In Proceedings of the Sixth International Conference on Cognitive Modeling, 112-117.

Mahwah, NJ: Lawrence Earlbaum.

Learning to Choose the Most Effective Strategy: Explorations in Expected Value

Wayne D. Gray, Michael J. Schoelles, & Chris R. Sims
Cognitive Science Department
Rensselaer Polytechnic Institute
[grayw, schoem, simsc] @rpi.edu

Abstract

Small variations in how a task is designed can lead humans to
tradeoff interaction-intensive for memory-intensive strategies.
In this paper we introduce one such task, Blocks World, and
present empirical data that shows such tradeoffs. Our attempts
to model the acquisition of these tradeoffs using the default
ACT-R conflict resolution mechanisms have met with failure.
We have now run our model using four different methods for
tallying a strategy’s success and failure. For each run, we
discuss the formulation of expected value used for conflict
resolution and the reasons why the model does or does not
match the human data.

Introduction

Few, if any, tasks are so new as to require the invention of
strategies that have never been used by the task performer.
Hence, in most situations, settling on a strategy or set of
strategies for performing a task is not so much a matter of
learning new strategies as it is learning which strategy, out
of a set of already acquired strategies, works best in the
current task environment.

This paper is motivated by our attempts to model strategy
selection in Blocks World using ACT-R. First we introduce
Blocks World and the empirical phenomena we seek to
model. Second, in ACT-R, the expected value equation
(Anderson, Bothell, Byrne, & Lebiere, in press; Anderson &
Lebiere, 1998) determines which of two or more alternative
strategies will be selected. We present data from a model
that uses the default expected value equation and discuss
why we found this mechanism inadequate for modeling
Blocks World. Third, we layout and discuss three alternative
bases for calculating expected value and present data from
the original model run with each of these alternatives. We
discuss how each alternative influenced model behavior as
well as its fit or misfit to the empirical data. Fourth and
finally, we summarize our work and draw conclusions
regarding both the Blocks World task specifically, as well as
our three alternative bases for calculating expected value.

Blocks World

Blocks World is a simple task that has been used to study
the trade-off between interaction-intensive and memory-
intensive strategies (Ballard, Hayhoe, & Pelz, 1995; Fu &
Gray, 2000; Gray & Fu, 2000). The task is to copy a pattern
of colored blocks shown in the Target window to the
W orkspace window, using the colored blocks in the
Resource window (for our version see Figure 1).

The Blocks World Studies
Each trial begins with a random placement of 8 colored

112

blocks into empty spaces (defined by an invisible 4 x 4 grid)
in the Target window. Unlike Figure 1, during the study all
three windows are covered by gray windows. In our studies
the gray windows that cover the Resource window and the
Workspace window vanish as soon as the cursor enters
those windows. The between-Ss manipulation varies how
effortful it is to uncover the Target window. Across three
studies (a brief description of the first is available as Fu &
Gray, 2000, the other two are not published) we have varied
difficulty “intuitively”, by varying the Fitts’ Law Index of
Difficulty, and by lockout time.

B

Target Window Workspace

Window

Resource Window

........
H : Stup-Tral
| RASE

Figure 1. The blocks world task at the start of a new trial. In
the actual task all windows are covered by gray boxes and at
any time only one window can be uncovered. (The labels do
not appear in the actual task. The Start/Stop button is shown
at the lower right.)

Subjects were asked to do 40 (E1) or 48 (E2-3) trials.
Each trial continued until they had correctly duplicated in
the Workspace window the pattern (color and location) of
blocks shown in the Target window.

The human and model data reported here are based on the
version of Blocks World used in our third study. In that
study the costs of opening the Target window were varied
by increasing the lockout time (i.e., the delay in uncovering
the Target window after the cursor had been moved into it).
The three conditions reported have a 0 (0-Lock), 400 (400-
Lock), and 3,200 (3200-Lock) millisecond lockout time.

Strategies

To access the information in the Target window subjects
could adopt either an interaction-intensive or a memory-
intensive strategy. An extreme interaction-intensive strategy
would entail uncovering the Target window to obtain color
information for a single block, obtaining that block from the

yguo
In Proceedings of the Sixth International Conference on Cognitive Modeling, 112-117.
Mahwah, NJ: Lawrence Earlbaum.

yguo
112

Resource window, another uncovering of the Target
window to obtain the block’s position information, followed
by placing the block in the Workspace window. In contrast,
an extreme memory-intensive strategy would entail one look
at the Target window to encode both color and position for
all 8 blocks.

