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Abstract

In recent years, several authors have investigated how
co-occurrence statistics in natural language can act as a
cue that children may use to extract syntactic categories
for the language they are learning. While some authors
have reported encouraging results, it is difficult to
evaluate the quality of the syntactic categories derived. It
is argued in this paper that traditional measures of
accuracy are inherently flawed. A valid evaluation metric
needs to consider the well-formedness of utterances
generated through a production end. This paper attempts
to evaluate the quality of the categories derived from co-
occurrence statistics through the use of MOSAIC, a
computational model of syntax acquisition that has
already been used to simulate several phenomena in
child language. It will be shown that derived syntactic
categories which may appear to be of high quality will
quickly give rise to errors which are not typical of child
speech. A solution to this problem is suggested in the
form of a chunking mechanism which serves to
differentiate between alternative grammatical functions
of identical word forms. Results are evaluated in terms of
the error rates in utterances produced by the system as
well as the quantitative fit to the phenomenon of subject
omission.

Introduction
In recent years, several authors have argued that co-
occurrence statistics can provide powerful cues that
may aid children in extracting syntactic categories for
the language they are learning. Redington, Chater and
Finch (1998) analysed large corpora of child directed
speech and performed a cluster analysis on vectors
describing the lexical context in which words occurred.
They found that words that occurred in linguistically
similar contexts (tended to be preceded and followed by
the same words) had a high likelihood of belonging to
the same syntactic class.

Mintz (2003) expanded on the work of Redington et
al. Rather than analysing vectors describing lexical
context, Mintz’s unit of analysis was a frame: two
jointly occurring words with one word in between.

Mintz restricted his analysis to the 45 most frequent
frames that occurred in a large corpus.

While both Redington et al. and Mintz showed that
their procedure resulted in apparently good syntactic
categories, there is an inherent difficulty with the use of
co-occurrence statistics to derive syntactic categories.
As Pinker (1987) points out, words that occur in similar
contexts may not be of the same category. Pinker
argues that a distributional learning mechanism faced
with utterances 1a, b and c, would produce an
ungrammatical utterance like 1d.

1a. John ate fish
1b. John ate rabbits
1c. John can fish
1d. *John can rabbits

Mintz (2003) claims that ‘in children’s actual input,
these problems do not significantly undermine the
informativeness of distributional patterns’ (p. 92). He
also suggests that ‘although problematic environments
may exist, there is nonetheless enough “signal” in the
distributional patterns compared to the noise created by
the problematic environments that categorization from
distributional patterns is not intractable’ (p. 93).

There is, however, an inherent difficulty with the
approach taken by Mintz and Redington et al., which
may obscure the extent of the problem identified by
Pinker. Mintz and Redington et al. evaluated the quality
of the extracted categories using criteria of accuracy
and completeness. Accuracy was computed by
classifying every word-pair within a category as a hit
(same syntactic class), or miss (different syntactic
class). Where the grammatical class of a word was
unclear, the corpus was consulted to disambiguate and
label the word. Mintz used two types of labeling. In
standard labeling, all nouns and pronouns were classed
as nouns, and all verbs (lexical verbs, auxiliaries and
the copula) were classed as verbs. In expanded
labelling, nouns and pronouns were labeled as distinct
categories, as were lexical verbs, auxiliaries and the
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copula. While Mintz achieved high levels of accuracy
with both types of labelling, closer inspection of his
categories reveals that they may not be as accurate as
his analyses suggest. One of Mintz’s verb categories
contains verbs in present tense and past tense as well as
progressive particles, verbs that can and cannot be used
in an imperative frame, and verbs such as do and have
that can be used both as a main verb and as an auxiliary.

This heterogeneity of the derived word classes may
not appear problematic since neither Mintz nor
Redington et al. concern themselves with production
(Mintz views the process of extracting distributional
categories as a precondition for a (relatively
unspecified) process of bootstrapping into a
parametrized universal grammar). When one considers
how the extracted categories might be used in
production, however, it quickly becomes apparent that
heterogeneous word classes will result in utterances that
deviate considerably from child speech. The simplest
way in which a child producing speech could use the
categories arrived at through a distributional analysis of
the input is by considering the members of a category
as equivalent. That is, if words a and b occur in the
same category, the child may simply substitute a for b
in a context where it knows b has occurred. Taking the
words do, have and put (which were classed together in
Mintz’s analysis) as an example, such a substitution
mechanism will result in (clearly incorrect) utterances
such as Do you got an ice-cream and Put you want a
drink.

