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Abstract 

Many neural network (NN) models of categorization (e.g., 
ALCOVE) use a gradient algorithm for learning.  These 
methods have been successful in reproducing group learning 
curves, but tend to underpredict variability in individual-
level data, particularly for attention allocation measures 
(Matsuka, 2002).  In addition, many recent models of 
categorization have been criticized for not being able to 
replicate rapid changes in categorization accuracies and 
attention processes observed in the empirical studies (Macho 
1997; Rehder & Hoffman, 2003).  In this paper we introduce 
stochastic learning algorithms for NN models of human 
category learning and show that use of the algorithms can 
result in (a) rapid changes in accuracies and attention 
allocation, and (b) different learning trajectories and more 
realistic variability in individual-level. 

Introduction 
 Recent NN models of classification learning, for 
example ALCOVE (Kruschke, 1992), RASHNL 
(Kruschke & Johansen, 1999), and SUSTAIN (Love & 
Medin, 1998), share a number of common aspects, 
including multilayer architectures and learned dimensional 
attention weights as well as learned association weights 
between stimulus input nodes and the output layer.  One of 
these common elements is the use of gradient-based 
learning algorithms to adjust both association weights and 
dimensional attention parameters.  In this method, weights 
are adjusted based on discrepancies between a training 
signal and the output activations on the current layer, by 
computing the gradient of the error function in the 
multidimensional parameter space.  This is accomplished 
by taking the partial derivative of the error function with 
respect to each of the network parameters (weights) in turn.  
The algorithm then adjusts each of these weights 
proportionally to its partial derivative. This learning 
method is an effective means of finding optimal estimates 
for parameters, as long as the overall error function is not 
characterized by strong local minima.  Thus the algorithm 
has normative justification (i.e., it models how people 
“should” learn or process information). 
 But, is the gradient method plausible descriptively (i.e., 
does it describe how people actually learn)?  It seems 
implausible that people explicitly compute the gradient on 
each trial while attempting a classification learning task.  
On the other hand, people’s general learning mechanisms 
might have evolved so as to approximate gradient learning.  
But in any case, we should first ask if the gradient-based 
learning algorithms are successful in replicating empirical 
data in human category learning.  Results in the literature 

demonstrate that these methods have been successful in 
reproducing group learning curves (e.g., Kruschke, 1992, 
Kruschke & Johansen, 1999; Love & Medin, 2000).  
However, recent studies in our lab suggest these models 
may underpredict variability in individual-level empirical 
data, particularly differences in attention allocation 
measures (Matsuka, 2002; Matsuka & Corter, 2003; 
Matsuka, Corter & Markman, 2003).  In addition, some 
empirical studies suggest that human’s attention allocation 
to individual dimensions can change quite rapidly (Macho, 
1997; Rehder & Hoffman, 2003).  Most cognitive models 
based on gradient-based learning mechanisms appear to 
have difficulty reproducing such rapid changes in attention.  
In the present research we explore alternative learning 
algorithms for NN models of classification learning, 
specifically stochastic learning algorithms based on 
simulated annealing. 

Stochastic Learning  
 Our proposed algorithm is based on a specific simulated 
annealing algorithm  (Ingber, 1989).  In the present 
algorithm, initial association weights are randomly selected 
from a uniform distribution centered at 0, and initial 
dimension attention strengths are equally distributed across 
all dimensions.  This equal attention allocation in the early 
stages of learning is motivated by the results of empirical 
studies (Matsuka, 2002; Rahder & Hoffman, 2003) that 
showed many subjects tended to evenly allocate attention 
to the feature dimensions initially. In our algorithm, at the 
beginning of each training epoch, a hypothetical “move” in 
the parameter space is computed by adjusting each 
parameter by an independently sampled term.  These 
adjustment terms are drawn from a prespecified Cauchy 
distribution.  The move (i.e., the set of new parameter 
values) is then accepted or rejected, based on the computed 
relative fit of the new values.  Specifically, if the new 
parameter values result in better fit, they are accepted.  If 
they result in worse fit, they are accepted with some 
probability P.  This probability is a function of a parameter 
called the “temperature”, which decreases across blocks 
according to the annealing schedule.  This particular 
annealing algorithm is relatively efficient, in that the 
adjustment in the network parameters is very rapid 
initially, and gradually decreases over learning blocks.  
 
