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Abstract 

In this paper, we describe an architectural modification to 
Soar that gives a Soar agent the opportunity to learn statistical 
information about the past success of its actions and utilize 
this information when selecting an operator. This mechanism 
serves the same purpose as production utilities in ACT-R, but 
the implementation is more directly tied to the standard 
definition of the reinforcement learning (RL) problem. The 
paper explains our implementation, gives a rationale for 
adding an RL capability to Soar, and shows results for Soar-
RL agents’ performance on two tasks.  
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Introduction 
The Soar architecture has been used extensively, both for 
developing AI applications and cognitive models. One of its 
strengths has been the ability to efficiently represent and use 
large bodies of symbolic knowledge to solve a wide variety 
of problems using many different methods. It dynamically 
combines available knowledge for decision-making, and can 
dynamically create subgoals whenever the knowledge for a 
decision is incomplete or inconsistent. Soar can also 
compile the problem solving in subgoals into rules, using a 
process called chunking, so that over time, problem solving 
in subgoals is replaced by rule-driven decision making. 
Chunking has proved to be extremely versatile because it 
stores away whatever problem solving is performed in a 
subgoal, allowing Soar programs to learn using a wide 
variety of methods, including explanation-based learning, 
macro-operator learning, strategy acquisition, learning by 
instruction, and many others. In general, Soar’s processing 
is symbolic, and although that is sufficient (and necessary) 
for a wide variety of cognitive activities, it is inadequate (or 
at the very least extremely inefficient) when encoding 
probabilities and numeric rewards.  

While Soar has strengths in knowledge-rich symbolic 
reasoning and learning and weaknesses in knowledge-lean, 
statistical-based learning, the strengths and weaknesses of 
reinforcement learning (RL) techniques are the reverse. 
They are successful at capturing statistical regularities 
related to the expected reward that an agent will receive, but 
can not encode and effectively use large bodies of symbolic 
knowledge. In this paper we will present an initial 
integration of reinforcement learning with Soar, enriching 
the learning capabilities as well as the representation of 

knowledge in Soar, while at the same time developing a 
unique integration of reinforcement learning with symbolic, 
knowledge-rich reasoning. Specifically, Soar supports 
dynamic hierarchical task-decomposition, meta-reasoning, 
and the ability to enrich the state descriptions through 
internal abstractions. All of these capabilities both 
complicate and enrich reinforcement learning. This 
integration requires structural changes to the Soar 
architecture and we will refer to the unification as Soar-RL.  

In the remainder of this paper we first present a simplified 
description of Soar and the extensions we have made to 
incorporate reinforcement learning. We then demonstrate 
the implementation on two simple tasks, highlighting the 
contributions RL makes to Soar, as well as the capabilities 
Soar-RL provides beyond standard reinforcement learning. 
We also compare and contrast Soar-RL to ACT-R, which 
incorporates a rule-tuning mechanism, comparable to 
reinforcement learning. We conclude with future directions. 

Soar 
The structure of Soar’s memories is shown in Figure 1. Soar 
has a declarative working memory that contains its 
representation of the current situation using labeled graph 
structures, organized in a hierarchy of states/goals. All long-
term procedural knowledge is encoded as production rules. 
Whenever a rule’s conditions match working memory, the 
rule is fired and its actions performed. Actions may involve 
adding or removing structures from working memory. They 
may also create preferences used to select operators.      

          Figure 1: Soar’s Structure 
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Figure 2: Soar’s Decision Cycle 

 
Soar’s learning mechanism, chunking, monitors problem 
solving and automatically creates new rules, which are 
added to long-term memory during execution. 

Soar’s basic reasoning cycle is illustrated in Figure 2.  
1. Input. Changes to perception are processed and Soar’s 

perceptual buffer in working memory is updated. 
2. State elaboration. Rules that newly match are fired in 

parallel to retrieve relevant information. For example, 
in a robotic task, a rule might test the distance to the 
object and the robot’s available reach and determine if 
the object is within reach.  

