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Abstract 

There are many computational models whose broad purpose 
is to allow an agent to learn via experience to perform 
effectively in a given environment.  However, it is uncommon 
to see these models directly compared to each other, or to 
empirical data of real creatures adapting to their 
environments.  Here, a comparison methodology is proposed 
involving various known results in classical and operant 
conditioning and concept formation.  The project involves 
examining a broad selection of computational models in 
various environments, and also mixing and matching 
components from these different models. 
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Introduction 
The goal of many computational modelers is to develop 
agents that can learn to perform well within their 
environment.  To this end, we have seen a proliferation of 
diverse algorithms and approaches for solving this task.    
Furthermore, many of these models draw upon other 
research to define the components of their model.  We see 
back-propagation systems being used within TD(λ) learning 
(Tesauro, 1995), Genetic Algorithms used to support Action 
Selection (Farritor & Dubowsky, 2002), Kohonen SOMs 
combined with Q-Learning (Smith, 2002), and so on. 

This variety of approaches is matched with a variety of 
test problems.  Agents learn to control elevators, play board 
games, navigate grid-worlds, control physical robots, track 
visual objects, to name just a few.  For each situation, 
results change depending on the sensory representations 
chosen, the particular implementations of the model’s 
components, and the method whereby the results are judged. 

When reading the published results of these models, one 
is often led to wonder how well a particular model would 
fare in a completely different domain.  Could Tani’s 
Hierarchical RNNs (Tani & Nolfi, 1999) play backgammon 
successfully?  How well would Sarsa or Q-Learning deal 
with this or that particular robot navigation task?  It is rare 
to find a wide variety of computational models that have 
been tested on exactly the same task in exactly the same 
manner (see Gershenson, 2003 for an exception). 

This lack makes it difficult to accurately judge the 
development of the field.  When new models (or new 
variants of old models) are presented, they are often 
accompanied by a completely new task.  Without a 
comprehensive system of comparison, it is difficult to know 

the actual strengths and weaknesses of the models.  
Furthermore, the capabilities of these models are seldom 
compared with those of real living creatures. 

A Unified Approach 
Figure 1 shows the framework to which this research 
restricts itself.  A variety of computational models can be 
seen as particular implementations of this system.  The 
World Model can be implemented by any Supervised 
Learning scheme.  The Sensory and Action States can either 
be manually set, or modified via any Unsupervised Learning 
scheme.  There are numerous ways of implementing Action 
Selection, and the various Reinforcement Learning methods 
can be used to organize the system as a whole. 

An advantage of presenting a common framework is that 
we can start to directly mix and match aspects of these 
algorithms.  Touzet (1997) presents results of using self-
organizing maps to automatically reorganize sensor data 
within a Q-Learning system.  This same technique could 
clearly be applied other cognitive models.  Tani’s 
suggestion of using a self-prediction system to help suggest 
potential actions (Tani & Yamamoto, 2002), or 
implementing a bias towards novel situations by rewarding 
incorrect predictions (ibid.), could also be applied to other 
computational models than his Hierarchical RNNs. 
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Figure 1: The Generic Agent Model.  All models to be 
investigated fit within this framework. 

 
Most models do not require much coaxing to fit within 

this framework.  They may differ in terms of what exactly is 
learned by the World Model (does it predict future states or 
future rewards?).  They may have more or less tightly 
coupled modules (Action Selection systems can make use of 
neural network world model weights to help find promising 
actions to perform).  But even models as seemingly different 
as Distributed Adaptive Control or even ACT-R can be seen 
as falling within this generic framework. 
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Empirical Data 
The existing research literature contains a tremendous 
variety of tasks and environments that are used to study 
model performance.  From these, we can choose a set of 
problems to test these algorithms on.  Many of the robotic 
systems cannot be used due to equipment limitations, but 
any of the simulated worlds (including games and multi-
agent systems) are useful domains for comparison. 

In addition to these traditional test systems, there is also 
the potential to compare the performance of these 
algorithms to the behavior of real living organisms.  In 
(Stewart & Wood, 2001) and (Stewart, 2000), we presented 
some initial work comparing one model’s learning 
capabilities with the known capabilities of classical and 
operant conditioning.  All reinforcement learning systems 
could be investigated in these terms.  Experiments mirroring 
those done on living creatures can be performed, measuring 
rates of acquisition, extinction, specialization, and 
generalization. 

Furthermore, these sorts of comparative studies can also 
shed light on the ability of the various computational 
models to form concepts.  In the afore-mentioned papers, we 
identified particular high-level concepts (i.e. regularities of 
its environment that were not directly represented in the 
sensory state) that the model was able to identify, and others 
that it was not able to.  This is an embodied approach to 
concept formation, where an agent is deemed to have 
recognized an environmental pattern based on its ability to 
react appropriately to its presence. By combining this with 
the conditioning research, it is possible to examine those 
aspects of conditioning which require the modification of 
concepts (such as generalization and specialization).  
Existing models of conditioning (such as Kakade & Dayan, 
2000) do not discuss such situations. 

The Process 
The research is divided into three stages.  First, the set of 
supervised systems for developing world models will be 
compared on a set of test environments.  Each model (e.g. 
ARTMAP, back-prop multi-layer perceptrons, or recurrent 
neural networks) will be trained using identical input data.  
The domains will include various grid-worlds, games, and 
robot navigation environments.    The training will be done 
by giving the model a set of state-action-reward data over 
time of a particular agent interacting with a world.  These 
various models would then be compared in terms of their 
ability to predict the future state, reward, or discounted 
value.  Importantly, each model would be trained using 
exactly the same set of training data.  A range of test 
situations will be used, specifically including ones that 
would be comparable to real conditioning tasks.  For 
example, Jakobi (1998) discusses a T-maze robotic learning 
task that is comparable to T-maze tasks given to rodents. 

In the second stage, a comparison of full reinforcement 
learning systems will be performed.  Since most of these 
models make use of supervised learning components to 
learn the regularities of their environment, we can make use 

of the results of the previous stage to select promising world 
model implementations.  The environments from the first 
stage would continue to be used here.  The models can be 
compared to each other based on their resulting total reward.  
Furthermore, the models’ performance can be compared to 
that of real world creatures in conditioning experiments.  
For example, if an animal was trained to associate a 
particular stimulus with a reward, a characteristic 
acquisition curve would appear in its responses.  If this 
association was extinguished by presenting the stimulus 
without the reward, a characteristic exponential decay in 
response should occur.  After this, if time passes and then 
the stimuli is presented again without the reward, the animal 
will still ‘spontaneously recover’ the association to a certain 
degree.  This sort of experiment can be performed on any of 
the reinforcement learning models, allowing us to compare 
them to the behavior of real living creatures. 

In the final stage, various ways of extending this learning 
model can be investigated.  One of these is the use of 
unsupervised learning to automatically adjust the sensory 
and motor representations.  ARTMAP is an early example 
of this, and Touzet (1997) gives promising results on using 
Kohonen SOMs to improve Q-Learning.  To perform this 
comparison, we repeat stage two, with various approaches 
to automatically pre-processing the sensory data. 
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