In Proceedings of the Sixth International Conference on Cognitive Modeling, 208-213.

Mahwah, NJ: Lawrence Earlbaum.

Soar-RL: Integrating Reinforcement Learning with Soar

Shelley Nason (snason@umich.edu)
University of Michigan, 1101 Beal Ave.
Ann Arbor MI 48109-2110 USA

John E. Laird (laird@umich.edu)
University of Michigan, 1101 Beal Ave.
Ann Arbor MI 48109-2110 USA

Abstract

In this paper, we describe an architectural modification to
Soar that gives a Soar agent the opportunity to learn statistical
information about the past success of its actions and utilize
this information when selecting an operator. This mechanism
serves the same purpose as production utilities in ACT-R, but
the implementation is more directly tied to the standard
definition of the reinforcement learning (RL) problem. The
paper explains our implementation, gives a rationale for
adding an RL capability to Soar, and shows results for Soar-
RL agents’ performance on two tasks.

Introduction

The Soar architecture has been used extensively, both for
developing Al applications and cognitive models. One of its
strengths has been the ability to efficiently represent and use
large bodies of symbolic knowledge to solve a wide variety
of problems using many different methods. It dynamically
combines available knowledge for decision-making, and can
dynamically create subgoals whenever the knowledge for a
decision is incomplete or inconsistent. Soar can also
compile the problem solving in subgoals into rules, using a
process called chunking, so that over time, problem solving
in subgoals is replaced by rule-driven decision making.
Chunking has proved to be extremely versatile because it
stores away whatever problem solving is performed in a
subgoal, allowing Soar programs to learn using a wide
variety of methods, including explanation-based learning,
macro-operator learning, strategy acquisition, learning by
instruction, and many others. In general, Soar’s processing
is symbolic, and although that is sufficient (and necessary)
for a wide variety of cognitive activities, it is inadequate (or
at the very least extremely inefficient) when encoding
probabilities and numeric rewards.

While Soar has strengths in knowledge-rich symbolic
reasoning and learning and weaknesses in knowledge-lean,
statistical-based learning, the strengths and weaknesses of
reinforcement learning (RL) techniques are the reverse.
They are successful at capturing statistical regularities
related to the expected reward that an agent will receive, but
can not encode and effectively use large bodies of symbolic
knowledge. In this paper we will present an initial
integration of reinforcement learning with Soar, enriching
the learning capabilities as well as the representation of

knowledge in Soar, while at the same time developing a
unique integration of reinforcement learning with symbolic,
knowledge-rich reasoning. Specifically, Soar supports
dynamic hierarchical task-decomposition, meta-reasoning,
and the ability to enrich the state descriptions through

internal abstractions. All of these capabilities both
complicate and enrich reinforcement learning. This
integration requires structural changes to the Soar

architecture and we will refer to the unification as Soar-RL.
In the remainder of this paper we first present a simplified
description of Soar and the extensions we have made to
incorporate reinforcement learning. We then demonstrate
the implementation on two simple tasks, highlighting the
contributions RL makes to Soar, as well as the capabilities
Soar-RL provides beyond standard reinforcement learning.
We also compare and contrast Soar-RL to ACT-R, which
incorporates a rule-tuning mechanism, comparable to
reinforcement learning. We conclude with future directions.

Soar

The structure of Soar’s memories is shown in Figure 1. Soar
has a declarative working memory that contains its
representation of the current situation using labeled graph
structures, organized in a hierarchy of states/goals. All long-
term procedural knowledge is encoded as production rules.
Whenever a rule’s conditions match working memory, the
rule is fired and its actions performed. Actions may involve
adding or removing structures from working memory. They
may also create preferences used to select operators.

Long-term Procedural ?;ccliiﬁe
Memory
Production Rules Rule
Chunking qu Matcher
Input GUI
Short-term Declarative
Output Memory

Figure 1: Soar’s Structure

208

yguo
In Proceedings of the Sixth International Conference on Cognitive Modeling, 208-213. Mahwah, NJ: Lawrence Earlbaum.

yguo
208

2. State
Elaboration

3. Propose
Operator

4. Compare
Operators

6. Apply
Operator

5. Select
Operator

Figure 2: Soar’s Decision Cycle

Soar’s learning mechanism, chunking, monitors problem
solving and automatically creates new rules, which are
added to long-term memory during execution.

Soar’s basic reasoning cycle is illustrated in Figure 2.

