
OPTIMIST: A New Conflict Resoution Algorithm for ACT–R

Roman V. Belavkin (R.Belavkin@mdx.ac.uk)
School of Computing Science, Middlesex University

London NW4 4BT, United Kingdom

Frank E. Ritter (ritter@ist.psu.edu)
School of Information Sciences and Technology,

The Pennsylvania State University, University Park, PA16802, USA

Abstract

Several studies have suggested recently that a more dynamic
conflict resolution mechanism in the ACT–R cognitive ar-
chitecture (Anderson & Lebiere, 1998) could improve the
decision–making behaviour of cognitive models. This part of
ACT–R theory is revisited and a new solution is proposed. The
new algorithm (OPTIMIST) has been implemented as an over-
lay to the ACT–R architecture, and can be used as an alternative
mechanism. The operation of the new algorithm is tested in a
model of the classical Yerkes and Dodson experiment on ani-
mals’ learning. When OPTIMIST is used, the resulting model
fits the data better than the previous model (e.g. R2 increases
from .85 to .93 in one example).

Introduction
Conflict resolution is an important part of many intelligent
systems, and from a cognitive science perspective it repre-
sents a model of a decision–making mechanism in the brain.
In this paper, we introduce a new conflict resolution algorithm
that can be used as an alternative to the standard mechanism
in the ACT–R cogntivie architecture (Anderson & Lebiere,
1998). The new algorithm is called OPTIMIST (it stands for
‘Optimism’ plus ‘Optimisation’), and recently it has been in-
troduced as a search method (Belavkin, 2003).

Although OPTIMIST can, indeed, be used as a general pur-
pose search strategy, its roots come from ACT–R models of
cognitive development (Jones, Ritter, & Wood, 2000) and the
effect of emotion on learning and decision–making (Belavkin
& Ritter, 2003). These works exposed where to improve the
well–established cognitive architecture.

The standard conflict resolution mechanism of ACT–R, its
achievements and problems will be discussed in the first sec-
tion of the paper. Then, the underlying theory of the new
method will be explained, and the new algorithm will be pre-
sented. This section will repeat some results of the previ-
ous paper (Belavkin, 2003). The third section will demon-
strate how the new algorithm works in a model. Early results
suggest that a model with the OPTIMIST conflict resolution
matches the data better than with the standard implementa-
tion of ACT–R.

The ACT–R Conflict Resolution
The symbolic level of ACT–R is organised as a goal–directed
production system with declarative and procedural knowl-
edge encoded in the form of chunks and production rules re-
spectively. The chunks representing the current goal, some
facts currently retrieved from the long term memory, and the

states of perceptual and action buffers are compared with the
patterns in the left–hand sides of the production rules. Then,
after a set of all the rules that match the current working mem-
ory pattern has been created (the conflict set), a single rule has
to be selected from this set and fired. This last step is called
conflict resolution, and it is important how this rule selection
occurs because it controls which ‘decisions’ the model makes
and affects the search of the problem space.

In ACT–R, the conflict resolution uses subsymbolic infor-
mation associated with the rules. During the model run the
number of successes and failures of each rule (decision) is
recorded by the architecture. In addition, ACT–R records the
efforts (e.g. time) spent after executing the rule and actually
achieving the goal (or failing). This information is used to
estimate empirically the probability of success Pi and the av-
erage cost Ci of each rule

Pi =
Successesi

Successesi + Failuresi
(1)

Ci =
Effortsi

Successesi + Failuresi
. (2)

Here, Effortsi is the sum of all costs, associated with pre-
vious tests of the ith rule: Effortsi =

∑k
j=0 Cij , where

k = Successesi + Failuresi is the number of previous tests
of rule i. For example, if cost is measured in time units, then
equation (2) calculates the average time for exploring partic-
ular decision path. This way, probabilities and costs of rules
are learned by the architecture.

