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Abstract 

One problem in evaluating recent computational models of 
human category learning is that there is no standardized 
method for systematically comparing the models’ 
assumptions or hypotheses.  In the present study, a flexible 
general model (called GECLE) is introduced that can be used 
as a framework to systematically manipulate and compare the 
effects of a limited number of assumptions at a time.  Two 
simulation studies are presented to show how the GECLE 
framework can be useful in the field of human high-order 
cognition research. 

Introduction 
The past fifteen years have seen significant advances in 
adaptive network models of categorization.  In particular, 
three models of human category learning have attracted 
much attention, namely ALCOVE (Kruschke, 1992), 
RASHNL (Kruschke & Johansen, 1999), and SUSTAIN 
(Love & Medin, 1998).  These models share many 
properties, because they can be considered special cases of 
Generalized Radial Basis Functions (Poggio & Girosi, 
1990), as discussed by several authors (Kruschke, 1993; 
Matsuka & Corter 2003a; Rosseel, 1996).  First, all three 
models are multilayer adaptive network models, with 
“reference points” (“basis units” in RBF terminology) in 
their memory (specifically, in the hidden layer).  The 
models all use similarities between the reference points 
(RPs) and the input stimuli for calculating activations of 
RPs.  Then, the weighted RP activations are fed forward to 
output nodes, whose activations are used to categorize the 
input stimuli.  All three models scale feature dimensions 
independently in calculating these input-to-RP similarities, 
and this scaling process is interpreted as reflecting 
dimensional attention processes (Kruschke, 1993).  In 
addition, all models incorporate as their basic learning 
method a form of gradient descent for incremental 
adjustments of both association weights and dimension-
specific attention parameters. Finally, all three models may 
be considered as confirmatory models, because they are 
based on specific a priori assumptions about how humans 
process information in categorization (e.g. how stimuli are 
internally represented & how humans pay attention to 
stimuli).  In order to test these specific assumptions, they 
should be varied systematically, preferably one at a time.  
The assumptions could then be tested by comparing the fit 
to empirical data of the resulting models. This is the major 
theme of the present work. 

There are several differences among the three models as 
well.  First, the assumptions about how stimuli are internally 
represented are different. ALCOVE and RASHNL are 
exemplar models, in the sense that each stimulus in the 
training set is allocated as a RP in the “hidden” layer of the 

networks, and the RPs reside in fixed locations.   In contrast, 
SUSTAIN is a prototype model that uses a reduced number 
of movable RPs in its hidden layer, corresponding to 
potential generalizations.  In addition, SUSTAIN 
dynamically allocates new prototypes, thus it may use 
multiple prototype nodes for each category explicitly 
defined by the training feedback.  Second, how RP 
activations are utilized in making category predictions and 
in adjusting parameter estimates during learning are 
different for the models.  SUSTAIN utilizes only the single 
most activated RP for categorization and learning, whereas 
ALCOVE and RASHNL utilize the activations of all RPs.  
Third, the assumptions about attention processes are 
different. RASHNL assumes limited attention capacity and 
rapid shifts in attention processes, whereas ALCOVE and 
SUSTAIN do not.  Fourth, the functions for computing 
similarity measures and RP activations are different.   

There have been several studies comparing computational 
models of categorization, including but not limited to 
ALCOVE, RASHNL, and SUSTAIN (e.g., Matsuka, Corter, 
& Markman, 2003; Nosofsky, Gluck, Palmeri, McKinley, & 
Glauthier, 1994).  Although these comparative studies 
provided information on the models’ capabilities for 
reproducing human-like categorization learning, they did 
not necessarily provide information that can lead to specific 
understanding of the nature of human category learning.  
That is because model-to-model comparisons are not 
informative for testing the plausibility of each specific 
assumption, rather such model comparisons are essentially 
omnibus tests collectively comparing all variations in 
assumptions at once.   

Since it has been difficult to use the results of these 
previous comparative studies to understand which specific 
assumptions are supported by the data, it seems desirable to 
have a general framework for modeling human category 
learning that allows us to manipulate and test one or a 
limited number of model assumptions at a time.  The 
framework should be general and flexible, so that we can 
conduct standardized exploratory modeling of various types 
of human cognitive processes associated with 
categorization. 

