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Theories of Human Causal Learning  
Much of human cognition and activity depends on causal 
beliefs and reasoning. In psychological research on human 
causal learning and inference, we usually suppose that we 
have a set of binary potential causes, C1, …, Cn, and a 
known binary effect, E, all typically present-absent values 
of a property or event. The differentiation into potential 
causes and effect is made on the basis of external factors, 
including prior knowledge or temporal information.  

Given these variables, people are then asked to infer the 
existence and strength of causal relationships between the 
Ci’s and E from observed data in one of several formats 
(serially, as a list, or in a summary). The standard measure 
of people’s causal beliefs is a rating of some proxy for 
causal influence, where a zero rating indicates no causal 
relationship. The exact probe question varies between 
experiments, and has been found to significantly impact 
participants’ ratings (e.g., Collins & Shanks, under review). 

A variety of theories have been proposed to explain 
people’s causal inferences in this type of highly limited 
scenario (see Danks, forthcoming, for a theoretical overview 
and synthesis). One general view for which there is a 
growing body of evidence is that people’s causal beliefs and 
learning are well-modeled as though they are learning a 
causal Bayesian network (CBN, henceforth). 

Causal Learning with Bayesian Networks 
CBNs have proven to be a powerful framework for 
representing and learning causal structure from 
observational, experimental, and mixed data (e.g., Pearl, 
2000; Spirtes, Glymour, & Scheines, 2000). At a general 
level, a CBN contains two distinct, related components: a 
directed acyclic graph (DAG) that represents qualitative 
causal relationships (X  Y means that X is a direct cause of 
Y); and quantitative information about the strengths of the 
various causal connections (e.g., a joint probability 
distribution; a set of a linear equations; and so on). These 
components are connected through the Markov and 
Faithfulness/Stability assumptions, which constrain the 
ways in which causal relationships manifest themselves in 
observational and experimental data. These assumptions are 
domain-general, and themselves testable.  

There are essentially two different strategies for learning a 
CBN from data: (i) score-based or Bayesian approaches; or 
(ii) constraint-based (C-B) approaches. In the former 
approach, we search either heuristically or exhaustively for 
the CBN that maximizes P(CBN | observed data). We focus 
here on the latter approach, in which we determine the set of 

DAGs that could possibly have produced the observed 
independencies and associations (given Markov and 
Faithfulness). C-B algorithms thus take a set of 
independence and association judgments as input, and 
output an equivalence class of DAGs, all of which make 
identical predictions about the observed data. For small 
numbers of variables, the equivalence class will frequently 
not be a singleton, and so we will have a set of possibilities 
that cannot be distinguished given the data. 

As an example of a C-B algorithm, suppose that we have 
data on X, Y, and Z. There are six different independencies 
(conditional and unconditional) that may or may not hold 
for these three variables. Suppose that some process yields 
the following statistical judgments about the variables: the 
only independence (of the six possibilities) is that X and Z 
are unconditionally independent. If we further suppose that 
there are no unobserved common causes (latents) of these 
variables, then there is exactly one DAG that could have 
produced these data: X  Y  Z. (If we drop the “no 
latents” assumption, then there might be unobserved 
common cause(s) of X and Y, or Z and Y, in addition to or in 
place of the X  Y, Z  Y, edge.)  

Both types of approaches have been used for rational 
analyses of causal learning and categorization. Examples 
using Bayesian approaches include Griffiths, Baraff, & 
Tenenbaum (2004); and Tenenbaum & Griffiths (2001), 
(2003). Rational analyses with C-B algorithms include 
Gopnik, Glymour, Sobel, Schulz, Kushnir, & Danks (2004); 
and Kushnir, Gopnik, Schulz, & Danks (2003). 

Constraint-Based Human Causal Learning  
A range of evidence suggests that human causal learning is 
best-modeled by CBN structure learning, including: 
learning from manipulations (as opposed to just 
observations); learning when the variables are not 
differentiated into causes and effect; and differences in 
predictive and diagnostic learning. All of these phenomena 
can be explained both by C-B and Bayesian approaches to 
CBN structure learning, and have been modeled elsewhere.  

