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Abstract

Coalition formation is a type of mixed-motive game in
which n players strategically negotiate to secure posi-
tions in advantageous contracts. In this study, we find
that systems of agents which learn by a simple lin-
ear updating rule successfully can model the outcomes
of human players across five coalition formation games
studied experimentally by Kahan and Rapoport (1974).
“Greedy” agents, which are deterministic and maximiz-
ing in their selection of whom to offer to, achieve out-
comes on par with humans within a few hundred trials.
In comparison, “Matching” agents which use probability
matching2 for selecting whom to offer to achieve overall
outcomes qualitatively similar to those of humans, but
not as closely as the Greedy agents do.

Introduction
There recently has been interest in modeling human
learning in strategic games, both in economics (Roth
and Erev, 1995; Mookherjee and Sopher, 1997; Erev and
Roth, 1998; Camerer and Ho, 1999) and in cognitive sci-
ence (e.g., Ritter and Wallach, 1998; Lebiere et al., 2003).
Previous efforts have focused on modeling learning in re-
peated, extensive and normal form games. Here, we ex-
tend the literature by modeling the outcomes reported in
an experimental study of a characteristic function form
game (Kahan and Rapoport, 1974).

Our goals in this paper are to see if agents endowed
with a minimal learning rule can model the play by hu-
mans in the coalition formation game of Kahan and
Rapoport (1974), and to compare the two selection
rules–Greedy, and Matching–to be described in detail
later. Because the human data available is limited, our
approach is not to produce entire trajectories of play, but
to see if the overall behavior of our agents corresponds
to that of humans.

Previous work of Dworman et al. (1995a,b,c, 1996)
used genetic programming to explore coalition games

1Correspondence may be addressed to Alex Chavez.
2Probability matching holds that humans and other an-

imals choose between different alternatives in ratios that
matches those of their respective rewards. The rule has been
used successfully to model dynamic learning in strategic con-
texts (Erev and Roth, 1998, e.g.,). However Sarin and Vahid
(2001) have contested that non-probabilistic selection, where
the agent always selects the action that it currently perceives
will yield the highest payoff, can produce results as good as
those obtained under the Erev and Roth (1998) model. The
latter corresponds to our Greedy agents, and the former to
Matching agents.

similar to those in this paper, where agents were explicit
strategies in the space of offers and players. However,
such agents cannot cannot be said to have a cognitive
component, as each agent represents a single rule. In
contrast, our agents represent players of low or minimal
rationality, who must make decisions on how much to
offer and to whom. Finally, while characteristic function
games have been investigated widely in terms of out-
comes or solutions through both experimental and math-
ematical approaches (see Kahan and Rapoport, 1984;
Uhlich, 1990, for overviews), less attention has been paid
to the learning processes associated with such games.

In the next section of our paper, we describe the coali-
tion formation game, and also present the experimental
study of Kahan and Rapoport (1974). We then describe
our model, and finally present simulation results. While
we only explore three-person games with a certain char-
acteristic function, we can hope our results generalize to
games with larger numbers of players.

Coalition Formation

Description
In the coalition formation game with a set of n players
P , any of the players can join together to form a coalition
S ⊆ P . Such a coalition can attain a guaranteed payoff of
v(S), called the coalition value, where v is defined over all
coalitions and is known as the characteristic function of
the game; along with P , this defines the coalition game.
While it generally is advantageous for a player to be in-
cluded in some coalition,3 it is up each member of the
coalition to secure a portion of v(S) for herself or himself.
Once a coalition S forms an agreement of how to split
v(S), then this agreement is enforced. While some coali-
tions may have greater guaranteed payoffs than others,
individual players should be drawn to those coalitions
where they can attain the greatest individual reward.