1. Input. Changes to perception are processed and Soar’s
perceptual buffer in working memory is updated.

2. State elaboration. Rules that newly match are fired in
parallel to retrieve relevant information. For example,
in a robotic task, a rule might test the distance to the
object and the robot’s available reach and determine if
the object is within reach.

3. Proposing operators. Rules can propose operators by
creating acceptable preferences for specific operators.
In general, the rules’ conditions test the situation so that
an operator is proposed only when it is relevant.

4. Comparing and evaluating operators. Rules can test the
proposed operators and other features of the situation
and create preferences, which make assertions about the
absolute or relative merit of the operators. Multiple
preferences can be generated for a single operator.

5. Selecting the current operator. The preferences are
evaluated to select the current operator. If the
preferences are insufficient or contradictory, an impasse
ensues and Soar creates a substate in which the goal is
to resolve that impasse. This provides Soar with meta-
reasoning so that it can reflect on its own processing.

6. Applying operator. Rules match against the currently
selected operator and the state and make changes to the
state, including creating motor commands.

7. Output. All new motor commands are processed.

Stages 2-4 are intermixed during execution. The only

decision making in Soar is the selection of operators, which

is the sequential bottleneck in Soar, as only a single operator
can be selected for a state at a time (rules fire in parallel).
Soar’s original set of symbolic preferences included

preferences specifying that operators should be rejected, that
one operator is better than another, or that an operator can
be a default. Recently, we have added numeric preferences,
which allow a real number to be associated with an operator
(Wray & Laird, 2003). The numeric preferences are
considered only if the symbolic preferences are insufficient
for determining a single best choice. For each candidate
operator O;, the values of all numeric preferences proposed
for O; are summed into a total score Sum(O;) for the
operator. The winning operator is chosen probabilistically
according to the Boltzmann distribution:

Sum(0O;)
e Temperature

Sum(0;)
e Temperature

209

Temperature is a parameter that controls the “peakedness”
of the probability distribution. These selection rules provide
a means of incorporating domain-specific probabilistic
selection knowledge.

Adding Reinforcement Learning

The core problem in reinforcement learning is to learn how
to act in the world so as to maximize a reward signal. In
most approaches, an agent learns a value function, a
mapping from either a state or a state-operator pair to an
estimation of the expected sum of future rewards that can be
achieved from that state or after applying that operator in
that state. In Soar-RL, we use numeric preferences to
represent a state-operator value function. We have further
extended Soar by adding a reward as one of the inputs from
the environment. The value of the reward can also be
modified by internal knowledge (additional rules) that
generates a reward for subgoal achievement.

One recurring problem in RL is how to represent the
value function for a large state or state-operator space. The
simplest way to store a value function is as a table with all
the possible states or state-operator pairs enumerated with
their associated values. However, this representation is both
bulky and slow, since it does not allow learned values to be
generalized over sets of states, and so is impossible for the
sorts of tasks we expect to encode in Soar.

By summing over the values suggested by multiple rules,
the recommendation of the numeric preferences shares a
characteristic with the recommendation of the symbolic
preferences — they are both the result of the combination of
different pieces of advice, each of which covers a portion of
the state-operator space. Each individual rule can be
considered to be a specialized complex feature detector, and
the predicted utilities for the operators are the runtime linear
combination of the values of these complex features.
Learning linear functions over features is one of the best
understood methods of value function approximation in RL.
Automatically constructing features, however, is not well
understood, and this is part of our research (necessary, for
an agent with many tasks; helped by the flexibility of Soar’s
language). Incorporating RL in Soar has two parts, first,
adjusting the values of numeric preferences for existing
rules, and later, creating new rules that test different feature
sets while creating numeric preferences.

Adjusting Numeric Preferences

A numeric preference for an operator is generated by a rule
associating a numeric value with a particular set of features
in working memory. This set should incorporate features of
the operator and the current state, possibly including aspects
such as the current goal and surrounding context. Such a

yguo
209

rule can be general enough to apply across many different
states and operators if it is selective in the features it tests.