When several rules compete in the conflict set, ACT–R cal-
culates their utilities by the following equation

Ui = PiG − Ci + ξ(σ2) . (3)

Here, G is called the goal value, and it is measured in the
same units as the cost (e.g. time); ξ is a random number taken
from a normal distribution with zero mean and variance σ 2.
Thus, the rational parts of the rules’ utilities (PiG − Ci) are
corrupted by noise ξ of variance σ2. Finally, the rule is se-
lected according to utility maximisation: i = arg maxUi.
Below is the summary of conflict resolution in ACT–R:

1. Set the goal value G and noise variance σ2

2. Calculate Pi, Ci and PiG − Ci of the matched rules

3. Add noise ξ(σ2) to the utilities Ui

4. Fire rule i = arg maxUi
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One can see that ACT–R learning equations (1) and (2)
provide a kind of Bayesian estimation of rules’ utilities.
However, this mechanism only estimates the mean values
(PiG − Ci) of distributions from which the random utilities
are drawn. The variances σ2 remain the same for all rules
and do not change. This issue will be addressed in the new
mechanism.

The utility equation (3) has allowed ACT–R to model suc-
cessfully some important properties of human and animal
decision–making:

Probability matching. The choice in humans and animals
decision–making is proportional to the probability of success.
The use of Pi in the utility has allowed ACT–R to model the
data of many probability matching experiments (e.g. see An-
derson & Lebiere, 1998 for models on Friedman et al., 1964).

Stochasticity. The nondeterministic (irrational) property of
choice behaviour is achieved by adding noise to the utility,
and different variance σ2 values were needed to simulate var-
ious experimental data (see Anderson & Lebiere, 1998). For
example, the somewhat irrational behaviour of children could
be simulated by a model of an adult with increased noise in
conflict resolution (Jones et al., 2000). Moreover, it has been
suggested that risk–taking behaviour characteristic to choice
involving losses and negative emotions (Tversky & Kahne-
man, 1981; Johnson & Tversky, 1983) can be simulated by
higher noise variance values, while low noise variance is bet-
ter for simulating the risk–aversive behaviour associated with
choice involving gains and positive emotions (Belavkin &
Ritter, 2003).

Levels of stimulation. The reward (or penalty) values are
known to influence choice. For example, higher pay–off leads
to preferences towards decisions with higher success proba-
bilities (Myers, Fort, Katz, & Suydam, 1963). This effect was
modelled by using higher goal values G (Lovett & Anderson,
1995; Anderson & Lebiere, 1998). Also, it was shown that
G can be used to represent different levels of aversive stimu-
lation and even different levels of arousal (Belavkin & Ritter,
2003).

Recently, however, several problems in models’ perfor-
mance have been associated with the limitations of the ACT–
R conflict resolution mechanism. In particular, it was noticed
that ACT–R models usually produced more errors in the final
stages of experiments than subjects. This effect was espe-
cially noticeable in models of tasks with incremental learn-
ing, such as the Tower of Nottingham (Jones et al., 2000) or
the Yerkes and Dodson experiment (Belavkin & Ritter, 2003).
Figure 1 shows such an example: The model matches the data
well during the first five simulated days,1 but produces more
errors after day 5. Using smaller values of noise variance σ 2

could eliminate the problem, but would lead to a higher dis-
crepancy with the data in the earlier stage of the curve. A
similar lack of convergence was noticed by other researchers
(Taatgen, 2001; Lebiere, 2003).

It has been suggested that noise variance σ2 should not re-
main constant, but should gradually decrease. Taatgen used
an exponential decay of σ2 as a function of time and achieved
better results. However, it was argued that noise variance
should be an inverse function of success rate and should not

1Days A and B denote the preference series before training.
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Figure 1: A model of the Yerkes and Dodson experiment
compared with the data. Left: Error curves. Right: Regres-
sion plot of errors per day.

necessarily always decrease, but may increase if more fail-
ures occur (Belavkin, 2001). This would not only improve the
models’ match with the data, but also optimise the decision–
making in a way similar to a simulated annealing heuristic.
An alternative method was proposed to control noise vari-
ance by the entropy of success parameter (Belavkin & Ritter,
2003). Indeed, uncertainty of achieving success, estimated by
the entropy, decreases as a result of learning, but may increase
locally if more failures occur. The experiments demonstrated
consistently that models with such a control matched the data
better. In this interpretation, noise can be seen as compen-
sation for missing information about the utilities of rules.
The idea that noise should be proportional to the uncertainty
(lower expertise) may explain also why children were sim-
ulated better by a model with higher noise variance (Jones
et al., 2000).