To provide an example, imagine a situation where
there are three researchers (players), A, B, and C, each
of whom has some resource needed to run a study. No
researcher can run the study alone (so that v(A) =

3If the condition v(AB) > v(A) + v(B) holds for all play-
ers (where AB is shorthand for the coalition {A, B}), then
v said to have the property of superadditivity. Such a set of
relations specifies that players achieve a higher joint payoff in
a coalition compared to the sum of their payoffs when acting
alone, and represents comparative advantages. Superadditiv-
ity holds for all games studied here.
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v(B) = v(C) = 0), but any two of them can collaborate
to run the study. Assume that the combined resources
of A and B permit them to run the “best” study (say
v(AB) = 95); that A and C can run the next “best”
one (let v(AC) = 90); and B and C the worst one (let
v(BC) = 65). Assume further that the coalition ABC
does not yield any value, so that v(ABC) = 0 (there is a
limit on the number of researchers who can be involved).
Thus, the characteristic function v has been defined com-
pletely, so the situation constitutes a coalition game.

Now, researcher A must ask the question, “With
whom should I propose a coalition, and how should I pro-
pose to allocate the resources assigned by v?” For exam-
ple, A might be greedy and propose the split (65, 30, 0),
where A receives 65 (say, in units of recognition), B re-
ceives 30, and C is not included in the winning coali-
tion AB (note 65 + 30 = 95 = v(AB)). But realizing
that C would be better off receiving even a small payoff,
B might then propose the allocation (0, 40, 25) for the
coalition BC, where both B and C do better than they
would under A’s proposal. The bargaining might con-
tinue, with C trying to increase her payoff by proposing
the allocation (60, 0, 30) (excluding B from the coali-
tion). This last proposed allocation is special because
neither player in the coalition (e.g. A) can make an offer
to the excluded player (B) without the excluded player
(B) being able to make a counteroffer to the remaining
player (C) in which they both do better than under the
original allocation; in this sense, the proposed split is sta-
ble (Aumann and Maschler, 1964). For example, say A
was not satisfied with the proposed allocation (60, 0, 30),
and decides to propose a coalition with B with the split
(61, 34, 0). In this case, B could offer (0, 35, 30) to C,
which is another stable split. Along with (0, 0, 0) (where
no players form a coalition) and (60, 35, 0), these stable
allocations form the solution concept of the “bargaining
set” of Aumann and Maschler (1964) (See also chapters
3 and 4 of Kahan and Rapoport, 1984). As Kahan and
Rapoport (1974) point out, the bargaining set solution
does not predict which of the four above allocations will
emerge.

An Experimental Study

In their study, Kahan and Rapoport (1974) used human
subjects in a computerized experiment designed to test
behavior in situations similar to the one described above.
48 undergraduate male subjects were divided into groups
of 16 and participated in three separate experiments. In
the first experiment, messages were public, so that all
players were aware of the others’ offers. Subjects had to
send messages publicly in a fixed order (as opposed to
being able to speak at will). In the second experiment,
messages could be private, but again were sent in order.
In the last experiment, messages could be private, but
were sent at will. The 16 players in each experiment
were broken up into 4 quartets, each of which played
five 3-person characteristic function games for 4 itera-
tions. For each game, one member of the quartet would
sit out as an observer – this procedure was employed to
allow subjects to reflect upon the task, and to increase

Game:
I II III IV V

Char. Function
v(AB) 95 115 95 106 118
v(AC) 90 90 88 86 84
v(BC) 65 85 81 66 50

Quota Values
ωA 60 60 51 63 76
ωB 35 55 44 43 42
ωC 30 30 37 23 8

Table 1: Characteristic Function and Quota Solutions
by Game

the validity of the assumption of independence between
games. Order of play between and within games was ran-
domized subject to the condition that no player would be
observer in two consecutive rounds. Subjects were given
an extended practice session. The 5 games are shown in
Table 1.