As an example, a maze-world agent might have the rule':
sp {RL*rulel

(state <s> "“task mazeworld
~location C5
~“destination Al
~“operator <o>)

(<0> “name move

“direction east)
-—>
(<s> "operator <o> = -.82)}

Figure 3a

The RL task is to adjust the value of this rule (currently,
-.82) as the agent encounters rewards in the world. The aim
of these adjustments is that the summed value of numeric
preferences for operator o given the working memory state s
should approximate the action value, notated Q(s,0). The
action value is the expected sum of rewards to be received
after choosing operator o in state s, and thereafter following
the agent’s current policy. Such adjustments, combined with
our soft greedy policy for operator selection, move the agent
toward actions that maximize its expected reward.

Soar-RL performs updates of numeric preferences
immediately - the preferences that fired for the operator
selected on the t" decision cycle are updated during the
(t+1)* decision cycle — and so manages to store very little
history. The updating procedure is a variant of the SARSA
algorithm (Rummery & Niranjan, 1994), which translates to
the following steps in Soar-RL:

1. On cycle t, operator o, is selected. This selection may or
may not result solely from symbolic preferences, but, in
either case, any numeric preference rules for o, in state s;
are fired. This, possibly empty, set of instantiated
numeric preference rules is stored, as is the sum over
these preferences, which represents Q(sy,0y).

2. The system fires rules to apply the operator o¢, which in
turn leads to new rules matching to select the following
operator. At this point, the reward r; for this decision
phase is recorded and the next operator o is selected.

3. By this stage, the system has summed the numeric
preferences for 04, the quantity representing Q(Sg+1,0¢+1)-
The estimate Q(s,0,) will be improved by adjusting it
toward r; + Q(S1,04+1). More precisely, Q(sq,0) 1is
updated according to:

Os,.0,)=0ls,.0,)+ el + 2% Q5,101) - Ols;0,))
where o is a learning rate and A is the rate at which future
rewards are discounted, both currently constant values set
by hand.

4. The update is distributed over the saved instantiated
preference rules for o¢ by dividing the portion

a(rt + Ax Q(sHl 0,41) - Q(S, ,0,)) (Formula 1)

by the number of preference rules and adding this
quantity to the numeric value of each rule.

! Note on Soar syntax. The If and Then portions of a rule are
separated by -->. The syntax of a condition is (identifier "attribute
value). And anything in <> brackets is a variable.

For instance, a maze-world agent chooses a go east operator
that has a summed value —5.82 computed from the

preferences in Figure 3a and Figure 3b:
sp {RL*rule2
(state <s> “task mazeworld
“has monster east
~“operator <o>)
(<o> “name move
~“direction east)
-—>
(<s> "operator <o> = -5)}

Figure 3b

If the total update (Formula 1) computed on the next step is
—1, then these two rules would be updated to have the
actions (<s> “operator <o> = -1.32) and (<s> “operator <o0>
= -5.5) respectively.

Currently, the Soar-RL agent will do no reinforcement
learning unless the programmer provides numeric
preference rules for it to update. These rules can be written

in the form of variabilized prototypes such as
sp {RL*prototype
(state <s> “task mazeworld
~“location <c>
~“destination <d>
~“operator <o>)
(<o> “name move
~“direction <direction>)
-—>
(<s> "“operator <o> = 0)}

When this rule fires in a specific situation, it will build a
new version of itself with the variables <c¢>, <d>, and
<direction> replaced by constants, as in Figure 3a. At that
point and thereafter, this new rule will have its value
updated by the procedure described above. Using this
prototype allows the agent to associate values with all
combinations of location, destination, and direction without
hand-writing a rule for each — plus, it only has to build a
specific rule for combinations that it actually encounters.
Combined with monotonic inferences, the prototypes can
also support relational tests. For instance, to test that
location was north of destination would require one
production to elaborate working memory whenever the
north relationship existed, and one numeric preference
prototype to match against this elaboration.

Results

What is detailed in the previous section is what has been
implemented in Soar, and is available to any domain that is
encoded in Soar. We tested the system in two domains. In
both cases, we wrote Soar agents with little or no operator
selection knowledge, and so relatively random initial
behavior. We looked for improvement in their performance,
relative to their reward functions, as they gained experience
in the world. Only reinforcement learning was used — there
was no chunking.