New Model of Human Category Learning 
Qualitative Descriptions: The GECLE (for Generalized 
Exploratory models of Category LEarning) is a general and 
flexible exploratory modeling approach for human category 
learning, that is capable of modeling human category 
learning with many variants using different model 
assumptions.  This general model allows model assumptions 
to be manipulated separately and independently.  For 
example, one can manipulate assumptions about how 
stimuli are internally represented (e.g. exemplars vs. 
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prototypes), or about how people selectively pay attention to 
input feature dimensions (e.g., paying attention to 
dimensions independently or not).   

The GECLE model uses the Mahalanobis distances (in 
quadratic form) between the internally represented reference 
points (corresponding to either exemplars or prototypes) and 
the input stimuli as the measure of similarity between them.  
Thus, unlike other NN models of category learning, the 
GECLE does not necessarily assume that attention is 
allocated independently dimension-by-dimension.  Rather, it 
assumes that humans in some cases do pay attention to 
correlations among feature dimensions.  This allows the 
GECLE to model processes interpretable as dimensionality 
reduction or mental rotation in the perception and learning 
of stimuli.  Such processes may enhance the interpretability 
of stimuli for categorization task for humans. Another 
motivation for the use of Mahalanobis distance is that the 
capability for paying attention to correlations among feature 
dimensions may be needed for classification tasks defined 
on integral stimuli.   In the GECLE framework, the attention 
parameters (which are the diagonal and off-diagonal 
elements of the covariance matrices) can be considered as 
shape and orientation parameters for receptive fields or 
attention coverage areas of the reference points.  It should 
be noted, however, that one can constrain GECLE to 
incorporate the  “dimensional attention processes” 
assumption (i.e., attention is allocated independently on a 
dimension-by-dimension basis) by forcing the off-diagonal 
entries in the covariance matrices to be equal to zero. 

Another unique feature of GECLE’s attention mechanism 
is that it allows each reference point to have uniquely 
shaped and oriented attention coverage area (Figures 1D, 
1E, and 1F).  I call this “local attention coverage structure”.  
Again, one can impose a restriction on the model’s attention 
mechanism by fixing all covariance matrices to be the same, 
which I refer as “global attention coverage structure” 
(Figures 1A, 1B, and 1C).  The local attention coverage 
structure model is complex, but may plausibly model 
attention processes in human category learning. For 
example, it allows models to be sensitive to one particular 
feature dimension when the input stimulus is compared with 
a particular reference point that is highly associated with 
category X, while the same feature dimension receives little 
or no attention when compared with another reference point 
associated with category Y.  Thus the local attention 
coverage structure causes models to learn and be sensitive to 
within-cluster or within-category feature configurations, 
while the global attention coverage structure essentially 
stretches or shrinks input feature dimensions in a consistent 
manner for all RP receptive fields and all categories. 

Another way of interpreting GECLE’s capabilities for 
paying attention to correlations among feature dimensions 
and having local attention coverage structures is that the 
model learns to define what the feature dimensions are for 
each RP and to allocate attention to those dimensions.  In 
contrast, for almost all previous adaptive models of category 
learning, the definition of the feature dimensions is static 
and supplied by individuals who use the models. 

The other notable characteristic of the GECLE’s attention 
mechanism is that the user can manipulate characteristics of 

the distributions assumed for the activations of the reference 
points.  For example, one can have RP activation 
distributions with thicker tails to obtain more competition 
among the RPs.  In its natural form, the GECLE may be 
considered as a model using prototype internal 
representation, because it tries to learn to locate its reference 
points at centers of each category cluster.  However, with a 
proper user-defined parameter setting, it can behave like a 
model with an exemplar-based internal representation. 
 
