
Letter Spirit: A Model of Visual Creativity

John Rehling (rehling@andrew.cmu.edu)
Carnegie Mellon University, 5000 Forbes Avenue

Pittsburgh, PA 15213 USA

Douglas R. Hofstadter (dughof@cogsci.indiana.edu)
Center for Research on Concepts and Cognition

Indiana University
510 North Fess Street

Bloomington, IN 47408 USA

Abstract

The Letter Spirit program is a model of human creativity in
the domain of typeface design. Creativity is involved in most
human activities, but it is by its nonquantifiable nature at odds
with many modeling approaches. The Letter Spirit program
models the inherently creative task of typeface design with a
two-level approach. The top level loop coordinates three
modules that create letterforms, evaluate them aesthetically,
and decide which letterforms need to be re-designed, until all
26 lowercase letters have been rendered suitably. On the
lower level, each module carries out its task by modeling the
way that subcognitive pressures combine and conflict to
produce emergent behavior on the cognitive level. While
certain types of reasoning can be modeled with the
manipulation of symbols whose meaning is considered to be
absolutely fixed, this work helps to illustrate why it is difficult
to demonstrate creative behavior with systems of that kind.

Introduction
The Letter Spirit domain is based upon a grid consisting of
56 quanta, each of which is a horizontal, vertical or diagonal
line segment connecting adjacent points in a 3x7 grid. Some
sample gridletters are displayed later in Figure 1.

The task
The task of Letter Spirit is to accept as input a few
gridletters from a human designer, with those seed letters
intended to represent the same style. Using the seeds as a
beginning, Letter Spirit creates versions of the remaining
lowercase letters of the roman alphabet until it has produced
an entire gridfont of 26 stylistically consistent gridletters.
Letter Spirit can also begin a new gridfont from scratch,
beginning without any human-created seeds and those
gridfonts are usually stylistically coherent and are
sometimes stylistically interesting

Implementation
Letter Spirit consists of three modules, each being a
relatively complex program solving a vital subtask of
gridfont design, plus the top-level loop that coordinates the
three modules into a single strategy of design called review-
and-revision. In order to carry this strategy out, the program
has one module, the Drafter, that, given a particular letter

category (e.g., ‘b’) and a particular style (usually
exemplified for the program by means of several examples
of different letter categories in that style) creates an attempt
at a gridletter that is a good representative both of that letter
category and that style.

Superficially, it may seem sufficient to create but one
such attempt per letter category until the gridfont is
complete. Creating one attempt according to a prescribed
method of creation is the approach of many computational
models of creativity, but when the output of such a method
is of low quality (as if often the case), the program
consequently shows the brittleness that is characteristic of
many efforts in AI. To get around this problem, Letter Spirit
hands the Drafter’s output to the other modules, called the
Examiner and the Adjudicator, and they rate each Drafter-
created gridletter for how well it fits its intended letter
category and the intended style, respectively.

The FARG approach

Foundations
While the three modules differ significantly in their
implementation (that is inevitable, given their very different
subtasks), they are all based upon an architecture used in
other cognitive models that have been implemented by the
Fluid Analogies Research Group. As the name implies,
those efforts were primarily concerned with modeling how
people create analogies by means of concepts that are fluid,
defined in terms of norms that may or may not be upheld
rather than rigid, strictly-enforced rules. Most of those
projects, including Copycat (Mitchell, 1993), Tabletop
(French, 1992), and Metacat (Marshall, 1999) aimed at
implementing increasingly refined models of analogy. One
of the Letter Spirit modules, the Examiner (McGraw, 1995)
pursues a similar approach, although its task is gridletter
categorization rather than analogy.

The FARG programs all have some common architectural
elements, loosely inspired by the Hearsay-II speech
recognition architecture of Erman, et al. (1980).

