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Abstract

While cognitive modeling has begun to make good
progress in accounting for human multitasking behavior,
current models typically focus on externally-driven task
switching in laboratory-task settings. In contrast, many
real-world complex tasks, particularly time-critical tasks,
involve internally-driven multitasking in which the
person her/himself decides when to switch between tasks.
In this paper we propose an adaptation of the ACT-R
cognitive architecture that incorporates a notion of
elapsed time for the current goal and uses time to
determine when to switch away from the current task. We
demonstrate the usefulness of this mechanism in an
application to a dynamic, time-critical dual search task,
showing how an ACT-R model can account for various
aspects of human subjects’ switching behavior.

Introduction

In the push to generalize to increasingly complex real-world
tasks, cognitive modeling and cognitive architectures have
begun to address several important challenges, including
direct interaction with realistic environments and complex
integration of lower-level performance with higher-level
planning and decision making. One of the most important
challenges today involves making the leap from single-task
laboratory experiments to real-world, time-critical tasks in
which a person performs tasks together — in other words,
addressing the fundamental yet ill-understood skill of
human multitasking in time-critical tasks.

Recent modeling work on multitasking has focused
primarily on situations where external cues are provided as a
signal initiating switching between tasks. Such situations
provide an excellent framework for analyzing the dynamics
of the reaction time, and thus the distribution of attentional
resources, at the time when switching between tasks takes
place — for instance, the analysis of switching-time costs
(STC) and the psychological refractory period (PRP) has
been done for various types of tasks, discrete and
continuous, successive and concurrent (Kieras et al., 2000).
However, it has been argued (e.g., Burgess et al, 2000) that
relying on external signals for switching between tasks is
less common in real-life multitasking situations. Instead,
many real-life scenarios, particularly in time-critical
environments, involve internally-driven multitasking in
which the person decides when to switch between tasks
(e.g., the tasks of driving and dialing a cell phone). While
the environment may indirectly define certain parameters of
task switching, reliance on direct environmental feedback as
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a signal to switch would imply processing that is too slow
for time-critical situations (Rasmussen, 1983). In addition,
environmental feedback is not even always available in real-
life situations; it may also be significantly delayed and so
only useful for adjusting future, but not current, behaviors.
For this reason, the ultimate distribution of task switch
points under time-critical conditions must be signaled by
processes internal to human cognition.

The modeling of internally-driven multitasking proves
to be an interesting challenge for current cognitive
architectures such as ACT-R (Anderson et al., in press),
EPIC (Meyer & Kieras, 1997), and Soar (Newell, 1990).
One critical component of internally-driven multitasking in
time-critical contexts is the ability to implicitly reason
about time and the temporal aspects of each task.
Intuitively this can be understood in terms of the increasing
“pressure” over time that a person working on one task may
feel to switch to another task. Possibly, this psychological
phenomenon is what allows people to effectively balance
cognitive resources across tasks. However, the current major
architectures do not incorporate time-sensitive mechanisms
that affect behavior on the scale of single-task execution.

To address this issue, we turn to the ACT-R cognitive
architecture (Anderson et al., in press) and show that
relatively minor changes to mechanisms already built into
ACT-R allow us to implicitly reason about time and capture
task-switching behavior in time-critical tasks. We evaluate
the proposed architectural changes in the context of a simple
experimental environment whose task demands are based on
our analysis of the available neuropsychological tests (see
Burgess, 2000). In developing an ACT-R model that
incorporates the proposed changes, we found that the model
nicely captured several aspects of people’s temporal
sensitivity in the task and their resulting behavior of when
to switch tasks.

Deciding When to Switch Tasks
in the ACT-R Architecture

As a step toward modeling internally-driven task switching
in time-critical environments, we first examine some of the
neuropsychological bases of real-world multitasking and
explore the mapping of these concepts onto the ACT-R
architecture. Given this insight, we then propose a small
but powerful change to the current architecture that
incorporates time into the task-switching decision and thus
account for empirical phenomena such as those described in
the subsequent sections of the paper.


yguo
In Proceedings of the Sixth International Conference on Cognitive Modeling, 14-19. Mahwah, NJ:  Lawrence Earlbaum.

yguo
14


ACT-R and Neuropsychological Bases

Analysis of the demands that real-life multitasking
situations place on the individual allows us to identify three
major skill sets whose involvement is crucial for
satisfactory multitasking performance (Burgess et al., 2000):
e The ability to create and schedule future intentions.

