Architectural Explorations for Modeling Procedural Skill Decay

Ronald S. Chong (rchong@gmu .edu)
Applied Research in Cognition and Human Factors
Department of Psychology, MSN 3F5
George Mason University
Fairfax, Virginia 22030-4444

Abstract

There is great interest in mission-critical domains to minimize
the decay of expert skill: the decrement in performance
observed after a period of disuse. To better understand skill
decay and to test theories and systems aimed at minimizing its
effects, it is useful to create computational models capable of
exhibiting its main effects. No models of expert knowledge
(represented as production rules) skill decay have been devel-
oped within cognitive architectures. This work explores how
skill decay might be realized within an architecture. It also dis-
cusses implementation issues with a focus on psychologically-
plausible approaches and explanations of skill decay effects.
Although implemented in the EASE architecture, the issues
discussed in this paper are relevant to all rule-learning, produc-
tion-system based cognitive architectures.

Introduction

The adage “practice makes perfect” summarizes the fact that
effort is needed to attain and maintain expert levels of per-
formance. Empirical work has shown a that a break from
training or performance results in decrements in task profi-
ciency; see Arthur, Bennet, Stanush & McNelly (1998) for a
review. Specifically, this robust phenomena, termed “skill
decay” produces performance decrements that are positively
associated with the length of the period of non-use (retention
interval).

There is great interest in both civilian and military
domains to find ways to minimize the effect of skill decay.
To better understand the issues surrounding skill decay and
retention, and to then test theories and systems aimed at
minimizing its effects, it is useful to create computational
models capable of exhibiting its main effects.

Four computational cognitive architectures—EPIC, ACT-
R, Soar, and EASE—represent expert knowledge as produc-
tion rules. However, to date, no models of procedural skill
decay have been demonstrated in these systems:

+ EPIC (Kieras & Meyer, 1997) does not have a rule

learning mechanism.

* ACT-R (Anderson & Lebiere, 1998) contains many
learning mechanisms, but most are focused on declara-
tive knowledge. Many different production learning
approaches have been explored and abandoned. The
most recent approach being developed is production
compilation (Taatgen & Lee, 2003).

* Soar (Newell, 1990), from its inception, has included a
rule learning mechanism called chunking (Laird,
Rosenbloom, & Newell, 1984). Chunking, a form of

knowledge compilation, has been used to model many
forms of learning but not the decay of skill.

* EASE (for Elements of ACT-R, Soar and EPIC) is a
recent integrated hybrid architecture based on the rec-
ognition that the previous architectures contain comple-
mentary mechanisms. Initially, the cognitive processor
of EPIC was substituted for Soar while keeping EPIC’s
sensory, perceptual, and motor processes. This integra-
tion was called EPIC-Soar (Chong, 1998). With the
addition of a version of ACT-R’s base-level learning
(BLL) mechanism to Soar’s declarative memory
(Chong, 2003) and the work reported here, the integra-
tion was renamed to EASE. With regard to modeling
skill decay prior to this work, EASE has no greater

capability than its ancestor architectures.

Unlike declarative memory in ACT-R and EASE, learned
rules (procedural memory elements) in ACT-R, Soar, and
EASE are retained regardless of their recency or frequency
of use or their utility in accomplishing the model’s goals.
Beginning with the premise that procedural skill decay can-
not be modeled using the existing set of mechanisms, the
research question then is: what kind of mechanism is neces-
sary and what are its implications?

This paper reports on exploratory work that applies ACT-
R’s base-level learning mechanism to learned rules (proce-
dural memory) in the EASE architecture. An analogical
approach has guided this work: a declarative memory mech-
anism has been applied to procedural memory and the
challenge has then been to map and implement declarative
mechanism concepts into the procedural mechanism.

This paper briefly describes chunking, the base-level
learning mechanism, and discusses novel issues that arise
when applying the mechanism to rules. Also presented are
some preliminary findings and a discussion of design issues.