We did not expect to find either extreme strategy to be
popular with our subjects. However, as the cost of accessing
information in the Target window increased, we expected to
find that subjects shifted from more interaction-intensive
strategies to more memory-intensive ones.

The Blocks World Results

For the current report, our measure of performance is the
number of blocks correctly placed after the first, but before
the second, uncovering of the Target window. At the time of
the first uncovering, each of the lockout conditions has 8
blocks that have to be placed. Our empirical data shows that
the number of blocks placed on the first uncovering varies
significantly between conditions. Hence, on subsequent
uncoverings, the number of remaining to-be-placed blocks
differs between conditions.

Likewise, as it takes some time for the models and
humans to settle on stable strategies, we only report data for
trials 25-48. The process of “settling in” is interesting but
beyond the scope of this short report.

There were 18 subjects in each of the three conditions.
For these subjects, Figure 2 shows that as lockout time
increases, the number of blocks placed in the Workspace
window increases. Human subjects are clearly trading off
interaction-intensive for more memory-intensive strategies.

Failure to Pick a Good Strategy: Issues in
Credit Assignment and Expected Value

In data reported in Fu and Gray (2000), we showed that as
the costs of opening the Target window increased subjects
spent more time with the window open before going off to
place the blocks. As the number of blocks placed also
increased, the obvious inference is that the increased time
spent with the Target window open, reflects increased time
spent encoding a larger number of blocks.

To capture human adaptation to the cost of opening the
Target window, we implemented a set of 8 DO-strategies.
These strategies, DO-1 through DO-8, varied in the humber
of blocks they encoded per opening of the Target window.
After each round of encoding, the model would go to the
Resource window and attempt to retrieve the memory
(declarative memory element or DME) of an encoded, but
not-yet-placed block. If a DME was retrieved, a block of
that color was picked up from the Resource window and
placed in the Workspace window. After placing a block in
the Workspace window the model tried to retrieve another
DME of another encoded, but not-yet-placed block. When
no more DMEs of not-yet-placed blocks could be retrieved,
the model picked a new DO-strategy according to its
expected value and another round began. A trial ended with
all 8 blocks correctly placed in the Workspace window.

113

Model Details

The above description generally characterizes our modeling
approach. This section provides further details on the
construction and operation of our model.
Limits on DO-strategies. On reflection, it will be clear that
all DO-strategies could encode their full range of blocks on
the first uncovering of every trial, but not thereafter. For
example, if on the first round of encoding, DO-4 fired,
encoded 4 blocks, and placed 3, on the next round only 5 to-
be-placed blocks would remain. Hence, on round 2, DO-5,
DO-6, DO-7, and DO-8 would all encode 5 blocks. At best
this would blur the distinction between DO-strategies. At
worst, it seems cognitively implausible that, for example,
people would fire a strategy to encode 8 blocks when only 1
block remained to be placed. To avoid this problem we
wrote our model so that a DO-strategy would compete only
if the number of to-be-placed blocks was greater than or
equal to the strategy’s DO-number (i.e., if 4 blocks
remained, only DO-4, DO-3, DO-2, and DO-1 would be in
the conflict set).
Calculating Expect Value. The DO-strategies compete
with each other based on their expected value. ACT-R’s
expected value equation is:

EV = PG -C + /- noise Equation 1
P reflects the probability that a production has been
successful in the past. P is simply calculated as the ratio:

successes

P= - Equation 2
(successes + fallures)

G is a constant expressed in units of time. G is loosely
thought of as the number of seconds that a person would be
willing to pursue a given goal. The default value of G is 20.

C is a ratio of the sum of all past efforts attributed to the
production divided by all past uses:

efforts

C= -
(successes + fallures)

Equation 3

Finally, noise adds variability to the expected value, but
rather than constituting unexplained variability it seems to
be an essential element. Too little noise leads the system to
prematurely settle on strategies that gain an early advantage
in P and C. Too much noise prevents the model from
settling on any strategy, regardless of the values of P and C.