 Key Assumptions 
 This learning algorithm can be applied to any feed-
forward NN model of category learning.  However, we 
assume that there is no (back) propagation of classification 
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errors in the models.  Rather, we propose a very simple 
operation (i.e., comparison of two values) along with the 
operation of stochastic processes as the key mechanisms in 
category learning. 
 
I. Initial network association weights (w) are set to small 
random values, and initial dimension attention weights (αααα) 
are set equal across dimensions. 
II. In learning, the attention strengths and association 
weights are updated with a random move in the parameter 
space, based on a prespecified distribution (e.g., the 
Cauchy distribution).   
III. If the new αααα and w result in better categorization 
accuracies (based on a “mini-simulation” using the 
network model), then the current move is accepted, and the 
new attention strengths and association weights replace the 
old values.  In the case of a decrease in categorization 
accuracy due to the move, the move is accepted with some 
probability P (0<P<1) that is functional of both magnitude 
of error and moment of training (i.e., temperature).  
IV. P is relatively large in the early stages of learning, but 
it decreases as learning progresses.  This decrease is 
associated with a decrease in a parameter called the 
“temperature”, by analogy with the physical process that 
occurs as a metal cools. 
 Thus, the present model does not assume that learning is 
associated with monotonic increases in accuracy (and 
attention) or continuous search for better categorization 
processes by human.   Rather, it models random 
fluctuations or “errors” in people’s memory and learning 
processes, and how people utilize and “misutilize” such 
errors. 
 As a test of these ideas, we have embedded the present 
learning algorithm into the ALCOVE model (Kruschke, 
1992).  

ALCOVE 
 ALCOVE (Kruschke, 1992), for Attention Learning 
COVEring map, is an exemplar-based multi-layer adaptive 
network model of categorization based in part on the 
Generalized Context Model or GCM (Nosofsky, 1986).  
The first layer of ALCOVE is a stimulus input layer. Each 
dimension has an attention strength (αi) associated with it.  
The next layer in the network is the exemplar layer.  Each 
node in this layer corresponds to an exemplar, described by 
its position in the multidimensional stimulus space, and 
receives input from the input layer.  The activation of each 
exemplar node is calculated based on its similarity to the 
presented stimulus:   
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where ψji is the value of exemplar node j on dimension i, xi 
is the activation of input feature dimension i, c is a constant 
called the specificity that controls overall attention, and αi 
is the attention strength for dimension i.  In ALCOVE, the 
attention strengths essentially stretch and shrink 
dimensions. 
 The activity of the exemplar nodes is fed forward to the 
third layer, the category layer, whose nodes correspond to 

the categories being learned.  The strength of association 
between category node k and exemplar node j is denoted 
by wkj.  The activation of category node k is then computed 
as the sum of weighted activations of all exemplars, or  
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The probability that a particular stimulus is classified as 
category k, denoted as P(K), is assumed equal to the 
activity of category k relative to the summed activations of 
all categories, where the activations are first transformed 
by the exponential function (Kruschke, 1992):  
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where φ is a real-value mapping constant that controls 
decisiveness of classification responses. 
 The standard version of ALCOVE (Kruschke, 1992) 
uses a form of gradient descent for updating weights.  The 
error term is defined as the sum of squared differences 
between the desired and the predicted outputs:  
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Partial derivatives of the error function with respect to the 
association weights wkj and the attention strengths αi are 
used to compute the weight update: 
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where λw and λα are the learning rates for the association 
weights and attention strengths, respectively.  It is this 
gradient-based learning method that we propose to replace 
with the stochastic learning method. 