Approaches to Modeling Procedural Skill Decay

The literature generally discusses skill decay in terms of
knowledge retention or forgetting. This characterization
makes ACT-R’s base-level learning mechanism, a mecha-
nism that mediates knowledge availability, a natural
candidate mechanism to applying to learned procedural
knowledge (rules). This is the approach used in this work.

However, other explanations of the phenomena are possi-
ble. Skill decay may be due to interference, where the
decrement in performance is due to interference between the
task knowledge and the non-task activities performed during
the retention interval.

The production system formalism used in these architec-
tures suggests another possible explanation: if the conditions
(cues) of a rule are not satisfied by the declarative elements in
working memory, the rule will not match and fire. There-
fore, skill decay may not be due to forgetting, but rather due
to cue unavailability. What may appear to be rule forgetting
may be the inability to retrieve (match) a rule due to insuffi-
cient declarative cues. Perhaps the cues were not perceived.
Perhaps they were perceived but not fully processed by cog-
nition. Perhaps they were fully processed but are not
accessible (decay, interference, etc.).

While a complete story of skill decay surely involves these
and other mechanisms, this work focuses only on skill decay
as knowledge retention/forgetting and the architectural
issues associated with forgetting procedural knowledge.

Chunking in a Nutshell

EASE, by inheritance from Soar, incorporates chunking, a
mechanism for learning production rules. When a model, as
it is progressing towards a goal, reaches a point where it can-
not continue due to a lack of knowledge—an impasse—the
architecture (Soar or EASE) automatically creates a new
problem solving context (a subgoal). Processing in the sub-
goal is directed at resolving the impasse so that progress
towards the initial goal can be resumed. As a by-product of
resolving an impasse and removing the subgoal, the chunk-
ing mechanism creates rules called chunks' that summarize
the processing in the subgoal that resolved the impasse.
Chunks are used the next time the model is in the same (or
similar) situation that previously caused an impasse, thereby
avoiding the impasse and the associated processing time.

This learning mechanism has been found to be sufficient
for producing a variety of learning such as concept learning,
learning from instruction, learning multiple-task coordina-
tion, and correcting faulty knowledge.

Base-Level Learning Mechanism:
Details and Parameters

Base-level learning (BLL) is the ACT-R subsymbolic mech-
anism that determines the activation of working memory
elements as a function of recency and frequency of their use.
An element’s activation then contributes to its availability
and retrieval time. The functional role of this mechanism is
to adapt declarative memory to the complexities of behavior,
the task, and the environment.

A hypothesis of this work is that a similar mechanism,
applied to procedural memory, is necessary to model aspects
of skill decay. The version of the BLL. mechanism applied to
declarative memory in EASE (Chong, 2003) was applied to

L Tn discussions of ACT-R and Soar, the term chunk is a common
point of confusion. An ACT-R chunk is a declarative structure.
A chunk in Soar (and EASE) is a rule; a procedural structure.
This latter meaning is used throughout this paper. The phrase
“learned rule” will sometimes be used to emphasize this meaning.

EASE’s procedural memory. The equations that govern the
mechanism are:

A =B +¢
B, =B +1In(Xt)

A, describes the activation of a chunk (learned rule) as the
sum of the intrinsic (base-level) activation of the chunk (B;)
plus a noise component, €. In the base-level learning equa-
tion, t; is the time since the j™ reference of chunk ¢ and
represents a history of uses of the chunk. B; therefore is a
function of the frequency and recency of a chunk’s use. As a
simplification, the mechanism and equations do not use the
spreading activation component found in the ACT-R mech-
anism and equations.

Most of the ACT-R parameters associated with this base
level learning mechanism are present in this version of the
mechanism. The mechanism is controlled by four free
parameters, three of which are variables in the activation
equation:

* Base-level constant (B): this value specifies the initial
activation given to a newly created chunk. f in ACT-R
is commonly set to 1.0.

* Learning rate (d): the rate of activation decay. The ACT-
R default is 0.5.

* Transient noise (€): noise is sampled from a zero-cen-
tered logistic distribution. A common value is 0.25.

* Retrieval threshold: when activation falls below this
value, the chunk cannot be retrieved and is effectively

forgotten. The ACT-R default value is 0.0.

