor
the refinement process of a theory. Some initial
interesting results have been obtained although a direct
comparison with the children acquisition mechanisms is
not possible.

The batch system allowed us to point out how the
formulation of the naive concepts of force is based in part
on everyday experience, observations and verbal
information and to prove that the dependence between
some basic concepts of force can be modeled by a shift in
the representation language. The incremental learning
system, compared to the batch learning system, seems to
be more accurate in performing the conceptualization
process, for two basic reasons:

a) changes of the initial theory caused by a new
observation go through a process of refinement and it
is not necessary to re-start the whole learning process
from the beginning when a new instance is presented;

b) it can take into account temporal relations albeit in a
very simplistic way.

Both learning systems were able to produce from
examples concepts related to the two models of “internal”
and “acquired” force which were found in the
developmental studies, although it is clear that students
create their concepts only on the basis of observations or
only being told about “force”. The two systems tried to
develop the two models of force through generalization
and specification mechanisms. This may be compared
with the phenomenon of “tuning” in conceptual change:
indeed, both systems try to maintain coherence in the
logical theory through their operators. This is an initial
very simple form of conceptual change, although only a
process of restructuration of knowledge should be
considered a real conceptual change.

A PSYCHOLOGICAL PROCESS MODEL OF THE
SOLUTION OF MECHANICS PROBLEMS BY
ELEMENTARY SCHOOL STUDENTS

(Stella Vosniadou, Christos Ioannides and Aggeliki
Dimitracopoulou)

The present project is based on collaborative and
interdisciplinary work with a team of computer scientists
from the LIPN (Daniel Kayser and Marc Champesme).
The psychology team worked on a model that explained
the solution of mechanics problems by elementary school
children while and the computer science team validated
this model by constructing a computer program. In
previous work (loannides and Vosniadou, 1993;
submitted) we used the theoretical model and
methodology described in a series of studies on knowledge
acquisition in astronomy (Vosniadou and Brewer, 1992;
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1994; Vosniadou, 1994), to investigate the development
of the concept of force. The results showed that it is
possible to classify approximately 70% of the students in
our sample as making use of one relatively well-defined
mental model of force which they used in a logically
consistent way to answer a number of questions about
force. More specifically, six mental models of force were
identified. These models were used in different frequencies
by students ranging in age from 5 years (kindergarten) to
15 years (9th grade). These models are described in the
previous section “Mental models of force™.

In the present work we used these models to see if they
could explain 5" grade students’ responses to problems
in mechanics, such as the one presented in Figure 2.

A L),

These two stones are just standing there. Is there a force exerted on
them ?

Figure 2: Question 1.

The results showed that children’s responses could be
explained by assuming that the students used one of four
models of force. When they gave responses such as “Yes,
a force is exerted on the stones because they are
big/heavy, etc.” we assumed that they used the internal
force model. On the contrary, if they said “No force is
exerted on the stones because they do not move”, we
assumed that they used the acquired force model. Some
students said that there is no force exerted on the stones
“because the man does not push them”. We assumed that
these responses indicated use of the push/pull model,
according to which a force is exerted when an (usually
animate) object pushes or pulls another (usually
inanimate) object. Finally, some students said that the
force of gravity is exerted on the stones (force of gravity
model). Students’ responses to question 1 and the
assumed mental models assigned to their responses are
presented in Table 2.

Table 2: Students’ responses to question 1.

Assumed mental %
model

Response types

1. | Yes, a force is exerted | Internal force 18.4%
on both stones
because they are
big/heavy they have

weight/force

2. | No force is exerted on | Acquired force 26.5%
the stones because

they are not moving

3. | Yes, a force is exerted | Force of gravity 20.3%
on both stones
because the earth

pulls/attracts them

4. | No force is exerted on | Push/pull 30.6%
the stones, because
the man does not
push them/exerts

effort.

6. | Other 4.2%
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The results of this study also showed that the above
mentioned models of force were not mutually exclusive
and that the probability of activating them was influenced
by the verbal and pictorial content of the specific
questions asked. There were noticeable changes in the
frequency of use of the different models in the different
questions by the same subject population. The co-
existence of different models of force in the same subject
raised the issue of internal consistency. In previous work
(Vosniadou & Brewer, 1992; 1994; loannides &
Vosniadou, submitted) we have argued that students are
consistent in their use of not more than one mental model
of the earth, of the day/night cycle, or even of force. Are
the present findings contradictory to our previous claims?

We believe that it is possible to explain the present
findings if we assume that in the conceptual system of
the 5™ grader force is categorised differently for animate
versus inanimate objects, as shown in Figure 3. If the
child considers the question to apply to animate objects,
then the push/pull model is used. If, on the other hand,
the question is interpreted to belong to animate objects,
the internal or acquired force models are used. Such an
interpretation would make it possible for the same child
to use either the “animate” or the “inanimate” models of
force in different contexts, but not in the same context.
Qur results confirmed this prediction.

The possibility of internal inconsistency still is possible,
however, in the case of use of the two inanimate models
of force even in different contexts. However, an
examination of the data showed that only one child made
use of both the internal and the acquired models of force
(the internal force model in questions 1 and 2, and the
acquired force model in question 3). All the other children
were consistent in their use of only one “inanimate”
model of force.