3. Proposing operators. Rules can propose operators by 
creating acceptable preferences for specific operators. 
In general, the rules’ conditions test the situation so that 
an operator is proposed only when it is relevant.  

4. Comparing and evaluating operators. Rules can test the 
proposed operators and other features of the situation 
and create preferences, which make assertions about the 
absolute or relative merit of the operators. Multiple 
preferences can be generated for a single operator. 

5. Selecting the current operator. The preferences are 
evaluated to select the current operator. If the 
preferences are insufficient or contradictory, an impasse 
ensues and Soar creates a substate in which the goal is 
to resolve that impasse. This provides Soar with meta-
reasoning so that it can reflect on its own processing. 

6. Applying operator. Rules match against the currently 
selected operator and the state and make changes to the 
state, including creating motor commands. 

7. Output. All new motor commands are processed. 
Stages 2-4 are intermixed during execution. The only 
decision making in Soar is the selection of operators, which 
is the sequential bottleneck in Soar, as only a single operator 
can be selected for a state at a time (rules fire in parallel).  

Soar’s original set of symbolic preferences included 
preferences specifying that operators should be rejected, that 
one operator is better than another, or that an operator can 
be a default. Recently, we have added numeric preferences, 
which allow a real number to be associated with an operator 
(Wray & Laird, 2003). The numeric preferences are 
considered only if the symbolic preferences are insufficient 
for determining a single best choice. For each candidate 
operator Oi, the values of all numeric preferences proposed 
for Oi are summed into a total score Sum(Oi) for the 
operator. The winning operator is chosen probabilistically 
according to the Boltzmann distribution:  
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Temperature is a parameter that controls the “peakedness” 
of the probability distribution. These selection rules provide 
a means of incorporating domain-specific probabilistic 
selection knowledge. 

Adding Reinforcement Learning 
The core problem in reinforcement learning is to learn how 
to act in the world so as to maximize a reward signal. In 
most approaches, an agent learns a value function, a 
mapping from either a state or a state-operator pair to an 
estimation of the expected sum of future rewards that can be 
achieved from that state or after applying that operator in 
that state. In Soar-RL, we use numeric preferences to 
represent a state-operator value function. We have further 
extended Soar by adding a reward as one of the inputs from 
the environment. The value of the reward can also be 
modified by internal knowledge (additional rules) that 
generates a reward for subgoal achievement. 

One recurring problem in RL is how to represent the 
value function for a large state or state-operator space. The 
simplest way to store a value function is as a table with all 
the possible states or state-operator pairs enumerated with 
their associated values. However, this representation is both 
bulky and slow, since it does not allow learned values to be 
generalized over sets of states, and so is impossible for the 
sorts of tasks we expect to encode in Soar.  

By summing over the values suggested by multiple rules, 
the recommendation of the numeric preferences shares a 
characteristic with the recommendation of the symbolic 
preferences – they are both the result of the combination of 
different pieces of advice, each of which covers a portion of 
the state-operator space. Each individual rule can be 
considered to be a specialized complex feature detector, and 
the predicted utilities for the operators are the runtime linear 
combination of the values of these complex features. 
Learning linear functions over features is one of the best 
understood methods of value function approximation in RL. 
Automatically constructing features, however, is not well 
understood, and this is part of our research (necessary, for 
an agent with many tasks; helped by the flexibility of Soar’s 
language). Incorporating RL in Soar has two parts, first, 
adjusting the values of numeric preferences for existing 
rules, and later, creating new rules that test different feature 
sets while creating numeric preferences.  

