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Abstract 

The problem of representational form has always limited the 
applicability of cognitive models: where symbolic 
representations have succeeded, distributed representations 
have failed, and vice-versa. Hybrid modeling is thus a 
promising venue, which however brings its share of new 
problems. For instance, it doubles the number of necessary 
assumptions. To counter this problem, we believe that one 
network should generate the other. This would require 
specific assumptions for only one network. In the present 
project, we plan to use a recurrent network to generate a 
Bayesian network. The former will be used to model low-
level cognition while the latter will represent higher-level 
cognition. Moreover, both models will be active in every task 
and will need to communicate in order to generate a unique 
answer. 

General Problem 
In cognitive science, the problem of representational form is 
crucial. During the cognitive revolution, the computer 
metaphor was used to model human intelligence, which was 
thus seen as a set of symbol-manipulating syntactic 
processes (Turing, 1936). These processes were modeled as 
a series of conjunctive conditions and consequential actions 
(known as “IF-THEN” rules). This modeling approach is 
referred to as the classical view (Russel & Norvig, 1995). 

In the late seventies, another metaphor became 
increasingly popular for modeling cognitive processes, 
namely: the brain. The connectionist (or “neural”) networks 
proposed during this period were mostly unsupervised 
networks, either competitive (Grossberg, 1976; Kohonen, 
1982) or recurrent (Anderson, Silverstein, Ritz & Jones, 
1977). Another class of neural networks, first proposed by 
Rosenblatt (1958) and further developed by Rumelhart and 
McClelland (1986), was based on error backpropagation. 
These supervised networks have since been proven to 
succeed in fitting complex data but are often criticized on 
the grounds of their biological implausibility.  

Connectionist networks, in general, differ from the 
classical view in that they are based on a conception of 
intelligence as a set of parallel processes acting on 
distributed representations. Moreover, while the distinction 
between processes and representations is quite 
straightforward in classical models, here this difference is a 
bit fuzzier. 

Finally, in the early nineties, pioneers of the second wave 
of artificial intelligence started using symbol-manipulating 
probabilistic models which were either operating in a serial 

(e.g. Hidden Markov Models, see Rabiner, 1989) or parallel 
manner (e.g. Bayesian Networks, see Pearl, 1988). 

Each of the previous approaches has important 
shortcomings. For example, while symbolic models can 
easily be used to model tasks involving language and 
reasoning (e.g. the use of recursive rules, Marcus, 2001), 
they are considered less useful for modeling low-level 
similarity-based perceptual processes. This has been shown 
to be better achieved through the use of connectionist 
models (Anderson & al., 1977; Grossberg, 1977). 

Two important points are of interest here. First, 
approaches can be classified using their representational 
format and this classification is informative about what kind 
of task it will do best. Second, and more importantly, we see 
that where one approach succeeds, the other falls short of 
explanation. 

Hypothesis 
Since humans are able to use both recursive rules and 
similarity-based judgments, they must be able to use both 
kinds of representations. First, we will argue that low-level 
implicit knowledge is best modeled by an unsupervised 
neural network (using distributed representations), while 
higher-level cognitive operations are best modeled by 
symbolic networks. Second, those two kinds of 
representational format must be able to coexist and work 
together, sharing the same goals. 
 

Proposed Thesis 
In the proposed project, we will use an unsupervised neural 
network (either competitive or recurrent) to model low-level 
cognition. For modeling higher-order processes, because we 
believe that all levels of cognition share the same parallel 
architecture, we will use a parallel probabilistic architecture, 
namely a Bayesian network (Pearl, 1988). Moreover, the use 
of Bayesian networks is consistent with Anderson’s rational 
analysis of cognition (Anderson & Milson, 1989; Oaksford 
& Chater, 1998). The main problem is: How can an 
unsupervised neural network build, from scratch, a fully 
functional Bayesian network?  

First, the unsupervised neural network will have to 
generate nodes (symbols) and connections for a Bayesian 
network. Second, each network will eventually be 
individually functional, and they will each be capable of 
learning independently. Finally, both networks will have to 
communicate in an interactive way in order to produce a 
single answer from separate processes.  
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What has already been done 
The first part of this thesis consists in identifying which 
properties are needed by a connectionist network to 
construct a Bayesian network. First, the network must be 
able to identify what is important in the environment and 
generate symbols according to those findings. Second, it 
must be able to feed the Bayesian network with the 
probability distribution of it environment.  

This second property was used to compare a hard 
competitive neural network1 with the Brain-State-in-a-Box 
(BSB, Anderson et al., 1977), which was chosen because it 
is the simplest form of recurrent networks (our findings will 
thus generalize to other, more recent recurrent networks). 
We tested these networks with four environmental 
distributions: a bimodal distribution consisting of two 
Gaussian distributions, a step distribution, the exponential 
distribution, and the uniform distribution (Hélie & Proulx, 
2003). The choice of these distributions was motivated by 
the fact that they could either vary the frequency of the 
exemplars, the frequency of the categories, both, or neither. 
Results show that the competitive network is not sensitive to 
the frequency of the exemplars. Moreover, this network was 
unable to learn categories that were relatively rare. The 
recurrent network, on the other hand, was sensitive to both 
frequency of exemplars and frequency of categories. The 
former affected the position of the eigenvectors of the 
weights matrix, while the latter affected the magnitude of 
associated eigenvalues. 

The results of this research thus suggest the use of 
recurrent networks to generate a Bayesian network. 

What is left to do 
Once the lower-level network has been chosen, the next step 
will be to find out how this network can generate useful 
symbols from the environment. Recurrent networks are 
particularly interesting because of their dynamic properties: 
these dynamic properties may thus be used in symbol 
generation. For example, we can see activation from the 
environment as a trajectory in a multidimensional space and 
try to find useful trajectories to create symbols.  

Another important unresolved issue is the nature of the 
interaction between both models (once they will be fully 
functional). Should this interaction be just a crosstalk or 
should it involve weights that can be trained? In the later 
case, should these weights affect the learning of the 
networks (e.g.. BAM, see Kosko, 1988)? Should networks 
compete to give the answer (Logan, 1988) or, work 
together, adding evidence until a criterion is reached 
(Cousineau, Lacroix & Hélie, 2003)? Clearly, a lot is left to 
explore. 

                                                           
1 Hard competitive networks update the weights of only one 
winning unit. They must be distinguished from soft competitive 
networks were the weights of several winning units are updated 
simultaneously. 
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