Credit Assignment. The credit assignment issue is “when”
— when are the parameters in the expected value equation
updated? These quantities could be updated for all
productions once per trial; that is, after all 8 blocks are
placed. However, as our model interacts with the same
software as our humans interact with, many hundreds of
productions fire on each trial. Indeed, we counted 762
productions firings on a randomly sampled trial that took
128 seconds of ACT-R time to complete. (This count
includes many refirings by some productions.) As all trials
ended successfully, each production fired on a trial would
have the value of its successes updated by one. (If it fired
multiple times, it would receive multiple updates.) Each
production fired on a trial would have its efforts

yguo
113

incremented by the difference in ACT-R time between when
it was selected and the end of the trial. (If it fired multiple
times, its efforts would be updated for each firing by the
difference between firing time and trial end time.)

Perhaps more to the point, placing 8 blocks entails a
number of different DO-strategies firing a number of
different times. This is the problem of structural credit
assignment. Given a number of competing strategies, to
what extent should each be credited with contributing to the
final success of the trial? Updating all productions at the end
of each trial would make it extremely difficult for credit
assignment to properly credit the success, failure, and cost
of any given DO-strategy. (Note that due to forgetting, the
higher DO-strategies seldom, if ever, placed their complete
allotment of encoded blocks.)

Rather than updating credit assignment once per trial, we

updated it once per firing of a DO-strategy. Credit
assignment time began ticking when a DO-strategy was
selected. Time ended when the model could no longer
retrieve the DME of a not-yet-placed block.
Model Runs. One model was run with four different
schemes for updating successes and failures. For
convenience, we refer to the model when it is running a
particular updating scheme as, e.g., “the Success-Weighted
model.” However, each of these “models” used the same
production rules, the same DMEs, and the same settings for
all ACT-R parameters. The only change between models is
in the updating of successes and failures that are discussed
in the next section.

With two exceptions, all ACT-R parameters were left at
their defaults. Specific parameters® important to our model
include enable subsymbolic computations (:esc t); enable
randomness (:er t); optimize learning (:ol t); parameter
learning (:pl t); and base level learning (:bll 0.5). Although
we make special mention of these parameters, this set is
required by any model in which expected value and
declarative memory activation is learned. They are all set to
their default values. Our two exceptions do not have definite
default values. We set activation noise (ans) to 0.23 and
expected gain noise (egs) to 0.3. Activation noise is the
noise added and subtracted to the activation of a DME on
each retrieval attempt. The value we picked is within the
normal range of this parameter and is one that we have used
in other studies. Expected gain noise is the noise added and
subtracted to the expected value of a production each time it
appears in a conflict set (see Equation 1). The value we
picked is within the range that we typically use in models
(0.25 to 0.50). The setting of both egs and ans were done a
priori — neither were tuned to the particular results of our
models.

Problems in Updating Successes and Costs
The default scheme for calculating expected values based on

! The only detailed discussion of ACT-R parameters that we
know of is in Anderson and Lebiere (1998). Updated
documentation, ACT-R5parameters.doc, can be retrieved from
http://act-r.psy.cmu.edu/tutorials/.

114

successes, failures, and costs does not reproduce the data.
The number of blocks placed by the model that used ACT-
R’s default scheme for updating successes and failures (the
Vanilla model) is plotted at the bottom of Figure 2. It can be
seen that this model differs quantitatively (RMSE = 2.26) as
well as qualitatively from the human data. By the 25th trial,
only one block is being placed in each lockout condition. As
this is preliminary work, we are more concerned with the
qualitative mismatch in trends across lockout conditions
than with the quantitative mismatch in absolute number of
blocks placed. Why does the number of initial blocks placed
not increase for the higher lockout conditions?
Unfortunately, the answer to our question is as obvious as
it is basic to the ACT-R calculation of expected value. As
each round ends with a success, the value of P stays at 1.0.
The expected value is driven entirely by the costs. As we go
from DO-1 to DO-8 the model spends more time encoding
blocks, more time getting blocks from the Resource
window, and more time placing blocks in the Workspace
window. For the higher DO-strategies the costs soar and the
expected value plummets (see Table 1).
Table 1: Expected values after 48 trials for DO-strategies 1-8
by lockout condition in the Vanilla ACT-R model

Lockout] 1 2 3 4 5 6 7 8
0 8.4 4.8 3.8 1.9 04 -10] -6.00 -47
400 8.1 5.1 4.0 3.7, -10 -15 -6.3 -6.7
3200 5.3 2.5 0.6 1.4 -1.00 -24 -9.8] -9.5

We believe that the failure to capture the qualitative
trends reflects a fundamental flaw with the default ACT-R
mechanism for credit assignment in tasks involving a
sequence of steps over a time period of secs to 10s of secs.
We elaborate this argument in the next section.