Quota Values
The type of characteristic function game considered here
is a special case known as the quota games (Kahan and
Rapoport, 1974, 1984), where the conditions v(ABC) =
v(A) = v(B) = v(C) = 0 and v(AB), v(AC), v(BC) > 0
hold. Such games have quota solutions, which are gener-
ally accepted by cooperative game theory, and are given
by the following equation for player i:

ωi = .5
∑

I(j, k) ∗ v(jk) ∀j, k ∈ P, j 6= k (1)

where I(j, k) = 1 if i = j or i = k, and equals -1
otherwise (note that ωi + ωj = v(ij)). So for exam-
ple, player A’s quota simply is calculated by .5(v(AB)+
v(AC)−v(BC)). These quotas represent normative pre-
dictions; when players follow a set of weak rationality
conditions (e.g. of the bargaining set (Aumann and
Maschler, 1964)), they will arrive at the quota values.
The quota solution is a solution concept for character-
istic function form games, just as the Nash equilibrium
is one for normal form games. Table 1 shows the quota
values for players A, B, and C in all 5 games.

Kahan and Rapoport (1974) consider for each player
the mean reward as a member of the winning coalition
(MRAC). Because solution concepts such as the quota
make predictions about how much players will get given
that they are in a coalition, MRAC is the appropriate
measure if one wishes to test the theory. Kahan and
Rapoport (1974) report that human subjects’ overall de-
viations from the quotas are not significantly different
from zero, for each of the experimental conditions; this
reinforces that idea that the quota is an important the-
oretical notion. Table 2 displays the human data in an
aggregate form.
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I II III IV V
Experimental MRAC, Averaged across Experiment
A 57.43 63.00 53.73 62.07 71.6
B 38.90 54.40 43.40 45.20 45.70
C 29.53 26.93 34.67 19.27 18.17

Experimental Frequency of Coalition Structures
A,B,C .0208 .0000 .0000 .0000 .0000
AB,C .5625 .5208 .3542 .7292 .8750
AC,B .3125 .1667 .3333 .1458 .1250
BC,A .1050 .3125 .3125 .1250 .0000

Table 2: Human Data (Kahan and Rapoport, 1974)

While MRAC is the appropriate measure for compar-
ing human performance with theoretical predictions, if
one wishes simply to measure how well the subjects do in
terms of wealth extracted from the game, then the mean
reward (MR) is more appropriate. MRAC and MR can
differ greatly; if a stubborn player s always refuses to
accept any amount below his quota + 20, for example,
then he may be included in the winning coalition once or
twice out of a hundred trials, so that his MRAC would be
ωs + 20, but his MR close to zero. The difference arises
because in rounds when a player is not in the winning
coalition, he or she receives a payoff of zero, which the
MRAC ignores. We report both MRAC and MR below.

The Model

We wish to consider the behavior of agents using a sim-
ple learning rule in the context of the five coalition for-
mation games above, and to see if these agents achieve
outcomes close to those of humans in the experimental
study of Kahan and Rapoport (1974). The model as-
sumes that each player updates a belief about how much
payoff it can expect from every other agent. We shall
refer this value as player i’s aspiration level, following
Macy and Flache (2002), to player j at a given time t,
or Aj

i (t) for short. Aspiration levels are updated over
time by adding a fraction of the difference between ac-
tual reward received from the environment, and the pay-
off level expected, as given by the equation (e.g., Sutton
and Barto, 1998; Macy and Flache, 2002):

Aj
i (t) = Aj

i (t− 1) + α[rj
i (t)−Aj

i (t− 1)] (2)

where α ∈ (0, 1) represents a recency constant, and rj
i (t)

is the reward received by player i from being in a coali-
tion with player j at time t, as specified by their agree-
ment. For all results reported here, we set α = 0.2, a
typical value in the reinforcement learning literature. In
simulations not reported here, α values between 0.1 and
0.4 yielded results similar to those in this paper. In ad-
dition to the updating rule given in Equation (2), we
considered two methods for agents to decide whom to

offer to. They are given in Table 34.