The increase of expertise is not only reflected in the form of
statistical information about the production rules. An ACT–R
model may learn new rules using the production compilation
mechanism. Taatgen proposed that noise should affect these
new rules more than the ‘older’ rules in the system. This
would provide a smooth transition in a model from the use
of old to the more recently learned rules.2 Again, this is not
possible in the current ACT–R implementation, because σ 2 is
a global parameter which does not depend on rules’ creation
times.

Another concern expressed is regarding the goal value pa-
rameter G, which is used as a constant in the current imple-
mentation. In the real–world situations, however, the value of
the goal may change due to various reasons: Environmental
change, re–evaluation of the efforts required, change of mo-
tivation due to boredom or anxiety and so on. Moreover, it
was shown that G controls the problem space search strategy,
and an increase of G from small to high values implements
the best–first search heuristic (transition from breadth–first to
depth–first) that can greatly optimise the search (Belavkin,
2001).

Unfortunately, the current ACT–R theory does not account
for such dynamics. Let us summarise the new properties de-
sirable for the conflict resolution algorithm:

1. Noise variance should be rule specific.

2. Noise variance should be inversely proportional to the rate
of success, and should decrease on average with time.
2This effect has been achieved by using the production strength

parameter and strength learning mechanism.
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3. The goal value should be dynamic and increase on average.

In the next section, a new algorithm that implements the
above properties is introduced.

The OPTIMIST Conflict Resolution

The OPTIMIST algorithm (Belavkin, 2003) has been derived
in attempt to address the issues discussed in previous section.
In the first part of this section, we present some theoretical
background that helped derive the new algorithm, and in the
second part, we describe the algorithm and its properties.

Theoretical background

It is well–known that many problems can have several solu-
tions. Moreover, in the real world, applying even the same
solution to one problem several times may produce slightly
different outcomes. For example, using the same strategy to
reach the goal in some task in several experiments may take
slightly different amounts of time due to slightly different ini-
tial conditions or other uncontrolled factors in the environ-
ment. In view of this, it is natural to consider the cost C (e.g.
time) needed to achieve the goal as a random variable, and
the expected cost is thus

E{C} =
∑
C

C P (C)
(

or E{t} =
∫ ∞

0

t ϕ(t) dt

)
,

where P (C) is the probability that the goal will be achieved
exactly at cost C, and the summation is made across all pos-
sible values of C (or an integral on t ∈ [0,∞) if C is continu-
ous, such as time). Note, that in this notation, probability dis-
tribution P (C) (or probability density ϕ(t)) defines the prob-
ability of achieving success on any time interval on [0,∞),
which is different from the ACT–R notation.

Knowledge of distribution functions Pi(C) for different al-
ternative decisions i ∈ [1, . . . , N ] would allow us to calcu-
late their expected costs Ei{C}, and to choose the best rule.
Indeed, better decisions should have smaller expected costs.
For example, we can use several strategies to assemble a Ru-
bik’s cube puzzle. One such strategy can be a random rotation
of edges of the cube, and it may eventually assemble the puz-
zle, but it will probably take much longer than by using some
more sophisticated rules. Thus, one can choose the rule by
minimising the expected cost: i = arg min Ei{C} (optimi-
sation).

The problem is, of course, that usually there is little infor-
mation about Pi(C), especially when making a decision for
the first time, and in order to estimate the expected cost even
for one decision one would have to apply this decision several
times to get a sample estimate: C̄ = 1

k

∑k
j=1 Cj ≈ E{C},

where k is the number of tests.
We suggested to use Poisson distribution to approximate

Pi(C), if the cost is continuous, such as time (Belavkin,
2003). Indeed, if the expected cost of some strategy was
known, then one could repetitively solve a problem by this
strategy and would expect to observe the goal state at a rate
λ ≡ 1/θ, where θ ≈ E{C} is the average waiting time. The
probability of observing n = 0, 1, 2, . . . number of successes

by the time t in such a process is given by the Poisson distri-
bution

P (n | λ) =
(λt)n

n!
e−λt , n = 0, 1, 2, ... . (4)

Here, λ = 1/θ is called the mean count rate. Note, that for
λ → 0 (or θ → ∞) the probability (4) becomes zero. The
corresponding waiting times until the success events (costs)
are distributed according to Gamma distribution with mean
µ = nθ and variance σ2 = nθ2. Thus, a strategy with a
higher success rate λ should not only have a smaller expected
cost, but also the variance of costs is smaller.3

Equation (4) describes the conditional probability of n suc-
cesses on time interval [0, t] for a known λ. However, in our
case λ is unknown, and the expected cost E{C} ≈ θ is what
we are trying to estimate after observing n = 0, 1, . . . suc-
cesses on time interval [0, t]. This can be done using poste-
rior probability density ϕ(λ | n), which can be obtained from
Bayes’ formula

ϕ(λ | n) =
P (n | λ)ϕ(λ)

P (n)
.