Missionaries & Cannibals: Our first test domain was the
puzzle-problem Missionaries & Cannibals. To turn this into
an RL problem, we gave the agent rewards of +1 for moving
into a success state (all persons on right bank), -1 for

210

yguo
210

moving into a failure state (majority cannibals on some
bank), and O for other state transitions. In this world,
working memory always contained a description of the
current state in terms of the number of missionaries and
cannibals on each bank and the location of the boat. Thus,
the state was directly observable, and, since the state space
was small, we could use the representation of one numeric
preference rule for each state-operator pair. Below are the
results of 500 training runs, in which the agent had no
control knowledge other than its improving numeric
preferences. In the graphs, black vs. gray indicates whether
a run ended in success or failure, and the y-value measures
the number of steps in the run.

M&C: only numeric preferences

250

200
» A,
g 150 - Failure
S 1o | b A A Success
E 4 A A A
® 501 - .- A" A

o | s i Al
0 200 400

Run #

By the end of these runs, the agent is generally successful.
Mistakes are attributable to the persistent randomizing
effect of a soft greedy policy. Learning can be accelerated
considerably by the addition of heuristic symbolic
preference rules. For instance, after modifying the Soar-RL
agent above to give a symbolic worst preference to a move
reversing the previous move, the results over 500 training
runs were (note different y axis scale: 45 vs. 250):

M&C: with heuristic symbolic preferences

50

40 -
a A
g 30 & Failure
g 20 - Adra ‘A N AAAA u a Success
*

0 Join e r TS

0 + T T

0 200 400
Run #

Eaters: Puzzle problems are often used to demonstrate the
speed-up effect of Soar’s chunking mechanism, and they are
useful for evaluation because the desired behavior is known.
However, puzzles have a couple of faults as test domains for
reward-based learning. First, they tend to offer rewards only
as one-time marks of success or failure, rather than as a
varied stream of feedback. Second, they frequently demand
less interesting, more table-based representations of value
functions, because their puzzling nature is often achieved by
forcing the agent to consider all features in combination,
rather than calculating the implications of each feature

independently. Our second test domain attempts to avoid
these faults. It is called Eaters and is played by a Pacman-
like agent, called an eater, moving around a board.

The Eaters board initially is filled with food of two types
(bonusfood and normalfood) as well as some interior walls.
An eater receives a reward of +10 for moving onto a
bonusfood, +5 for moving onto a normalfood, and 0 for
moving into an empty cell. (Contents are consumed when
the agent moves onto them.) Additionally, there is a
discount factor that favors earlier rewards. The agent can
move in the four cardinal directions, if unblocked by a wall,
and can sense only the contents of the cells in the 5x5
square centered on itself.

Given the agent’s sensing capabilities, there are a variety of
features of the state that could be represented — for instance:

1. The contents of one of the four adjacent cells.

2. The contents of all of the four adjacent cells.

3. The contents of the three new cells that could be visited
on its second move given that its first move is in direction X.
4. The contents of the twenty-five cells that it can sense.

Of course, to build a numeric preference rule, a feature must
be combined with an operator — for instance, the contents of
the cell to the east plus move north or the contents of an
adjacent cell p/us an operator to move to that cell.

We tested two RL agents in this world. The first agent
associated numeric preferences with the contents of the next
cell; ultimately, it learned only three numeric preference
rules — one each for move to bonusfood, move to
normalfood, move to empty. The second agent had rules of
this type, plus rules of type 3 in the list above; therefore its
predicted value for a move was a sum of the immediate
value associated with the move and a value associated with
the resulting options for its second move.

These two agents were trained for 20 runs of 600 moves
each and then their performance was tested. During testing,
reinforcement learning was turned off and the parameter
controlling randomness in operator choice was reduced, so
that the agent had less of a tendency to explore. For
comparison purposes, we also tested a random agent and a
non-RL agent with symbolic preferences favoring move to
bonusfood over move to normalfood over move to empty.
The results are graphed below (total reward as a function of
move #), where each line represents an average over twenty
runs.

Eaters: performance after training

1400
1200 -
1000 -

800

-

§ 600
400 -
200 -

°
0K
1

o

Total reward

46 91 136 181 226 271 316 361 406 451 496 541 586

Move #
Two-step
— — — Random

One-step
Symbolic

211

yguo
211

The major points demonstrated in this graph are

Both trained RL agents have learned well
enough to soundly beat the random agent.

The performance of the one-step look-ahead
agent is identical to that of the symbolic agent.
The one-step look-ahead RL agent learned the
values 50.12, 29.38, and 5.66 for move to
bonusfood, normalfood, and empty,
respectively, so it would be expected to have the
same behavior as the symbolic agent.