Probability of i Offering to j

Greedy
1 if j = arg max

p∈P
Ap

i (t)

0 else

Matching Aj
i (t)/

∑
p∈P

Ap
i (t)

Table 3: Selection Rules

In addition, each agent makes offers at its aspiration
levels, and not below. So for example, if agent A has
aspiration levels of 50 to agent B and 65 to agent C,
then it would offer v(AC) − 65 to agent C with prob-
ability 1 under the Greedy rule. Under the Matching
rule, it would offer v(AB) − 50 to agent B with prob-
ability 65/115 and v(AC) − 65 to agent C with proba-
bility 50/115. While Sarin and Vahid (2001) note that
Greedy (i.e. non-probabilistic) action selection is in line
with the traditional economic precept of choice as max-
imization over beliefs, others have found that humans
and other animals use probability matching to select be-
tween actions associated with a reward (e.g. Gallistel,
1990). Thus, we investigate the performance of both
types of selection rules.

Also, our agents are myopic subjective maximizers in
their offer behavior, in that they make offers based on
the maximum they currently “think” they can get, with-
out considering the possible ramifications of their offer
behavior on the future state of the system. Such agents
represent players who vastly simplify their objective en-
vironment, collapsing the available history of offer be-
havior for each other player into a single real value, Aj

i
(Sarin and Vahid, 2001). Again, we wish to explore the
behavior of agents representing players of minimal ratio-
nality, and to see if they can model the overall results
of humans. The simple agents described in this section
satisfy such a condition.

Finally, simulations were run as follows. At the start
of a simulation, each agent i’s initial aspiration level
to j was initialized from the uniform distribution on
[0, v(ij)]5. Next, for each episode, an agent was selected
at random as the initial offerer. This agent made an of-
fer to a receiving agent, according to the rules described
above. The receiving agent accepted if the offer amount
was greater than or equal to its current aspiration level
to the offering agent. If it declined, then the receiving

4In simulations not reported here, other relatively ex-
ploitative selection methods drawn from reinforcement learn-
ing literature, such as ε-greedy and Softmax selection (Sutton
and Barto, 1998), produced results similar to those reported
below for the Greedy agent.

5We found that setting Aj
i (0) = v(ij)/2 – that is, to half

of the coalition value between i and j – did not affect MRAC
or MR in expectation (it resulted in less variance).
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Figure 1: Mean Reward as Members of Winning Coalition for Human Subjects, Greedy Agents, and Matching
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Figure 2: MRAC over Time in Games I and IV, for Greedy and Matching Agents
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Figure 3: Frequency of Coalition Formation for Human Subjects, Greedy Agents, and Matching Agents
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Figure 4: Mean Reward for Human, Greedy, and Matching Agents

agent would become the new offering agent, and so on.
The process continued until a receiving agent accepted
an offer, which always happened within 6 rounds. When
an episode ended, agents’ aspiration levels were updated,
and the next episode was started. This process contin-
ued until a maximum number of episodes was reached,
whereupon the simulation would terminate.

Results

The MRAC values for the data from Kahan and
Rapoport (1974) for human subjects are presented along
with results for Greedy and Matching agents (20 sim-
ulations of 1,000 episodes each) in Figure 1. As Fig-
ure 1 shows, the MRAC values of the agents, especially
for the Greedy type, closely fit those of human subjects
(r = .98 for the Greedy agents, and r = .96 for the
Matching agents). Figure 2 shows the rate of conver-
gence of MRAC values for Greedy and Matching agents
in Games I and IV (Games II, III, and V are not dis-
played for space reasons). As can partially be seen from
the figure, MRAC values for Greedy agents rapidly ap-
proach the quota solutions in Games II, III, and IV, more
slowly in Games I and V, and never for Matching agents
(this is explained later). Figure 3 shows frequencies of
coalition structures for human subjects and for simu-
lations. The model does not predict some important
differences in these frequencies. Namely, player A is in-
cluded in the winning coalition more often than in the
human data than in the simulations, and player C less
often (this can be seen for player A by looking at the AC
and AB blocks together, and for player C by looking at
the BC and AC blocks together).