These ACT-R common and default values were adopted
for this work because treating established parameters as con-
stants, instead as tunable variables, imposes strong and
desirable constraints on model development and fitting,
leading to more informative models of behavior.

Base-Level Learning Applied to Chunks

The mechanism as described operates similarly to base-level
learning for declarative memory in ACT-R. When a chunk
is learned, it receives an initial level of activation (B). The
activation decays logarithmically as a function of time and
frequency of a chunk’s use. Each time a chunk is used, its
activation is momentarily boosted and then begins to decay.
When the activation of a chunk falls below the retrieval
threshold, the chunk will not be retrievable and effectively
forgotten.

However, because the base-level learning mechanism is
being applied to rules, there are important differences in the
implementation details relative to its use for declarative
memory. These will be discussed now.

Handling “decayed” (forgotten) chunks

When a chunk’s activation falls below the retrieval threshold
(the chunk has “decayed”), the chunk must not be executed.
There are two ways to accomplish this. The first is simply to
excise decayed chunks. The second option is to allow

decayed chunks to remain in procedural memory and to
match, but to prevent their firing.

The first option is the easiest to implement, particularly
since EASE and Soar use the very complex, but highly effi-
cient, Rete match algorithm (Forgy, 1982). However,
excising decay chunks entails deleting a chunk’s history of
use. The consequence is that a relearned chunk will have the
same likelihood of being forgotten as the original chunk. Yet,
in humans, knowledge becomes more durable through
repeated learning and use.

ACT-R’s BLL mechanism accounts for this observation
by retaining decayed (forgotten) declarative memory ele-
ments. When a duplicate memory element is created it is
“merged” with the decayed element—their histories of use
are concatenated—thereby enhancing the durability of the
decayed element.

To exhibit the same effect for procedural knowledge, in
EASE, decayed chunk (and their history lists) are retained
(and can match) but are inhibited from firing. The next time
the decayed chunk would have fired, the impasse that origi-
nally caused the chunk to be learned would recur. Once the
impasse has been resolved, a new chunk would be learned
and likely be a duplicate of the decayed chunk. If so, then
their histories are merged, resulting in immediately higher
activation and greater durability for the decayed chunk.

Activation Boosting: The Definition of “Use”

There are two conditions that cause a momentary increase in
the activation of a chunk. The first condition, described
above, occurs when a newly learned chunk is merged with a
decayed duplicate chunk.

The second condition occurs when a chunk is used. In
most architectures, “used” would be defined as “when the
chunk fires.” However, EASE (due to Soar) provides an
additional definition: “a chunk is ‘used’” when it influences
the goal-directed behavior of a model”. This definition arises
from EASE’s fine-grained procedural knowledge representa-
tion (e.g. proposal, application, and preference knowledge)
and a control structure where every goal-directed action is sub-
Ject to deliberation.

Consider, for example, a model for playing a maze-based
game. At any intersection point in the maze, the model has
many options for its next move; e.g. move-forward, turn-left,
turn-right, move-back. Because EASE simultaneously fires
all rules that match, all four options (goals) could be simulta-
neously proposed. To resolve the conflict (only one goal can be
pursued at a time), other production rules are needed that
specify context-specific goal preferences. These can be unary
(“move-left is best when...”) or binary (“move-back is better
than move-forward when...”) propositions. After delibera-
tion of the preference ordering, one option is selected (say,
move-left) as the goal the model will pursue.2

Now suppose that all four options were proposed by
chunks. If “use” was defined as “when the chunk fires”, then

2 Note that Soar resolves goal conflict symbolically through explicit
knowledge. ACT-R resolves rule conflict through subsymbolic
mechanisms; i.e. expected utility. It also provides an optional fa-
cility to decay the parameters used in computing expected utility.
These are complementary approaches that can demonstrate ad-
aptation at different levels and time-scales.

all four chunks would be boosted equally. Over time, the
model would not adapt to the situation where one action
may be consistently preferred.