All Entities

stract
4 Entities
Physical
etc. Objects TN, to be affected by

earth's attraction,
gravity

Push/Pull

Internal
force

Acquired
force

Figure 3: Assumed Categorization of the Concept of
Force (for elementary school children).

The above leave unsolved the problem of how the mental
model of the force of gravity is used. It appears to us that
the gravity model comes through instruction to be added
to the existing conceptual system of the 11 year old child
and to be interpreted to apply to physical objects in
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general. Thus, the gravity mental model can theoretically
take the place of any animate or inanimate model of force.
When contextual cues lead to the activation of the gravity
model, the search stops there and the other mental
models of force are not utilized. We understand that this
is a very preliminary treatment of the notion of gravity.
We know from previous work that there are various
misconceptions of gravity. These issues are further
investigated in ongoing work.

To conclude, force can be categorised in different places in
the conceptual system of a 5™ grader. It can appear under
inanimate objects either as an inherent internal property
(internal force) or as an acquired property (acquired force).
It can appear under animate objects as the force exerted by
a person’s push or pull. Finally it may appear as a
property of physical objects to be affected by the earth’s
attraction (gravity). These alternative representations of
force become available as information comes through
observation and from the culture in the form of systematic
or unsystematic instruction. In previous work we
described some of the beliefs and presuppositions about
force that underlie these representations. In the present
work we note that the different representations of force are

- associated with different contexts of use. Depending on

the nature of the question and on the context, the student
activates selected pieces of his or her prior knowledge to
eventually create a specific mental representation of force
on the basis of which he or she provides a response.

We believe that this work succeeds in capturing
important aspects of the concept of force in young
children, both in terms of how it is related to assumed
underlying beliefs and presuppositions and in terms of its
relationship to other concepts and categories.

A COGNITIVE MODEL OF ELEMENTARY
SCHOOL STUDENTS’ SOLUTION OF THREE
PROBLEMS IN MECHANICS

(Daniel Kayser and Marc Champesme)

Modelling the knowledge state of students is an important
objective for theoretical and practical (e.g. pedagogical)
reasons. The model needs be validated and the best
validation consists in implementing it and run the
computer program on various questions in order to check
whether the answers are identical -or at least,
analogous - to those provided by the students.

In this section, we report on the experiment described in
the previous section. The data have been analyzed by
Cognitive Psychologists and the resulting models have
been implemented jointly with Computer Scientists
specialized in Knowledge Representation.

The Language

Recent work in Artificial Intelligence shows that the
most difficult problem is to find appropriate trade-offs
between the efficiency (of the inference procedures) and
the expressiveness (of the representation language).
Therefore, in this research, we attempt to tailor the
expressiveness to the exact needs of the model,
care being constantly taken that the algorithms using the
knowledge represented remain tractable.

Early works in Knowledge Representation, such as
KRL (Bobrow & Winograd, 1977; Lehnert and Wilks,
1979) also originated from a collaboration between Al and
Cognitive Psychology. But their purpose was more
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knowledge, therefore requiring maximal expressiveness,
while we aim here at the minimal expressiveness
compatible with the data.

The main line of further research (e.g. the KL-ONE
family of languages (Brachman & Schmolze, 1985)
followed by terminological and description logics) has
emphasized on formal limitations in expressiveness in
order to remain compatible with polynomial-time
inferential mechanisms (a synthesis can be found in
(Gottlob, 1996)).

More recently, research concerned with biological
plausibility, as e.g. (Shastri, 1993) — notice being taken
that biologists contest the relevance of this work, see
discussion following (Shastri & Ajjanagadde, 1993) —
have opened other insights in the efficiency vs.
expressiveness trade-off. Papers by Fahlman (1979) and
Shastri might have inspired very indirectly the present
study.

Terminological Component

Concepts are structured in an ordinary “is-a hierarchy”,
with multiple inheritance. Relations between concepts are
represented by roles, which may have cardinalities. Less
common, but still very important (e.g. in order to define
at least a weak notion of consistency), is the ability to
express the disjointness of concepts. Obviously, every
statement of the language is translatable into first-order
predicate logic, the reciprocal being false.

Assertional Component

The student is given a text from which (s)he is supposed
to build a representation. For example, a sentence such
as: “a man pushes a stone” is assumed to create an
instance M of man, an instance S of stone, and an
instance P of push having as arguments respectively M
and S.

The assertion of an entity may be direct (entity supposed
to be created while reading the text) or indirect (existence
asserted as the consequent of an inference rule, see below).

Inference Rules ; Inference Engine

The students also entertain beliefs of the form, e.g. "when
an agent xxx, then yyy"; this corresponds to the classical
notion of inference rules.

Representing Several Models

Every piece of knowledge belongs to one or several of the
mental models identified (see second section). A large part
of the “is-a hierarchy” is model-independent (a stone is a
physical object in every model), but some critical areas do
depend on the model, e.g. the ontological nature of force.

We therefore associate to the internal representation of
every concept, role, and rule, a vector of boolean
values. The dimension of the vector is the number of
models identified (currently, a dozen of them).
Technically, we first provide the computer with the list of
the names of all mental models. Each name is assigned an
index in the vector. Then comes the description, in the
language of the information (terminological component
and inference rules) supposed to be valid in every model.
It is compiled and stored with a vector filled with “true”.
We then repeat a sequence composed of a list of the
names of the model(s), followed by statements considered
valid only in the models named in the list; the boolean
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indices. Once all descriptions have been processed, we
begin a “session” intended to simulate the behaviour of a
student.

