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Abstract 
 

Eye movement is a basic human behavior that offers a valuable 
means to explore human cognitive processes. This article 
introduces two modeling studies of eye movement. First, random 
menu search was modeled using a queueing network approach 
and second, a reinforcement learning algorithm was used to 
generate various eye movement patterns. Random menu search is 
a task component involved in many human-machine interfaces 
and has been modeled with several cognitive models including 
ACT-R and EPIC. Based upon review of empirical data in menu 
search, and strengths and limitations of existing models, this 
article proposes a queueing network model, which has been 
successfully applied in some other task domains (e.g., response 
time, driver performance). The queueing network model for 
random menu search was implemented and evaluated through 
model simulation. In contrast to existing models that rely on four 
task-specific strategies to account for data, the queueing network 
model accounted for the same data using only one strategy 
already employed in cognitive modeling. To extend this 
parsimonious, “minimal task strategy” modeling approach, Q-
Learning, one of the reinforcement learning methods, was adopted 
to generate different patterns in eye movement. The same strategy 
from random menu search was used to generate eye movement, 
and the simulated eye movements were qualitatively compared to 
the human eye movement.  
 

I. Introduction 
Computational modeling of menu search and eye movement 
has both practical and theoretical significance. Practically, 
menu search is almost universally required in computer 
interfaces. Most computer interfaces contain menus for 
users to select functions from. Selection of a menu is then 
followed by a visual search. Theoretically, eye movement is 
an integral component of cognitive performance. Many 
experimental studies (Nilsen, 1991; Byrne, Anderson, 
Douglass, & Matessa, 1999) and computational modeling 
efforts (Byren, 2001; Hornof, 1999; Anderson, Matessa, and 
Lebiere, 1997) have been conducted to investigate random 
menu search and eye movement.  
   Computational cognitive models are useful because they 
can integrate results of various experiments, provide 
understanding of perceptual and cognitive processes 
underlying observable behaviors, make quantitative 
predictions for scenarios not yet tested, and provide a 

precise common language for description of phenomena of 
interest. We examined existing computational cognitive 
models of menu search and eye movement and proposed a 
new computational cognitive model rooted in queueing 
network theory (Liu, 1996, 1997) that overcomes the 
limitations of the existing models.  
   Two studies are introduced here. The first focuses on the 
development of a computational cognitive model for menu 
search with a minimal number of eye movement strategies. 
Performance of the queueing network model is compared to 
existing models involving complex strategies. The second 
study investigated the potential performance of our model to 
generate eye movement patterns. Results show that our 
model generated various types of eye movement patterns 
based on the same simple strategy used in the first study. To 
explain the underlying rules for different eye movement 
patterns, reinforcement learning algorithm was adopted. 
 

II. Random Menu Search Models 
Random menu search is the simplest type of search task 
because it requires only one-dimensional eye movement (up 
or down). A menu search task consists of control of aimed 
movements and visual search of menus. Nilsen conducted a 
series of menu search experiments using sets of randomly 
ordered and vertically listed items as the stimuli for menu 
search (1991). The subject’s task was to find a given target 
from a set of items. Nilsen collected only response time in 
this experiment. Nilsen’s data have been used to validate 
existing models (Anderson, 1997; Hornof, 1999). 

In addition to response time data, Byrne, Anderson, 
Douglass, and Matessa (1999) considered the use of eye 
movement data as validation of computational cognitive 
models for random menu search. According to their eye 
movement records of a random menu search task, there are 
two typical phenomena in eye movement for menu search: 
varying lengths of saccade and overshooting. A saccade is 
one type of eye movement characterized as a ballistic 
movement with a fixed destination. The records of eye 
movement showed that the length of saccade is not constant. 
Overshooting is a phenomenon in which the eye moves 
beyond the location of the target. Byrne’s data revealed the 
existence of negative lengths on the last saccade in menu 
search, a finding that can be interpreted as overshooting. 
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II. 1. ACT-R and EPIC Models 
Anderson, Matessa, and Lebiere (1997) showed that the 
ACT-R model could reproduce menu search response time 
by incorporating a critical production called the hunt-feature. 
The hunt-feature production moves attention by hunting for 
objects that have a target feature. The hunt-feature 
production determines the next fixation position, which 
determines the length of the following saccade. 

Hornof (1999) developed the dual strategy varying 
distance hybrid model (DSVDH model) based on EPIC. He 
addressed the difference between local and global control of 
eye movement in visual search. In the DSVDH model, he 
assumed four different search strategies and their fractions 
of use in their global control of eye movement.  