Stochastic Learning Algorithms 
 Here, we have evaluated two applications of stochastic 
learning to ALCOVE:  one version in which we implement 
stochastic learning for adjusting both dimensional attention 
weights and the network association weights (ALCOVE-
CSL, for “completely stochastic learning”), and one in 
which stochastic learning is used to adjust only the 
dimension attention weights in ALCOVE (ALCOVE-SAL, 
for “stochastic attention learning ”). 

ALCOVE-CSL algorithm 
STEP 0: Initialize: 
Problem specific parameters (T0,υ) 
 T0 : initial temperature. 
 υ :   temperature decreasing rate 
 
Association weights wkj, 

wkj ~ U(MINw, MAXw). where MINw and MAXw are 
minimum and maximum values for w. 

 
Attention strengths αi , 

αi =1/I*(MAXα - MINα)+MINα, for all i = 1…I,  where 
I is the number of feature dimensions.   
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Exemplar ψji  
 ψji = x*i, where subscript * indicates unique patterns.  
 
STEP 1: Calculate output activations  
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STEP 2: Calculate fit index for one training block: 
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where K = # categories, N = # input in one block, dk is a 
desired output for category node k at time τ. 
 
STEP 3: Accept all weight and attention parameters (αααα & 
w) at the probability of: 
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if f(wτ, ατ) > f(ws, α s), or 1 otherwise, where f(ws, α s) is 
the fit index for the previously accepted parameter set. 
 
STEP 4: Reduce temperature: 

( )tTT ot ⋅−= υexp                    (S4) 
 
STEP 5: Generate new w and αααα 
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Here, u indicates a random number drawn from the 
Uniform distribution.  S7 draws random numbers from the 
Cauchy distribution (Ingber, 1989). 
 
REPEAT STEPS 1~5 until stopping criterion is met 

 ALCOVE with SAL 
 Stochastic Attention Learning (SAL) incorporates both 
gradient and stochastic methods for learning.  In particular, 
SAL updates its association weights using a gradient 
method (Equation A5), and attention strengths by the 
stochastic learning method (Equations S6 & S7). 
 Since SAL incorporates gradient learning for its 
association weights, the badness-of-fit index at time t is 
often less than that at time t-1, even with an 
“inappropriate” random movement in attention allocation.  
In other words, the present algorithm as described in the 
previous section would accept many useless moves for 
attention distribution, particularly in the early stages of 
learning. However, this seems both unnecessary and 
inefficient.  Thus, we modified SAL to include a threshold 
parameter ζ, which controls for the probability of accepting 
new attention weight values, to make the model accept 
only moves that satisfy a prespecified criterion (i.e., above 
the threshold) for categorization accuracy. 
 Thus for SAL, Equation S3 becomes 
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if {f(ατ)+ζ} > f(αs), or 1 otherwise, where 
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Simulations 
 In order to evaluate the abilities of the stochastic 
learning algorithms to account for human data on 
classification learning, we conducted three simulation 
studies. In Simulation 1, we tested if the stochastic learning 
can replicate rapid changes in attention allocation in 
category learning for a single simulated subject. In 
Simulation 2, we simulated the results of a recent empirical 
study on classification learning (Matsuka, 2002; Matsuka 
& Corter, 2003) to see if the algorithm can reproduce 
individual differences in attention processes.  In Simulation 
3, we examined if the algorithms accurately reproduce 
aggregated learning curves. 
 A total of four different ALCOVE-based models are 
involved in the simulations reported below.  The main 
comparison we are interested in is to compare the 
performance of standard ALCOVE with ALCOVE 
incorporating stochastic attention learning (ALCOVE-
SAL), and ALCOVE incorporating completely stochastic 
learning (ALCOVE-CSL).   However, for Simulation 2, we 
also investigate if individual differences could be 
otherwise accounted for within standard gradient-based 
ALCOVE.  To do this, we also tried another way (besides 
stochastic learning) of handling random individual 
differences within the ALCOVE model, namely by 
randomly varying individual learning rates.  This version 
of standard gradient-learning ALCOVE is referred to here 
as ALCOVE-RLR. 