Implementing the Models in the Language

The implementation of the psychological models has
been a long process with several feedbacks between
Computer Scientists (CS) and Cognitive Psychologists
(CP).

The first reason is that, from the CS point of view, a
large part of the CP theories remains implicit, either
because it constitutes the common knowledge assumed in
the cultural background of CP, or because CP do not
consider making it explicit as a valuable effort.

Another reason is that CS implementation resulted in
making some aspects of the psychological theory more
explicit, raising new important questions which needed be
answered without ambiguity, and in some cases this led
to some changes in the modelization (cf. subsubsection
“Adding Psychologically Essential Features” in this
section).

Refining the Ontology

" Implementation first requires, once the representation

formalism is designed, to translate the psychological
theory into that formalism. Now the theory was initially
expressed in very heterogeneous forms, ranging from
rather general theoretical statements to concrete responses
of students in natural language extracted from the
experimental data.

The first proposed implementation was strongly guided
by the most explicit parts of the theory. Therefore, it
corresponded to a rather literal interpretation of the
psychological data: many concepts were created in an
attempt to capture all subtleties of the psychological
models. In view of ‘this preliminary modelisation, CP's
feedback led to a pruning of the hierarchy of concepts,
resulting in a clarification of which concepts were the
most important, and what they meant.

After this clarification, all concepts were classified into
three main categories: physical objects, which denote
the concrete objects of the real world (e.g. human,
stones...), propositions, which express statements
about physical objects and abstract entities like
measures which are neither concrete objects, nor
statements about physical objects.

After these clarifications were completed, only minor
changes revealed necessary in the ontology.

Adding Psychologically Essential Features

During the refinement of the first implementation, it
turned out that some characteristics of the psychological
models of the students were not represented accurately. As
these features were considered as essential from the CP
point of view, the CS had to modify their proposal.

This fact must be pointed out as an important result of
this work, since these features were not explicitely stated
in the initial model provided by CP, and would perhaps
remain unnoticed otherwise. Another important point is
that, although the representation issues constitute in
general difficult problems for AI research, a careful
analysis of the psychological model showed that several
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features could eventually be represented, at least in' this
case, in a rather simple way.

Validation

Internal Validation

A compiler transforms the language into an internal form,
performs several syntactic verifications (e.g. checks the
well-formedness of the chain of roles), and goes beyond:
using partition and exclusive statements, it checks
that an entity does not inherit from two entities declared
as incompatible with each other. Such checks proved
useful to point at problems that were overlooked when
writing the models.

A student can shelter simultaneously inconsistent beliefs,
but in a given situation, (s)he should not use beliefs
generating inconsistencies. Therefore, during a session,
care is taken that every newly created entity is compatible
with the is-a hierarchy, and obeys the cardinality
restrictions declared in the relation statements.

External Validation

The above controls are more debugging aids than genuine
validation. It is by far more important to compare the
output of the program with the behaviour of a student
supposed to work under the model(s) selected for a given
session.

Obviously, some differences are irrelevant, as are also
some similarities between student and computer answers.
What matters is whether, for every situation in the
domain of investigation, the computer outputs a result
considered as plausible from a student supposed to use the
corresponding model(s). Of course, this judgment is
theoretically biassed, since the models identified exist
only in the theory. A better test, which has been used in
(Chaignaud, 1996), consists in coding the student
reactions in a way formally indiscernible from computer
outputs, and to evaluate statistically whether experts are
able to discriminate between human and computer
protocols. Even this method is not completely immune
to criticism. Anyhow, validating cognitive models raises
deep epistemological issues, which we are not willing to
develop further here.

Model Selection

After having declared which model(s) S the student is
supposed to have access to, we describe the situation as a
list of entities.

Introducing entities triggers inference rules. The
information relevant to this process (both the existence of
“is-a” links propagating the search for the rules, and the
rules themselves) is indexed by the set M of models in
which it is assumed to hold. Three cases are to be
considered:

* M and § are disjoint: nothing happens;
* M contains S: the information is used;

* @ <Mn S cS; here, we need to know more about the
influence of the context over the behaviour of the
student. The only empirical data at hand being
probabilistic, we select at random, obeying to the
probabilities measured by CP, the (unique) model in
which the student is assumed to reason in this case,
and the decision of using or not the information is
taken accordingly.
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This research had two kinds of benefits:

o globally, models of the knowledge of students have
been hypothesized, specified in a precise way, tested,
and machine learning systems have been run in order
to reproduce the acquisition of some concepts;

locally, each team has taken advantage of the presence
of the others in the following way:

¢ the Psychologists have been forced to refine
their models, and to resolve some
inconsistencies which were not perceptible
before the Computer Scientists had to
implement them;

the analysis of the Psychologists has in turn
influenced the design of a knowledge
representation language having, per se,
interesting  features  in  terms of
expressiveness and efficiency;

finally, the researchers in Machine Learning
have been able to test their ideas on theory
revision on real data.

Several other works concerning the change in
understanding have been conducted in “taskforce 1”. They
are described in (Kayser & Vosniadou, in preparation).