Adjusting Numeric Preferences  
A numeric preference for an operator is generated by a rule 
associating a numeric value with a particular set of features 
in working memory. This set should incorporate features of 
the operator and the current state, possibly including aspects 
such as the current goal and surrounding context. Such a 
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For instance, a maze-world agent chooses a go east operator 
that has a summed value –5.82 computed from the 
preferences in Figure 3a and Figure 3b: 

rule can be general enough to apply across many different 
states and operators if it is selective in the features it tests. 
As an example, a maze-world agent might have the rule1:  

sp {RL*rule1 
   (state <s> ^task mazeworld 
              ^location C5 
              ^destination A1 
              ^operator <o>) 
   (<o> ^name move 
        ^direction east) 
  --> 
   (<s> ^operator <o> = -.82)} 

Figure 3a 

sp {RL*rule2 
   (state <s> ^task mazeworld 
              ^has_monster east 
              ^operator <o>) 
   (<o> ^name move 
        ^direction east) 
--> 
   (<s> ^operator <o> = -5)} 

Figure 3b 
 

If the total update (Formula 1) computed on the next step is 
–1, then these two rules would be updated to have the 
actions (<s> ^operator <o> = -1.32) and (<s> ^operator <o> 
= -5.5) respectively. 

The RL task is to adjust the value of this rule (currently, 
-.82) as the agent encounters rewards in the world. The aim 
of these adjustments is that the summed value of numeric 
preferences for operator o given the working memory state s 
should approximate the action value, notated Q(s,o). The 
action value is the expected sum of rewards to be received 
after choosing operator o in state s, and thereafter following 
the agent’s current policy. Such adjustments, combined with 
our soft greedy policy for operator selection, move the agent 
toward actions that maximize its expected reward. 

Currently, the Soar-RL agent will do no reinforcement 
learning unless the programmer provides numeric 
preference rules for it to update. These rules can be written 
in the form of variabilized prototypes such as  

sp {RL*prototype 
 (state <s> ^task mazeworld 
            ^location <c> 
            ^destination <d> 
            ^operator <o>) 
 (<o> ^name move 
      ^direction <direction>) 
--> 
 (<s> ^operator <o> = 0)} 

Soar-RL performs updates of numeric preferences 
immediately - the preferences that fired for the operator 
selected on the tth decision cycle are updated during the 
(t+1)st decision cycle – and so manages to store very little 
history. The updating procedure is a variant of the SARSA 
algorithm (Rummery & Niranjan, 1994), which translates to 
the following steps in Soar-RL: When this rule fires in a specific situation, it will build a 

new version of itself with the variables <c>, <d>, and 
<direction> replaced by constants, as in Figure 3a. At that 
point and thereafter, this new rule will have its value 
updated by the procedure described above. Using this 
prototype allows the agent to associate values with all 
combinations of location, destination, and direction without 
hand-writing a rule for each – plus, it only has to build a 
specific rule for combinations that it actually encounters.  
Combined with monotonic inferences, the prototypes can 
also support relational tests. For instance, to test that 
location was north of destination would require one 
production to elaborate working memory whenever the 
north relationship existed, and one numeric preference 
prototype to match against this elaboration. 

1. On cycle t, operator ot is selected. This selection may or 
may not result solely from symbolic preferences, but, in 
either case, any numeric preference rules for ot in state st 
are fired. This, possibly empty, set of instantiated 
numeric preference rules is stored, as is the sum over 
these preferences, which represents Q(st,ot). 

2. The system fires rules to apply the operator ot, which in 
turn leads to new rules matching to select the following 
operator. At this point, the reward rt for this decision 
phase is recorded and the next operator ot+1 is selected. 

3. By this stage, the system has summed the numeric 
preferences for ot+1, the quantity representing Q(st+1,ot+1). 
The estimate Q(st,ot) will be improved by adjusting it 
toward rt + Q(st+1,ot+1). More precisely, Q(st,ot) is 
updated according to:  
( ) ( ) ( ) ( )( ttttttttt osQosQrosQosQ ,,,, 11 )−×++= ++λα

where α is a learning rate and λ is the rate at which future 
rewards are discounted, both currently constant values set 
by hand.  

Results 

4. The update is distributed over the saved instantiated 
preference rules for o  by dividing the portion t

( ) (( ttttt osQosQr ,, 11 −×+ ++ ))λα  (Formula 1) 
by the number of preference rules and adding this 
quantity to the numeric value of each rule. 