Simulation 1: Rapid attention shifts  
 In the present simulation study, we examined if 
stochastic learning algorithms can replicate rapid changes 
in attention allocation as observed in empirical studies 
(Macho 1997, Rehder & Hoffman, 2003).  Here, we used 
the simplest stimulus structure (T1) of Shepard, Hovland 
and Jenkins’ stimulus sets (1961).  Table 1 shows 
schematic representation of the stimuli used in the present 
simulation (i.e., T1). 
 
Table 1:  Schematic representation of stimulus set used in 
Simulations 1 and 3. 
 

 Stimulus Category 
 D1 D2 D3 T1 T2 T3 T4 T5 T6 
1 1 1 1 A B A A A A 
2 1 1 0 A B A A A B 
3 1 0 1 A A A A A B 
4 1 0 0 A A B B B A 
5 0 1 1 B A B A B B 
6 0 1 0 B A A B B A 
7 0 0 1 B B B B B A 
8 0 0 0 B B B B A B 
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Figure 1: The results of Simulation 1. A: predicted attention allocation to the three feature dimension by standard ALCOVE; 
B: predicted rate of change in attention allocated to Dimension 1 by ALCOVE; C & E: predictions by ALCOVE-SAL; E & F 
by ALCOVE-CSL. 
 
Simulation Method:  Three ALCOVE-type models of 
category learning were evaluated in the present simulation 
studies, namely the standard ALCOVE, ALCOVE-SAL, 
and ALCOVE-CSL.  They were run in a simulated training 
procedure to learn the correct classification responses. 
ALCOVE was run for 50 blocks of training, where each 
block consisted of a complete set of the training instances, 
while ALCOVE-SAL and ALCOVE-CSL were run for 
150 blocks.   
 For each model, the gradient or rate of change in 
attention allocated to Dimension 1 was calculated by 
subtracting the amount of attention allocated to 
Dimension1 at time t-1 from that of time t.  This measure 
was used as an index of how rapidly attention distributions 
changed. 
 
Results:  The results of one simulated subject for each 
model are shown in Figure 1.  Note that only accepted 
attention strengths were graphed for ALCOVE with SAL 
and CSL.  All three models learned to allocate the highest 
amount of attention to Dimension 1 and learned to ignore 
or pay less attention to Dimensions 2 and 3.  The rate of 
attention change for ALCOVE was very smooth and its 
magnitude was smaller than those of ALCOVE-SAL and 
ALCOVE-CSL. ALCOVE-SAL and ALCOVE-CSL 
produced oscillating graphs with higher magnitudes of 
change.  These results suggest that our proposed stochastic 
learning algorithms are capable of replicating rapid 
changes in attention allocation, while ALCOVE with 
gradient-based learning is not. 

Simulation 2: Individual Differences 
 In this simulation study, we examined how the models 
account for individual differences in attention learning. To 
do this, we simulated the results of an empirical study on 
classification learning, Study 2 of Matsuka (2002).  In this 
study, there were two perfectly redundant feature 
dimensions, Dimension 1 & Dimension 2 (see Table 2), 
and those two dimensions are also perfectly correlated with 
the category membership. Thus, information from only one 
of the two correlated dimensions was necessary for perfect 
categorization performance. 
 Besides classification accuracy, data on the amount of 
attention allocated to each feature dimension was collected 
in the empirical study.  The measures of attention used 
were based on feature viewing time, as measured in a 