Adding the two-step look-ahead feature yields a
relatively small but consistent gain in
performance. The nature of this world is such
that a move that looks best from the one-step

perspective is generally the best move. The two-
step look-ahead is most useful in deciding
between moves when the one-step cell contents
are the same. For instance, in

the pictured situation, the

eater has a numeric preference 2

of 14.5 for all four move to i.

empty operators, but a two- ’—H

step preference of -6.6 for

(empty, empty, normalfood) to the east versus
-13.8 for (empty,empty,wall) to the west. The
eater agent learned 56 two-step numeric
preference rules vs. 3 one-step rules. These
numbers are clearly out of proportion to the
gains in performance; much of the needed
control knowledge in this world can be captured
by the one-step rules. Still, we avoided learning
the 3x56 rules that would have been required if
our two types of features had not been
considered independently.

Comparison with ACT-R

ACT-R has a learning component that is comparable to
reinforcement learning. The locus of selection in ACT-R is
at the level of individual rule selection instead of at the level
of operators in Soar. In ACT-R, only a single rule is fired at
a time and the selection is done probabilistically based on a
utility that is associated with each rule, with the selection
distribution similar to the Boltzmann distribution. The
utilities are a function of the probability of and expected
cost of goal completion given that a particular production is
chosen, as well as of the value of the current goal. The value
of a goal is set by the programmer, and the other two
numbers are learned from experience.

Below is a list of key differences and their possible
implications between Soar-RL and ACT-R rule tuning:
1. Soar allows both symbolic and numeric preferences to
contribute to the decision. Thus, it is possible to encode
control knowledge that one option is better than
another. There is no way to directly encode similar
knowledge in ACT-R for preferring one rule to another.
The utilities captured by the numeric preferences in
Soar do not rely solely on the idea of progress toward a

212

goal, but instead are associated with a more flexible
reward function. This reward function is capable of
representing goal-directed activity, but can also be used
for ongoing activities, such as the top-level of an agent,
which monitors energy levels or selects goals to be
pursued.

The utilities for a rule in ACT-R are related to a single
goal, whereas in Soar, there can be many different rules
for an operator that are sensitive to different goals.
Thus, agents developed in ACT-R, may have difficulty
learning in environments with shifting or multiple
goals.

Ultimately, the utility of an action and its likelihood of
being selected in ACT-R are based on the conditions of
the individual rule. There is no run-time combination of
the values as there is when the numeric indifferent
preferences are combined in Soar. Thus, Soar
distinguishes between the conditions for when an
action/operator is valid and when it is desirable, which
in turn gives it a richer representation for capturing
complex reward/utility functions.

Although ACT-R can get the effect of combining
multiple pieces of advice by using multiple rules with
different conditions for the same actions, its learning
mechanism can give credit to only one of these rules. In
Soar-RL, all numeric preferences that contribute to the
selection of an operator receive credit for the results of
selecting that operator.

In this paper we have described a significant extension to
the Soar architecture — the addition of reinforcement
learning. This provides a new, architectural approach to
learning control knowledge based on expected rewards. The
implications for Soar as an Al architecture are clear — all
Soar programs will now be able to automatically adjust to
feedback from their environments in cases where symbolic
preferences are inadequate to make decisions. The impact
on Soar for cognitive modeling is less clear, but intriguing.
Soar-RL, together with recent work in adding activation to
Soar (Nuxoll, Laird, & James, 2004), moves Soar much
closer to ACT-R in terms of combining numeric and
symbolic computation and learning. The underlying
mechanisms share many common features, but also differ
enough that they might lead to different computational
models of human behavior. Even if these models do not
surpass current ACT-R theory, they should provide us with
new insights into what aspects of the ACT-R models are
most important.

Future work

For future work, we have two basic thrusts. One is to build
models of human performance, comparing and contrasting
these models with existing ACT-R models. The second
thrust, is to greatly expand the use of reinforcement learning
in Soar to be more complete, which will push our
implementation in directions that have not yet been explored
in other cognitive architectures.

yguo
212

Task independent learning parameters. Reinforcement
learning invariably has parameters that are used to
tweak learning for a specific problem. In addition, we
have a Boltzmann decision procedure that has a
temperature parameter that influences the evenness of
probabilistic selection. Although there may be truly
task-independent values for these parameters,
embedding the decision procedure and learning
mechanism in a general architecture allows us to
explore the possibility that these parameters can be tied
to a general feature of the current task that is detectable
by the architecture. For example, temperature works
best in the decision procedure if its value is high during
earlier explorations of a domain so that exploration is
preferred to exploitation. As the domain is explored and
the knowledge matures, exploitation is usually
preferred, so that temperature can be lowered. As
demonstrated in adaptive simulated annealing (Ingber
1993), dynamically adjusting the temperature can
greatly improve performance. To begin with, we will
derive the temperature from the certainty of the numeric
preferences. When the variance is high, the temperature
will also be high leading to a more uniform distribution
of the decision space and encouraging exploration, but
when the variance is low, the temperature will be low,
biasing the decision to those operators with higher
numeric preference.