In contrast, if the mechanism boosts only the chunk that
influenced the goal-directed behavior of the model (the
chunk that proposed the selected move-left goal), then that
chunk would have a relatively higher activation than the
other goal proposal chunks (move-forward, move-right,
move-back) With experience, these other chunks would
decay and be forgotten from disuse, thus shortening or even
possibly eliminating the deliberation process used to resolve
conflicts.

Alternatively, suppose that the preferences were generated
by chunks; i.e. the model had previously learned which goals
to prefer in certain contexts. In this case, if the mechanism
boosts only the preference chunk that contributed to the
selection of move-left, then that chunk would have a higher
activation relative to the other goal preference chunks.’
With experience, the unused goal preference chunks would
decay and be forgotten, thus simplifying goal selection. This
would allow incorrect or contradictory preference knowledge
learned early in training to be supplanted by higher-utility
preferences learned later in training.

In summary, EASE and Soar have always been able to
quickly learn (e.g. one-trial learning) new proposal, applica-
tion, and preference knowledge. With the application of
base-level learning to learned procedural knowledge, it
appears that EASE may also be able to adapt more slowly

through experience on the task.

Preliminary Evaluation of the Mechanism

Testing and evaluating the effect of the new chunk decay
mechanism was performed using an existing Soar model of
category learning. Miller & Laird (1996) report on a rule-
based model of supervised category learning called SCA
(symbolic concept acquisition). This model represents cate-
gory acquisition purely as the acquisition of production rules,
making it an appropriate and readily available testbed.

Subjects in a category learning task were presented a stim-
ulus with three binary-featured dimensions; e.g. fuel = 20%
or 40%; size = small or large; turbulence = light or heavy.
Using only the values of the three dimensions (eight possible
exemplars), subjects either allowed or denied an aircraft’s
altitude change request.

Patterned after Nosofsky, et al. (1994), the task consisted
of three task difficulty conditions—Types 1, 3, and 6. In
Type 1, the easiest condition, one feature alone was sufficient
to identify the category; e.g. fuel=20% -> allow. Type 6, the
most difficult condition, required considering all three fea-
tures. Type 3 was of intermediate difficulty.

A between-subject design, in task difficulty, was used.
Subjects performed eight ten-minute blocks. In a block, each
of the eight possible exemplars were shown twice; i.e. sixteen
presentations per block; 128 presentations per study. Blocks
occurred back-to-back, with the exception of a brief subjec-
tive workload assessment after blocks 1 and 4.

3 This aspect of the mechanism was not needed for the results
shown in this paper, so it is still being developed.

06 1 Humans, T1 ~ =O= SCA, T1
Humans, T3 == SCA, T3
05 4 Humans, T6 == SCA, T6
0.4
=
e
E’, 0.3
o
0.2
0.1
0.0 A {F {F { =)
T T T T T T T T
1 2 3 4 8
Blocks

Figure 1: Comparison of SCA and human data learning rates
in the category learning task (Gluck & Pew, 2002).

Figure 1 shows the fit of SCA without the new mecha-
nism to the human data collected in the AMBR project
(Gluck & Pew, 2002). The model does show an effect by
problem type. However, because all learned rules are
retained, it learns significantly faster than the human mean.

Introducing the chunk decay mechanism should have sev-
eral effects. First, it should dramatically slow learning. It
should also exhibit a skill decay effect after a retention inter-
val. Finally, the model should also attain pre-interval
performance more quickly with retraining after the retention
interval than during initial training.

Comparison of Learning Rates

Figure 2 shows the result of chunk decay mechanism on
SCA’s learning rates. The inter-stimulus times experienced
by the model were the same as those experienced by subjects.
The inter-block delay, due to the subjective workload test,
was not simulated for the model. To get this fit, chunks were
rehearsed seven (7) times on each use. The effect of the new
mechanism was close to what was predicted. The model’s
performance for Type 3 and 6 was significantly slowed and is
now a much better qualitative match to the human data.

0.6 Humans, T1 =O= SCA + bll, T1
Humans, T3 === SCA + bll, T3

05 Humans, T6 === SCA + bll, T6
0.4 4

S

\E'-.’, 0.3 1

o
0.2 4
0.1 4
0.0 4 O

1 2 3 4 5 6 7 8
Blocks

Figure 2: Effect of the chunk decay on SCA learning rates.