It is argued here that when syntactic categories
derived from co-occurrence statistics are used to
generate speech, more subtle problems emerge that are
not apparent with the use of an evaluation metric based
on a researcher’s intuition about a word’s syntactic
class. These problems become especially apparent in
detailed quantitative simulations of child data, where
seemingly correct substitutions may drastically affect
the fit to actual child data. This became clear when
Freudenthal, Pine & Gobet (2002a) used MOSAIC, a
computational model of syntax acquisition which
utilizes co-occurrence statistics to substitute phrases
that occurred in similar contexts, to simulate the
phenomenon of subject omission and the associated
verb phrase length effect (Bloom, 1990). This
phenomenon revolves around the fact that there is a
stage in development where children produce
subjectless utterances such as Want a cookie. While the
model simulated the general pattern of results, it tended
to overestimate the levels of subject omission. One of
the reasons for this was that, in order to identify
ungrammatical subjectless utterances, the analyses were
restricted to utterances containing ‘non-imperative
verbs’. Since MOSAIC tended to substitute non-
imperative verbs for imperative verbs it generated a
relatively high number of subjectless utterances. The

reason why these verbs were substituted was that both
verb types were linked because they both occur in non-
imperative frames. While their substitution in
imperative frames did result in child-like utterances, the
substitution rate was too high to allow a good
quantitative fit to the data. This type of problem is not
apparent in an approach that simply extracts syntactic
categories and does not use a production end to
generate utterances.

Thus, the main cause of problematic substitutions is
that a substitution that is correct in one context is
incorrect in another context. This paper aims to show
that one possible solution to this problem is to compute
co-occurrence statistics over longer units. Redington et
al. considered longer contexts (two or three words
preceding and following the target word), and found
this did not improve the quality of their syntactic
categories. This paper investigates a different approach,
inspired by the well-established chunking theory (Chase
& Simon, 1973; Gobet et al., 2001).

A new version of MOSAIC has been developed
which incorporates a novel chunking mechanism1

which results in frequent phrases being treated as one
unit. One consequence of this is that single words that
have been chunked up will no longer be substituted
unless when substituted as part of a chunk. It will be
shown that this mechanism decreases the amount of
unwanted as well as incorrect substitutions, resulting in
a decreased overall error rate as well as a better fit to
the phenomenon of subject omission.

The remainder of this paper is organized as follows.
Firstly, MOSAIC and its chunking mechanism will be
described. MOSAIC will be trained on corpora of child
directed speech while the parameter governing
chunking frequency is manipulated. In order to provide
an evaluation of the quality of the output, a sample of
generated utterances is judged against criteria of ‘well-
formedness’. The output is also compared to actual
child speech, which is analysed with respect to the
phenomenon of subject omission.

Simulating Language Acquisition in
MOSAIC

MOSAIC has already been used to simulate several
phenomena in child speech. Earlier versions have been
used to simulate the Verb-Island phenomenon (Jones,
Gobet & Pine, 2000; negation errors (Croker, Pine &
Gobet, 2003) the Optional Infinitive phenomenon in
Dutch, Spanish and English (Freudenthal, Pine &
Gobet, 2002a, 2003, in preparation), as well as
phenomena related to subject omission in English
Freudenthal, Pine & Gobet 2002b). Whilst the version

                                                            
1 Earlier versions of MOSAIC employed a chunking
mechanism as well. The novel chunking mechanism differs
from this in that chunks can now occur at the primitive level.
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used for the simulations discussed here has changed
from the earlier simulations, the main theoretical
underpinning of the model remains the same. The basic
tenet of the model is that the learning of language is a
performance-limited process which is heavily weighted
towards the most recent elements in the speech stream
(i.e., which has an utterance final bias). Several authors
have argued that children are better at learning material
that occurs towards the end of the utterance (Shady &
Gerken, 1999; Wijnen et al., 2001).

MOSAIC learns from orthographically coded input,
with whole words being the unit of analysis. The model
is a simple discrimination net (an n-ary tree) which is
headed by a root node. At the start of learning the
discrimination net consists of just the root node. More
nodes (encoding words or phrases) are added as the
model is shown more utterances. An important
requirement for nodes to be added is that whatever
follows the word to be encoded in the input must
already have been encoded in the model. That is, the
model will only learn a new word when it has already
encoded the rest of the utterance. Thus, while the model
processes utterances from left to right, it builds up its
representation of the utterances it receives by starting at
the end of the utterance, and slowly working its way to
the beginning2. The probability of creating a node in
MOSAIC is given by the following formula:

€ 

NCP =
1

1+ em−u / c
 

 
 

 

 
 

d

where: NCP = Node Creation Probability
m = a constant, set to 20 for these simulations.
c = corpus size.
u = total number of utterances seen.
d = distance to the end of the utterance.