The Coderack: Fine-grained processing
In the FARG architecture, the counterpart to what would be,
in a traditional computer program, a procedure call is a

yguo
In Proceedings of the Sixth International Conference on Cognitive Modeling, 249-254. Mahwah, NJ: Lawrence Earlbaum.

yguo
249

codelet, a relatively short routine that performs some small
operation. No individual codelet does very much of the
program's work. They are intended to correspond
meaningfully to small-scale cognitive events. The Coderack
is the repository of codelets, and execution begins with the
nondeterministic selection of one codelet from the
Coderack. The selection process is nondeterministic,
weighted by the individual urgency value attached to each
codelet when it is posted to the Coderack. The selected
codelet is removed from the Coderack and then executed.
This activity is repeated until either the Coderack is empty
or some other condition for halting is reached. A run begins
with the placing of some codelets on the Coderack. As
codelets are run, the number of codelets remaining on the
coderack generally decreases, but codelets may, as part of
their work, add more codelets to the Coderack. The length
and composition (in terms of what types of codelets are
present) of the Coderack both change over the course of a
run

With each individual codelet performing only a very
small portion of the overall task, FARG models progress
towards producing an output only through the cumulative
action of many codelets. As a spectator, one may infer
implicit high-level goals in the activity of the Coderack
although such goals are not explicit anywhere in the
Coderack, and instead emerge as trends in the activity
carried out one codelet at a time on a lower level. Multiple
high-level activities can chronologically overlap as their
associated codelets run in an interleaved order. That leads to
implicit parallelism and, consequently, behavior that allows
multiple high-level pressures to compete or cooperate as the
program progresses towards a final answer.

Systems whose behavior emerges from the combined
action of many small agents have been inspired by and
likened to the work of an anthill as carried out by many ants,
or the activity in a cell, with countless proteins each
performing a tiny part. The benefits can be understood by
means of an analogy with integral calculus. One of the
insights underlying calculus is that the area under a curve
can be approximated by fitting rectangles onto the Cartesian
plane, between the curve and the x-axis, and calculating the
sum of their areas. The thinner the rectangles, the better the
approximation to the actual area bounded by the curve. In a
Coderack architecture, likewise, the small grain size of
processing by codelets offers the potential for a tight fit to
the mental processes that the architecture models.

Long-term and short-term memory
Each FARG model has a short-term memory called the
Workspace that consists of structured representations that
relate how the symbols contained therein relate to one
another. Further details vary widely from model to model.

Many of the models also have a localist connectionist
network that allows (among other operations) a scheme of
spreading activation to mediate, throughout the course of a
run, how important concepts (represented by nodes in the
network) appear to be to processing at any given point in

time. In the case of Copycat, Tabletop, and Metacat, the
network is called a Slipnet, which is imbued with some
sophisticated characteristics that are not implemented in any
of the Letter Spirit modules, and will not be described more
in this paper. Letter Spirit’s Examiner module has a simpler
Conceptual Network that is a conventional localist
connectionist network (McClelland and Rumelhart, 1981)
with nodes on one level for whole letters and nodes on
another level for letter parts; during a run, activation can
spread between nodes so that when the relevance of one
concept has been detected or suspected, the program can
suspect the presence of related concepts. For example, when
‘i’ is activated, activation spreads to the ‘dot’ node as well,
and future processing is then more likely to see any
appropriate structure that is present as a dot.

Long-term memory is also important for each model, with
the repository of necessary domain knowledge included in a
store called the Conceptual Memory. The details of this also
vary greatly from model to model.

Parallel terraced scan
The activity of a FARG model can be seen as the
investigation of multiple competing possible answers to the
same problem or subproblem, frequently with more than one
possible answer being considered at the same time. A goal
of the FARG architecture is to create models that direct
effort preferentially towards answers that are apparently
more promising. The parallel terraced scan describes the
way in which a program can explore many possible answers
at once (thus, in parallel) but devotes more time to pursuing
those answers that seem more worthwhile (thus, terraced).

The result of a well-implemented parallel terraced scan is
a program that finds good answers without having to
commit equal amounts of computational resources to all
possible answers. In general, a Coderack program
implementing the parallel terraced scan carries out search (if
its activity is to be described in that way) very differently
from either a traditional search algorithm or a generate-and-
test algorithm that is applied exhaustively to the set of
possible answers. In a FARG model, good answers (not
necessarily perfect answers) bubble up to the top naturally.
The effect of the parallel terraced scan is to makes models
of cognition more efficient while also raising the quality of
their output. Decisions regarding how much computational
effort should be directed towards each answer are made
implicitly by the program during runtime, sensitive to the
conditions of the particular run, rather than being made by
the programmer, during programming time, and insensitive
to the conditions of the future run. The parallel terraced scan
is concerned with making a program that is intelligent not
only with regard to its eventual output, but also in regard to
how it goes about producing that output.