Interestingly, Type 1 was virtually unaffected by the chunk
decay mechanism. Type 1 categorization is determined by
only one stimulus feature. This suggests that the granularity
of SCA’s acquisition is large enough to quickly acquire the
Type 1 category. The model learns Type 1, on average, by
the third of the sixteen trials per block. Therefore, the rule’s
activation is increased with each use on subsequent trials,
which quickly leads to perfect performance in later blocks.

It should be emphasized that it was neither the goal nor
the expectation that applying the base-level learning mecha-
nism to chunks would result in quantitative fits to the human
data. SCA uses a normative learning strategy and the simple
addition of a decay mechanism could not plausibly account
for or explain the wide variety of learning strategies that sub-
jects are known to employ. Although forgetting does
influence learning in this task, there are other influences that
are not represented in this model. For example, Wray &
Chong (2003) demonstrate good fits and predictions to the
human data by elaborating the SCA model to consider irrel-
evant features in the environment; a behavior that was
surprisingly prevalent in post-study interviews. Even though
the extended SCA model was sufficient to produce good fits
to the learning data, it is unclear how it could be made to
produce skill decay effects without an architectural change
such as the one investigated here. A more complete story of
learning in this task might be achieved by a combination of
knowledge-level and architectural extensions.

Demonstrating Skill Decay

Since no skill decay data was gathered as part of the AMBR
project, no comparison to human data can be made. Never-
theless, model predictions for performance after a retention
interval were generated. Three retention intervals were sim-
ulated—1 hour, 6 hours, and 24 hours. These were followed
by a retraining phase where the training blocks were
repeated.

The three plots in Figure 3 shows that the mechanism
does produce decrements in performance. It also shows that
the amount of decrement increases with the length of the
interval. One of the characteristics of skill decay is that reac-
quiring pre-interval levels of proficiency generally occurs
much more quickly in retraining than under initial training.
This effect was observed where block 8 performance was
attained by blocks 10, 11, and 13 for retention intervals of 1,
6 and 24 hours, respectively. Note that the time to reacquire
previous proficiency also increases with retention interval.
This is another general observation of skill decay.

Discussion

The objective of this work was to investigate architectural
approaches to modeling skill decay. The preliminary results
have shown that base-level learning, when applied to learned
rules, can produce the desired skill decay effects. While the
new mechanism is promising, there are many open issues
still to be addressed.

Effect of Skill Decay on Other Performance Metrics

Although the mechanism does show an increase in predic-
tion error across the retention interval that is consistent with
skill decay, there are other performance metrics that could be

0.6

Retention Interval = 1 hour
0.5 1
0.4 - Retention

Interval
== SCA +bll, T1

0.3 A =7= SCA +bll, T3
== SCA +bll, T6
0.2
0.1
0.0
T T T T T T T T

0.6 1

P(error)

P(error)
o o o o o o
o - n w E (9,
\ L L)) L

0.6
Retention Interval = 24 hours

P(error)
o o o o o
- N w S (&)

0.0 1

Blocks

Figure 3: Performance decrement and subsequent relearning
for retention intervals of 1, 6, and 24 hours.

affected by skill decay. For example, a retention interval is
often found to adversely affect performance speed (e.g. reac-
tion time).

In ACT-R, the latency of retrieving a declarative element
has a functional relationship (computed by the subsymbolic
layer) to the element’s activation where retrieval latency
increases as activation decreases. There is as yet no such
mechanism in EASE.

At present, EASE, like Soar, exhibits speed improvements
only as a function of practice through its chunking mecha-
nism. Chunking compiles the potentially lengthy processing
necessary to resolve an impasse, allowing the system to avoid
the impasse if the model is later exposed to the same or sim-

ilar situation (Rosenbloom & Newell, 1993). Through
chunk merging, a decayed chunk’s activation would be
boosted, making it less susceptible to decay.

