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Abstract

This research advances computational cognitive modeling of
visual search, and the synergistic relationship between
cognitive modeling and eye tracking. The paper presents
cognitive models of the perceptual, cognitive, and motor
processing involved in the visual search of words in
structured layouts that vary in density. The layouts are all-
sparse, all-dense, or mixed. A principled approach is taken to
account for eye movement data, specifically the mean number
of fixations per trial and mean fixation durations. A random
search strategy without replacement is used as a base model.
The best-fitting model assumes that people examine two to
three items per fixation regardless of the density. A new
implementation of the EPIC cognitive architecture is used to
build the models in this study. Modeling adjustments
necessary to account for the data are discussed.

Introduction

Cognitive modeling is useful to the field of human-
computer interaction because it reveals patterns of human
performance at a level of detail not otherwise available to
analysts and designers (as in Gray, John, & Atwood, 1993).
The ultimate promise for cognitive modeling in human-
computer interaction is that it provides the science base
needed for predictive analysis tools and methodologies
(Card, Moran, & Newell, 1983). This article reveals patterns
of human performance in visual search, and contributes to
predictive analysis of visual search.

The density of items in a display is one factor that has
been shown to affect visual search. Bertera and Rayner
(2000) varied the density of a fixed number of characters by
varying the spacing between characters in a search task and
found that search time decreased and the estimated number
of letters processed per fixation increased as the density
increased. Bertera and Rayner concluded that the effective
field of view, the visual space from which information is
perceived in a fixation, did not vary with the stimuli density.
Ojanpéd, Néasdnen, and Kojo (2002) studied the effect of
spacing on the visual search of word lists, and found that as
the vertical spacing between words increased (i.e. as density
decreased), search time also increased. In general, research
examining the effect of density on visual search has found
that more dense stimuli are searched faster per object, with a
decrease in the number of fixations required to find the
target being the largest factor influencing search time.

The modeling presented here focuses on the issues raised
by previous research on density, e.g., the number of items

124

perceived per fixation, and other fundamental perceptual
and ocular motor issues of visual search. Previous modeling
has used data from eye tracking to inform the development
of models with respect to the order of search (e.g. Byrne,
2001; Hornof & Halverson, 2003). Here we use fixation
duration and number of fixations to inform the development
of other aspects of the models.

This paper presents models of a task that investigates the
effect of local density on visual search. The purpose of these
models is to determine the perceptual and ocular-motor
constraints that are required to explain eye movement data
collected with this local density task. Other aspects of the
data, such as fixation order, are left for future research.

The Visual Search Experiment

The task modeled in this paper is the visual search of a
known target among words in structured layouts. Figure 1
shows a sample layout from a trial. All layouts contained six
groups of left-justified, vertically-listed black words on a
white background. The groups were arranged in three
columns and two rows. There were two types of groups of
different densities: Sparse groups contained five words of
18 point Helvetica font. Dense groups contained 10 words
of 9 point Helvetica font. Both group types subtended the
same vertical visual angle.

There were three types of layouts: sparse, dense, and
mixed-density. Sparse layouts contained six sparse groups.
Dense layouts contained six dense groups. Mixed-density
layouts contained three sparse groups and three dense
groups. Figure 1 shows one such layout. The arrangement of
the group densities in the mixed-density layouts was
randomly determined for each trial.

Target and distractors items were words selected
randomly from a list of 765 nouns generated from the MRC
Psycholinguistic Database (Wilson, 1988). No word
appeared more than once per trial. The words in the list
were selected as follows: three to eight letters, two to four
phonemes, above-average printed familiarity, and above-
average imagability. Participants were precued with the
target word before each layout appeared.

Each trial proceeded as follows: The participant studied
the precue; clicked on the precue to make the precue
disappear and the layout appear; found the target word;
moved the cursor to the target word; and clicked on it.
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Figure 1. A mixed-density layout. All angle measurements are in degrees of visual angle.

The trials were blocked by layout type. Each block
contained 30 trials, preceded by five practice trials. The
blocks were counterbalanced using the Latin square
technique. Eye movements were recorded using an LC
Technologies Eyegaze System, a 60 Hz pupil-
center/corneal-reflection eye tracker.

The Observed Data

The solid line plotted in Figure 2 shows the observed search
time per trial, in Figure 3 the observed mean number of
fixations per trial, and in Figure 4 the observed mean
fixation duration. These data were collected from 24
participants (see Halverson & Hornof, 2004 for details). The
mean number of fixations per trial and mean fixation
duration are used for comparison with the model data for
two reasons. First, they were both shown to vary
significantly by layout type, F(2,46) = 60.17, p < .01 and
F(2,46) = 61.82, p < .01, respectively. Second, the majority
of the shift in search time per trial across the different layout
types may be accounted for by the number of fixations and
fixation duration. The search time per trial shows to what
extent adjusting the number of fixations per trial and
fixation duration can account for the search performance.
The observed search time was also found to vary
significantly with layout type, F(2,46) = 127.80, p <.01.