Quantitative Descriptions (Algorithm): The feedforward 
and learning algorithms of the GECLE are typical for 
implementation of the Generalized Radial Basis Function 
(Haykin, 1999; Poggio & Girosi, 1990).  GECLE uses the 
following function to calculate the distances or similarity 
between internally represented reference points (e.g., 
prototypes or exemplars) and input stimuli at time n: 
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where xn is an I-ruple vector representing an input stimulus 
consisted of I feature dimensions presented at time n, rj, also 
an I-ruple vector, that corresponds to the centroids of 
reference point j, expressing its characteristics, and Σj

-1 is 
the inverse of the covariance matrix, which defines the 
shape and orientation of the attention coverage area of 
reference point j.  For a model with global attention 
coverage structure, there is only one global Σ-1 for all 
reference points.  The entries (sim) in Σj must satisfy the 
following conditions: sii ≥ 0 & |sim| ≤  MIN(sii, smm).     
 The psychological similarity measures Dj(x,r) cause some 
activations in internal “hidden” units or reference points 
(i.e., exemplars or prototypes).  The activation of “hidden” 
basis unit j, or hj, is obtained by any differentiable nonlinear 
activation transfer function (ATF), or  

( )),( rxDGh jj =        (2) 

given that its first derivative G’(⋅) exists.  An exponential 
function, exp(-cDj(x,r)), is an example of an ATF.  The ATF 
must be a differentiable function, because GECLE uses a 
gradient method for learning, where the partial derivatives 
are used for updating the learnable parameters.  However, it 
is possible to eliminate this restriction by incorporating a 
form of derivative-free learning algorithm such as stochastic 
learning (Matsuka & Corter, 2004).  

The activations of hidden units are then fed forward to 
output nodes.  The activation of the kth output node, Ok, is 
calculated by summing the weighted activations of all 
hidden units connected to the output node, or  
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where wkj is the association weight between output node k 
and reference point j. The probability that a particular 
stimulus is classified as category Ck, denoted as P(Ck), is 
assumed equal to the activity of category k relative to the 
summed activations of all categories, where the activations 
are first transformed by the exponential function (Kruschke, 
1992)  
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φ is a real-value mapping constant that controls the 
“decisiveness” of classification responses. 
 GECLE uses the gradient method to update parameters.  
The error function is defined as the sum of squared 
differences between targeted and predicted output values 
(i.e., L2 norm), or 
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Then the following functions are used to update parameters. 
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where ηw is the learning rate for the association weights. 
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where G’(⋅) is a derivative of G(⋅).  Equation 7 can be 
considered as a function that locates or defines prototypes of 
stimuli.  For the exemplar-based modeling η r must be set to 
zero to maintain the static nature of reference points. 
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For models with global attention coverage structure, 

Equation 8 should be summed over both k and j. 
 
Varieties of Activation Transfer Function:  The ATF in 
the GECLE can be any function as long as it is 
differentiable. This allows one to manipulate and compare 
the effects of specific characteristics of the population 
attention structure (e.g. fatter tail vs. thinner tail).  This 
capability was motivated by the fact that the population 
attention structure can determine the effectiveness of model 
predictions.  For example, Hanson and Gluck (1991) 
compared RBFs with Gaussian and Cauchy activation 
functions, and showed that increased competition by the 
Cauchy’s fatter tails resulted in better fit to the empirical 
data.  Since there is not enough evidence indicating the 
“true” or best activation transfer function, and to enhance 
the flexibility of GECLE, ATF is deliberately made user-
definable.   
 
Hierarchy of Constraints on Attention Parameters (ΣΣΣΣ):  
There is a hierarchy of constraints that one can impose on 
the attention parameters Σ to manipulate GECLE’s attention 
mechanisms.  There are two levels of uniqueness of Σ 
(global and local attention coverage structure), in each of 
which there are three levels of constraints on entries in Σ. 
The following is a list of six possible levels of restriction, 
and Figure 1 shows examples of the corresponding attention 
coverage structures.  Note that regardless of the types of 
restriction, the entries (sim) in Σj must satisfy the following 
conditions: sii ≥ 0 & |sim| ≤  MIN(sii, smm).     
 
Global Attention Coverage Structures   
A. Global Pure Radial (GPR): Constraints on Σj: sii = s, for 
all i: sim = 0, for all i ≠ m; Σj = Σ, for all reference points j.   
B. Global Uncorrelated Non-radial (GUN):  Constraints on 
Σj: sim = 0, for all i ≠ m; Σj = Σ, for all reference points j. 
C. Global Correlated Non-radial (GCN): Constraints on Σj: 
Σj = Σ, for all reference points j. 

Local Attention Coverage Structures   
D. Local Pure Radial (LPR): Constraints on Σj: sii = s, for 
all i; sim = 0, for all i ≠ m.   
E. Local Uncorrelated Non-radial (LUN):  Constraints on 
Σj: sim = 0, for all i ≠ m. 
F. Local Correlated Non-radial (LCN): Constraints on Σj: 
none. 