The facility to remember/maintain those intentions, as
well as prioritize them.

The ability to switch from carrying out one intention to
another when the appropriate moment in time is finally
reached.

In identifying the brain structures that are expected to be
most significantly involved in producing these types of
skills, we note two important points related to modeling
and multitasking. First, both creation and maintenance of
intentions, or goals, through prospective cognition rely
heavily on the activity of the Dorsolateral Prefrontal Cortex
(DLPFC), which immediately points to the possibility that
this aspect of multitasking behavior should be taken care of
by the existing ACT-R “goal buffer,” since the activity of
this buffer is thought to account for neural processing in
DLPFC (Anderson et al., in press). In this paper, we focus
on the problem of when to switch away from the current
goal in the buffer; in a complementary paper, we focus on
the problem of choosing what goal to execute next (Salvucci
et al., 2004).

Second, the ability to initiate switching between tasks
and to do so at appropriate points in time is closely related
to the notion of interval timing and prospective memory,
and thus, anatomically, to basal ganglia (Nenadic et al,
2003; Diedrichsen et al, 2003). This connection to basal
ganglia leads us to suggest that, in ACT-R, execution of
prospective goals should be managed on the level the
production system, which is thought to account for the
activity of the basal ganglia (Anderson et al., in press).
More specifically, we claim that such management centers
on the production-level conflict resolution in ACT-R, which
chooses the next production instantiation based on
“expected gain” (described below). It is this last aspect of
human multitasking and its possible ACT-R
implementation in terms of conflict resolution that is our
focus in this paper.

Procedural Memory and Conflict Resolution

The contents of procedural memory in ACT-R are composed
of condition-action production rules. The “condition” part of
each such rule is utilized in selection of appropriate
productions to be activated; this process is accomplished
through matching condition parts of the rules to the current
states of the system buffers, including the goal buffer,
declarative memory, and the buffers of perceptual modules.
However, any given combination of buffer states may
potentially match the conditions of multiple production
rules; yet, the serial nature of ACT-R’s cognitive processing
allows only one production to be activated within one
cognitive cycle. For this reason, the conflict-resolution
mechanism in ACT-R selects a single production rule out of
the pool of rules whose condition parts match the current
state of the system.
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Conflict resolution attempts to select a production rule
that maximizes the expected gain of the rule — namely, the
gain that model expects to receive from executing the next
production. Expected gain is defined as the value PG-C.
Here, P is the probability that selecting a particular
production will eventually lead to successful completion of
the goal objective, G is the value of the goal, and C is the
expected cost of completing the goal if a given production
is chosen on this particular step (Anderson et al., in press).
While the conflict resolution process attempts to select a
production with the highest expected utility, ACT-R also
includes logistic noise on expected gain to introduce some
level of randomness to the rule selection process.

Analysis of conflict resolution within the ACT-R
procedural memory shows that all parameters involved in
conflict resolution are encoded through temporally static
variables. The parameter G, representing the subjective
value of successfully accomplishing a given goal and
expressed as the amount of time the model (or person) is
willing to spend on that particular goal, is currently kept
static at 20 seconds for all models and all goals within
those models.  Parameters C (the cost of accomplishing
the current goal given that a particular production is chosen)
and P (expected probability of successfully achieving the
objective of the goal if the given production is chosen) can
be modified through the ACT-R utility learning
mechanisms (Anderson et al., in press). However, such
modifications take place only at such points that are
explicitly marked as clear successes or failures in execution
of the current goal, and thus such dynamics of the
parameters C and P take place at a higher timescale than
what is needed to make conflict resolution reflective of the
passage of time within a single instance of a goal execution.
Thus, the system of conflict resolution in ACT-R can
currently be regarded as temporally static if looked at on the
level of the execution of a single goal.

This aspect of the ACT-R architecture can be
questioned in terms of psychologically plausibility, given
that people are clearly capable of adjusting their behavioral
strategies with constantly varying levels of time pressure
(Maule et al, 2000). Thus, we propose slight modifications
to the existing formulation of the conflict resolution
parameters that allow us to resolve this issue and also
enable us to rely on the same essential conflict resolution
mechanism for deciding when to switch away from the
current task, particularly in the context of time-critical
multitasking.