Another important piece of evidence for the CBN theory 
is that people are seemingly able to use domain-specific 
knowledge to draw causal conclusions based on small 
sample sizes, and CBN learning algorithms are the only 
ones currently on offer that have the flexibility to model this 
adaptive behavior (Griffiths, et al., 2004; Tenenbaum & 
Griffiths, 2003).  

Griffiths, et al. (2004) have drawn a further conclusion 
based on inferences from small samples: C-B algorithms 
cannot model this phenomenon—and so are incorrect—
because they do not incorporate domain-specific knowledge 
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about the manner or functional form for the operation of 
possible causal mechanisms. This latter claim about C-B 
algorithms is based on standard machine learning 
implementations that use general statistical tests (e.g., χ2 or 
correlation) for independence and association judgments.  

Griffiths, et al. (2004) do not consider a psychological C-
B learning algorithm—as opposed to a rational analysis—
because one has not previously been proposed. The most 
straightforward such algorithm would be to estimate all of 
the possible independencies (conditional and unconditional) 
using some method, and then derive the equivalence class of 
DAGs from these estimates using a “standard” C-B learning 
algorithm (e.g., the PC algorithm of Spirtes, et al., 2000).  

C-B algorithms are not computationally intensive once 
the independence judgments are provided, and many of their 
steps are intuitively sensible (e.g., if X and Y are 
un/conditionally independent, then conclude that there is no 
direct causal connection). One possible concern with the 
psychological plausibility of this theory is that the number 
of possible independencies grows exponentially with the 
number of variables. However, there is little evidence that 
people actually can learn causal structures for large numbers 
of variables without substantial prior knowledge constraints, 
and so this worry is irrelevant for psychological modeling. 

This proposed theory has left relatively open the question 
of the source of the independence and association 
judgments. The C-B learning framework simply requires 
association/independence judgments; machine learning 
implementations have used general statistical tests, but the 
framework itself does not require that choice. So a C-B 
algorithm could, for example, estimate the probability of 
association using Bayesian statistics, perhaps even using a 
similar method as that advocated by Griffiths, et al. (2004). 

In fact, given information about the particular (type of) 
causal mechanism, we can use even simpler theories than 
full Bayesian statistics. For example, if we know or believe 
that the causal influences operate as though they have causal 
powers, as proposed by Cheng (1997), then we can use the 
dynamical theory of Danks, Griffiths, and Tenenbaum 
(2003) to estimate conditional association in an online 
manner. A simple transformation of that equation leads to 
dynamical computation of unconditional association, 
assuming causal influences combine as causal powers. And 
there are similar dynamical equations for a variety of other 
underlying “mechanisms,” at least when those mechanisms 
are equated with functional form (see Danks, forthcoming, 
for an overview of some of the dynamical equations). C-B 
algorithms can thus provide a psychological theory—and 
not just rational analysis—of domain-specific causal 
learning phenomena by incorporating the domain 
knowledge into the particular statistical tests used to make 
estimates of independence and association.  

Moreover, other proposed psychological theories of 
causal learning can be modeled as special cases of this 
psychologically plausible theory of C-B structure learning: 
the other theories correspond to cases in which people 
estimate only a subset of the possible independencies. For 

example, suppose prior knowledge leads us to believe that 
only the independencies of the Ci’s and E conditional on the 
other Ci’s are potentially relevant. (There are a variety of 
plausible situations in which we might believe this.) If we 
also believe that causal influences operate like causal 
powers, we will use the dynamical method of Danks, et al. 
(2003). The resulting theory is exactly the same as Cheng’s 
(1997) power PC theory. That is, we can model the power 
PC theory as C-B learning of CBN structure, but where 
people only estimate a subset of the possibly relevant 
independencies. A similar story can be told for the other 
non-CBN psychological theories. Hence, this version of C-
B learning explains not only the data supporting CBN 
structure learning, but also a range of the data that 
seemingly support non-CBN theories. 
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