   

   
 Figure 1. Six types of attention structures in the GECLE 
framework. Clockwise from top left panel, GPR, GUN, GCN 
LCN, LUN, and LPR. 

Application s of GECLE  
Comparing Internal Representation assumptions: There 
has been an increasing number of studies investigating and 
debating how stimuli are internally represented in human 
cognition during the last several years (e.g., Minda & Smith 
2002; Nosofsky & Zaki 2002).  Most of these debates have 
been based on quantitative models of categorization, and 
only a few have considered representational aspects of 
adaptive or network models of category learning.  One 
limitation of the models of categorization is that, as Shanks 
(1991) pointed out, its model fitting process is post hoc and 
thus does not generate predictions on learning processes.  

Several studies (Matsuka, 2002; Matsuka et al, 2003) 
have compared exemplar-based (EB) and prototype-based 
(PB) adaptive network models of category learning, but 
there have been no systematic comparison of specific 
assumptions in EB and PB modeling.  For example, the EB 
and PB models compared in those studies assume different 
attention processes and utilize reference points differently 
for categorizing and learning.  Thus, differences in the 
accuracy of reproducing learning curves may not be 
attributed solely to the plausibility of the EB versus PB 
representations, but possibly to multiple factors including 
the models’ attention mechanisms.  With GECLE, one can 
systematically compare the plausibility of the EB and PB 
representations by holding the attention mechanisms 
constant for both models (i.e., using the same activation 
transfer function and the same constraints on Σ-1). 

 
Comparing Selective Attention Mechanisms: Selective 
attention processes have been suggested to play a very 
important role in human category learning (Shepard, 
Hovland, Jenkins, 1962). However, only limited numbers of 
selective attention mechanisms have been modeled and 
tested. For example, virtually all recent network models of 
categorization assume dimensional attention processes (i.e., 
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no attention to correlations) and global attention coverage 
structure (i.e., all reference points have exactly the same 
shape of receptive field, with independent attention 
allocation to dimensions). 

Again, a general framework like GECLE allows 
systematic manipulation of models’ attention mechanism, 
and or exploration of various types of attention mechanism 
that has not be tested, such as distribution of attention to 
correlated features dimensions.  In addition, comparisons on 
different activation transfer functions G(·) can be 
informative for understanding how human categorize 
stimuli. 

 
Investigating Interactions Between Internal 
Representation & Attention Mechanisms. As a final 
point, it may be possible that a model with a particular 
internal representation system (e.g., exemplar-based) 
performs better with a particular attention mechanism, that 
does not work as well for models with other representation 
system (e.g., prototypes).  In other words, the effectiveness 
of internal representation system and attention mechanism 
may interact with each other in the sense that the 
effectiveness of model’s internal representation systems 
may depend on its attention mechanism, or the effectiveness 
of the models’ attention mechanism may depend on its 
internal representation system.  

I am not aware of any single study that systematically and 
simultaneously manipulates models’ internal representation 
system and attention mechanism to investigate possible 
interaction effects between them.  GECLE provides a way 
to systematically manipulate, by a factorial design, both 
internal representation system and attention mechanism to 
tackle this issue of interactivity of internal representation 
and attention mechanisms.   

 Simulations 
In this section, simulation studies are conducted as examples 
showing how GECLE can be informative in the field of 
human category learning.  In particular, two simulation 
studies, investigating possible interactive effects of the 
models’ internal representation and selective attention 
mechanisms are reported.  

Simulation 1: XOR problem 
In Simulation 1, a simple exclusive-or (XOR) learning task 
is simulated with both prototype- and exemplar-based 
GECLE models.  An XOR is one of the simplest stimuli 
structures with which one can expect interactions between 
representation system and attention mechanism.  

There are eight different models involved in this 
simulation, namely, E1: an exemplar-based (EB) model with 
GUN attention mechanism; E2: EB with GCN; E3: EB with 
LUN; E4: EB with LCN; P1: a prototype-based (PB) model 
with GUN; P2: PB with GCN; P3: PB with LUN; and P4: 
PB with LCN. All EB models had four reference points, 
while all PB models had two.  For all eight models, the 
following one-parameter exponential activation transfer 
function was used:  

( )),(exp rxDch jj ⋅−=     

The models were run in a simulated training procedure to 
learn the correct classification responses for the stimulus set. 
The models were run for 250 blocks of training, where each 
block consisted of a complete set of the training instances.  
The user-defined parameters (e.g. learning rates) were 
selected arbitrary. 
 