Proposed Architectural Modifications

We propose to redefine the parameter G as a representation
of the subjective value of continuing to execute the current
goal. Since utilities throughout the ACT-R architecture are
expressed in terms of time, we attempt to maintain
consistency with this idea and define G more specifically as
the amount of time the model is willing to spend on
continuing attempts to achieve the current goal.

To implement this idea, we propose that the initial
value of parameter G be set at goal creation — that is, when
a production rule creates and sets the new declarative goal
chunk in the goal buffer. The initial value of G represents
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the duration of time that the model is willing to spend on
achieving the goal in its entirety, from the start and to the
moment the goal is abandoned in favor of another one.
From the moment of goal creation, the value of parameter G
linearly decreases with the passage of time, ultimately
decreasing to 0 as the desired time expires. Such a
redefinition of G removes the previously static temporal
nature of conflict resolution: because production utilities are
calculated as PG-C, as the time goes and the value of G
decreases, the system will go from favoring productions that
have high probability P of leading to a successful state, to
favoring productions that promise low future execution
costs C.

The resulting dynamics of the conflict resolution
process are very interesting even simply because they allow
models to change their strategies for performing tasks with
the passage of time. This may affect models in both single
and multiple task situations. But more importantly for us
here, this new mechanism enables us to rely on conflict
resolution for the initiation of switching between tasks. We
can now introduce one extra production rule for every goal
within a model, such that this new production, when
activated, causes the goal to give up control. We further
assign this production very low values of parameters P and
C — which is intuitively reasonable, since switching away
from a goal cannot lead to a successful state within that goal
(thus low value of P), and similarly, switching away from a
goal means that the cost of executing that goal immediately
goes down to nearly zero (thus low value of C).

Low values of P and C will ensure that this newly
introduced production rule will be activated at or near the
end of the time period that the model intended to spend on
execution of the corresponding goal: because P is low, this
production will not likely be activated at the beginning of
goal execution, since the relatively high initial value of G
will cause the conflict resolution system to favor
productions with high P (and thus high product PG);
However, as the value of G goes down with time, conflict
resolution becomes increasingly more biased towards
selecting low-cost production rules, and as G approaches
zero, a production with nearly-zero cost will likely to be
selected even if its P value is nearly zero as well.

In addition to ensuring that switch times be near their
intended values, reliance on conflict resolution mechanism
allows us to utilize the built-in logistic distribution of the
expected gain noise (Anderson et al., in press) to guide our
predictions about the level of precision we may expect in
the distribution of switch times.

Design of the Validation Task

The two major factors guiding us in designing the
experimental task were the literature on neuropsychological
tests available for evaluation of human multitasking skills
and the need for such level of task simplicity that would
facilitate integration of the task with computational models.

Guiding Principles
There is a strong understanding in psychological,
particularly the neuropsychological, literature that skills
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involved in human multitasking compose a subset quite
distinct from the rest of the skills enabling executive
functioning. For instance, it has long been shown that
certain types of brain damage nearly exclusively affect the
ability to carry out previously planned intentions, thus
greatly impairing the person’s ability to effectively function
in the everyday life, while having very limited impact on
performance on traditional standardized tests of general
intelligence, and even on the tests of executive functioning
(Shallice & Burgess, 1995).

This notion has led to development of specialized tests
that evaluate the ability to execute prior intentions, such
that the level of performance on those tests would reliably
correlate with the person’s ability to carry out basic
everyday tasks involving multitasking, such as shopping,
cooking, etc. Some of the tests thus developed were the Six
Element Test (Shallice & Burgess, 1991) and the Greenwich
Test (Burgess, 2000). Because both tests involve
performing a range of fine motor movements that are
difficult to model, we were not able to employ these tests
directly; instead, we analyzed the procedures of the two tests
to derive guiding principles for designing our own
experimental procedure:

*  Encourage subtask scheduling on the scale of seconds
to minutes, rather than a sub-second scale, as this
appears to be optimal for evaluation of the prospective
memory aspect of human multitasking, and generally
better represents the demands of real-life multitasking
environments.