Approaches to Modeling the Faster Return to Proficiency

It is generally expected that only a limited amount of
refresher training is necessary to reattain previous levels of
performance (Arthur, et al., 1998). The chunk decay mecha-
nism was able to recreate this effect primarily through chunk
merging. There are, however, other explanations of this
effect.

For example, it could be that retraining allows for relearn-
ing knowledge for selecting the best option among several
candidates. As mentioned earlier EASE has a mechanism
where preferences (possibly encoded as chunks) are used to
select a candidate from a set of alternatives. For tasks that
involve decision making, strategic thinking, or more gener-
ally selecting an action from among several candidates,
EASE may be able to demonstrate the faster return to profi-
ciency by relearning critical preferences. This observation, if
correct, suggests that refresher training courses should target
and exercise the knowledge used to make correct context-
specific decisions.

Faster return to proficiency can also be seen as the reacti-
vation of knowledge that then activates other associated
knowledge sources that may have decayed during the reten-
tion interval. In this manner, small learning opportunities
can lead to large increases in proficiency. This view suggests
a spreading activation kind of effect, where chunks that are
used or relearned will spread activation to associated chunks,
thereby increasing their activation and potentially making a
decayed chunk retrievable. ACT-R contains a theory of asso-
ciative links between declarative elements and the spread of
activation through these links. The application of these ideas
to rules may be worth further investigation.

Chunk Rehearsals?
Thus far, declarative BLL concepts (e.g. the definition/

implementation of “use”, boosting, merging, and forgetting)
have been mapped into the procedural BLL mechanism.
The final declarative mechanism concept to be mapped is
rebearsal, a common declarative memory reinforcement tech-
nique used in ACT-R and EASE. Declarative memory
rehearsals are performed with a set of productions that
repeatedly retrieve a memory element, thereby increasing its
activation. (ACT-R provides an additional rehearsal facility
through a Lisp function call.)

Rule rebearsal, though an admittedly odd concept, does
warrant consideration, at least as a thought exercise. When
considering rule rehearsal, it quickly becomes apparent that
it entails two significant complications. (These complica-
tions were avoided in this work by using a temporary
architectural “hack” to rehearse chunks.)

The first is that the model has to cause the desired rule to
be match and fire. In other words, a model must populate
declarative memory with the elements necessary to make a
rule match and fire. This is a non-trivial requirement since
rules are cognitively impenetrable—a model does not have
access to the conditions or actions of its production rules.

The second complication is that once the desired chunk
matches, its firing can have undesirable effects. For example,
if the chunk to be rehearsed produces a motor command,
then as it is repeatedly fired, it repeatedly sends commands
to the motor system, producing possibly unwanted actions in
the world. The also applies to rehearsed rules that change
the model’s internal state.

Previous work in Soar has leveraged its automatic subgoal-
ing mechanism to recreate state and to isolate actions from
the world. Laird (2001) created an “imagination” subgoal
where the model performed planning to anticipate the
behavior of opponents in a first-person-shooter. Chong
(1998) created a “reflection” subgoal whenever the model
discovered a performance error in a simple interactive task.
In the subgoal, the model recreated the state of the environ-
ment that preceded the error. This caused the model to refire
the same interactive rules that led to the error; the model
effectively replayed these actions. In both approaches, rules
fire in a context isolated from the environment.

These approaches hint that a general chunk rehearsal pro-
cedure may be possible. Other work such as modeling
episodic knowledge (Altmann & John, 1999) may also play a

critical role in recreating state.

Conclusions

In describing the novice to expert transition, Anderson
(1982) posits that task knowledge begins in a declarative
form and requires a slow, interpretive process to produce
behavior. With practice on the task, the declarative knowl-
edge slowly becomes proceduralized (e.g. converted to
production rules) and does not require interpretation. With
extensive practice on the task, performance is generated
solely by procedural knowledge.

Modeling skill decay along the continuum from novice to
expert behavior may require mechanisms that act on both
declarative and procedural representation. This work has
applied a version of ACT-R’s base-level learning mechanism
to learned procedural knowledge. The preliminary results of
the mechanism on a model of category learning are promis-
ing: mean learning rates were slowed to better fit the human
data; skill decrement is positively associated with the dura-
tion of the retention interval; pre-interval levels of
proficiency are quickly attain during retraining. There is,
however, much future work: further thought and develop-
ment of a general (non-architectural) procedure for
rehearsing knowledge, and performing a detailed compari-
son of model behavior against human skill decay data.

