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Abstract

The problem of representational form has always limited the
applicability of cognitive models: where symbolic
representations have succeeded, distributed representations
have failed, and vice-versa. Hybrid modeling is thus a
promising venue, which however brings its share of new
problems. For instance, it doubles the number of necessary
assumptions. To counter this problem, we believe that one
network should generate the other. This would require
specific assumptions for only one network. In the present
project, we plan to use a recurrent network to generate a
Bayesian network. The former will be used to model low-
level cognition while the latter will represent higher-level
cognition. Moreover, both models will be active in every task
and will need to communicate in order to generate a unique
answer.

General Problem

In cognitive science, the problem of representational form is
crucial. During the cognitive revolution, the computer
metaphor was used to model human intelligence, which was
thus seen as a set of symbol-manipulating syntactic
processes (Turing, 1936). These processes were modeled as
a series of conjunctive conditions and consequential actions
(known as “IF-THEN” rules). This modeling approach is
referred to as the classical view (Russel & Norvig, 1995).

In the late seventies, another metaphor became
increasingly popular for modeling cognitive processes,
namely: the brain. The connectionist (or “neural”) networks
proposed during this period were mostly unsupervised
networks, either competitive (Grossberg, 1976; Kohonen,
1982) or recurrent (Anderson, Silverstein, Ritz & Jones,
1977). Another class of neural networks, first proposed by
Rosenblatt (1958) and further developed by Rumelhart and
McClelland (1986), was based on error backpropagation.
These supervised networks have since been proven to
succeed in fitting complex data but are often criticized on
the grounds of their biological implausibility.

Connectionist networks, in general, differ from the
classical view in that they are based on a conception of
intelligence as a set of parallel processes acting on
distributed representations. Moreover, while the distinction
between processes and representations is  quite
straightforward in classical models, here this difference is a
bit fuzzier.

Finally, in the early nineties, pioneers of the second wave
of artificial intelligence started using symbol-manipulating
probabilistic models which were either operating in a serial
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(e.g. Hidden Markov Models, see Rabiner, 1989) or parallel
manner (e.g. Bayesian Networks, see Pearl, 1988).

Each of the previous approaches has important
shortcomings. For example, while symbolic models can
easily be used to model tasks involving language and
reasoning (e.g. the use of recursive rules, Marcus, 2001),
they are considered less useful for modeling low-level
similarity-based perceptual processes. This has been shown
to be better achieved through the use of connectionist
models (Anderson & al., 1977; Grossberg, 1977).

Two important points are of interest here. First,
approaches can be classified using their representational
format and this classification is informative about what kind
of task it will do best. Second, and more importantly, we see
that where one approach succeeds, the other falls short of
explanation.

Hypothesis

Since humans are able to use both recursive rules and
similarity-based judgments, they must be able to use both
kinds of representations. First, we will argue that low-level
implicit knowledge is best modeled by an unsupervised
neural network (using distributed representations), while
higher-level cognitive operations are best modeled by
symbolic networks. Second, those two kinds of
representational format must be able to coexist and work
together, sharing the same goals.

Proposed Thesis

In the proposed project, we will use an unsupervised neural
network (either competitive or recurrent) to model low-level
cognition. For modeling higher-order processes, because we
believe that all levels of cognition share the same parallel
architecture, we will use a parallel probabilistic architecture,
namely a Bayesian network (Pearl, 1988). Moreover, the use
of Bayesian networks is consistent with Anderson’s rational
analysis of cognition (Anderson & Milson, 1989; Oaksford
& Chater, 1998). The main problem is: How can an
unsupervised neural network build, from scratch, a fully
functional Bayesian network?

First, the unsupervised neural network will have to
generate nodes (symbols) and connections for a Bayesian
network. Second, each network will eventually be
individually functional, and they will each be capable of
learning independently. Finally, both networks will have to
communicate in an interactive way in order to produce a
single answer from separate processes.
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What has already been done

The first part of this thesis consists in identifying which
properties are needed by a connectionist network to
construct a Bayesian network. First, the network must be
able to identify what is important in the environment and
generate symbols according to those findings. Second, it
must be able to feed the Bayesian network with the
probability distribution of it environment.

This second property was used to compare a hard
competitive neural network' with the Brain-State-in-a-Box
(BSB, Anderson et al., 1977), which was chosen because it
is the simplest form of recurrent networks (our findings will
thus generalize to other, more recent recurrent networks).
We tested these networks with four environmental
distributions: a bimodal distribution consisting of two
Gaussian distributions, a step distribution, the exponential
distribution, and the uniform distribution (Hélie & Proulx,
2003). The choice of these distributions was motivated by
the fact that they could either vary the frequency of the
exemplars, the frequency of the categories, both, or neither.
Results show that the competitive network is not sensitive to
the frequency of the exemplars. Moreover, this network was
unable to learn categories that were relatively rare. The
recurrent network, on the other hand, was sensitive to both
frequency of exemplars and frequency of categories. The
former affected the position of the eigenvectors of the
weights matrix, while the latter affected the magnitude of
associated eigenvalues.

The results of this research thus suggest the use of
recurrent networks to generate a Bayesian network.

What is left to do

Once the lower-level network has been chosen, the next step
will be to find out how this network can generate useful
symbols from the environment. Recurrent networks are
particularly interesting because of their dynamic properties:
these dynamic properties may thus be used in symbol
generation. For example, we can see activation from the
environment as a trajectory in a multidimensional space and
try to find useful trajectories to create symbols.

Another important unresolved issue is the nature of the
interaction between both models (once they will be fully
functional). Should this interaction be just a crosstalk or
should it involve weights that can be trained? In the later
case, should these weights affect the learning of the
networks (e.g.. BAM, see Kosko, 1988)? Should networks
compete to give the answer (Logan, 1988) or, work
together, adding evidence until a criterion is reached
(Cousineau, Lacroix & Hélie, 2003)? Clearly, a lot is left to
explore.

' Hard competitive networks update the weights of only one
winning unit. They must be distinguished from soft competitive
networks were the weights of several winning units are updated
simultaneously.
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