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Elements of the Proposed Approach 
Building artificial cognitive systems that possess a concept 
of “self”, as well as cognitive and behavioral abilities of a 
conscious being is a difficult task, but one with tremendous 
practical significance and potential. In this work we outline 
general principles of a new approach to this task and 
illustrate them with detailed computational analysis based 
on a simple paradigm. Our approach to this task is grounded 
on three conceptual components – three key ideas (schemas, 
charts and the self) that underlie three levels of organization 
of our cognitive system. They are explained below. 

Calculus of Schemas and Mental States 
Schemas are the basic elementary building blocks of our 
cognitive system (Samsonovich & DeJong, 2003). The term 
"schema" (plural "schemata" or "schemas") was introduced 
by Kant (1781/1929) and is currently used in a variety of 
senses in computational and cognitive sciences. Here this 
term refers to an abstract model or a template that is used to 
instantiate and to process a particular cognitive category. 
Thus, schemas are units of semantic knowledge, primitives 
of action and reasoning, rules, concepts, sensory qualia, etc.  

We generally say that a schema has a state, when its 
instance is bound to some given content. Any connected 
complex of states (e.g., A-D-C, Figure 1) is also regarded as 
a state (and is potentially convertible into a schema). For 
example, a state of seeing a red circle includes states of the 
schemas of red and a circle. A state generating a proof can 
be described in terms of states of schemas of logical 
inference, etc. Here a state is considered “mental”, if it is 
symbolically attributed to a subject of experience (a self). 
Schemas and states are dynamical objects: they can be 
created and modified “online”.  

We implement schemas and their states as data structures, 
using one universal format, regardless of the category. Each 
schema has a “head” (specifying its binding terminals, rules 
and conditions of binding, as well as the expected effects of 
execution) and a “body” (specifying how, if at all, the 
schema is executed). Simply speaking, if a schema can be 
viewed as a class, then its state is an instance of this class. 

Dynamical Multichart Architecture 
The second key idea of our approach is the dynamical 
multichart architecture that serves as an infrastructure for 
the process of cognition. We use a simulationist approach 

based on an abstract notion of a chart. Each chart represents 
a simulated mental perspective, providing a room for a 
mental simulation (i.e., dynamics of mutually bound states) 
of what one may be expected to experience when placed in 
that perspective. Therefore, a chart is associated with a 
particular instance of the subject to whom the mental states 
are attributed: this is reflected in the chart label (e.g., I-Now, 
I-Next, I-Previous, I-Imagined, I-Goal, I-Past, I-Meta, He-
Now, She-Now, etc.). Typically, this instance of the subject 
is the imaginary “self” of the cognitive system itself, taken 
in a particular context (e.g., at a particular moment of time). 

Thus outlined system of charts and associated with them 
mental simulations can be viewed as a simplified, practical 
implementation of a generalized modal logic framework 
that may include epistemic, doxastic, deontic, conditional, 
temporal, alethic and other logics (with mental states 
regarded as “doxons”, “deons”, etc.). While each simulation 
is confined to its chart, charts interact with each other 
according to the rules of a corresponding logic. E.g., a state 
A (Figure 1) that may represent a voluntary action initiated 
in I-Now is copied into I-Next to produce expected effects. 

 

 
 

Figure 1: A snapshot of the cognitive system dynamics. 
 

The Self Concept 
The third, metacognitive component of our conceptual 
framework is the self concept. From the above, the reader 
might expect that now we shall introduce a gizmo operating 
on states and charts, saying that it represents the self of the 
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system. On the contrary, we postulate that there is no such 
gizmo, or virtual engine, or homunculus, etc., in any truly 
conscious cognitive system (we do have “drivers” operating 
on states and charts that follow simple, mechanistic rules). 

In our approach, the self is implemented via a set of self-
axioms (Aleksander & Dunmall, 2003; Samsonovich & 
Nadel, 2005) that globally constrain dynamics of states and 
charts at a higher level. In particular, this implies a linear 
organization of the main sequence of charts into a consistent 
scenario (stream of consciousness) underlying perception, 
thoughts, attention focus, decisions and “voluntary” actions 
performed by the system. This scenario (which extends in 
both directions in time and is continuously updated), when 
expressed at a verbal level (based on introspective reports 
that are automatically generated by states), can be controlled 
by linguistic rules and constraints (instantiating self-axioms) 
using methods of discourse analysis and the like. 

Demonstration Based on a Learning Paradigm 
In order to demonstrate the outlined above general 
principles in action, we consider a paradigm that can be 
called “leveraging self-learning with the self-concept”. In 
this paradigm, a set of specially designed virtual worlds is 
used as a “training facility” to help a virtual robot controlled 
by the cognitive system to develop useful and powerful 
schemas. Innate schemas may include elementary moves 
and senses, as well as relevant reasoning primitives. The 
system repeats the following procedure: 

1. Select an action schema and mutate its head to produce 
an idea of an action that is not available yet as a schema.  

2. In each of several encountered situations, take the new 
header as a challenge and solve it (e.g., by imagined trial-
and-error procedure), then execute the solution. 

3. Reinterpret own behavior (not imagery) based on the 
schema of a voluntary action: find an apparent common 
motivation in the performed intermediate steps in all cases.  

4. Based on the above, write the body of the new schema.  
As the robot learns essential “tricks” at one level (and 

compiles them into schemas), it is taken to the next level. At 
each new stage, previously developed schemas are used for 
solving new challenges. 

The scheme outlined above will be demonstrated in the 
poster by computer simulations based on a push-push puzzle 
setup. A minimal set of innate schemas includes a one-step 
move and some useful cognitive primitives, e.g., the notion 
of Euclidean distance. At the first stage the robot learns to 
move in an open space. Then it learns to navigate a maze, to 
push blocks, to avoid irreversible moves, etc. After that, 
when given a goal, it is capable of solving simple puzzle 
configurations and learns to deal with more complex ones. 

Related Works 
During recent years a tremendous progress has been made in 
several fields related to intelligent agents possessing higher 
and meta-cognitive abilities, including logical foundations 
(e.g., Panzarasa et al., 2002), agent architecture (e.g., works 
originated from the BDI framework: Bratman, 1987) and 

practical computational tools (e.g., Soar: Laird et al., 1987, 
and ACT-R: Anderson & Lebiere, 1998). The presented 
framework stands closer to the latter, offering more 
universality and a higher capacity for development and 
generalization than an apparatus based on chunks and/or 
productions. Next, our multichart architecture facilitates 
implementation of modal logics in a practically useful 
manner. Finally, our third component (the self concept) is 
completely missing and probably not feasible in Soar, in 
ACT-R, and in most other computational cognitive models. 

Our system of charts can also be related to the framework 
of possible world boxes proposed by Nichols and Stich 
(2003), although each our “box” (chart) represents a 
possible state of agent’s awareness rather than a world. 

Concluding Remarks 
Our present ambition is to create a virtual entity emulating 
human mind in its most essential abilities, an entity that by 
itself might be of a great scientific and practical interest for 
us as a general-purpose, new-generation intelligent artifact. 
Of a major interest for us are its abilities to learn, to exhibit 
rational initiative, and to be able to work interactively with a 
human. Among near-future applications of the proposed 
model or its equivalents we expect to find tasks that involve:  

(a) learning to understand and to develop communication 
languages (e.g., learning natural language from a human),   

(b) learning to do lower-level tasks based on their higher-
level description (e.g., automated programming),  

(c) learning to assist a human in a given cognitive domain 
(e.g., rapid decision making in unstable environments),  

(d) self-adaptation and survival in complex environments.  
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