Weighting Successes and Failures

As success in Blocks World is defined as correctly placing 8
blocks in the Workspace window, the Blocks World
paradigm allows us to define partial success in terms of the
number of blocks placed. Hence, if a DO-strategy places
one block into the Workspace window it is less successful
than a DO-strategy that places four blocks.

Table 2: Three weighting schemes for changing ACT-R's
system for calculating expected value.

P C
Weighting Success | Failure | Success | Failure
Success-Weighted| Yes No Yes No
All-Weighted| Yes Yes Yes Yes
Mixed-Weighted| Yes Yes Yes No

Prior models of ACT-R have apparently not had to deal
with such nuances. In thinking about how to overcome this
limit to ACT-R we generated a number of schemes that
weight the updating of the successes and failures parameters
by the number of blocks placed. Three of these schemes are
discussed below and shown in Table 2.

Implementing these schemes required adding a hook to
ACT-R’s parameters learning function to bypass the
normal updating of the successes and failures parameters
with the updates required by each scheme. The hook

yguo
114

function is called by the parameters learning function for
each production in the sequence.

Success-Weighted

The most basic change is to vary the count of successes to
reflect the number of blocks correctly placed. This update is
shown in the first row of Table 2.

As the current model almost always successfully places at
least one block, the Success-Weighted update is equivalent
to dropping “failures” from the calculation of P (compare
Equation 2 and 4) and C (compare Equation 3 and 5). This
change has the effect of setting P to one.

successes

efforts

The effect of our change is to increase the denominator of
C. Rather than adding one to successes each time a DO-
strategy has fired, our change adds in the number of blocks
that have been successfully placed. (For example, if DO-3
places 3 blocks successes will be incremented by 3. Hence,
the cost in terms of the additional time required to encode
and place multiple blocks is amortized over the number of
blocks actually placed.

All-Weighted

An alternative update would be to weight both the number
of successes and the number of failures that an update
returns. This alternative is shown in the 2™ row of Table 2.

For All-Weighted, the equations for P and C are the same
as the default equations shown in Equations 2 and 3.
However, All-Weighted differs from the default in two
ways. First, both successes and failures can be updated on a
given round. Second, the number of successes and failures is
weighted by the amount of the goal accomplished or
attempted. As per the Success-Weighted scheme, All-
Weighted increases the denominator of C and P by the
number of blocks correctly placed (columns 2 and 4 of
Table 2). However, unlike Success-Weighted, failures are
also credited (columns 3 and 5). Failures are defined as the
difference between the number of blocks encoded versus the
number of blocks placed (DO-number minus number-
placed). If, for example, DO-8 fires and encodes 8 blocks
but places only 3, then DO-8 will be credited with 3
successes and 5 failures.

Unlike Success-Weighted, All-Weighted affects the value
of P by differentially changing both the numerator and
denominator (as per Equation 2). A DO-strategy that
encodes more blocks than it can retrieve from memory will
be severely punished by a decrease in P (the denominator
increases faster than the numerator).

On the other hand, regardless of the number of successes
and failures, for a given DO-strategy, All-Weighted equally
increments the denominator of C (see Equation 3). For
example, if DO-6 fires, encodes 6 and places 6, 6 successes
will be added to the denominator for C. If the next time DO-
6 fires it encodes 6 but places 3, the denominator will again
be incremented by 6 (3 successes + 3 failures).

successes

Equation 4

successes

Equation 5

115

It would be one thing if All-Weighted were neutral with
respect to the effect of success and failure on C; however, it
seems to reward failure. If 6 blocks are encoded and only
one is placed, then the time (and therefore effort) between
initiating the strategy and finishing the strategy is less than
if 6 blocks were placed, but the effect on the denominator is
the same. Counterintuitively, for the same DO-strategy,
costs are reduced more by an early failure than by an
eventual complete success.