Provide such rules and instructions that would create a
continuing conflict between the need to stay with the
current task for prolonged intervals, in order to
maximize the given performance measure, and the need
to switch between tasks, to prevent negative
consequences on performance.

Provide feedback on progress both along the time
dimension and in terms of accuracy in order to allow
people to tune their performance by possibly modifying
future planning strategies; however, ensure that
feedback information is only available after the
corresponding action and only upon specific request by
the subject, and thus cannot be utilized as a
performance-guiding forward cue.

In general, exclude any environmental cues that could
be interpreted as external signals for initiation and/or
termination of subtasks, thus ensuring that execution of
previously scheduled subtasks is governed exclusively
by internal signaling.

Encourage task prioritization; enable the experimenter
to manipulate task priorities throughout the course of
the experiment.

Experimental Task

These guiding principles led us to the an experimental task
and procedure which can describe briefly as follows. In the
experiment, the subject was simultaneously presented with
two similar tasks, of which only one could be active at any
given point in time. The instructions were given to work on
both tasks within the allocated time. Each task required the
subject to repeatedly perform visual search on a sequence of
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Figure 1: Screenshot of the experimental window.

letters with the goal of determining whether or not a
specified target letter is present in the sequence, as shown
in Figure 1. The subject was asked to respond to each search
query by pressing one of the two designated keys, one key
(‘y’) meaning that the target is present, and the other key
(‘n”) meaning that target is absent from the sequence. In
order to motivate the subject to answer accurately, a
correctness score was calculated and displayed to the
subject. Each correct response earned 1 point in the scoring,
while an incorrect response deducted 10 points. Subjects
were encouraged to answer as fast as they could, since that
would allow them to reach a higher score within the limited
time interval.

In order to ensure that the subject regularly switches
between the two presented tasks and does not commit to
working on only one of them, each task had a timer
associated with it. Each timer was reset whenever the
subject answered search queries of the task corresponding to
this particular timer. However, whenever a task was
abandoned in favor of the other task, the timer of the first
task was able to run uninterrupted at constant speed up until
the point where it reached its endpoint, where the timer
would “expire,” thus causing a very significant decrease (25
points) in the subject’s performance score. The subject was
instructed to treat the timers with high priority and to be
sure to switch between tasks with a frequency high enough
to avoid either of the timers ever reaching their expiration
points.

The tasks were further complicated by the fact that the
timer of the currently inactive task was hidden until that
task was activated again. Thus, the subject had to work in
the situation where he or she had to switch from one task to
another without being able to rely on any external cues to
guide in determining the appropriate time to do so.

In order to prevent the subject from adopting the
strategy of switching between tasks after every single query,
we manipulated the difficulty of the two tasks: the length of
the letter sequence in one task was kept at 20, and in the
other task it was either 5 or 9. The subjects were explicitly
encouraged to spend as much time as possible on the easier
task, with the notion that such strategy would allow them
to reach a higher performance score within the time allocated
for the experiment.
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Participants and Procedure

In the experiment, which included 10 university students (2
women, 8 men), each participant was first instructed as to
the basic structure of the task. Then, the participant
performed two experimental blocks in each of two
conditions: one in which the timer expired in 30 seconds,
and another in which the timer expired in 15 seconds. In
each block, the participant was allowed to practice the task
for 5 minutes, and then performed 15 minutes of actual
experimental trials. For simplicity, in this paper we present
only the results for the 30-second timer condition; the
results for the 15-second timer condition are reasonably
similar and not discussed herein.

ACT-R Model

Given the experimental task described above, we set out to
develop an ACT-R model that incorporates the proposed
architectural mechanism, thus validating that the mechanism
can indeed generate interesting emergent predictions in task-
switching behavior.

Description

We first developed an isolated model that adequately

performed the required search-and-answer procedure in a

single-task context. The model adhered to the following

action pattern:

*  encode the target letter;

* sequentially search the letter sequence (the mechanism
of simultaneous encoding and attention shifts was used
to achieve a search speed high enough to match the one
observed in people);

e if the target is encountered during search, respond by
pressing the ‘y’ key;

e if end of the letter sequence is reached, respond by
pressing ‘n’.