Now that we have stronger tools to represent the
knowledge state of a student, promising perspectives are
opened to ask new questions about the evolution of this
knowledge state under the influence of teaching, and the
answer to these questions has obviously a great
importance for Education.
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Implicit and explicit learning in AcT-R
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ABSTRACT

A useful way to explain the notions of implicit and
explicit learning in ACT-R is to define implicit learning
as learning by ACT-R's learning mechanisms, and explicit
learning as the results of learning goals. This idea
complies with the usual notion of implicit learning as
unconscious and always active and explicit learning as
intentional and conscious. Two models will be discussed
to illustrate this point. First a model of a classical
implicit memory task, the SUGARFACTORY scenario by
Berry & Broadbent (1984) will be discussed, to show
how ACT-R can model implicit learning. The second
model is of the so-called Fincham task (Anderson &
Fincham, 1994), and exhibits both implicit and explicit
learning.

Keywords
ACT-R, implicit learning, explicit learning, skill
acquisition, instance theory.

INTRODUCTION TO AcT-R

Knowledge Representation

ACT-R (Anderson, 1993; Anderson & Lebiere, in press) is
a hybrid production system architecture for cognitive
modeling. It is a hybrid architecture because it works at
two interdependent levels: a symbolic level and, a
subsymbolic level. Each level is divided into a procedural
and declarative component.

Symbolic Level

Declarative knowledge consists of chunks. Chunk
structures are composed of a number of labeled slots, each
of which can hold a value which can also be another
chunk. Each chunk is an instance of a particular chunk
type, which defines the name and number of slots.
Procedural knowledge consists of productions. A
production is a condition-action pair, which specifies the
action to be taken if a particular condition is satisfied.

ACT-R is a goal-directed architecture. At any time, a goal
is selected as the current focus of attention. Goals are
organized on the goal stack, on which a goal can be stored
(pushed) and later restored (popped). ACT-R operates in
discrete cycles. At the start of each cycle, each production
is matched against the state of the current goal. The
productions that match enter the conflict set. A
production is selected from the conflict set. The rest of the
production condition can specify a number of chunk
retrievals from declarative memory. If the retrievals are
not successful, then the next production in the conflict set
is selected. If the retrievals are successful, then the
production action is executed. The action can modify the
current goal, push it on the stack or pop it and restore a
previous goal.
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Subsymbolic Level

At the symbolic level, ACT-R operates in discrete,
deterministic steps, but the subsymbolic level provides a
measure of continuity and randomness. The previous
section left two points unspecified: how are productions
ordered in the conflict set, and if several chunks match a
particular declarative retrieval, which is selected?

The productions are selected in order of decreasing
expected utility. The current goal is assigned a value, or
gain, equal to the worth of successfully achieving it. To
each production is associated the probability and cost of
achieving the goal to which it applies. The expected
utility of a production applied to a goal is equal to the
gain of the goal times the probability of success of the
production, minus its cost. Noise is also added to the
expected utility of a production, making production
selection stochastic.

If several chunks satisfy a declarative retrieval, then the
most active one is retrieved. The activation of a chunk is
the sum of a base-level activation and an associative
activation. The associative activation is spread from the
sources of activation, which are the components of the
current goal, to all related chunks in memory. Noise is
added to each activation, making the retrieval of chunks
stochastic. If no chunk activation reaches a retrieval
threshold, then the retrieval fails. Furthermore, chunks
which only partially match the retrieval pattern can also
be retrieved, but their activation level will be penalized by
an amount proportional to the degree of mismatch
between the retrieval pattern and the actual chunk values.

Finally, the time to retrieve a chunk from memory is an
exponentially decreasing function of its activation level.
Therefore, although ACT-R operates in discrete cycles, the
latency of each cycle, which is equal to the sum of the
time to perform all the chunk retrievals plus the action
time of the successful production, is a continuous
quantity. Whereas the specification of an ACT-R model at
the symbolic level has a precise, algorithmic quality, its
operation at the subsymbolic level matches the
stochasticity and continuity of human performance.

Learning

The previous section describes the performance of ACT-R
assuming a certain state of knowledge. However, to
provide an adequate model of human cognition, it is also
necessary to specify how that knowledge was acquired. In
ACT-R, knowledge is leamed to adapt the system to the
structure of the environment (Anderson, 1990; Anderson
& Schooler, 1991).

Symbolic Learning ,
When a goal is popped, it becomes a chunk in declarativ
memory. That (and the encoding of environmental
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stimuli) is the only source of declarative knowledge in
ACT-R. The chunk resulting from a goal represents the
statement of the task addressed by the goal and usually its
solution. Therefore, the next time that task arises, its
solution, depending upon the activation of the chunk,
might be directly retrieved from declarative memory
instead of being recomputed anew.

Productions are created from a special type of chunk called
dependency. When a goal is solved through a complex
process, a dependency goal can be created to understand
how it was solved (e.g. which fact was retrieved or which
subgoal was set). When that dependency goal is itself
popped, a production is automatically compiled to
embody the solution process. Thus the next time a
similar goal arises, the production might be available to
solve it in a single step instead of a complex process.

Symbolic knowledge is learned to represent in a single,
discrete structure (chunk or production) the results of a
complex process. Subsymbolic knowledge is adjusted
according to Bayesian formulas to make more available
those structures which prove most useful.