Results:  Tables 1a and 1b show the results of Simulation 1. 
All exemplar-based models were able to learn to categorize 
XOR stimuli by utilizing four exemplars (i.e., all unique 
stimulus configurations) in their “memory”, and thus 
complex attention mechanisms were shown to be ineffective 
or unnecessary for EB modeling. In fact, when the fit 
measure was adjusted for model complexity (i.e., number of 
parameters), the EB model with the simplest attention 
mechanism resulted in the best (relative) fit. In contrast, for 
prototype-based modeling, only LCN (i.e., P4) was able to 
learn to categorize the XOR stimulus set, suggesting that the 
complex attention mechanism plays an important role for 
the PB modeling (Figure 2 shows activation areas produced 
by P4).  Note that P4 also resulted in the best (relative) fit 
among all eight models after controlling for its complexity.   

In sum, the results of the present simulation suggest that it 
is very likely that effectiveness of the model’s attention 
mechanism depends on how the stimuli are internally 
represented by the model or vice versa; a simple GUN 
attention mechanism seems sufficient for EB modeling, 
while a complex LCN is required for PB modeling. 
 
Table 1a: Results of prototype-based GECLE 
 
Model  P1 P2 P3 P4 
Attention structure GUN GCN LUN LCN 
No. prototypes 2 2 2 2 
No. Learnable parameters 10 11 12 14 
SSE 1.328 1.147 1.322 ε† 
ε† < 10e-20. 
 
Table 1b: Results of exemplar-based GECLE  
 
Model E1 E2 E3 E4 
Attention structure GUN GCN LUN LCN 
No. Exemplars 4 4 4 4 
No. Learnable parameters 18* 19* 24* 28* 
SSE ε† ε† ε† ε† 
ε† < 10e-20. 
* Location parameters for exemplars were static & not subject to 
error-minimization learning, but it is assumed that optimized 
locations are learned when the exemplars are created. 

 

 

 

Figure 2: Activation areas & strength of E4 and P4 
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Simulation 2: Filtration vs. Condensation 
Kruschke (1993) claimed that selective dimensional 
attention processes (i.e., paying attention to each dimension 
independently) is one of three key principles for models of 
category learning.  His claim was based partly on the 
evidence that humans learn much better in “filtration” tasks, 
in which information from only one dimension is required 
for perfect categorization, than in “condensation” tasks, in 
which information from two (or more) dimensions is 
required (Gottwald & Garner, 1975; Kruschke 1993).  Thus, 
a model paying attention to correlations or having diagonal 
attention coverage may not be able to show the filtration 
advantage, implying that any model with a GCN or LCN 
attention mechanism may not be able to replicate such an 
advantage.  If the claim valid, then it is evidence against P4, 
namely the prototype-based model with diagonal localized 
attention coverage, as a descriptive model of human 
cognition.  The present simulation study tests if PB model 
with LCN attention mechanism can replicate the filtration 
advantage observed in human category learning. 
 
Method:  In simulation 2, I revisited Kruschke’s claim 
regarding dimensional attention processes by simulating 
category learning on both filtration and condensation stimuli 
using the prototype-based model with LCN (and EB-LCN 
for a illustrative comparison).   The stimulus set presented in 
Kruschke (1993) is used in this simulation. Table 2 shows 
the schematic representation of the stimulus set.  For the 
filtration stimulus set, information from only Dimension 1 is 
required for a perfect categorization (category = A, if D1 < 
2; category = B, otherwise) while information on both 
Dimensions 1 and 2 were required for the condensation set.  
The same one-parameter exponential ATF used in 
Simulation 1 is used in the present simulation study.  The 
user-defined parameters were optimized using a simulated 
annealing method (Ingber, 1989; Matsuka et al. 2003) to 
reproduce observed empirical learning curves reported in 
Kruschke (1993). 
 It should be noted that Kruschke (1993) showed that 
ALCOVE (i.e., an EB-model with GUN) was able to 
reproduce the filtration advantage.  
 