We do realize that this model oversimplifies the real human

interaction with the experimental environment. For instance,

it does not incorporate the action redundancy that was
observed in the general task procedure and especially in the
search strategy (evidence for this comes in part from the fact
that people were able to perform search significantly faster
under increased time pressure, and this speedup was only
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Figure 2: Comparison of experimental results and model predictions. Experimental data were obtained using
ten subjects, each performing the experimental task for 15 minutes; to match these conditions, the model

was also run for ten 15-minute intervals.

poorly correlated with the increase in error rate). However,
its problems notwithstanding, this model provides a close
enough approximation of human performance to allow us to
focus our study on the initiation of task switches.

Enabling the model to perform two independent tasks
within a given time interval by regularly switching between
the tasks required only those changes described earlier: we
had to introduce one extra production into each task with
the intention that this new production, when activated,
would cause the goal to cede control to the other task goal.

To fit this model to the behavior of the experiment
participants, we varied one parameter, the value of ACT-R’s
expected gain noise, which was set to a value of 2.0 (instead
of the default value of 0.5). We explain this by the fact that
the conflict resolution system in our model was relying on
perfect system time, while in people the corresponding
processing system is likely to receive temporal information
that is already noisy. And most importantly, the very idea
of having the value of the current objective as a dynamic
construct may by itself call for reevaluation of expected gain
noise parameters. In addition, we preset the C values of the
production rules that create a new goal to include the cost of
this new goal; this additional cost was derived from the
average time needed by the model to complete these goals.
The final model results were compiled from 10 simulations
of 15 minutes each (the same amount of data as for human
subjects).

Model Predictions

The most important result that we obtained from
experiments with the model was that the conflict resolution
system relying on the redefined dynamic goal wvalue
parameter G is capable of producing a probability
distribution for the times of switching between tasks that is
very close to the one obtained for human subjects, as shown
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in Figure 2, with R=.94 (calculated only from 2-30s).
The shape of the distribution is an emergent prediction of
the time-sensitive conflict resolution; the exact size of this
distribution is a function of the expected gain noise.

In addition to achieving the desired shape of the
probability distribution, we were also able to account for the
fact that the majority of our human subjects were more
likely to switch away from a task whenever continuing with
that task required them to perform a discrete time-
consuming subtask — that is, both the model and human
subjects were more likely to switch before a 5-letter search
than before a 9-letter search, as shown in Figure 3.

.70 A
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.60 T |WHuman
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.00

5-letter 9-letter

Figure 3: Probability of switching given that
the next trial is a 5-letter or 9-letter search.
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The model predicts this effect because the C values for
subgoal-launching productions include the cost of the
subgoal itself, thereby making the 9-letter search more
costly and thus more likely to lead to a switch.
Interestingly, although we are not modeling learning in the
current model, we believe that such definition of the C
parameters suggests a simple and intuitive way of learning
conflict resolution parameters and nicely accounts for the
tendency to avoid time-consuming tasks, for production
rules.

Discussion

Overall the new mechanism of a time-sensitive conflict
resolution seems to account nicely for the decision of when
to switch tasks, particularly during time-critical
performance. One aspect of multitasking not accounted for
in this work, however, is what to do next — that is, once
you switch away from the current task, deciding what task
(or goal) should follow. In a companion paper (Salvucci et
al., 2004), we propose a mechanism that generalizes the
goal buffer into a goal set, scheduling goals according to
“urgency” and thus help to decide what to do next. Also,
Altmann and Trafton (2002) have proposed an activation-
based model for retrieving the next goal from declarative
memory. Such work on deciding what to do next is
complementary to our work here and could eventually be
integrated to form a more cohesive account of task
scheduling and multitasking.

Another interesting aspect of the new mechanism
emerged from the treatment of time as associated with
individual goals. The current mechanism focuses on the
time elapsed for an individual goal, but time sensitivity
does not currently cross goal boundaries. Another approach
would allow the G value of the current goal to influence the
G value for subgoals. The older ACT-R goal stack
(Anderson & Lebiere, 1998) discounted subgoals’ G values
when pushed onto the stack; however, this (now defunct)
mechanism had some aspects of this propagation but was
somewhat rigid in implementation. While we believe that
our mechanism has the potential to generalize to such
phenomena, more in-depth studies could clarify how the
propagation of time sensitivity across goals might be
incorporated into the architecture.
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