Mixed-Weighted

Mixed-Weighted is an alternative to All-Weighted that
simply drops the count of failures from the denominator of
costs. The expected value equation for Mixed-Weighted
borrows its calculation of P from Equation 2 and its
calculation of C from Equation 5. As per All-Weighted, if a
DO-strategy promises more than it can deliver, then it is
punished by a reduction in P. As per Success-Weighted,
costs are reduced in proportion to the amount of the goal
accomplished. Credit is not given for promises, only for
results.

Model Data: Comparing Weighting Schemes®

The four models differ only in the scheme they use for
counting successes and failures. In all other respects, in
terms of productions, DMEs, and all other parameters, the
models are identical.

Success-Weighted Model. As Figure 2 shows, unlike
Vanilla ACT-R, the Success-Weighted model is not
absolutely flat and consistently overshoots human
performance. However, it is fair to say that Success-
Weighted is a poor fit both qualitatively and quantitatively
to the human data (RMSE = 1.42).

Table 3: Expected values after 48 trials for DO-strategies 1-8
by lockout condition in the Success-Weighted model

Lockout] 1 2 3 4 5 6 7 8
0 7.1 8.8 10.00 10.2] 10.3] 104 10.2 9.9
400 6.3 8.1 9.4 10.2] 104 104 101 9.8
3200 3.6 6.1 7.7 9.0 9.4 9.5 9.4 9.1

Across all three lockout conditions (see Table 3) the
expected values of the smallest DO-strategies, DO-1 and
DO-2, is much below that of the other DO-strategies. Post-
hoc comparisons show that the comparison of DO-1 and
DO-2 versus DOs3-8 was significant [F (1, 105) = 1816, p <
.0001] and accounted for 83% of the variance due to DO-
Strategy. DO-3 is close to the higher DOs for 0-Lock, it
begins diverging slightly for 400-Lock, and by 3200-Lock it
is still close, but 1.3 units of expected value away from the
next highest expected value. Hence, the three lockout
conditions are relying on essentially the same pool of DO-
strategies with the slight increase in number placed for 400-
Lock and 3200-Lock due to the less frequent use of DO-3 in
favor of a slightly increased use of the higher DO-strategies.
All-Weighted Model. Compared to the Vanilla and
Success-Weighted models, the All-Weighted model is a
much better fit. As shown by Figure 2, this is the first model

2 For each of the three models reported here, the model was run
six times for each of the three lockout conditions.

yguo
115

that comes close to capturing the qualitative and quantitative
(RMSE = 0.60) trends in the human data.
Table 4: Expected values after 48 trials for DO-strategies 1-8
by lockout condition in the All-Weighted model
Lockout] 1 2 3 4 5 6 7 8

0 64 81 78 90 79 75 70 68

400 5.5 7.8 8.9 8.5 7.4 7.1 7.3 6.3
3200 2.6 4.9 6.8 8.1 8.0 7.6 6.6 6.7

Across the DO-strategies the difference between the
maximum and minimum expected value varied from 2.6 for
0-Lock, to 3.4 for 400-Lock, and 5.5 for 3200-Lock (see
Table 4). Post-hoc comparisons showed that DO-1 and DO-
2 had a much lower expected value for 3200-Lock than did
the other DO-strategies [F (1, 35) = 67.7, p < .0001] with
this comparison accounting for 79% of the variance due to
DO-strategy. This same comparison accounted for 15% of
the variance for 400-Lock and 4% of the variance for O-
Lock. Hence, in contrast to the Success-Weighted model, it
is clear that for the All-Weighted model a different mix of
DO-strategies was favored across the three lockout
conditions.

Qe hUMans meflfe=\/anilla ACT-R ——6—Mxd-Wghtd
—¥—Success-Wghtd = =A= =All-Wghtd

5.0

kel

o]

Q

S

o

9]

X

o

=)

o

Y=

©2.0

* Trials 25-48
1.5
1~0T—I i
0.5+ T T T T T T 1

0 500 1000 1500 2000 2500 3000 3500

Lockout Time in Msec

Figure 2: Blocks placed following the first uncovering of the
Target window for Humans versus four ACT-R models.
Except for the use of different systems for weighting
successes and failures, all models use the same parameters
and same productions.