Byrne (2001) compared the performance of ACT-R 
(Anderson et al., 1997) and DSVDH (Hornof, 1999) in 
random menu search using eye movement data (Byrne et al., 
1999). ACT-R successfully generated the varying length of 
saccade with the hunt-feature production (Anderson et al., 
1997). However, the fundamental serial cognitive 
processing assumption of the ACT-R architecture did not 
allow the eyes to overshoot. Since subsequent fixation 
location is determined before the eye moves in ACT-R, 
there is no reason for the eyes to move further than the 
target location.  

Unlike ACT-R’s serial cognitive processing assumption, 
the EPIC architecture assumes parallel cognitive processing. 
Thus, Hornof’s (1999) DSVDH model allows multiple 
target items to be compared simultaneously. Hornof’s 
assumption of multiple strategies allows DSVDH to 

reproduce eye overshooting and varying length of saccade, 
although the DSVDH model itself provides insufficient 
explanation of how and why they occur. 

 
II. 2. Queueing Network Model for Menu Search 
The queueing network modeling approach was proposed by 
Liu (1996, 1997) and has been applied successfully to 
integrate a large number of influential mathematical models 
in psychology (Liu, 1996), in modeling multitask 
performance (Liu, 1997), and in modeling driver 
performance (Tsihmoni and Liu, 2003).  

The queueing network model consists of four 
components: customers, servers, arrivals and routes. The 
stimulus, either outside or inside of human body, is encoded 
as customers, which need to be processed by servers. Each 
server in a queueing network represents a fundamental 
functional unit in human information processing. The 
arrival of a customer at a particular server is an event that 
initiates information processing at that server, and the order 
of the servers though which a customer should go is the 
route traversed by that customer.  
   To model a random menu search task with the queueing 
network, three types of stimuli required in random menu 
search tasks were defined as customers: precue stimulus, 
reference stimulus (the target), and a list of menu items 
containing one target. Nine servers form the architecture of 
the queueing network model: four servers for the visual 
perceptual sub-network, three servers for the cognitive sub-
network, and two servers for the motor sub-network. Figure 
1 shows the layout of servers and routes. 

 

 
 

Figure 1. The layout of the servers and routes of the queueing network model for random menu search  
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The queueing network model for menu search has both 
serial and parallel routes. The servers located at the same 
horizontal location in Figure 1, for example Visual 
Localization server and Visual Recognition server, can be 
processed in parallel. The queueing network model relies on 
two distinct assumptions for menu search task. First, the 
model uses ACT-R’s hunt-feature production (Anderson et 
al., 1997) as the only strategy for eye movement. Second, 
separate routes are suggested for attended and unattended 
visual information based on the preattentive location 
encoding theory (Wright and Word, 1998). 

The queueing network model was implemented and 
simulated with Pro-Model—a commercially available 
simulation software widely used for manufacturing and 
operational applications. The stimuli consisted of nine 
randomly ordered numbers, one of which was the target. 
The location of the target was varied randomly from top to 
bottom.  

The queueing network model was evaluated in two 
conditions—separate-routes versus same-route. The former 
had separate-routes for attended and unattended information, 
allowing partial parallel processing. The latter had the same-
route for all information, which was expected to behave like 
ACT-R due to the shared assumption of serial information 
processing. The attended information was regarded as being 
achieved from the center zone of fovea (two degrees of 
visual angle) on the retina and the unattended information 
from outer area of fovea. 
 
II. 3. Results and Discussion 
Model simulation reproduced both the varying length of 
saccade and overshooting eye movement phenomena in 
random menu search task.  

The relationship between the number of fixations and the 
location of target is presented in Figure 2. In the separate- 
routes condition, the queueing network model generated 
slightly more fixations because of the eye overshooting. 

The major difference in the simulation results between the 
separate- routes condition and the same-route condition was 
the presence of eye overshooting. In the separate-routes 
condition, 30% of the menu selection trials generated 
overshooting eye movement. In contrast, there was no 
overshooting eye movement in the same-route condition. 
Byrne’s eye tracking data showed that overshooting existed 
in visual search (about 32%).  

Varying length of saccade was reproduced via use of the 
hunt-feature production. If the target stimulus was out of 
current unattended vision, the next destination of the 
saccade would be determined at the very end of the current 
unattended vision area. This condition generated a longer 
distance of eye movement than when the target stimulus 
was within an unattended vision area. Since the hunt-feature 
production used attended and unattended visual information 
to determine the next location of eye fixation and this was 

considered a unique rule of eye movement, multiple 
competing strategies were not required for each saccade.  
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Figure 2. Comparison of the queueing network simulation 
result to Byrne et al.’s eye tracking data 

 
This study showed that both varying length of saccade 

and eye overshooting could be generated by a single 
strategy rather than multiple competing strategies. 
Furthermore, the unique strategy used in the queueing 
network model was not proposed here, but was originally 
incorporated by the ACT-R model (Anderson et al., 1997). 
This shows a potential strength of the queueing network 
structure compared to other computational cognitive models.  