What is detailed in the previous section is what has been 
implemented in Soar, and is available to any domain that is 
encoded in Soar. We tested the system in two domains. In 
both cases, we wrote Soar agents with little or no operator 
selection knowledge, and so relatively random initial 
behavior. We looked for improvement in their performance, 
relative to their reward functions, as they gained experience 
in the world. Only reinforcement learning was used – there 
was no chunking. 
Missionaries & Cannibals: Our first test domain was the 
puzzle-problem Missionaries & Cannibals. To turn this into 
an RL problem, we gave the agent rewards of +1 for moving 
into a success state (all persons on right bank), -1 for 

                                                           
1 Note on Soar syntax. The If and Then portions of a rule are 
separated by -->. The syntax of a condition is (identifier ^attribute 
value). And anything in < > brackets is a variable. 
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moving into a failure state (majority cannibals on some 
bank), and 0 for other state transitions. In this world, 
working memory always contained a description of the 
current state in terms of the number of missionaries and 
cannibals on each bank and the location of the boat. Thus, 
the state was directly observable, and, since the state space 
was small, we could use the representation of one numeric 
preference rule for each state-operator pair. Below are the 
results of 500 training runs, in which the agent had no 
control knowledge other than its improving numeric 
preferences. In the graphs, black vs. gray indicates whether 
a run ended in success or failure, and the y-value measures 
the number of steps in the run. 

M&C: only numeric preferences
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By the end of these runs, the agent is generally successful. 

Mistakes are attributable to the persistent randomizing 
effect of a soft greedy policy. Learning can be accelerated 
considerably by the addition of heuristic symbolic 
preference rules. For instance, after modifying the Soar-RL 
agent above to give a symbolic worst preference to a move 
reversing the previous move, the results over 500 training 
runs were (note different y axis scale: 45 vs. 250):  

M&C: with heuristic symbolic preferences
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Eaters: Puzzle problems are often used to demonstrate the 
speed-up effect of Soar’s chunking mechanism, and they are 
useful for evaluation because the desired behavior is known. 
However, puzzles have a couple of faults as test domains for 
reward-based learning. First, they tend to offer rewards only 
as one-time marks of success or failure, rather than as a 
varied stream of feedback. Second, they frequently demand 
less interesting, more table-based representations of value 
functions, because their puzzling nature is often achieved by 
forcing the agent to consider all features in combination, 
rather than calculating the implications of each feature 

independently. Our second test domain attempts to avoid 
these faults. It is called Eaters and is played by a Pacman-
like agent, called an eater, moving around a board.  

The Eaters board initially is filled with food of two types 
(bonusfood and normalfood) as well as some interior walls.  
An eater receives a reward of +10 for moving onto a 
bonusfood, +5 for moving onto a normalfood, and 0 for 
moving into an empty cell. (Contents are consumed when 
the agent moves onto them.) Additionally, there is a 
discount factor that favors earlier rewards. The agent can 
move in the four cardinal directions, if unblocked by a wall, 
and can sense only the contents of the cells in the 5x5 
square centered on itself.  
Given the agent’s sensing capabilities, there are a variety of 
features of the state that could be represented – for instance: 
1. The contents of one of the four adjacent cells. 
2. The contents of all of the four adjacent cells. 
3. The contents of the three new cells that could be visited 
on its second move given that its first move is in direction x. 
4. The contents of the twenty-five cells that it can sense. 
Of course, to build a numeric preference rule, a feature must 
be combined with an operator – for instance, the contents of 
the cell to the east plus move north or the contents of an 
adjacent cell plus an operator to move to that cell. 

We tested two RL agents in this world. The first agent 
associated numeric preferences with the contents of the next 
cell; ultimately, it learned only three numeric preference 
rules – one each for move to bonusfood, move to 
normalfood, move to empty. The second agent had rules of 
this type, plus rules of type 3 in the list above; therefore its 
predicted value for a move was a sum of the immediate 
value associated with the move and a value associated with 
the resulting options for its second move. 