Mixed-Weighted Model. The Mixed-Weighted model is
the best fitting of the three both qualitatively and
quantitatively. Quantitatively it has the smallest RMSE
(0.44). Qualitatively, this model shows the greatest increase
in blocks placed across lockout conditions. The difference
between number of blocks placed at 0-Lock versus 3200-
Lock is 1.84 for humans (see Figure 2), 0.79 for Mixed-
Weighted, 0.66 for All-Weighted, and 0.09 for Success-
Weighted.

In terms of expected value, performance in the 3200-
Lock condition is dominated by DOs3-6 (see Table 5). The
expected value of these DO-strategies were quite similar.
The next closest DO-strategy was 0.50 expected value units
below this range. In contrast, for 400-Lock the both DO-2

116

and DO-8 were within the same range of expected value as
DOs3-6. For 0-Lock, DO-2 fell within the range of values
shown across DOs3-6. Hence, compared to Success-
Weighted and All-Weighted, for the Mixed-Weighted model
as lockout time increases the extreme DO-strategies (high as
well as low) are less likely to be selected.

Table 5: Expected values after 48 trials for DO-strategies 1-8
by lockout condition in the Mixed-Weighted model

Lockout] 1 2 3 4 5 6 7 8

0 6.7 8.5 9.1 8.4 8.3 8.0 7.0 6.5

400 5.5 7.7 8.9 7.9 8.3 7.2 7.0 7.2

3200 2.7 6.0 6.9 7.1 6.9 6.9 6.4 6.3

Comparing Models. Across the four models the number
placed gets closer and closer qualitatively and quantitatively
to the human data, and the pattern of expected values for the
DO-strategies begins to seem like a reasonable reflection of
what humans must be doing.

The default, or vanilla, ACT-R model simply cannot
handle these data. A strategy is either a success or a failure.
If it places at least one block it is successful. The vanilla
model was entirely driven by costs to an exclusive use of
DO-1 over all runs of the model for trials 25-48. (Note that
this model was so consistent that we only did three runs for
each condition. In contrast, each of the other models was
run six times per condition.)

The Success-Weighted model reduced the costs of the
higher DO-strategies by the number of blocks they
successfully placed. This cost reduction sufficed to boost the
expected value of all higher DO-strategies. The expected
values for DOs4-8 fell within 0.46 expected value units of
each other for 0-Lock, within 0.56 for 400-lock, and within
0.52 for 3200-lock. Hence, the number placed was much
higher than for the Vanilla model, but the number placed did
not vary between lockout conditions.

The All-Weighted model punished strategies that
encoded more than they placed by lowering their P value,
but worked against itself by reducing costs based solely on
the number encoded. This bias in reducing costs actually
worked to favor strategies that encoded a lot but placed
little. (More detail on this aspect has to await a fuller report
in which we examine and report changes in P and C across
models.) This all worked to favor DO-strategies in the range
of DO-3 on up.

Like the All-Weighted model, the Mixed-Weighted
model punished strategies that encoded more than they
placed by lowering their P value. Unlike that model, it only
reduced costs for the number of blocks actually placed. This
combination worked to favor DO-strategies in the range of
DO-4 to DO-6 over both the lower and higher strategies.
The Mixed-Weighted model provided the best qualitative
and quantitative fit to the empirical data.

Discussion and Conclusions

We divide this section into a brief discussion of alternative
changes to expected value computations, conclusions about
our work on the expected value equation, and conclusions
about our model of Blocks World.

yguo
116

Other Changes to the Expected Value Equation
Rather than changing how successes and failures are
calculated, our initial instinct was to change G - the value of
the goal. It made much sense to us that if the value of
completing a trial was worth, say 24, then the value of
placing each block would be worth 3. (A strategy that
placed 3 blocks would have its G incremented by 9 units.)

Whatever the merits of this scheme, unlike P and C, G
does not accumulate separately for each production. Rather,
G is a global value that is applied equally to calculate the
expected value for each item in the conflict set. To
experiment with G would require learning G. This would
require more extensive changes to the current version of
ACT-R (5.0) than the changes reported in this paper.

Other than our work, the only work we know that
explores changes in ACT-R’s calculation of expected value
is that of Belavkin and colleagues. Whereas our work
focuses on discriminating among strategies, Belavkin’s
work is focused more on changes in the range of expected
values considered as the model gains expertise within a
domain (Belavkin & Ritter, 2003) or on when to give up on
a strategy (Belavkin, 2003).