Acknowledgements
This work was supported by ONR Grant N000140210039.

References
Altmann, E. M., & John, B. E. (1999). Episodic Indexing: A

model of memory for attention events. Cognitive Science,
23(2), 117-156.

Anderson, J. R. (1982). Acquisition of cognitive skill.
Psychological Review, 89, 369-406.

Anderson, J. R. & Lebiere, C. (1998). Atomic components of
thought. Hillsdale, NJ: Lawrence Erlbaum.

Arthur, W., Bennet, W., Stanush, P. L., & McNelly, T. L.
(1998). Factors the Influence Skill Decay and Retention: A
Quantitative Review and Analysis. Human Performance,
11(1), 57-101.

Chong, R. S. (2003). The addition of an activation and decay
mechanism to the Soar architecture. In the Proceedings of
the Fifth International Conference on Cognitive Modeling,
Bamberg, Germany.

Chong, R. S. (1998). Modeling dual-task performance
improvements: Casting executive process knowledge acquisition
as strategy refinement. Doctoral dissertation, The University
of Michigan, Ann Arbor, Michigan.

Chong, R. S. & Wray, R. E. (2004, submitted). Inheriting
Constraint In Hybrid Cognitive Architectures: Applying
the EASE Architecture to Performance and Learning in a
Simplified Air-Traffic Control Task. In R. W. Pew & K.
Gluck (Eds.) Modeling Human Behavior with Integrated
Cognitive Architectures: Comparison, FEvaluation, and
Validation, Hillsdale, NJ:Lawrence Erlbaum.

Forgy, C. (1982). Rete: A fast algorithm for the many
patterns/many objects match problem. Artificial
Intelligence, 19, 17-37.

Gluck, K. A. & Pew, R. W. (2002). The AMBR Model
Comparison Project: Round III—Modeling Category
Learning. In the Proceedings of the Twenty-Fourth Annual
Conference of the Cognitive Science Society. Hillsdale,
NJ:Lawrence Erlbaum.

Kieras, D.E. & Meyer, D.E. (1997). An overview of the
EPIC architecture for cognition and performance with
application to human-computer interaction. Human-
Computer Interaction, 12, 391-438.

Laird, J. E. (2001). It Knows What Youre Going To Do:
Adding Anticipation to a Quakebot. In the Proceedings of
the Fifth International Conference on Autonomous Agents,
Montreal, Canada.

Laird, J. E., Rosenbloom, P. S, & Newell, A. (1984).
Towards chunking as a general learning mechanism. In
Proceedings of AAAI-84. American Association of Artificial
Intelligence.

Miller, C. S., & Laird, J. E. (1996). Accounting for graded
performance within a discrete search framework. Cognitive
Science, 20, 499-537.

Newell, A. (1990). Unified theories of cognition. Cambridge,
MA: Harvard University Press.

Nosofsky, R. M., Gluck, M. A., Palmeri, T. J., McKinley, S.
C., & Glauthier, P. T. (1994). Comparing models of rule-
based classification learning: A replication and extension of
Shepard, Hovland, and Jenkins (1961). Memory &
Cognition, 22, 352-369.

Rosenbloom, P. S. & Newell, A. (1993). Learning by
chunking: A production-system model of practice. In
Rosenbloom, P. S., Laird, J. E., & Newell, A. (Ed.), The
Soar Papers, Cambridge MA:M.LT. Press.

Taatgen, N.A. & Lee, EJ. (2003). Production Compilation:
A simple mechanism to model Complex Skill Acquisition.
Human Factors, 45(1), 61-76.

Wray, R. E. & Chong, R. S. (2003). Quantitative
explorations of category learning with symbolic concept
acquisition. In the Proceedings of the Fifth International
Conference on Cognitive Modeling, Bamberg, Germany.