The data of primary interest are the eye movement data
from the sparse and dense layouts. Previous work
(Halverson & Hornof, 2004) suggested that the observed
behavior for the mixed density layouts was affected by
global strategies, which are not the primary concern in the
present discussion. The important features in the observed
data are that all three measures in this study, search time,
number of fixations per trial, and fixation duration,
increased when the local density increased.
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It is well established that search time varies with
distractor numerosity. However, the number of distractors
cannot account for all of the shift in search time observed
across the three layout types. If we normalize for the
number of words per layout, the between-layout differences
in mean search time per word and mean number of fixations
per word are also significant, F(2,46) = 14, p < .01 and
F(2,46) = 3, p = .05, respectively. However, search time per
trial and the number of fixations per trial will be compared
with the predicted data since they are more directly
interpretable.

EPIC Cognitive Architecture

The models were constructed using the new C++
implementation of the EPIC (Executive Process Interactive
Control) cognitive architecture (Kieras & Meyer, 1997).
EPIC captures human perceptual, cognitive, and motor
processing constraints in a computational framework that is
used to build cognitive models. Into EPIC, we encoded (a) a
reproduction of the task environment, (b) the visual-
perceptual features associated with each of the screen
objects, such as the text feature, and (c) the cognitive
strategies that guide the visual search, encoded as
production rules. These components were added based on
task analysis, human performance capabilities, previous
visual search model, and parsimony.

After these components are encoded into the architecture,
EPIC executes the task, simulates the perceptual-motor
processing and interactions, and generates search time and
eye movement predictions. EPIC simulates ocular-motor
processing, including the fast ballistic eye movements
known as saccades, as well as the fixations during which
the eyes are stationary and information is perceived.
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The Models

Three models are presented in this section. Each improves
on the last, correcting for a particular shortcoming in the
prediction generated from the previous model. A good fit of
the mean search time is the primary goal. However, while
the mean search time is analyzed for each model, the models
are improved incrementally based on eye movement data.

All models are based on a purely random, without-
replacement, search strategy. While we do not necessarily
assert that people move their eyes from item to item
randomly, it may be that a random search strategy is a good
first approximation for predicting mean layout search time
without complicated strategies or visual features beyond the
locations of objects. Such a strategy has the added benefit
for a priori engineering models, as each object need be
encoded with only one directly-extractable feature, its
location. Subtler features, such as visual prominence or
group-inclusion are not needed. Hornof (in press) found that
a purely random search model with two to three items
examined per fixation was good predictor for mean layout
search time, even though it was a marginal predictor of
search time per position.

Each model was run for 2,520 trials per layout type. The
predictions generated by each model are discussed next.

Purely Random Base Model

The first model examined — the base model — was a purely
random search model with all of EPIC’s perceptual
properties left at the default values. This base model is the
standard to which we can compare subsequent models. In
general, each word in the layout had an equal probability of
becoming the destination of the next saccade. For this and
following models, fext is only available within one degree of
visual angle (dov) from the center of fixation. We assume a
without-replacement search. Any object for which the rex?
had been perceived was excluded from being the destination
point of future saccades.

The base model was overall a poor predictor of human
performance. As seen in Figures 2 and 4, the predicted
search times and fixation durations are incorrect in value
and trend. It might seem that search time should decrease
with dense layouts because more items fit into the fovea, but
dense layouts also had more items to search.

Figure 3 shows the mean number of fixations. While the
trend is incorrect for the predicted number of fixations as
well, the prediction for the sparse layouts is quite good. This
is promising and suggests that the purely random search
model is a good starting point for modeling the
characteristics of participant eye movements. As the
predicted fixation durations have the greatest error of the
two eye movement measurements, the next model will focus
on improving the fixation durations produced by the model.