In the worst case scenario when no information about prior
ϕ(λ) is available, we should assume that all λ are equally
probable (the maximum entropy principle). We can use the
following exponential function ϕε(λ) = εe−ελ with ε → 0
for such an unbiased estimate. Using this prior and Poisson
likelihood P (n | λ), one can show that

ϕ(λ | n) = t P (n | λ) .

Note, that after some finite period of time, if no successes
have been observed, the distribution of λ becomes a de-
creasing function with high rates having smaller probabilities.
Now, the posterior mean estimate of λ is:

E{λ} =
∫ ∞

0

λϕ(λ | n) dλ =
n + 1

t

(
E{C} ≈ t

n + 1

)

Here, t and n + 1 correspond to the Effortsi and Successesi

parameters in ACT–R equations (1) and (2).4 Note that we
can use the above estimate even when n = 0 (i.e. when no
successes have occurred). This property is very important,
because it means that we do not have to explore all the so-
lution paths in full trying to succeed. Indeed, in our prob-
abilistic interpretation of cost, any decision or strategy may
eventually lead to the desired goal (optimistic approach), al-
though the chance may be very small. An illustration of this
idea can be the classical example from the probability theory
of a monkey randomly typing on a keyboard. The probability
that it will come up with a literature text, such as War and
Peace, is in fact non–zero. Therefore, it is desirable for such
‘impractical’ decision paths to be explored only partially, and
after accepting a failure (n = 0) the system should give up
and try another decision (or strategy).

3We use the term success rate to describe the number of suc-
cesses per time, and term success ratio as the number of successes
per attempts.

4In ACT–R, Successesi = 1, 2, . . . = n + 1 with 1 being the
default value.
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We showed using the maximum entropy principle that the
optimal moment to make new estimation of the expected cost
and its posterior probability density ϕ(θ | n) is at t = θ ≈
E{C} (see Belavkin, 2003). If after the new estimation an-
other rule has smaller expected cost, then this also would be
the best moment to give up and try another alternative. The
following recursive procedure can be used to estimate E{C}
of one decision

∆t0 = Cmin , ∆tk+1 = θk =
∑k

i=0 Ci

n + 1
.

Here, k is the cycle number, and ∆tk is the time (or cost) in-
terval, on which, after the decision has been made, we expect
to achieve a success. If success does not occur before the end
of ∆tk, then a failure is accepted. The number of successes
(n) in this case does not change, but the efforts (t) increase
by Ck = ∆tk. Thus, on failures the estimate increases. If the
success occurs before ∆tk, then n increases by one, and ef-
forts increase by Ck < ∆tk. Thus, on successes the estimate
decreases. Figure 2 shows an example of E{C} estimation
over 20 cycles: After increasing above the E{C} level, its
estimate quickly converges to E{C}.

Figure 2: Estimated cost of one rule (vertical axis) as a func-
tion of test cycles (horizontal axis). Estimated cost converges
to the expected cost E{C} with cycles k → ∞.

Now, if several alternative decisions (rules) are being con-
sidered, the choice can be made by selecting the decision with
the smallest estimate.

Algorithm Description
The OPTIMIST algorithm uses the same subsymbolic infor-
mation as that of the standard ACT–R implementation — the
number of successes and the overall efforts associated with
each rule. However, instead of calculating probabilities P i

and average costs Ci (equations (1) and (2)), OPTIMIST es-
timates the expected costs of achieving the success by each
rule

θi =
Effortsi

Successesi
≈ Ei{C} . (5)

Next, the estimates θi of all the rules in the conflict set are
replaced by random numbers ξi, which we call random esti-
mated costs. Ideally, ξi should be drawn from Gamma distri-
butions with parameters θi that have just been estimated. As
has been mentioned earlier, these distributions have means
µi = θi and variances σ2

i = θ2
i (we are expecting only the

fist success, or n = 1). Thus, ξi represent a sample approx-
imating the distribution of expected costs for several rules in

the conflict set. Finally, the rule choice is made by minimisa-
tion of random estimated costs:

i = arg min ξi .