As discussed previously, to gauge the overall perfor-
mance of players, it is useful to consider the measure
of mean reward (MR) of players. MR values for hu-
man subjects, Greedy agents, and Matching agents are
shown in Figure 4. The MR values for both agent types
fit the data of human subjects well, with Greedy agents
again doing better than the Matching agents (r = .97
vs. r = .95). However, there are some noticeable de-
partures. For example, player A has lower MR values
and players C higher, for agents vs. humans. This is
attributable directly to the differences in the frequencies
of coalition formation (Figure 3), where player A is in
the winning coalition less often (and player C less more)
for agents vs. humans.

We would like to make two statements here about our
findings. The first is that systems of relatively exploita-
tive agents (e.g. Greedy agents) converge to neighbor-
hoods of quota solutions, and that this outcome is robust
to variations of initial aspiration levels. The second is
that the difference between an agent’s initial aspiration
level and its quota value is related to its speed of con-
vergence in MRAC value (the smaller the difference, the
faster the convergence). This may be important because
although humans subjects arrived at the quota solution
in only 4 iterations of play, their initial offers appear to
have been very close to their quota values6. Whether this
occurred as a result of practice sessions, transfer between
games or from acting as the observer, or from delibera-
tion is not clear. We merely point out that if the initial
aspiration levels of the agents are close to their quota
values, then their MRAC values converge almost imme-
diately to the quotas (see e.g. agents A and B in Game
IV of Figure 2).

Conclusion
There is now an extensive literature in behavioral game
theory that aims at describing, modeling, and explain-
ing human behavior in games (see Camerer, 2003; Kagel
and Roth, 1995, for literature reviews)). This literature
has discovered that a variety of simple learning models
provide reasonably good predictions of human behavior
in laboratory games. A number of authors have found
that reinforcement learning models supplemented with
additional heuristic rules (e.g., pertaining to the specifics
of the game) achieve good predictive power. Moreover,
other simple models of learning, e.g. using activation-
based recall (Lebiere et al., 2003), have also provided
good accounts of human behavior in games.

In the present work, we found that systems of agents
using a simple learning rule can model human data rea-
sonably well, and that their performance converges to
the theoretical predictions of quota values in a class of
3-player, coalition formation games. The MRAC values
for both Greedy and Matching agents were very close to
those of humans, while their MR values showed some sys-
tematic differences from the human data. Although we
do not claim the learning rule presented in Equation (2)

6Kahan and Rapoport (1974) report that first offers made
to the winning coalition had an average deviation over games
and coalitions of -2.95, e.g..
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fully accounts for the way people play these games, we
submit that it is a fruitful and practicable way of inves-
tigating strategic environments. While much remains
to be done, it is intriguing that the agents’ behavior so
closely matches the human data, much more so than has
been reported for simple reinforcement learning models
in non-cooperative games.

The results of both agent and human bargaining re-
sults are interesting, but perhaps the most important
questions regarding bargaining games pertain to their
dynamics. When will (and when should) a player accept
an offer? If a player chooses to reject, how much and to
whom should he/she offer? The answers to these ques-
tions may depend not only on the coalition values and
other initial parameters of the game, but also on the his-
tory of offers and round number. For example, if only 2
rounds are left before the game is ended by default, can
player A (with the highest total coalition value) extract
more reward by making an aggressive offer? or, perhaps
he/she must accept to avoid forfeiting any positive re-
ward for the game. To answer these questions, different
approaches such as classifier systems are needed, for ex-
ample to find bargaining rules such as (for Agent A): “If
round is 4 and offeringAgent is B and amount is at least
aspirationLevel−0.1 ∗ v(AB), then accept.”

In sum, the prospects for mutual benefit between the
cognitive modeling community and the behavioral game
theory community are bright indeed.

Acknowledgements

The work reported here was supported in part by NSF
grant number SES-9709548 and funding from the Uni-
versity Scholars Program at the University of Pennsyl-
vania. We thank two anonymous reviewers, Frank Lee,
and Dario Salvucci for helpful comments.

References
Aumann, R. J. and Maschler, M. (1964). The bargaining

set for cooperative games. In Dresher, M., Shapley,
L. S., and Tucker, A. W., editors, Advanced in Game
Theory. Princeton University Press.