Subsymbolic Learning

When a production is used to solve a goal, its probability
and cost parameters are updated to reflect that experience.
If the goal was successfully solved, then the production
probability is increased. ~ Otherwise, it is decreased.
Similarly, the production cost is updated to reflect the
actual cost of solving that goal. Declarative parameters
are adjusted in the same way. When a chunk is retrieved,
its base-level activation is increased. The strength of
association between the current sources and the chunk is
also increased.

Subsymbolic knowledge does not result in new conscious
knowledge, but instead makes the existing symbolic
knowledge more available. Chunks which are often used
become more active, and thus can be retrieved faster and
more reliably. Productions which are more likely to lead
to a solution and/or at a lower cost will have a higher
expected utility, and thus are more likely to be selected
during conflict resolution.

IMPLICIT LEARNING
TASK

Introduction

In contrast to rule-based approaches that conceptualize
skill acquisition as learning of abstract rules, theories of
instance-based learning argue that the formation of skills
can be understood in terms of the storage and deployment
of specific episodes or instances (Logan, 1988; 1990).
According to this view, abstraction is not an active
process that results in the acquisition of generalized rules,
but that rule-like behaviour emerges from the way specific
instances are encoded, retrieved and deployed in problem
solving. While ACT-R has traditionally been associated
with a view of learning as the acquisition of abstract
production rules (Anderson, 1983; 1993), we present a
simple ACT-R model that learns to operate a dynamic
system based on the retrieval and deployment of specific
instances (i.e. chunks) which encode episodes experienced
during system control. It is demonstrated that the ACT-R
approach can explain available data as well as an
alternative model that is shown to be based on critical
assumptions.

IN THE SUGARFACTORY

The Task

Berry & Broadbent (1984) used the computer-simulated
scenario SUGARFACTORY to investigate how subjects
learn to operate complex systems. SUGARFACTORY is a
dynamic system in which participants are supposed to
control the sugar production sp by determining the
number of workers w employed in a ficticious factory.
Unbeknown to the participants, the behavior of
SUGARFACTORY is governed by the following equation:

spy = 2% Wy - SPi.1

The number entered for the workers w can be varied in 12
discrete steps 1<Sw<12, while the sugar production
changes discretely between 1<sp<12.To allow for a more
realistic interpretation of w as the number of workers and
sp as tons of sugar, these values are multiplied in the
actual computer simulation by 100 and 1000,
respectively. If the result according to the equation is less
than 1000, sp is simply set to 1000. Similarly, a result
greater than 12000 leads to an output of 12000. Finally, a
random component of + 1000 is added in 2/3 of all trials
to the result that follows from the equation stated above.
Participants are given the goal to produce a target value of
9000 tons of sugar on each of a number of trials.

The models

Based on Logan’s instance theory (1988; 1990) Dienes &
Fahey (1995) developed a computational model to account
for the data they gathered in an experiment using the
SUGARFACTORY scenario. According to instance theory,
encoding and retrieval are intimately linked through
attention: encoding a stimulus is an unavoidable
consequence of attention, and retrieving what is known
about a stimulus is also an obligatory consequence of
attention. Logan’s theory postulates that each encounter
of a stimulus is encoded, stored and retrieved using a
separate memory trace. These separate memory (races
accumulate with experience and lead to a ,gradual
transition from algorithmic processing to memory-based
processing (Logan, 1988, p. 493). In the following, we
contrast the Dienes & Fahey (1995) model (D&S model)
with an alternative instance-based ACT-R model and
discuss their theoretical and empirical adequacy.

Algorithmic Processing

Both models assume some algorithmic knowledge prior to
the availability of instances that could be retrieved to
solve a problem. Dienes & Fahey (1995, p. 862) observed
that 86% of the first ten input values that subjects enter
into SUGARFACTORY can be explained by the following
rules:

(1) If the sugar production is below (above) target, then
enter a workforce that is different from the previous
input by an amount of 0, +100, +200 (0, -100, -200).

(2) For the very first trial, enter a work force of 700, 800
or 900.

(3) If the sugar production is on target, then respond with
a workforce that is different from the previous one by
an amount of -100, 0, or +100 with equal probability.

While this algorithmic knowledge is encoded in the D&F
model by a constant number of prior instances that could
be retrieved in any situation, ACT-R uses simple
production rules to represent this rule-like knowledge. The
number of prior instances encoded is a free parameter in
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the D&S model that was fixed to give a good fit to the
data reported below. There is no equivalent parameter in
the ACT-R model.

Storing Instances

Logan’s instance theory predicts that every encounter of a
stimulus is stored. The D&F model, however, does only
store instances for those situations, in which an action
successfully leads to the target; all other situations are
postulated to be forgotten immediately by the model.
Moreover, the D&S model uses a ,,Joose* definition of the
target that was unavailable to subjects: While subjects
were supposed to produce 9000 tons of sugar as the target
state in the experiment, a loose scoring scheme was used
to determine the performance of the subjects. Because of
the random component involved in the SUGARFACTORY,
a trial was counted as being on target if it resulted in a
sugar production of 9000 tons with a tolerance of £1000.
The D&M model stores only instances that are successful
in this loose sense and thus uses information about a
range of target states that subjects were not aware of.
ACT-R, on the other hand, encodes every situation,
irrespective of its result. The following chunk is an
exarmple for an instance acquired by the ACT-R model as a
restored goal.