The formula results in a basic sigmoid curve (when
plotted as a function of the number of utterances the
model has seen). The formula contains the size of the
corpus and the total number of utterances seen. The size
of the corpus is included because the size of the
available input corpora differs considerably. The use of
the term (m – u/c) ensures that after n presentations of
the complete input corpus the Node Creation
Probability is identical for corpora of different sizes.
The ‘distance to the end of the utterance’ in the
exponent causes material that occurs near the beginning
of the utterance to have a lower likelihood of being
encoded than material that occurs near the end. This
effect decreases as the model sees more input. Since

                                                            
2 Earlier versions of MOSAIC simulated such an utterance
final bias by restricting production to utterances that had
appeared in sentence final position.

learning in MOSAIC is slow, the input corpus is fed
through the model several times, so that output of
increasing average length can be generated after
consecutive exposures to the input corpus.

Production of Novel Utterances

Utterance production in MOSAIC involves outputting
all the utterances the model has encoded. However, the
output that MOSAIC produces consists of more than
the input it has seen. MOSAIC has a mechanism for
linking words or phrases that have occurred in similar
contexts. All nodes being traversed when processsing
input are deposited into a buffer of limited size
reflecting the most active/recently encountered input.
The nodes in the buffer are then compared with respect
to their preceding and following context. When the
overlap between two nodes is sufficiently high (more
than 20% of both the context that preceded and
followed the target node are the same), a generative link
is created between them. The contents of nodes that are
linked can be substituted for each other when the model
produces output. This mechanism allows MOSAIC to
produce utterances that were not present in the input.

Chunking in MOSAIC
 MOSAIC employs a chunking mechanism, which
results in frequent multi-word phrases being treated as
one unit. Nodes in the network contain a frequency slot,
the value of which is increased every time that node is
traversed when the net sorts an input utterance. The
frequency of a node at one of the lower levels (non-
primitive nodes3) in the tree encodes the frequency of
the entire phrase leading up to that node. Thus, if a node
for you occurs underneath do, the frequency of that
node encodes the number of times the phrase do you
has been encountered. When the frequency of a non-
primitive node exceeds a pre-determined value, the
node is chunked up with the node above it: the two
nodes are merged into one node at the primitive level.
Thus, in the above example the two nodes encoding the
phrase do you will be merged into one node at the
primitive level. The chunk is then propagated through
the network; all occurrences of the phrase do you are
chunked up. Nodes encoding chunks can be linked to
other nodes encoding chunks (or words) in the same
way that nodes encoding individual words are linked.
When two nodes are chunked, it is no longer possible to
substitute words for the individual words making up the
chunk. Thus, the chunk Do I may be substituted for the
                                                            
3 The distinction between nodes directly underneath the root
node (primitive nodes) and those at lower levels (non-
primitive nodes) is an important one. Due to the structure of
the discrimination net, primitive nodes encode all the context
the word or phrase has been seen in (the ‘global context’).
Non-primitive nodes encode ‘local context’.
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chunk Do you, when they share sufficient context.
However, should the words I and you be linked, they
can be substituted in unchunked contexts, but not in
chunks. In this way, chunking serves to differentiate
different grammatical functions of the same word form:
if the dummy modal Do is chunked with the subject
you, it will no longer be substituted by verbs that are
linked to Do by virtue of its occurrence as a main verb.

Chunking affects the substitution of words in two
ways. Firstly, chunks themselves are deposited into the
buffer, making phrases the target for the creation of
generative links. Secondly, the context preceding and
following a target node may be chunked up. Thus if the
phrase He goes into the house contains the chunks he
goes and the house, the context for the word into will be
he goes and the house rather than goes and the.
Chunking thus serves to increase the length of items
considered for a generative link, as well as increase the
context considered in the creation of a generative link.

The chunking mechanism also affects learning. If the
model receives a novel input utterance containing a
phrase that has been chunked up earlier, it will treat the
phrase as a unit, rather than attempting to encode its
constituent words separately.

The Simulations
Simulations were run using two corpora of English
(maternal) child-directed speech (those of Anne and
Becky) taken from the Manchester corpus (Theakston,
Lieven, Pine & Rowland, 2001) available through the
CHILDES data-base (MacWhinney, 2000). The size of
the input sets is approximately 33,000 and 24,000
utterances. Simulations were run using different levels
of chunking. The models’ output was analysed with
respect to error rates and levels of subject omission.