Conclusions for calculations of expected value
This research into the parameters of the ACT-R expected
value equation arose out of failure in trying to fit a model to
the Blocks World data. As soon as we ran the model with
ACT-R’s default expected value settings (the Vanilla
model) we realized that unless we could amortize costs and
punish strategies that encoded more than they could place
that we could not hope to fit the human data. The problem
stemmed from the sparse reinforcement in the Blocks World
environment, as well as the binary nature of success or
failure in ACT-R. This dilemma prompted us to explore the
space of expected values equations generated by changes in
how successes and failures were counted and accumulated.
Our Mixed-Weighted model provides the best fit to our
data and we believe it makes the most intuitive sense. For
problems such as Blocks World where eventual success can
be easily quantized into smaller units, it makes sense to us
to reward and punish strategies based on how much of the
problem they succeed in solving.

Conclusions for Blocks World

Although we believe the Mixed-Weighted model is a
general solution to similar problems, we do not believe that
we have adequately modeled the Blocks World data.

Under the Mixed-Weighted scheme, a key to a strategy’s
success or failure is its ability to retrieve from memory the
items it has encoded. Currently we have run our models
with optimized learning on (:ol t). This is the default for
ACT-R models. However, in related research (Sims & Gray,
2004) we have come to believe that optimized learning
overestimates the amount that can be retrieved in situations
like the Blocks World where there is a long interval between
an item’s early encoding and rehearsal versus its later
retrieval.

Indeed, for the larger DO-strategies there is a sizable
period of time between the encoding and rehearsal of the

117

first encoded block and the encoding and rehearsal of the
last block on that round; this period, of course, precedes the
long placement period. We believe that more realistic
forgetting might work to drive the 0-Lock condition to rely
more on lower DO-strategies so that the number placed for
0-Lock declines to somewhere closer to the human data (see
Figure 2). Contrarily, more forgetting may drive the higher
lockout conditions (such as 3200-Lock) to use fewer of the
larger DO-strategies and more of the middle DO-strategies.
We expect that this shift would have the counterintuitive
effect of boosting number placed for 3200-Lock from its
current 3.7 blocks to someplace closer to the 4.2 blocks of
the humans in this condition.

Acknowledgments

The work reported was supported by a grant from the Office
of Naval Research ONR #N000140310046. Additional
support was provided by a subcontract to Rensselaer
Polytechnic Institute from contract #MDA-904-03-C-0408
to Booz Allen Hamilton from the Advanced Research and
Development Activity (ARDA). Thanks to Wai-Tat Fu for
running human subjects as well as many other contributions
to this project.

References

Anderson, J. R., Bothell, D., Byrne, M. D., & Lebiere, C. (in
press). An integrated theory of the mind. Psychological
Review.

Anderson, J. R., & Lebiere, C. (Eds.). (1998). Atomic
components of thought. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Ballard, D. H., Hayhoe, M. M., & Pelz, J. B. (1995).
Memory representations in natural tasks. Journal of
Cognitive Neuroscience, 7(1), 66-80.

Belavkin, R. V. (2003). Conflict resolution by random
estimated costs. In D. Al-Dabass (Ed.), Proceedings of the
17th European Simulation Multiconference (pp. 105-110).
Nottingham, UK.

Belavkin, R. V., & Ritter, F. E. (2003). The use of entropy
for analysis and control of cognitive models. In F. Detje,
D. Dorner & H. Schaub (Eds.), Fifth International
Conference on Cognitive Modeling.

Fu, W.-T., & Gray, W. D. (2000). Memory versus
perceptual-motor tradeoffs in a Blocks World task. In L.
R. Gleitman & A. K. Joshi (Eds.), Twenty-second Annual
Conference of the Cognitive Science Society (pp.
154-159). Hillsdale, NJ: Lawrence Erlbaum Associates.

Gray, W. D., & Fu, W.-T. (2000, November). Memory
versus perceptual-motor tradeoffs in a Blocks World task.
Conference of the Psychonomics Society, New Orleans.

Sims, C. R., & Gray, W. D. (2004). Episodic versus
semantic memory: An exploration of models of memory
decay in the serial attention paradigm. In M. C. Lovett, C.
D. Schunn, C. Lebiere & P. Munro (Eds.), 6th
International Conference on Cognitive
Modeling—ICCM2004. Pittsburgh, PA.

yguo
117