These two agents were trained for 20 runs of 600 moves 
each and then their performance was tested. During testing, 
reinforcement learning was turned off and the parameter 
controlling randomness in operator choice was reduced, so 
that the agent had less of a tendency to explore. For 
comparison purposes, we also tested a random agent and a 
non-RL agent with symbolic preferences favoring move to 
bonusfood over move to normalfood over move to empty. 
The results are graphed below (total reward as a function of 
move #), where each line represents an average over twenty 
runs. 

Eaters: performance after training
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  The major points demonstrated in this graph are 
• Both trained RL agents have learned well 

enough to soundly beat the random agent. 
• The performance of the one-step look-ahead 

agent is identical to that of the symbolic agent.   
The one-step look-ahead RL agent learned the 
values 50.12, 29.38, and 5.66 for move to 
bonusfood, normalfood, and empty, 
respectively, so it would be expected to have the 
same behavior as the symbolic agent. 

• Adding the two-step look-ahead feature yields a 
relatively small but consistent gain in 
performance.  The nature of this world is such 
that a move that looks best from the one-step 
perspective is generally the best move. The two-
step look-ahead is most useful in deciding 
between moves when the one-step cell contents 
are the same. For instance, in 
the pictured situation, the 
eater has a numeric preference 
of 14.5 for all four move to 
empty operators, but a two-
step preference of -6.6 for 
(empty, empty, normalfood) to the east versus 
-13.8 for (empty,empty,wall) to the west. The 
eater agent learned 56 two-step numeric 
preference rules vs. 3 one-step rules. These 
numbers are clearly out of proportion to the 
gains in performance; much of the needed 
control knowledge in this world can be captured 
by the one-step rules. Still, we avoided learning 
the 3x56 rules that would have been required if 
our two types of features had not been 
considered independently.      

Comparison with ACT-R 
ACT-R has a learning component that is comparable to 
reinforcement learning. The locus of selection in ACT-R is 
at the level of individual rule selection instead of at the level 
of operators in Soar. In ACT-R, only a single rule is fired at 
a time and the selection is done probabilistically based on a 
utility that is associated with each rule, with the selection 
distribution similar to the Boltzmann distribution. The 
utilities are a function of the probability of and expected 
cost of goal completion given that a particular production is 
chosen, as well as of the value of the current goal. The value 
of a goal is set by the programmer, and the other two 
numbers are learned from experience. 

Below is a list of key differences and their possible 
implications between Soar-RL and ACT-R rule tuning: 
1. Soar allows both symbolic and numeric preferences to 

contribute to the decision. Thus, it is possible to encode 
control knowledge that one option is better than 
another. There is no way to directly encode similar 
knowledge in ACT-R for preferring one rule to another.  

2. The utilities captured by the numeric preferences in 
Soar do not rely solely on the idea of progress toward a 

goal, but instead are associated with a more flexible 
reward function. This reward function is capable of 
representing goal-directed activity, but can also be used 
for ongoing activities, such as the top-level of an agent, 
which monitors energy levels or selects goals to be 
pursued.  

3. The utilities for a rule in ACT-R are related to a single 
goal, whereas in Soar, there can be many different rules 
for an operator that are sensitive to different goals. 
Thus, agents developed in ACT-R, may have difficulty 
learning in environments with shifting or multiple 
goals. 

4. Ultimately, the utility of an action and its likelihood of 
being selected in ACT-R are based on the conditions of 
the individual rule. There is no run-time combination of 
the values as there is when the numeric indifferent 
preferences are combined in Soar. Thus, Soar 
distinguishes between the conditions for when an 
action/operator is valid and when it is desirable, which 
in turn gives it a richer representation for capturing 
complex reward/utility functions.  

5.  Although ACT-R can get the effect of combining 
multiple pieces of advice by using multiple rules with 
different conditions for the same actions, its learning 
mechanism can give credit to only one of these rules. In 
Soar-RL, all numeric preferences that contribute to the 
selection of an operator receive credit for the results of 
selecting that operator.  