MouseLab-type interface (Bettman, Johnson, Luce & 
Payne 1993). 
 To summarize the empirical results that we are trying to 
simulate, 13 out of 14 subjects were able to categorize the 
stimuli almost perfectly (Figure 2, left top panel), and on 
average subjects paid attention to both of the correlated 
dimensions approximately equally (Figure 2, left middle 
panel).  However, the examination of aggregated data can 
be misleading.  When Matsuka and Corter (2003) analyzed 
attention data at an individual-level, they found that many 
subjects tended to pay attention primarily to only one of 
the two correlated dimensions, particularly in the late 
learning blocks (Figure 2, left bottom panel). This suggests 
that the participants utilized only the minimal necessary 
information for this task. 
 
Table 2: Stimulus structure used in Study 2 of Matsuka 
(2002) 
 

Category Dim1 Dim2 Dim3 Dim4 
A 1* 1* 3 4 
A 1* 1* 4 1 
A 1* 1* 1 2 
B 2* 2* 2 1 
B 2* 2* 3 2 
B 2* 2* 4 3 
C 3* 3* 1 3 
C 3* 3* 2 4 
C 3* 3* 3 1 
D 4* 4* 4 2 
D 4* 4* 2 3 
D 4* 4* 1 4 

 
Simulation method:  The final parameter values used for 
each model were chosen by a simulated annealing method 
(Ingber, 1989; Matsuka, Corter & Markman, 2003) to 
minimize the objective function (i.e., sum of squared error) 
in reproducing the classification accuracies by human 
subjects.  The four models were run in a simulated training 
procedure to learn the correct classification responses for 
the stimuli of the experiment. ALCOVE and ALCOVE-
RLR were run for 48 blocks of training, where each block 
consisted of a complete set of the training instances, while 
ALCOVE-SAL and ALCOVE-CSL were run for 480 
blocks.  For each model, the final results are based on 50 
replications 
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Figure 2: Results of Simulation 2.  The left column shows observed learning curve (top panel), observed dimensional 
attention allocation (middle panel), observed attention allocation to Dimension 1 (Y-axis) and 2 (X-axis) in the last half of the 
training block (bottom panel). The predictions by ALCOVE, ALCOVE-RLR, ALCOVE-SAL, and ALCOVE-CSL are 
shown in the 2nd, 3rd, 4th and 5th column, respectively.
 
 
Results:  Figure 2 summarizes the findings from the 
simulation study.  The left column of this figure shows the 
empirical data from Study 2 of Matsuka (2002), including 
the learning curve for overall classification accuracy (top 
panel), the attention learning curves (middle panel), and 
attention allocated to Dimensions 1 and 2 (the redundant 
diagnostic dimensions) in the late training blocks (bottom 
panel).   
 Results for each of the models are shown in the remaining 
rows.  Standard ALCOVE learns the classification task 
quickly, and allocates attention equally to the two diagnostic 
dimensions, but shows almost no inter-individual variability 
in attention, no intra-individual variability in the amount of 
attention allocated to Dimension 1 and 2 (Figure 2, Second 
row).  ALCOVE-RLR, using random learning rate for 
attention strengths, but still using the standard gradient 
learning algorithm, shows some inter-individual variability, 
but virtually no intra-individual variability. ALCOVE-SAL, 
the version of ALCOVE modified to incorporate stochastic 
learning of attention weights, showed a less steep learning 
curve (like the human subjects), and more variability among 
subjects in attention allocation (again more closely 
resembling the empirical data).  ALCOVE-CSL gave 
similar results, but exhibited some minor differences from 
ALCOVE-SAL (including more separation of the diagnostic 
and non-diagnostic dimensions). Note that the two versions 
of the stochastic learning models are able to replicate the 
observed learning curves. 