(transitionl239
ISA transition
STATE 3000
WORKER 8
PRODUCTION 12000)

The chunk encodes a situation in which an input of 8
workers, given a current production of 3000 tons, led to
subsequent sugar production of 12000 tons. While the
model developed by Dienes & Fahey (1995) stores
multiple copies of instances, ACT-R does not dublicate
identical chunks.

(p retrieve-episode

=goal> (GO}‘\LCHUNK
isa transistion isa transition
- gtate =state h—————e——— State 2000
production =production k————= production 9000
worker nil})

=episode> (EpisodeQ07

isa transition isa transition
state =state kewmmecmasnm=w 1 state 1000
production =production k===== production 8000
worker =wWOrker jem————] worker 5)

goal>
worker =worker) ——— Match

) = =~ -4 Partial Match

Figure 1. Matching process in the Sugar Factory model

Retrieving Instances

In the D&F model each stored instance ,relevant to a
current situation races against others and against prior
instances representing algorithmic knowledge; the first
instance after a finishing post determines the action of the
model. An instance encoding a situation is regarded to be
Srelevant, if it either matches the current situation
exactly, or if it is within the loose range discussed above.
As with the storage of instances, memory retrieval in the
D&F model is again based on specific information not
available to subjects. Retrieval in the ACT-R model, on
the other hand, is governed by similarity matches between
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a situation currently present and encodings of others
experienced in the past (see Buchner, Funke & Berry,
1995 for a similar position in explaining the performance
of subjects operating SUGARFACTORY). On each trial, a
memory search is initiated based on the current situation
and the target state ‘9000 tons” as cues in order to retrieve
an appropriate intervention or an intervention that belongs
to a similar situation. The production rule retrieve-
episode (figure 1) is used to model the memory
retrieval of chunks based on their activation level.
Instances which only partially match the retrieval pattern,
i.e. which do not correspond exactly to the present
situation, will be penalized by lowering their activation
proportional to the degree of mismatch. As a parameter of
the ACT-R model, normally distributed activation noise is
introduced to allow for some stochasticity in memory
retrieval.

As figure 2 shows, the use of instances over the initial
algorithmic knowledge increases over time, resulting in
the gradual transition from algorithmic to memory-based
processing as postulated by Logan (1988, p. 493).
Theoretical Evaluation

While both models of instance-based learning share some

1.0 7

0.8 1

0.6 7

0.4

use of instances (%)

0.2 1

0.0 T T T T
0 20 40 60 80

Trials

Figure 2. Relative use of instance retrieval per trial

striking similarities, the theoretical comparison has
shown that the D&F-model makes stronger assumptions
with respect to the storage and the retrieval of instances
that can hardly be justified. Dienes & Fahey (1995) found
out that these critical assumptions are essential to the
performance of the D&F model(p. 856f):

,»The importance to the modeling of assuming that only
correct situations were stored was tested by determining
the performance of the model when it stored all instances.
... This model could not perform the task as well as parti-
cipants: The irrelevant workforce situations provided too
much noise by proscribing responses that were in fact
appropriate ... If instances entered the race only if they
exactly matched the current situation, then for the same
level of learning as participants, concordances were
significantly greater than those of participants®.

Since the ACT-R model does not need to postulate those
critical assumptions, this model can be regarded as the
more parsimonious one, demonstrating how instance-
based learning can be captured by the mechanisms
provided by a unified theory of cognition.
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Figure 3. Results of the experiment, ACT-R model and
D&F model

Empirical Evaluation

While the theoretical analysis of the assumptions
underlying the two models has favoured the ACT-R
approach, we will briefly discuss the empirical success of
the models with respect to empirical data as reported by
Dienes & Fahey (1995). Figure 3 shows the trials on
target when controlling SUGARFACTORY over two
phases, consisting of 40 trials each. ACT-R slightly
overpredicts the performance found in the first phase,
while the D&F model slightly underpredicts the
performance of the subjects in the second phase. Since
both models seem to explain the data equally well, we
cannot favour one over the other.

Figure 4 shows the performance of the models in
predicting the percentage of times (,,Concordance) that
the subjects gave the same (correct Or wrong) response in
a questionaire as they did when controlling
SUGARFACTORY. Again, both models seem to do a
similar good job in explaining the data, with no model
being clearly superior. Although space limitations do not
allow for a detailed discussion, the picture illustrated by
these two empirical comparisons remains the same after

—{3— ACT-R

.74 —&— Experiment

Concordance
Y

.29

baseline correct wrong

Problem solving vs. questionaire

Figure 4. Concordances
models

for the experiment and both
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several additional model comparision tests. We are
currently running an experiment, exploring different
predictions of the models in more details.

Conclusion

We discussed and compared a simple ACT-R model to an
approach based on Logan’s instance theory with respect to
their ability to modeling the control of a dynamic system.
While both models were similar in their empirical
predictions, the ACT-R model was found to require fewer
assumptions and is thus preferred over the model. proposed
by Dienes & Fahey (1995). Generally, ACT-R’s
integration of an activation-based retrieval process with a
partial matcher seems to be a very promissing starting
point for the development of an ACT-R theory of
instance-based learning and problem solving.