Error rates
For the first simulation, models were trained with and
without chunking for both children. For the chunked
model, the chunking threshold (frequency required for a
node to be chunked up) was set at 1/4 times the square
root of the number of nodes in the net. The chunking
threshold was expressed relative to the square root of
the nodes in the net to ensure that the chunking rate was
relatively constant over the development of the model.
For all simulations, an output file was selected at an
MLU (Mean Length of Utterance) of approximately 3.5

Next, a sample of 500 utterances from each of the
output files was coded by two independent raters for the
presence or absence of syntactic errors. Syntactic errors
were defined as cases in which one or more of the
substitutions made by the model resulted in an utterance
that was grammatically incorrect (e.g. Pegs find fallen
down  from Pegs have fallen down). Note that this
definition of syntactic errors is designed to exclude
cases in which the model substituted a grammatically
correct word into a sentence fragment (e.g. My toys out

v Your toys out) and cases in which the substitutions
made by the model were semantically but not
syntactically anomalous (e.g. Shall I cut them with the
puzzle? v Shall we cut them with the knife?). The vast
majority of the errors identified in this way fell into one
of the following categories: word-class errors (e.g. To
vest on his tummy v To lie on his tummy); subject-verb
agreement errors (e.g. They am sitting v I am sitting);
missing argument errors (e.g. Putting the story v
Reading the book); errors involving the use of a verb
with the wrong particle (e.g. Shall we use her t-shirt off
v Shall we take his dungarees off); errors involving the
use of a verb form with the wrong auxiliary (e.g. I’ve
just finish that off v You’ve just taken that off ) and
errors involving the use of a particular type of noun
with the wrong determiner (e.g. Put it on a sand v Put it
on the sand). Interestingly, virtually all of the errors
falling into these categories seemed to involve either
the substitution of a word from the wrong syntactic
category for a word that is a member of two or more
syntactic categories (e.g. the use of vest as a verb
instead of lie which can be both a noun and a verb) or
the substitution of a word from the correct syntactic
category into a context in which that particular instance
of the category is not permitted to occur (e.g. the use of
the indefinite article a with a mass noun instead of the
definite article the which can be used with both mass
and count nouns in English). Note that these are
precisely the kinds of errors that are likely to be hidden
by the kind of evaluation metrics used in previous
research using distributional learning mechanisms.

Agreement between the raters was high, at .93
(Kappa = .74). The results are shown in Table 1. Error
rates are lower for the chunking models (Χ2 = 40.70, p
< .001 for Anne, and Χ2 = 5.42, p < .05 for Becky).

Table 1: Syntactic error rates for Anne and Becky’s
simulations at two levels of chunking.

No chunking  Chunking
Anne .21 .07
Becky .24 .18

However, a potentially confounding factor is that the
unchunked models simply generate more novel
utterances. It could therefore be argued that any
mechanism that restricts the generativity of the model
will reduce the error rate. In order to test this
possibility, the generativity of the unchunked models
was reduced by increasing the overlap parameter
governing the creation of generative links to .25. This
resulted in the proportion of novel utterances being
similar to that in the chunked models. The error rate for
Anne’s model was reduced to .16, less than for the high
generativity model Χ2 = 4.15, p < .05, but more than for
the chunked version Χ2 = 19.90, p < .001. For Becky’s
model, the error rate was .23, not significantly different
from the high generativity version Χ2 < 1, p < 1, and
still higher than the chunked version Χ2 = 4.44, p < .05.
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Thus, the reduced error rates in the chunking version
are not just a result of chunking reducing the proportion
of generated utterances, but rather of chunking reducing
unwanted substitutions. The reason why error rates
remain higher than in the chunked version is that even
at a high overlap percentage, some links may remain
which give rise to errors. As the overall rate of
generativity decreases, these undesirable links may
even gain weight, and could conceivably even increase
the error rate.

Subject omission
A second analysis assessed whether chunking can

decrease the levels of subject omission. For these
simulations, the chunking threshold was set to three
levels: 4, 1, and .25 times the square root of the number
of nodes in the net. These simulations are referred to as
low, medium and high chunking, respectively.

In order to match the models’ output to child speech,
models were trained iteratively to match the MLU of
the children at two points in time. The models’ output
was then compared against children’s output with
respect to the phenomenon of subject omission.