Table 2: Stimulus sets used in Simulation 2 
 

Stimulus feature Category  
Dim 1 Dim 2 Filtration Condensation 

0 1 A A 
0 2 A A 
1 0 A A 
1 3 A B 
2 0 B A 
2 3 B B 
3 1 B B 
4 2 B B 

 
Results:  Figure 3 shows the results of Simulation 2.  The 
prototype-based LCN model was able to show the filtration 
advantage even when it paid attention to the correlation 
between the two input dimensions.  In contrast, the 
exemplar-based LCN model showed no filtration advantage.  

One possible reason why PB-LCN showed the filtration 
advantages was that PB-LCN might have been able to locate 
or define prototypes more easily in the filtration task than in 
the condensation task.  This is because while the 
condensation stimuli require synchronization of the 
“correct” movements of centroids of prototypes and the 
“correct” psychological scaling of the two feature 
dimensions (i.e., attention processes), the filtration stimuli 
require “correct” movements and scaling in only one 
dimension.  Thus, synchronization of prototype-movement 
and scaling was more difficult for the condensation stimuli 
than in the filtration task for models using prototypes.  In 
other words, category learning by any prototype-based 
network models is strongly affected by how successfully or 
how fast the models can find “proper” prototypes and how 
well psychological scaling of dimensions is synchronized 
with it.  For E4, this was not a problem as it had exemplars 
in the correct locations from the beginning, resulting in no 
filtration advantage. These results indicate that correlated 
(i.e., diagonally-oriented) attention coverage may be more 
often a required assumption for PB modeling, compared to 
EB modeling. 
 As in Simulation 1, the results of the present simulation 
suggest that it is highly possible that stimuli’s internal 
representation and selective attention mechanisms interact 
with each other.  Furthermore, our simulation studies 
suggest that human may allocate attention not only to 
individual dimensions, but also to correlations among 
dimensions. At the very least, the evidence of a filtration 
advantage observed in human subjects does not rule out the 
possibility that humans pay attention to correlations among 
feature dimensions.   
 

  
Figure 3: The results of Simulation 2 

Discussion and Conclusion 
Individual Differences. The results of some simulation 
studies (e.g., Matsuka, 2002, Matsuka & Corter, 2003b) 
suggest that NN models of categorization with gradient 
learning methods are successful in reproducing group 
learning curves, but tend to underpredict variability in 
individual-level data.  Since GECLE utilizes a gradient 
method for learning, it too is expected to underpredict 
individual differences.  However, this exploratory model is 
introduced to compare how well models with different 
representational and processing assumptions can replicate 
general tendencies in human category learning.  Many of 
these general tendencies may be best described in terms of 
such aggregated data.  Nonetheless, to account for 
individual differences, GECLE could be easily modified to 
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incorporate Matsuka & Corter’s (2004) stochastic learning 
algorithm for attention processes, which is shown to be 
more successful in reproducing individual differences in 
learning. 

Conclusion 
One of the most critical problems in evaluating recent 
computational models of categorization is that there is no 
standardized method for comparing the models’ 
assumptions systematically.  Thus, previous studies 
involving model comparisons have sometimes been unable 
to answer which element, assumption, or structure of each 
model was responsible for successful or unsuccessful 
replication of observed tendencies in human category 
learning.  In the present study, a flexible general model is 
introduced, that can be used as a framework to 
systematically compare a limited number of assumptions at 
a time.   
 Two simulation studies are described to show how the 
GECLE framework can be useful in exploring issues in the 
field of categorization research. The results of Simulation 1 
showed that a pure prototype-based category learning model 
(i.e., the number of prototypes is equally to that of category) 
was capable of learning an XOR problem only if it 
incorporated a very complex attention mechanism, while the 
exemplar-based model was capable of learning the stimuli 
with a simple attention mechanism.  In Simulation 2, the 
filtration advantage, which has been used as an argument or 
evidence for dimensional attention processes (i.e., paying 
attention to dimension independently with no attention to 
correlations among feature dimensions), was successfully 
replicated by the prototype model with a complex attention 
mechanism capable of paying attention to correlation.  This 
casts some doubt on the claim that the filtration advantage 
shows that people pay attention to dimensions 
independently, without attending to correlations among 
dimensions.   
 The results of these simulations are argued to provide 
new insights regarding human category learning, namely 
that 1) it is very likely that there are interactions between 
internal mental representation and attention mechanisms, 
and 2) people may pay attention to correlations among 
feature dimensions.   