Based on these initial findings, an interesting question 
was raised. Would this simple, single strategy be sufficient 
to model more complex eye movement patterns? The 
following study shows our effort to answer this question. 
 

III. Single Strategy Eye Movement   
In 1967, Yarbus conducted an interesting experiment in 
which a subject was shown a picture and then asked seven 
different questions about the picture. The subject’s eye 
movement was recorded for each question and the results 
showed that the subject moved his/her eyes over the picture 
very differently depending on the questions. 

Modeling eye movement requires considering various 
patterns in eye movement. If we need multiple strategies to 
move our eyes along only one-dimension (up and down), as 
EPIC (Hornof, 1999) and ACT-R/PM (Byrne, 2001) do, it is 
difficult to estimate the number of strategies required to 
move the eyes in a two-dimensional space. Furthermore, 
explaining the different patterns in eye movements would 
very likely require even more strategies. 
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This speculation was confirmed in Hornof’s recent study 
on visual search of hierarchical menus, in which additional 
strategies were needed to produce the varying length of 
saccade (Hornof, 2003). One of the questions addressed in 
our modeling work is whether there exists a modeling 
approach that relies on intrinsic behaviors of a cognitive 
architecture and is more parsimonious than depending on a 
large and growing number of task-specific strategies. 

Our study shows that a single strategy can explain various 
patterns in human eye movements by adopting a Q-learning 
algorithm, which is task independent and is one type of 
method in reinforcement learning. 
 
III.1. Reinforcement Learning and Eye Movement 
This study is not the first attempt to adopt learning methods 
to visual search or eye movement study. Reward 
maximization has been used to model human eye movement 
(Sprague and Ballard, 2003). The ACT-R/PM model (Byrne, 
2001) adopted learning method of conflict resolution for 
multiple competing strategies. Their study focused on 
‘where’ an eye looked at (fixating location) rather than 
‘what’ guided the movements of eye because each strategy 
is associated with the next eye location. The present study 
focuses not simply on the location of eye fixations, but on 
what guides the eye movement  

The difference in the research approach between the 
queueing network model and other models is not only the 
number of strategies, but also the method used to guide the 
eyes. The hunt-feature production, which is used in 
queueing network model for menu search as a unique 
strategy for eye movement, guides eyes to the next location 
depending on the information in the unattended visual zone. 
In other words, the strategy is not directly related to the next 
location of eye fixation, while each strategy used in the 
other models explicitly tells the eyes where they should go 
next. 

In the hunt-feature production rule originally used in 
ACT-R (Anderson, 1997), feature selection is assumed to be 
random. Here, we suspect that the randomness may be 
associated with the type of eye movement patterns. 
Therefore, instead of assuming numerous different 
strategies to explain different patterns of eye movements, a 
reinforcement learning algorithm is proposed to explain 
different kinds of patterns by adjusting the probability of 
selecting a feature used in hunt-feature production rule. 

If we sketch eye movement as a problem of location, it 
becomes a complex problem in a continuous two-
dimensional space. When we formulate the various patterns 
of eye movement into the feature selection problem, we can 
reduce the problem space into a finite number of alternative 
features rather than a continuous two-dimensional space 
problem. The picture used in Yarbus (1967)’s experiment 
was also used for this study. 
 

III. 2. Q-Learning Model for Eye Movement 
Our approach to modeling eye movement was to consider 
each eye movement as a Markov decision process and then 
to find an underlying policy using reinforcement learning 
method. A Markov decision process is described by four 
attributes: S is the state space, A is the action space, T(s, a, 
s’) is the transition function that indicates the probability of 
arriving in state s’ when action a is taken in state s, and the 
reward function R(s, a, x).  

The objective of the reinforcement learning algorithm is 
to discover an optimal policy π*(s) (Sprague and Ballard, 
2003) that includes which action should be taken in a certain 
state to maximize discounted long term reward.  

One way to find the optimal policy π*(s) is to obtain the 
optimal value function Q(s, a). This function represents the 
expected discounted return if action a is taken in state s and 
the optimal policy is followed thereafter. There are many 
algorithms (Sutton and Barto, 1998) for learning Q(s, a). 
For the feature selection in eye movement, the on-line Q-
learning update rule is used. 
 

Q(s, a) ← Q(s, a) + α [ r + γ maxa’ Q(s’, a’) - Q(s, a) ] 
 

Here, α is a learning rate parameter, and γ is a discounting 
factor of future reward (Sutton and Barto 1998). In this 
study, the initial value of learning rate parameter α0 was 0.3 
and it decreased by following rule: αn = 0.999 αn+1.  The 
discounting factor of future reward γ is set as 0.5 and does 
not change. 