IMPLICIT AND EXPLICIT LEARNING IN THE
FINCHAM TASK

The learning mechanisms in ACT-R are all quite basic,
and can be used in several different ways to achieve
different results. The idea of a learning mechanism as an
integral part of an architecture has properties in common
with the psychological notion of implicit learning. Both
types of learning are considered to be always at work and
not susceptible to change due to development or great
variation due to individual differences. One of the defining
properties of implicit learning, the fact that it is not a
conscious process, is harder to operationalize within the
context of an architecture for cognition. The closest you
can get in an architecture is the notion that implicit
learning is not guided by learning intentions, but is rather
a by-product of normal processing. The SUGARFACTORY
model discussed in the previous section is an example of
implicit learning, since ACT-R uses old goals that are
stored unintentionally to improve its behavior.

Explicit learning, on the other hand, is tied to intentions,
or goals in ACR-R terms. Since there are no leaming
mechanisms that operate on goals, explicit learning can
best be explained by a set of leamed learning strategies.
An example of a learning strategy to improve
memorization of facts is using rehearsal to improve base-
level learning. Base-level learning increases the activation
of a chunk each time it is retrieved. If this increase of
activation through natural use is not enough for the
current goals, rehearsal can be used to speed up the
process. By repeating a fact a number of times, its base-
level activation can be boosted intentionally.

In this section we will discuss a paradigm for skill
learning that involves both an implicit and an explicit
strategy. The implicit strategy corresponds to instance-
based learning, and the explicit strategy to rule-learning.
Figure 5 shows an overview of this paradigm. First we
assume that a participant has some initial method or
algorithm to solve the problem. Generally this method
will be time-consuming or inaccurate. Each time an
example of the problem is solved by this method, an
instance is learned. In ACT-R terms an instance is just a
goal that is popped from the goal stack and is stored in
declarative memory. Since this by-product of performance
is unintentional, it can be considered as implicit learning.
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Figure 5. Diagram that illustrates the learning scheme
used in the Fincham-task model

Other types of learning require a more active attitude from
the participant. If the initial method is too time
consuming, the participant may try to derive an re-
representation of the information needed for the task to
increase efficiency, which we will call, using Johnson-
Laird’s (1983) terminology, a mental model. If the initial
method leads to a large number of errors, the participant
may try to deduce or guess new relationships in the task
in order to increase performance. The next step, from
mental model to production rule, can only be made if the
mental model is simple enough to convert to a production
rule. Both the application of mental models and firing
new production rules will create new instances. So
regardless of what is going on due to explicit learning,
implicit learning keeps accumulating knowledge.

So, if we have that many ways of learning, what type of
learning will we witness in a particular experiment? To be
able to answer this question we go back to the principle
of rational ana]ysis. According to this principle, we will
principally witness that type of learning that will lead to
the largest increase in performance. If we have task in
which it is very hard to discover relationships or mental
models, learning can probably be characterized primarily
by implicit instance learning. Tasks in which there are
too many instances too learn, but in which relationships
are more obvious, will probably be better explainable by
rule and abstraction learning. The SUGARFACTORY task
is an example in which it is very hard to discover the
rules that govern the system due to the influence of the
previous sugar production and random factor in the
output.

The Fincham Task

An example of a task in which both rule learning and
instance learning are viable strategies is described by
Anderson & Fincham (1994). In this task, participants
first have to memorize a number of facts. These facts are
in the form of

“Hockey was played on Saturday at 3 and then on Monday
atl.”

We will refer to these facts as “sport-facts” to prevent
confusion with facts and rules in the model. A sport-fact
contains a unique sport and two events, each of which
consists of a day of the week and a time. After having
memorized these facts, participants were told the facts are
really rules about the time relationships between the two
events. So in this case “Hockey” means you have to add
two to the day, and subtract two from the time. In the
subsequent experiment, participants were asked to predict
the second event, given a sport and a first event, or predict
the first event, given the sport and the second event. So
participants had to answer questions like: “If the first
game of hockey was Wednesday at 8, when was the
second game?” In this paradigm, it is possible to

investigate evidence for both rule-based learning and
instance-based learning. Directional asymmetry, evidence
for rule-based learning, can be tested for by first training a
sport-fact in one direction (by predicting the second event
using the sport and the first event), and then reverse the
direction (by predicting the first event using the sport and
the second event) and look how performance in the reverse
direction relates to performance on the trained direction. If
the performance is worse in the reverse direction, this is
evidence for the use of rules. Evidence for instance
learning can be gained by presenting specific examples
more often than other examples. Better performance on
these specific examples would indicate instance learning.
Anderson & Fincham (1994), and later Anderson,
Fincham & Douglass (1997) performed five variations on
this basic experiment. The basic findings we will focus
on are as follows:

« In general, reactions times improve according to the
power law of practice, starting at around 35 seconds for
the first few trials and improving to around 7 seconds
at the third session.

o There is evidence for rule learning as witnessed by
directional asymmetry. However, the effect only starts
at the third or fourth session, and is relatively small.

« There is evidence for instance learning, since problems
that are repeated more often than others are solved
faster.

« Although it can not be inferred directly from the data,
participants report they use abstract versions of the
rules, for example by memorizing “Hockey day +2”
and “Hockey time -2”.

On basis of this evidence, Anderson et al. conclude that

participants use four strategies: analogy, abstraction, rule

and instance. The interesting question is what learning
processes play a role in changing strategies. Each of the
four strategies can be related to one of the learning stages

from figure 5.