References 
Gottwald, R. L. & Garner, W. R. (1975).  Filtering and 

condensation tasks with integral and separable 
dimensions.  Perception & Psychophysics, 2, 50-55. 

Hanson, S. J., & Gluck, M. A. (1991).  Spherical units as 
dynamic consequential regions: Implications for attention 
and cue-competition in categorization. Advances in 
Neural Information Processing Systems #3. San Mateo, 
CA: Morgan Kaufman, 656-665. 

Haykin, S. (1999).  Neural Networks:  A Comprehensive 
Foundation (2nd ed.).  Upper Saddle River, NJ: Prentice 
Hall. 

Ingber, L. (1998). Very fast simulated annealing.  Journal of 
Mathematical Modelling, 12:  967-973. 

Kruschke, J. E. (1992). ALCOVE: An exemplar-based 
connectionist model of category learning, Psychological 
Review, 99. 22-44.  

Kruschke, J. E. (1993).  Three principals for models of 
category learning.  In G. V. Nakamura, R. Taraban, & D. 
L. Medin (Eds.), Categorization by human and machines: 
The psychology of learning and motivation (Vol. 29, pp. 
57-90). San Diego, CA: Academic Press. 

Kruschke, J.K., & Johansen, M. K. (1999).  A model of 
probabilistic category learning.  Journal of Experimental 
Psychology: Learning, Memory, and Cognition, 25, 1083-
1119.  

Love, B.C. & Medin, D.L. (1998).  SUSTAIN: A model of 
human category learning.  Proceeding of the Fifteenth 
National Conference on AI (AAAI-98), 671-676. 

Matsuka, T (2002).  Attention processes in computational 
models of categorization.  Unpublished Doctoral 
Dissertation.  Columbia University, NY. 

Matsuka, T. & Corter, J. E. (2003a).  Neural network 
modeling of category learning using Generalized Radial 
Basis Functions.  Paper presented at 36th Annual Meeting 
of the Society of Mathematical Psychology. Ogden, UT. 

Matsuka, T. & Corter, J. E. (2003b). Empirical studies on 
attention processes in category learning.  Poster presented 
at 44th Annual Meeting of the Psychonomic Society. 
Vancouver, BC, Canada. 

Matsuka, T. & Corter, J.E (2004). Modeling category 
learning with stochastic optimization methods. In 
Proceeding of International Conference on Cognitive 
Modelling.  Pittsburgh, PA 

Matsuka, T., Corter, J. E. & Markman, A. B. (2003).  
Allocation of attention in neural network models of 
categorization.  Under review. 

Minda, J.P. & Smith, J.D. (2002).  Comparing prototype-
based and exemplar-based accounts of category learning 
and attentional allocation.  Journal of Experimental 
Psychology: Learning, Memory, and Cognition, 28, 275-
292.  

Nosofsky, R.M. & Zaki, S. R. (2002).  Exemplar and 
prototype models revisited: Response strategies, selective 
attention, and stimulus generalization.  Journal of 
Experimental Psychology: Learning, Memory, and 
Cognition, 28, 924-940. 

Nosofsky, R.M., Gluck, M.A., Palmeri, T.J., McKinley, 
S.C., & Glauthier, P.  (1994).  Comparing models of rule-
based classification learning:  A replication and extension 
of Shepard, Hovland, and Jenkins 

Poggio, T. & Girosi, F. (1990).  Regularization algorithms 
for learning that are equivalent to multilayer networks.  
Science, 247, 978-982. 

Rosseel, Y. (1996). Connectionist models of categorization: 
A statistical interpretation. Psychologica Belgica, 36, 93-
112  

Shanks, D.R. (1991).  Categorization by a connectionist 
Network.  Journal of Experimental Psychology: Learning, 
Memory, and Cognition, 17, 433-443. 

Shepard, R.N., Hovland, C.L., & Jenkins, H.M. (1961).  
Learning and memorization of classification.  
Psychological Monograph, 75(13). 

 

yguo
195