To apply a reinforcement learning method to our eye 
movement study, the four attributes such as agent, 
environment, states, action and reward, were defined in the 
context of Yarbus’ experiment as follows. 

The Agent was defined as an eye that has two kinds of 
visual zones: attentional and unattentional visual zones. In 
Figure 3, the small square indicates attended visual zone and 
the large square indicates unattended visual zone. The 
Environment (E) was the picture shown to the Agent. The 
State (s∈S) was a feature selected by the agent and in this 
case we assumed there were three alternative features which 
determined the next eye location. Depending on the state 
(selected feature), the Location (x∈E and x is two-
dimensional vector) of eye fixation was determined as the 
location of attended visual zone.  

The Action (a∈A(s)) was a selection of the next hunting 
feature. There were three alternative criteria of hunting 
feature: the most similar contrast, the most different contrast, 
or the most edge information. Though the next eye location 
was not directly selected by the action, a selected feature 
determined the next location x of eye as described in Figure 
3. Once the next location of eye has been determined, the 
eye moves to the location in the following saccade. 
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Figure 3. Different location is selected for next eye fixation 
depend on hunting feature used 

 
Figure 4 presents the nine transition functions. The three 

states are the three alternative features currently used, and 
each action can keep the current state or move to other state. 

The Reward (R(s, a, x)) was information given in a 
certain location x which was determined by an action a 
taken in the state s. In this case, the amount of information 
was encoded as High (10), Low (5), and None (0). The 
location of reward was assumed to be different according to 
the goal. For example, under ‘give the ages of the people’, 
the rewards were assumed to be distributed mainly at 
people’s face in the picture whereas under ‘what family had 
been doing’, the rewards were assumed to be distributed at 
people’s posture. For different reward conditions, a different 
optimal policy could be obtained by Q-Learning method.  

 Following the different optimal policy, the simulated eye 
movement data were collected and they were qualitatively 
compared to the record of actual human eye movement 
patterns from Yarbus’ experiment. 

 

 
 

Figure 4. The nine transitions  
with the three states and the three actions 

 

III. 3. Results of Q-Learning and Discussion 
Using 800 randomly selected actions, the value of each Q(s, 
a) was recorded. Two different reward arrays were used for 
the ‘Give the ages of the people’ condition and ‘What the 
family had been doing’ condition. The results are 
summarized in Table 1. The proposed policy would be: In 
the state s, the action a is selected with probability F(s, a). 
Two different conditions showed the most different policy 
in state 1. 
 

Table 1. The summary of different optimal policies  
for two different conditions 

 
a. Give the ages of the people 
T(s, a, s’) F(s, a) 

T(S1, a1, S1) 0.43 
T(S1, a2, S2) 0.25 
T(S1, a3, S3) 0.32 
T(S2, a1, S1) 0.31 
T(S2, a2, S2) 0.43 
T(S2, a3, S3) 0.26 
T(S3, a1, S1) 0.34 
T(S3, a2, S2) 0.32 
T(S3, a3, S3) 0.34 

 
b. What family had been doing? 
T(s, a, s’) F(s, a) 

T(S1, a1, S1) 0.24 
T(S1, a2, S2) 0.29 
T(S1, a3, S3) 0.47 
T(S2, a1, S1) 0.33 
T(S2, a2, S2) 0.35 
T(S2, a3, S3) 0.32 
T(S3, a1, S1) 0.33 
T(S3, a2, S2) 0.34 
T(S3, a3, S3) 0.33 

 
S1: the most similar contrast 

 S2: the most different contrast, and S3: the most edge information 
 
Using the two policies above, the viewing tasks were 

simulated. Figure 5 shows the simulated eye movement of 
100 saccades and the human eye movement patterns from 
Yarbus’ experiment. 

Due to the lack of actual data from Yarbus’ experiment, it 
was impossible to compare the simulated and the human eye 
movements quantitatively. However, the simulated eye 
movement patterns showed striking difference between the 
different conditions, and also showed similarity with the 
human eye movement patterns of the same conditions (the 
questions asked). 

The only difference in modeling the two conditions⎯the 
‘Give the ages’ and ‘What the family had been doing’⎯was 
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the location of rewards. All other parameters, input data, 
and strategy for eye movement were exactly same for both 
cases. 

 

 
 

Figure 5. The simulated eye movements (top) and human 
eye movement (bottom) 

 
In the two studies reported in this article, patterns of eye 

movement emerged mainly as the behavior of the 
underlying queueing network with far less reliance on task 
specific performance strategies than other models. The two 
studies demonstrated some of the unique aspects of the 
queueing network approach for modeling eye movement in 
specific and human performance in general.  
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