The analogy strategy is the initial strategy: first the
memorized example that has the same sport as the new
trial is recalled, the relationship in this example is
determined, and this relationship is mapped on the current
trial. Analogy is not very efficient, since it consists of
many steps.

The abstraction strategy assumes the participant has
created and memorized a mental model of the sport that
corresponds to the current trial, like *“Hockey day +27.
The strategy involves retrieving and applying the
abstraction, which is easier and faster than the analogy
strategy.

The rule strategy assumes a production rule has been
learned that can fill in the answer directly. An example of
this rule is (variables are indicated by italics):

IF the goal is to find the day of the second event
the sport is hockey
and the day of the first event is day!
AND dayl plus two days equals day2

THEN put day? in the second event slot of the goal

The rule strategy is more efficient than the abstraction
strategy, since it requires only a single step in stead of
two.
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Figure 6. Overview of the four strategies in the Fincham task as modeled in ACT-R

The instance strategy assumes the answer can be given
using a previous example. This previous example must
be the same as the current trial. So an instance may
contain the following information:

item1434
isa instance
sport hockey
type day
left sunday
right tuesday

To use the instance strategy, it is sufficient to retrieve the
right instance. This will of course only succeed if this
instance is present in memory and is retrievable.

An ACT-R Model

We will now briefly discuss the ACT-R model of the task
and its results. A more extensive discussion can be found
in Taatgen & Wallach (in preparation). Figure 6 shows a
schematic diagram of the implementation of the four
strategies.

The analogy, abstraction and rule strategies are performed
in a subgoal, that focuses on calculating either the day or
the time. The instance strategy attempts to retrieve one of
these subgoals, and fill in the answer directly in the
topgoal. So learning instances is an implicit process in
ACT-R, since past goals are always stored in declarative
memory, an reoccurrence of the same goal just increases
the activation of that goal. Knowledge for the other two
strategies has to be acquired in an explicit fashion. An
abstract mental model of a sport is no automatic by-
product of the analogy strategy, so an explicit decision
must be made to memorize an abstraction. To learn a new
production rule in ACT-R, a special dependency structure
must be created in declarative memory, which is also an
explicit decision. In the current model, learning a new
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production rule is only successful if there is already an
abstraction present in declarative memory, else it is to0
difficult to collect the necessary information.

Resuits of the Model

In this paper we will only discuss results of the model on
the second experiment of Anderson & Fincham (1994). In
this experiment, participants had to learn eight sport-facts.
In the first three days of the experiment, four of these
sport-facts were tested in a single direction: two from left
to right and two from right to left. On each day 40 blocks
of trials were presented, in which each of the four sport-
facts was tested once. On the fourth day all eight sport-
facts were tested in both directions. On this day 10 blocks
of trials were presented, in which each of the eight sport-
facts was tested twice, once for each direction. Figure 7
shows the latencies in the first three days of the
experiment, both the data from the experiment and from
the model. The fit between the model and the data is quite
good (R*=0.94).
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Figure 7. Latencies in experiment 1 for days 1-3
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The results on day 4 can be summarized in the following
table:

Data Model
Same direction, practiced 8.9 sec 8.4 sec
Reverse direction, practiced ~ 10.9sec 9.3 sec
Not practiced 13 sec 16 sec

Both in the data and in the model there is a clear
directional asymmetry, since items in the practiced
direction are solved faster than reversed items. The fact
that unpracticed items are slower than the reversed items
indicates that rule learning can not be a sufficient
explanation for all of the learning in the first three days of
the experiment.

100%

75%

50%

Proporiion

25% §

day 2
day 3
day 4

>
@
-

Figure 8. Strategy use in experiment 1 for days 1-4

Figure 8 shows how the model uses the four strategies in
the course of the experiment. At the start of the
experiment, analogy is used most of the time, but both
the abstraction and the instance strategy gain in
importance after a few blocks of trials. The rule strategy
only appears later, and only plays a minor role during the
first day. At the start of the second day, there is a large
shift toward using rules at the expense of instances. This
can be explained by the fact that the activation of a large
portion of the instances has decayed between the two days,
so that they can not be retrieved anymore. Since only few
rules are needed for successful performance, they receive
more training on average and are less susceptible to decay.
Note that the abstraction strategy remains relatively stable
between the days since it also less susceptible to decay
than the instance strategy. This pattern is repeated at the
start of the third day, although the instance strategy looses
less ground due to more extended training of the
examples. At the start of the fourth day, the frequency of
use of the analogy strategy goes up again, since there are
no production rules for the new four sport-facts. The
abstraction strategy can take care of the reversed items
though, so in that case the expensive analogy strategy is
not needed. This explains the fact that reversed items are
still faster than completely new items.

Except for a model of this experiment, the model has
successfully modeled two other experiments as well,
using the same parameters. The following additional
phenomena could successfully be explained:

« The reaction time for examples that are repeated more
often is shorten, since instance learning is more
successful and the facts it represents have a higher
activation.
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« Directional asymmetry increases between day 2 to 4,
but decreases again on day 5. The model can explain
this by the fact that by day 5 the instance strategy
starts dominating the rule strategy.

« The results of the model concur with participant’s
reports on whether they use a rule or an example to
solve a particular trial.

Conclusions

The ACT-R architecture is an ideal platform to study
implicit and explicit learning. It not only allows insights
in both types of learning separately, but, more
importantly, also in the interaction between them.
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