A New Framework for Cognitive/Perceptual Problems

James L Eilbert (jeilbert@chisystems.com), Tom Santarelli (tsantarelli@chisystems.com)

CHI Systems Inc., 1035 Virginia Drive, Suite 300

Fort Washington, PA 19034 USA

David M. Carmody

Sytex, Inc,

Introduction

There are a variety of real-world domains where "analysis" of incrementally arriving perceptual input requires the simultaneous solution of a set of hard problems. We claim that basically the same set of interacting problems appears in each of these domains. While people can solve the problems in each of these domains, no automated system is close to solving the full set of interacting problems in any of these domains. The purpose of this paper is to state the set of interacting problems that needs to be solved, and present a cognitively motivated framework in which a solution is possible. Our interest is in a solution to the full set of interacting problems. We are not interested in modeling a particular statistical correlation in a data set that appears under certain conditions. An automated solution would be best, but a man-in-the-loop solution that greatly increases a person's efficiency an/or accuracy would also be acceptable.

The primary domain discussed here is understanding the situation in an image or a sequence of images. The problems and their interactions are shown in Table 1. Solving the situation understanding problem involves much of the brain, so a simple neural network is not a viable approach. What is required is a framework that specifies the process by which a person combines a priori knowledge with the observed evidence. Most of the separate functional capabilities called for in our proposed framework exist already, which give us some confidence that an implementation of the framework can be constructed.

Hard Problems	Cause of Problem	Result of Problem	Example	Problem Interactions
Segmenting regions	Distinct objects may	Boundaries between	Walking stick is hard	Object ID & predicate
in an image	have similar statistics in many dimensions	objects may be missed or false boundaries	to separate from wood unless it moves.	correlation
Distinguishing	A large number of	Knowing a situation is	Knowing the situation	All but
between situations	objects and	not enough to predict	is a baseball game	predicting the future
given only intensity	arrangements may be	intensity distributions	does not mean that	
distribution	consistent with a top-		players are on the field	
	level description of a			
	situation			
Predicting the future	Situation awareness	Missed threats and	Not predicting an	All
_	must be built up	false alerts	aircraft out of	
	through a search		commercial lanes	
	sequence		could be a weapon.	
Object identification	Partial info is all that	Occlusion, lighting, or	Misidentify car as a	
	is available in the real	pose can make objects	truck	
	world	indistinguishable		
Predicate	Situations may be	May not recognize	Person over the water	
Correlation	described in a variety	different descriptions	vs. person in a boat	
	of ways	of the same image		
Finding signal in	Many regions in	Finding a particular	Where is Waldo	Segmentation
noise and clutter	natural images. Pose	object is hard even if	problem	(at leastfor clutter)
	and lighting make	objects are already	-	
	different objects look	separated		
	similar	L		

TABLE 1 -- Problem Space Characteristics

A Framework for Visual Situation Assessment

The following set of assumptions underlies our proposed framework:

- 1. Analysis emerges incrementally from cycles of situation understanding
- 2. Situation understanding has 3 components:
 - A internal map specifying the relative positions of entities potentially important in the situation
 - A consistent story about how the situation reached the current state
 - A subset of an ontology relevant to the situation
- 3. A situation understanding cycle consists of the following steps:

- Situation-sensitive segmentation or search for groupings of evidence that hang together
- Matching groupings to local patterns (activities based on plans without contingencies)
- Update/refinement of situation story and map based on global pattern (e.g., MPT) or case matching
- 4. The a priori knowledge needed to update or refine situation understanding
- 5. People use a similar approach to understanding situations in all domain with these problems

While the neurological substrate and techniques that people employ in doing object recognition, have been the subject of extensive research, situation understanding has not. Our choices in assembling a situation understanding framework must therefore rely on anecdotal evidence.

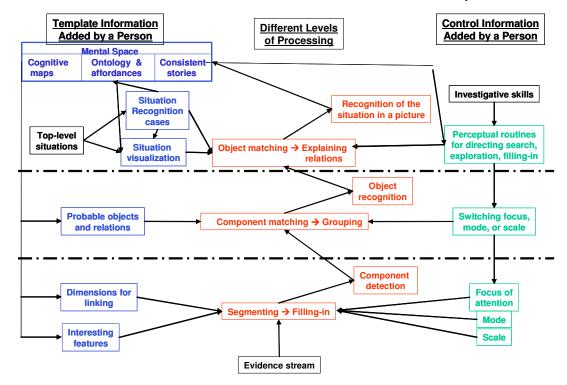


Figure 2: A Model of Cognitive Process Leading to Recognition of the Situation in a Picture

Support for various assumptions in the framework comes from multiple sources. Evidence for a primary role for situation understanding in human vision is that people are not particularly good at recognizing even familiar objects in unfamiliar contexts. For example, *Puzzle* magazine features a section on identifying common objects in real images taken at unusual scales. Looking at the routines that a person employs to visually find and utilize things shows that they have knowledge about what they are likely to see, about what these objects look like in the current context, and what characteristics of the imagery are important when segmenting objects. These types of knowledge must be learned to operate in a new context.

Recently, researchers Upada, Saha, and Lotufo (2002) have found the context-sensitive segmentation techniques work in hard real-world domains that have resisted generic techniques for many years.

Acknowledgments

This research was sponsored and managed by Air Force Research Laboratory Information Directorate, Rome Research Site (AFRL/IF/RRS) under contract F30602-01-C-0200. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied of Air Force Research Laboratory, or the United States Government.

References

Udupa, J.K., Punam K. Saha, P.K., and Roberto A. Lotufo, R.A. (2002) Relative Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image Segmentation. IEEE Trans. PAMI 24(11):1485-1500.