Below is the summary of the OPTIMIST algorithm:

1. Calculate the estimates θi of rules’ expected costs

2. Replace θi by corresponding random ξi

3. Fire rule i = arg min ξi

For computationally efficiency, instead of Gamma distribu-
tions, we used the following uniform distributions to generate
the random estimated costs

ϕ(ξi) =

{
1

2θi
if |ξi − θi| < θi

0 otherwise
. (6)

These distributions have means µi = θi and variances σ2 =
θ2/3. In addition, the algorithm can be made sensitive to the
successes per attempts ratio by using the following functions
to generate ξi:

ξi =
ki θi + rand(2θi)

ki + 1
, (7)

where ki = Successesi + Failuresi is the number of attempts.
Note that the algorithm does not use the goal value pa-

rameter G. However, to some extent it is identical to the
expected cost estimation θ (or more precisely its minimum
min θi). Thus, the goal value in OPTIMIST is dynamically
learned through equation (5). Figure 3 shows the dynamics
of min θi for twenty rules in an example conflict set.

Figure 3: Dynamics of the smallest estimated cost for a con-
flict set of 20 rules as a function of test cycles.

Figure 4: Dynamics of choice proportion (vertical axis) for
different rules (horizontal axis) as a function of time. From
left to right: The choice concentrates on more successful
rules.

Also, one has been mentioned earlier, θi controls the vari-
ance of the costs’ distributions. Thus, the noise variance in
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the conflict set also increases on failures and decreases on
successes. In addition, the variance may also decrease with
ki — the number of times a rule has been used (see Eq. 7).
Figure 4 shows from left to right the dynamics of choice pro-
portion between fifty rules (horizontal axis), with the best rule
placed in the middle. One can see that the choice quickly con-
centrates on the best rule.

Finally, because both θi and ki are rule specific parameters,
the randomness is different for all the rules in the system. In
general, the less successful rules in the system (smaller rates
1/θi) as well as newer rules (smaller ki) are more ‘noisy’
than rules with higher success rates and rules used more fre-
quently. One can see from above that OPTIMIST possesses all
three desired properties stated in the previous section: Noise
variance is rule specific, dynamic and proportional to the suc-
cess rate; Goal value is also dynamic and increases on av-
erage. Table 1 provides a comparison between the current
ACT–R mechanism and OPTIMIST.

Table 1: Comparison of ACT–R and OPTIMIST conflict reso-
lution mechanisms.

ACT–R OPTIMIST

n. of successes ni + 1 ni + 1
n. of attempts ki ki

efforts spent ti ti

success probability Pi = ni+1
ki

Pi(ni | λi)

expected cost Ci = ti

ki
θ = ti

ni+1

goal value G = const min θi

noise variance σ2 = const σ2
i ∼ θ2

i

utility Ui = PiG − Ci θi

conflict resolution maxUi min θi

A Model Example and Additional Parameters
The OPTIMIST conflict resolution algorithm was put into a
test in a model of the Yerkes and Dodson experiment. In this
classical animal learning task, mice were trained over sev-
eral days to escape a discrimination chamber (a box with two
doors) through one particular door. Ten tests per day were
performed with each mouse, and the number of errors was
recorded. Figure 5 shows one example of distribution of er-
rors, produced by the model with the OPTIMIST algorithm
and compared with the experimental data. Horizontal axis
represents the day numbers, and vertical axis shows the num-
ber of errors per day.

These first tests demonstrated that the new algorithm
works, and the model produces behaviour comparable to both
the data and a model with the standard conflict resolution
mechanism. Moreover, because noise variance in OPTIMIST
version has decreasing dynamics, the models with the new
algorithm do not suffer from lack of convergence discussed
earlier in the paper (see Figure 1). In fact, when using the
weighted average version of the algorithm (7), the conver-
gence is sometimes too fast. Therefore, a parameter has been
introduced to enable OPTIMIST to retain some level of noise.