 
In this paper we have described a significant extension to 
the Soar architecture – the addition of reinforcement 
learning. This provides a new, architectural approach to 
learning control knowledge based on expected rewards. The 
implications for Soar as an AI architecture are clear – all 
Soar programs will now be able to automatically adjust to 
feedback from their environments in cases where symbolic 
preferences are inadequate to make decisions. The impact 
on Soar for cognitive modeling is less clear, but intriguing. 
Soar-RL, together with recent work in adding activation to 
Soar (Nuxoll, Laird, & James, 2004), moves Soar much 
closer to ACT-R in terms of combining numeric and 
symbolic computation and learning. The underlying 
mechanisms share many common features, but also differ 
enough that they might lead to different computational 
models of human behavior. Even if these models do not 
surpass current ACT-R theory, they should provide us with 
new insights into what aspects of the ACT-R models are 
most important. 

Future work 

For future work, we have two basic thrusts. One is to build 
models of human performance, comparing and contrasting 
these models with existing ACT-R models. The second 
thrust, is to greatly expand the use of reinforcement learning 
in Soar to be more complete, which will push our 
implementation in directions that have not yet been explored 
in other cognitive architectures.  
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1. Task independent learning parameters. Reinforcement 
learning invariably has parameters that are used to 
tweak learning for a specific problem. In addition, we 
have a Boltzmann decision procedure that has a 
temperature parameter that influences the evenness of 
probabilistic selection. Although there may be truly 
task-independent values for these parameters, 
embedding the decision procedure and learning 
mechanism in a general architecture allows us to 
explore the possibility that these parameters can be tied 
to a general feature of the current task that is detectable 
by the architecture. For example, temperature works 
best in the decision procedure if its value is high during 
earlier explorations of a domain so that exploration is 
preferred to exploitation. As the domain is explored and 
the knowledge matures, exploitation is usually 
preferred, so that temperature can be lowered. As 
demonstrated in adaptive simulated annealing (Ingber 
1993), dynamically adjusting the temperature can 
greatly improve performance. To begin with, we will 
derive the temperature from the certainty of the numeric 
preferences. When the variance is high, the temperature 
will also be high leading to a more uniform distribution 
of the decision space and encouraging exploration, but 
when the variance is low, the temperature will be low, 
biasing the decision to those operators with higher 
numeric preference.  

2. Learning the appropriate features to associate with 
predicted rewards. The state spaces that Soar works in 
are structured (involving relations) and huge, so that 
many standard approaches to representing the 
association between features and state values are 
inadequate. We use rules for such associations, but that 
then begs the question as to where those rules come 
from. We plan to investigate schemes where rules are 
dynamically generated by specializing existing rules. 

3. Hierarchical Learning. Soar automatically generates 
subgoals. This gives us the opportunity for the system 
to learn about not only the overall task it is trying to 
achieve, but also the component parts of the task: 
subtasks and meta-reasoning. These components are 
more likely to be shared across many different tasks, so 
that learning about subgoals can improve performance 
on novel tasks with common subtasks. Thus, an 
important issue is to determine how reinforcement 
learning should work across subgoals, with the main 
issue being how to introduce rewards at the end of a 
subtask. These rewards should be related to subgoal 
achievement, and may be independent of environmental 
rewards. This is the approach taken in several 
hierarchical RL systems, in particular MAXQ 
(Dietterich, 2000) and options (Sutton, Precup, & Singh 
1999), but neither system explains how these subgoal 
rewards may be generated automatically. For an 
autonomous agent, the origin of those reward functions 
is unclear because subgoals may not be preprogrammed 
but arise from a lack of knowledge.  

4. Internal, task-independent reward functions. Our goal is 
to integrate reinforcement learning into Soar so that it 
can be used on any task. One key component of 
reinforcement learning is obtaining a reward from the 
environment. However, for many tasks, the 
environmental rewards are extremely sparse, making 
learning very slow. We want to investigate domain-
independent reward functions that augment external 
reward functions and help steer an autonomous agent to 
useful parts of its environment – these are almost meta-
rewards in that they are based on characteristics of the 
knowledge that has been learned, emphasizing 
achieving improvements in the agent’s ability to predict 
its environment (Kaplan 2003). Emotions may be an 
alternative (or possibly related) source of reward that 
can direct behavior. 
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