Learning the appropriate features to associate with
predicted rewards. The state spaces that Soar works in
are structured (involving relations) and huge, so that
many standard approaches to representing the
association between features and state values are
inadequate. We use rules for such associations, but that
then begs the question as to where those rules come
from. We plan to investigate schemes where rules are
dynamically generated by specializing existing rules.
Hierarchical Learning. Soar automatically generates
subgoals. This gives us the opportunity for the system
to learn about not only the overall task it is trying to
achieve, but also the component parts of the task:
subtasks and meta-reasoning. These components are
more likely to be shared across many different tasks, so
that learning about subgoals can improve performance
on novel tasks with common subtasks. Thus, an
important issue is to determine how reinforcement
learning should work across subgoals, with the main
issue being how to introduce rewards at the end of a
subtask. These rewards should be related to subgoal
achievement, and may be independent of environmental
rewards. This is the approach taken in several
hierarchical RL systems, in particular MAXQ
(Dietterich, 2000) and options (Sutton, Precup, & Singh
1999), but neither system explains how these subgoal
rewards may be generated automatically. For an
autonomous agent, the origin of those reward functions
is unclear because subgoals may not be preprogrammed
but arise from a lack of knowledge.

4. Internal, task-independent reward functions. Our goal is
to integrate reinforcement learning into Soar so that it
can be used on any task. One key component of
reinforcement learning is obtaining a reward from the
environment. However, for many tasks, the
environmental rewards are extremely sparse, making
learning very slow. We want to investigate domain-
independent reward functions that augment external
reward functions and help steer an autonomous agent to
useful parts of its environment — these are almost meta-
rewards in that they are based on characteristics of the
knowledge that has been learned, emphasizing
achieving improvements in the agent’s ability to predict
its environment (Kaplan 2003). Emotions may be an
alternative (or possibly related) source of reward that
can direct behavior.

References

Anderson, J. R. & Lebiere, C. (1998). The Atomic
Components of Thought. Mahwah, NJ: Erlbaum.

Dietterich, T. (2000). Hierarchical Reinforcement Learning
with the MAXQ Value Function Decomposition. Journal
of Artificial Intelligence Research, 13.

Ingber, L. (1993) Simulated Annealing: Practice versus
Theory, Mathematical Computer Modeling, 16 (11), 29-
57.

Kaplan, F. (2003) Bootstrapping Awareness, In Dautenhan,
K. and Nehaniv, C., editor, Proceedings of Second
International Symposium on Imitation in Animals and
Artifacts. 48-57.

Newell, A. (1990). Unified Theories
Cambridge, MA: Harvard University Press.

Nuxoll, A., Laird, J., James, M. (2004). Comprehensive
Working Memory Activation in Soar..International
Conference on Cognitive Modeling.

Rummery, G. A., & Niranjan, M. (1994). On-line Q-
Learning using Connectionist Systems. Technical Report
CUED/F-INFENG/TR 166. Engineering Department,
Cambridge University.

Sutton, R. & Barto, A. (1998). Reinforcement Learning: An
Introduction. Cambridge, MA: The MIT Press.

Sutton, R., Precup, D., & Singh, S. (1999). Between MDPs
and Semi-MDPs: A Framework for Temporal Abstraction
in Reinforcement Learning. Artificial Intelligence, 112(1-
2).

Wray, R., & Laird, J. (2003). Variability in Human
Behavior Modeling for Military Simulations. Proceedings
of the 2003 Conference on Behavior Representation in
Modeling and Simulation. Scottsdale, AZ.

of Cognition.

213

yguo
213

	Introduction
	Soar
	Adding Reinforcement Learning
	Adjusting Numeric Preferences
	Results
	Comparison with ACT-R
	Future work
	References