The analysis of the levels of subject omission was
performed in the same way as in Bloom (1990), and
Freudenthal, Pine and Gobet (2002b). Utterances were
limited to those that Bloom identified as non-imperative
(though the verb see was excluded from this list as it
was not considered non-imperative). The analysis was
restricted to declaratives. Double verb constructions and
utterances containing the words don’t, no, or not were
excluded from the analysis.

The remaining utterances were scored with respect to
the inclusion of a subject. Figure 1 shows the results for
the children and the six simulations at two different
MLUs. Model MLUs were matched as closely as
possible to the children’s MLUs.

Figure 1 shows that the fits for the simulations
increase as the chunking rate increases. While the
overall fits are not particularly good, the chunking
mechanism appears to have been successful in avoiding
unwanted substitutions, with the high chunking model
providing the best fit at high MLU (particularly for
Becky). It may be worth stressing that only one
parameter in the chunking mechanism has been
manipulated. Future work may suggest manipulations
that result in a better fit.

Generative Chunks
While it could be argued that the main effect of the
chunking mechanism is to reduce error by avoiding
incorrect substitutions, it is worth pointing out that the
chunking mechanism leads to different types of
substitutions (and errors) as well. The reason for this is
that chunks themselves can be linked (both to single
words and other chunks). While a full analysis of the
role of linked chunks is beyond the scope of this paper,
some interesting examples can be given. In some of the

high chunking models phrases like I can were linked to
Can I, thus allowing the model to generate declaratives
off questions and the other way round. Similarly, in one
of the models the phrase I wouldn’t was linked to I
don’t want to. The chunking mechanism thus aids in
linking phrases as well as words that fullfil a similar
grammatical role. The chunking mechanism resulted in
some interesting errors as well. One of the simulations
substituted don’t want to for want to. While this
resulted in some grammatical utterances, it also resulted
in phrases like Do you don’t want to. This is  clearly a
syntactic error. However, it is a type of error that
children do occasionally make.

Figure 1a: Levels of subject provision for
Anne and simulations

Figure 1b: Levels of subject provision for
Becky and simulations.

Conclusions
Several conclusions can be drawn from the simulations
reported here. Firstly, in a global analysis of generated
utterances, clear word class errors do occur, but not at
very high rates. The problem identified by Pinker
(1987) therefore does not appear to be particularly
significant. However, when the analysis is restricted to
a subset of the data (such as utterances containing non-
imperative verbs), it becomes apparent that the fact that
a simple distributional analysis does not pick up subtle
differences between different verb classes can greatly
affect the fit to child data. It was shown that the
chunking mechanism was able to reduce the overall
error rates as well as prevent the substitution of similar
words in incorrect contexts.
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It should be stressed that chunking does not simply
cut generativity in all contexts (as increasing the
overlap parameter does). Rather, chunking restricts the
contexts in which two words may be substituted. Thus,
two single words that share a generative link may be
substituted in unchunked contexts, but not in contexts
where the word is chunked up (unless of course the
chunk itself has a generative link). The chunking
mechanism is thus able to cut generativity selectively.
Besides diminishing unwanted generativity, chunking
also adds to generativity by substituting phrases rather
than words.

It is important to bear in mind that the only parameter
manipulated in these simulations is the chunking
threshold. There is clearly a range of parameters that
can be manipulated in conjunction with chunking
threshold. At present, the chunking threshold is a
function of the square root of the number of nodes in
the net. Variations of this formula may affect the
chunking rate differentially for different stages of
development, thus affecting more detailed fits to child
data. We are not committed to the fits and specific
implementation used in these simulations, but rather
stress the fact that chunking can be a powerful tool in
resolving ambiguities in the extraction of syntactic
categories.

On a more general level, these analyses illustrate two
strengths of MOSAIC as an approach to modelling
language acquisition: the use of realistic child-directed
speech, and the production of utterances that can be
compared with child speech. The use of child-directed
speech is important because it ensures a realistic
frequency distribution. As all distributional analyses are
frequency sensitive, a realistic frequency distribution in
the input is crucial for obtaining good fits to detailed
phenomena in child language.

The use of a production end has shown that
traditional measures of accuracy are insufficient to
evaluate the quality of syntactic categories derived from
co-occurrence statistics, as accuracy not only depends
on the researcher’s intuitions regarding a word’s
syntactic class, but also on the context in which the
word is used. Researchers should therefore be careful
about relying on measures of accuracy to evaluate the
quality of syntactic categories as the addition of a
production end may show the accuracy to be
considerably lower than it appeared.
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