Camerer, C. and Ho, T. (1999). Experience-weighted
attraction learning in normal form games. Economet-
rica, 67:827–874.

Camerer, C. F. (2003). Behavioral Game Theory: Ex-
periments in Strategic Interaction. Russell Sage Foun-
dation and Princeton University Press, New York, NY
and Princeton, NJ.

Dworman, G. O., Kimbrough, S. O., and Laing, J. D.
(1995a). Bargaining in a three-agent coalitions game:
An application of genetic programming. In Working
Notes: AAAI–95 Fall Symposium Series, Genetic Pro-
gramming, pages 9–16, Boston, MA, November 10-12,
1995. AAAI. File: gpconf08.doc.

Dworman, G. O., Kimbrough, S. O., and Laing, J. D.
(1995b). On automated discovery of models using ge-
netic programming: Bargaining in a three-agent coali-
tions game. Journal of Management Information Sys-
tems, 12(3):97–125.

Dworman, G. O., Kimbrough, S. O., and Laing, J. D.
(1995c). On automated discovery of models using ge-
netic programming in game–theoretic contexts. In
Nunamaker, Jr., J. F. and Sprague, Jr., R. H., edi-
tors, Proceedings of the Twenty-Eighth Annual Hawaii
International Conference on System Sciences, Vol-
ume III: Information Systems: Decision Support and
Knowledge-Based Systems, pages 428–438, Los Alami-
tos, CA. IEEE Computer Society Press.

Dworman, G. O., Kimbrough, S. O., and Laing, J. D.
(1996). Bargaining by artificial agents in two coalition
games: A study in genetic programming for electronic
commerce. In Koza, J. R., Goldberg, D. E., Fogel,
D. B., and Riolo, R. L., editors, Genetic Program-
ming 1996: Proceedings of the First Annual Genetic
Programming Conference, July 28-31, 1996, Stanford
University, pages 54–62. The MIT Press.

Erev, I. and Roth, A. E. (1998). Predicting how people
play games: Reinforcement learning in experimental
games with unique, mixed strategy equilibria. The
American Economic Review, 88(4):848–881.

Gallistel, C. R. (1990). The Organization of Learning.
The MIT Press, Cambridge, MA.

Kagel, J. H. and Roth, A. E., editors (1995). The Hand-
book of Experimental Economics. Princeton University
Press, Princeton, NJ.

Kahan, J. P. and Rapoport, A. (1974). Test of the bar-
gaining set and kernel models in three-person games.
In Rapoport, A., editor, Game Theory as a Theory
of Conflict Resolution, pages 119–160. D. Reidel, Dor-
drecht, The Netherlands.

Kahan, J. P. and Rapoport, A. (1984). Theories of Coali-
tion Formation. Lawrence Earlbaum Associates, Hills-
dale, NJ.

Lebiere, C., Gray, R., Salvucci, D., and West, R. (2003).
Choice and learning under uncertainty: a case study
in baseball batting. In Proceedings of the 25th Annual
Conference of the Cognitive Science Society.

Macy, M. W. and Flache, A. (2002). Learning dynam-
ics in social dilemmas. Proceedings of the National
Academy of Science (PNAS), 99(suppl. 3):7229–7236.

Mookherjee, D. and Sopher, B. (1997). Learning and
decision costs in experimental constant sum games.
Games and Economic Behavior, 19(1):97–132.

Ritter, F. E. and Wallach, D. P. (1998). Models of two-
person games in act-r and soar. In Proceedings of the
2nd European Conference on Cognitive Modelling.

Roth, A. E. and Erev, I. (1995). Learning in extensive-
form games: Experimental data and simple dynamic
models in the intermediate term. Games and Eco-
nomic Behavior, 8:164–212.

Sarin, R. and Vahid, F. (2001). Predicting how people
play games. Games and Economic Behavior, 34:104–
122.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement
Learning: An Introduction. The MIT Press, Cam-
bridge, MA.

Uhlich, G. R. (1990). Descriptive Theories of Bargain-
ing. Springer-Verlag, Berlin, Germany.

yguo
 75