Model  ( blc = 1.8,  K = 10, G = 30 )  vs  Data  ( set 2, 195 )
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Figure 5: A model with OPTIMIST conflict resolution com-
pared with experimental data (Yerkes & Dodson, 1908). Left:
Error curves. Right: Regression plot of errors per day.

In the current implementation, this is achieved by limiting the
number k used in equation (7).

Another adjustment to the algorithm concerns different lev-
els of stimulation. In ACT–R, different values of pay–off
can be represented by the goal value parameter G. In OP-
TIMIST, if the cost is only measured by time, then there is no
way of distinguishing between different levels of a pay–off
(i.e. values of reward or penalty). Indeed, the time spent on
choosing an option with a prize worth $10 is the same as for
$100. In order to account for these effects, the current OPTI-
MIST implementation uses reinforcement mechanism, which
can modulate the costs of particular outcomes:

• If a rule fired has explicit :failure flag, then penalty
value increases the cost of of the outcome and hence in-
creases the expected cost of the rule associated with the
failure.

• If a rule fired has :success flag, then the cost of the
outcome is reduced by the reward amount.

The values of penalty and reward are defined by the corre-
sponding variables in the system, and in fact they describe
characteristics of the environment and interaction of a cogni-
tive model with the environment, rather than internal state of
the model. Moreover, this implementation allows a modeller
to define several different rewards and penalties in various
places of the simulated environment (unlike global G).

Model  ( blc = 1.8,  K = 100, G = 50 )  vs  Data  ( set 2, 420 )
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Figure 6: The effect of reinforcement: A model and data
for an experiment with higher level of stimulation (Yerkes &
Dodson, 1908).

Figure 6 shows the results of a model of the Yerkes and
Dodson experiment with higher value of stimulation (in the
original experiment it was an electrical stimulus). The model
uses penalty value that modulates the costs of rules that are
choosing the wrong door leading to an error. As a result,
the model learns faster. Note that the data set the model is
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compared with is the same as shown on Figure 1. One can
see that the OPTIMIST model matches the data better than the
model with standard mechanism of ACT–R version 5 (R 2 has
increased from .85 to .93), which indicates in favour of the
new algorithm.

Discussion and Conclusions
In this paper, we challenged one of the most important mech-
anisms of a well–established cognitive architecture — the
conflict resolution of ACT–R. Many cognitive models in
ACT–R rely on and use the utility equation (3) and its pa-
rameters. One of such models, mentioned in this paper, is
the model of the Yerkes and Dodson experiment. The limi-
tations of the current ACT–R implementation, as encountered
by this model, has become the main motivation for the new
algorithm. For example, we have shown that a model with
dynamic control of noise variance by means of entropy re-
duction improves significantly the match between the model
and data (Belavkin & Ritter, 2003). As has been discussed
earlier in this paper, similar concerns have been expressed by
other researchers.

The new algorithm uses some elements of statistical
decision–making theory and estimates expected costs of pro-
duction rules using a Poisson distribution. Interestingly, sev-
eral studies on kinetics of choice in animals learning have
suggested earlier that estimation of the Poisson rate λ (or
equivalently θ ≡ 1/λ) may explain animals’ choice be-
haviour. In particular, Myerson and Miezin (1980) used a
Poisson distribution to explain the change of response fre-
quency in rats (see also Mark & Gallistel, 1994). Moreover,
an attempt to incorporate this into the ACT–R theory has been
already made in a form of the events discounting mechanism
(Lovett & Anderson, 1996; Lovett, 1998). Unfortunately, this
mechanism suffers from computational overhead and turns
out to be impractical for complex models. The new algo-
rithm, introduced in this paper, directly estimates the rate of
a Poisson process. In addition, the algorithm is computation-
ally efficient and uses the standard subsymbolic information
of ACT–R, so it is relatively easy to implement.

The first implementation of the algorithm as an overlay to
ACT–R has been created, and it is available for download on

http://gold.mdx.ac.uk/˜rvb/software/optimist/

The operation of the algorithm has been demonstrated on
a model. Early results are in favour of the new algorithm and
suggest that it indeed may improve the match of some cogni-
tive models to data. However, more tests in different models
and on other data sets still have to be done. It is, therefore,
suggested to use the new algorithm in addition to the standard
to provide valuable feedback for further development.
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