Wait-for-text Model

People appeared to adopt a search process that increased the
duration of fixations on smaller, denser text. This could be
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Figure 2. Mean search time per trial observed (solid
line) and predicted (dashed line) by the purely random
base model. Average ahsolite error (AAE) = 62.1%
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Figure 3. Mean number of fixations per trial observed
(solid line) and predicted (dashed line) by the purely
random base model. AAE = 26.7%

= 400
g —e— Observed
.5 300 | ===+ Predicted
g
a
= 200+ "
S
g
2 100 Or=smmrmsmenes Or-mmmmmmemeen 0 3
=
<
]
2 0 T T T

Sparse Mixed Dense

Layout Type

Figure 4. Mean fixation durations observed (solid line)
and predicted (dashed line) by the purely random base
model. AAE = 65.5%

achieved a number of ways in the model. One brute force
approach would be for the production rules to directly set
the fixation duration, though EPIC provides no such facility.
Another would be to hold back each saccade until a certain
amount of information is gathered from the currently fixated
stimuli. This is straightforward to model in EPIC by (a)
modulating the recoding time for a visual property (as in,
dense text takes longer to recode) and (b) using a strategy
that holds back each saccade based on this modulated
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Figure 5. Flow chart of the Wait-for-TEXT strategy.
Universal Modeling Language, a diagrammatic standard
in software engineering, is used here.

feature. The Wait-for-fext model uses such a strategy.
Figure 5 shows a flow-chart based on the production rules.

The EPIC’s default recoding time for the text feature is a
constant 100 ms. This was modified when trying to explain
the human data. As shown in Figure 4, the mean observed
fixation duration was over 100 ms longer in the dense
layouts than in the sparse layouts. To model this a stepped
recoding function was introduced to calculate the perceptual
time for a feature based on the proximity of adjacent items.
If an object’s closest neighbor was closer than 0.15 dov (a
dense object), the fext recoding time was 150 ms. Otherwise
the text recoding time was 50 ms.

The base model initiated a saccade to the next randomly
chosen object as soon as the previous saccade was complete.
We hypothesized that humans may not initiate a saccade to
another object before the text of the currently fixated object
had been perceived, but that they may select another object
and prepare the eyes to move to that object. Based on this
belief, the procedure used for initiating saccades became:
(1) Select an object at random as a saccade destination and
prepare the eyes to move to that object. (2) Wait for the fext
of the currently fixated objects to become available before
performing the prepared saccade. A similar prepare-then-
perform strategy was used successfully in the modeling of
another visual search task with EPIC (Kieras, 2003).

The predicted mean search time improved slightly with
these modifications. As seen in Figure 6, there is now a very
slight upward trend in the search time. However, the slope
of the predicted search time line is not steep enough. The
lack of a sharp increase between sparse and dense layouts
correlates with the continued poor fit of the predicted
number of fixations per trial. The model still does not make
more fixations in layouts with dense objects. Further, the
overall mean number of fixations has dropped in
comparison to the base model. Though the mean fixation
duration is now explained very well.

Detailed traces of the models revealed that the drop in the
mean number of fixations was due to the prepare-then-
perform strategy. The base model initiated approximately
three additional fixations after the target had been fixated
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but before the fext property for the target had become
available. This resulted in roughly three more fixations per
trial than the prepare-then-execute strategy, which inhibited
additional fixations until the fext property was perceived.

A large improvement was found in the predicted fixation
durations. The inhibition of saccades and an increased
recoding time for dense objects resulted in a differentiation
in fixation durations similar to that in the observed data. The
predicted data could have been further improved by
reducing the fext recoding time for sparse objects further, as
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Figure 6. Mean search time per trial observed (solid
line) and predicted (dashed line) by the
Wait-for-the-TEXT model. AAE =41.7%
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Figure 7. Mean number of fixations per trial observed
(solid line) and predicted (dashed line) by the
Wait-for-the-TEXT model. AAE =48.1%
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Figure 8. Mean fixation durations observed (solid line)
and predicted (dashed line) by the Wait-for-the-TEXT
model. AAE = 10.0%
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the majority of the error in the predicted data lies in the
sparse and mixed layouts. However, the purpose of this
modeling was to approximate the ocular-motor behavior in
the observed data, so further fine-tuning of fixation
durations was not performed. Rather, since the greatest error
now lies in the predicted number of fixations per trial the
next model will focus on improving the number of fixations
produced by the model.

Reduced Text Availability Model

A simplifying assumption in previous models directly
influenced the predicted number of fixations. The
assumption was that all text within the fovea (1 dov) is
perceived for every fixation. This results in the model
perceiving two to three sparse objects or five to seven dense
objects in each fixation. Consequently, the model was able
to perceive all text in a layout with an equal number of
fixations, regardless of the layout density. The observed
data suggests that humans do not do this. People require
more fixations for dense text. An increase in the number of
fixations required for dense objects can be achieved in a
number of ways. One way is to reduce the region within
which dense fext can be perceived. Another is to reduce the
probability of correctly perceiving text based on the size or
spacing of the text. Both methods were tested in the models.