Simulation 3. Replication of Nosofsky et al. 1994  
 So far, we have shown that our proposed stochastic 
learning algorithms are successful for reproducing 
individual-level data (i.e. rapid change & individual 
differences in attention processes).  However, we merely 
tested the algorithms’ capabilities of reproducing aggregated 
data.  In the present simulation study, we simulated a 
classical study of categorization (Shepard et al. 1961) which 
is often used as a benchmarking stimulus set (e.g. Nosofsky, 
Gluck, Palmeri, McKinley & Glauthier, 1994).  The 
stimulus structures are shown in Table 1.  The results of 
previous empirical studies showed that Type 1 (T1) was the 
easiest to learn to classify, followed by T2, T3, T4, T5, and 
T6 being the most difficult.  More precisely, Nosofsky et al. 
(1994) showed that the numbers of error made thus 
difficulties for those stimulus structures were significant 
except T3, T4, and T5. 
 
Simulation method:  In the present study, we tested only 
ALCOVE-CSL and ALCOVE-SAL, as the standard 
ALCOVE has previously been shown to be able to replicate 
the observed learning curves (Nosofsky et al. 1994). The 
two models were run in a simulated training procedure to 
learn the correct classification responses for the stimuli. 
ALCOVE-CSL was run for 250 blocks of training, where 
each block consisted of a complete set of the training 
instances, while ALCOVE-SAL was run for 150 blocks.  
For each model, the final results are based on 500 
replications. 
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Results:  Figure 3 summarizes the findings from the 
Simulation 3.  Both ALCOVE-CSL and SAL were able to 
reproduce the order of difficulty successfully.  That is 
ALCOVE-CSL and SAL find T1 to be the easiest, followed 
by T2, T3, T4, T5, and T6.   
 

 
Figure 3.  Results of Simulation 3. Both ALCOVE-SAL and 
ALCOVE-CSL were able to reproduce the order of difficulty 
successfully 

Discussion and Conclusion 
 We have investigated the possibility of using stochastic 
learning rather than gradient-based methods in neural 
network models of human classification learning.  In the 
present simulations we have explored the effectiveness of 
this method in several variants of the ALCOVE model 
(Kruschke, 1992).  Our main goals were to see if stochastic 
learning algorithms 1) were able to replicate rapid change in 
attention processes, and 2) offered a better account of 
individual differences in final distribution of attention, 
particularly distribution of attention to the two perfectly 
correlated dimensions.  The simulation studies showed that 
the new algorithms are satisfactory in these regards.   
 Stochastic learning algorithms have other desirable 
properties as well. It could be argued that stochastic learning 
may be more psychologically plausible than gradient-based 
methods, which require more mental effort and assume that 
optimal adjustments are made to the vector of parameters on 
each trial. One caveat to these results is that the stochastic 
learning algorithms learn more slowly than the standard 
gradient methods in categorization tasks with relatively 
small (both number of stimulus feature dimensions and 
number of unique exemplars) and well-defined stimulus sets 
that are usually used in laboratory experiments.  However, 
for more realistic category learning involving complex 
category structures and/or stimuli with many feature 
dimensions, stochastic learning may be able to learn faster 
than ordinary gradient type learning. 
 
Distribution of random numbers:  In the present research, 
the random moves in parameter space were drawn from the 
Cauchy distribution, mainly because its fatter tails are more 
likely than the Gaussian distribution to produce rapid and or 
large shift in attention allocation, which has been reported 
by some empirical studies.  However, with a proper 
experimenter-defined parameter setting (e.g., initial 
temperature & temperature decreasing rate), similar results 
in attentional shifts might have been achieved with some 
other distributions, including normal, rectangular, skewed, 
or multi-modal distribution.  In addition, we assumed the 
“temperature” decreases as a function of time or the number 
of training blocks. But, it may not capture realistic learning 

mechanisms.  Rather, there may be more descriptively valid 
factor(s) for the annealing schedule, such as classification 
accuracy.  Further simulation and empirical studies seem 
useful for investigating descriptive validity of stochastic 
optimization methods as a model of human category 
learning. 
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