It was found previously that processing two to three items
per fixation accounts well for the observed number of
fixations in a search task (Hornof & Halverson, 2003). Here,
we first limited the zext availability to two to three items per
fixations by decreasing the region of text availability for
dense words to 0.5 dov. The default settings already limited
sparse words to two or three per fixation. Perceiving two to
three words per fixations resulted in a much better fit for the
predicted number of fixations per trial. However, the model
was still under-predicting the number of fixations per trial in
all layouts.

A second availability function was created to vary the
probability of perceiving the fext property dynamically
based on the distance to the closest neighboring object. This
is one of several ways to measure density. One advantage of
this measure is that it only requires the position of each item
on the screen. If an object’s closest neighbor was less than
0.15 dov away (a dense object), the probability of
perceiving the text was 50%. Otherwise, the probability of
perceiving the text was 90%. These probabilities were
chosen because they would result in two to three items, on
average, perceived per fixation across densities.

As seen in Figure 9, the predicted mean search time per
trial improved considerably. Examining the ocular-motor
behavior, we see that the predicted fixation durations
improved slightly compared to the Wait-for-fext Model, and
the number of fixations per trial now closely approximates
the observed data. The average absolute errors for the three
measures range between 6.5% and 8.8%. This has been
achieved by only modifying perceptual parameters and
fundamental aspects of the strategy (i.e. prepare-then-
perform).
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Figure 9. Mean search time per trial observed (solid
line) and predicted (dashed line) by the Reduced Text
Availability model. AAE = 6.5%
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Figure 10. Mean number of fixations per trial observed
(solid line) and predicted (dashed line) by the Reduced
Text Availability model. AAE = 8.8%.
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Figure 11. Mean fixation durations observed (solid line)
and predicted (dashed line) by the Reduced Text
Availability model. AAE = 7.8%

Discussion

Implications for cognitive modeling of visual search

A random search strategy is a reasonable first
approximation that allows the analyst to focus on other
fundamental ocular-motor activity that affects visual search.
If an analyst can initially account for fundamental
perceptual and ocular-motor activity with such a
parsimonious model, the model may help to constrain the
search space of more elaborate strategies.
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One means of accounting for the number of fixations in a
visual search of words is to limit the number of words
perceived per fixation to two to three on average. Hornof (in
press) found in that limiting the number of objects perceived
per fixation to two to three items helped predict observed
search times. The same assumption here helped to predict
search time and number of fixations. However, it was not
found that reducing the region of perception for denser
objects was the best predictor, but rather maintaining the
same region of perception and reducing the probability of
perceiving denser objects so that an average of two to three
items was perceived per fixation.

A straightforward and parsimonious means to account for
fixation durations in a visual search of words is to use a
prepare-then-perform strategy. The improvement in the
predictions resulting from the use of this strategy suggests
that future models that account for other aspects of the
observed data should constrain the manner in which saccade
destinations are selected. The saccade destination should be
selected, and the eye prepared to move there, before the
currently fixated text is perceived and the current fixation is
complete. Otherwise, the predictions for saccade durations
will probably be worse than was found here.

Implications for the theory of visual search

Bertera and Rayner (2000) concluded that the effective field
of view did not decrease as density increased. The findings
here work within that conclusion and expand upon it. It was
found that if we tried decreasing the region in which text
could be perceived (i.e. the effective field of view), that our
model under-predicted the number of fixations required to
find the target. However, if we left the region in which text
could be perceived the same size, regardless of density, and
changed the probability of perceiving text within that region,
the models could better account for the observed data. The
task modeled in this research differed from that used by
Bertera and Rayner. In the current task, density was
manipulated by varying the size of text and spacing (which
is arguably more ecologically valid, see Halverson &
Hornof, 2004). Still, similar conclusions were reached.
Future work is required to study the effects of density where
text size and spacing vary independently.

Conclusion

This paper presents models for a task that investigates the
effect of local density on the visual search of words. A
principled approach was used to account for the observed
eye movement data. We started with a model that used the
default perceptual parameters of EPIC and a random,
without-replacement search strategy.

We found that a random search model that examines an
average of two to three words per fixation predicts the
observed number of fixations per trial data well. Further, it
was found that a fixed region for fext perception and a
probability of perceiving fext that varied with density was a
better prediction than a variable region for zext perception.

We also found that a model that waits for fext to become
available before initiating a saccade, but that prepares the
next saccade in parallel with examining the fext, is a good
predictor of the observed fixation durations.

Further work is in progress to account for other observed
data, such as the order of visitation and strategy shifts in
mixed density layouts. The research presented here has
established fundamental strategies and perceptual
parameters that will constrain further modeling of the task.
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