The details of how a FARG model can incorporate the
parallel terraced scan vary according to the other details of
the model. The process of imbuing a model with the parallel
terraced scan (or increasing the extent to which it utilizes the
parallel terraced scan) is documented in our account of how

yguo
250

the Examiner was optimized from its original
implementation (Rehling and Hofstadter, 1997).

Representing letters
People do not conceptualize letters as exact graphical
shapes. If they did, deviations from the definition would be
seen as inherently flawed. In reality, there is no one “right”
font, although some certainly seem more normal than
others.

Work on the Letter Spirit project has been guided by the
belief that letters are represented by roles – abstract
concepts on a level beneath that of letters. The constituent
strokes from which children learn to draw letters
approximately indicate the level of roles. Letters are defined
by one or more role-sets, which specify which roles make
up the letter and how they ought to touch or otherwise relate
spatially to one another. An actual physical rendering of a
letter – a letterform – can be decomposed into physical role-
fillers, which satisfy (to some degree) the definitions of their
corresponding roles. It is important to note that role-fillers
are exact shapes, but roles are not. Roles are concepts,
flexible enough that a great variety of shapes may serve as
role-fillers for them. The role hypothesis and support for it
is explained in greater detail in (McGraw, 1995).

Representing style

Stylistic properties
The work on Letter Spirit aims to capture a reasonable range
of styles by implementing (with routines allowing for
perception as well as creation) a number of stylistic
properties, which can define many kinds of gridfont, though
not all of the ones that people can invent. This
implementation of Letter Spirit realizes three kinds of
stylistic property, and diverse styles are represented as
combinations of these.

One type of stylistic property is motifs. A motif is a
particular shape that recurs in numerous gridletters. “Shape”
can be thought of in a number of levels of literalness. Most
literal would be a set of contiguous quanta with precise
location on the grid specified. Less literal versions allow
translated, reflected, or rotated versions to count as the same
shape. Letter Spirit allows for different levels of literality in
motifs, with an emphasis on detecting and using those
motifs that are inherently more noteworthy. The larger and
more literal a motif is, the more noteworthy it for it to occur.

Abstract rules are properties that may be present in an
individual gridletter. These are “Thou shalt not” rules that
forbid quanta of certain orientation, angles of certain
measure, quanta within certain zones of the grid, and
collinear stretches of segments of various lengths.

The third kind of stylistic property is that which occurs
when role-fillers deviate significantly from their
corresponding roles; these conflicts are called n o r m
violations . If a role-filler lacks a particular property
expected for its abstract role, that does not destroy its

membership in the category, although it makes it a less
prototypical member of the category.

The Thematic Focus
The style of the gridfont that Letter Spirit is in the process
of designing is represented in a structure called the Thematic
Focus. The Thematic Focus consists of a handful of levels
(six) with different levels indicating the degree to which the
SPs contained in that row are important to the style of the
gridfont. Being located on a higher level indicates that a
stylistic property is more important. When a stylistic
property has been found in one gridletter, it is placed on the
lowest level of the Thematic Focus. Promotion (and
demotion) of stylistic properties to higher (and lower) levels
throughout a run is probabilistic, so that a stylistic
property’s frequency of occurrence in the gridfont roughly
correlates with how high in the Thematic Focus it is located.
The higher in the Thematic Focus that a stylistic property is
found, the greater its influence in the subsequent calculation
of style ratings as well as in decisions pertaining to the
creation of new gridletters.

At the beginning of each run, the Thematic Focus is
empty, and it is gradually filled and modified as more
examples of the gridfont are used to form the basis of the
goal style. It tends to form a pyramidal shape, with a style
being defined in terms of a very large number of stylistic
properties that are relatively unimportant to the style and a
few stylistic properties that are considered important to the
style. A filled Thematic Focus may have well over one
hundred stylistic properties in it, although typically
somewhere between zero and two of them are on the highest
level. A style is thus typically a very complex thing,
although a brief list of a couple of traits can sometimes
suffice as an approximate description of it. We believe that
this kind of representation of style is consistent with the
observation that people can readily recognize a style when
they see it, but cannot easily define the style explicitly.

The Library
The style of a gridfont is also represented with the help of
the Library, a repository of all the gridletters and role-fillers
that Letter Spirit has found among the seeds and among its
own creations that have been used to define the style. The
shapes in the Library can be useful in defining a style, both
in creating new gridletters and in calculating ratings of style
membership. This will be discussed in greater detail below.

Examiner
The Examiner determines the letter category of an input
gridletter. It was implemented by Gary McGraw as a stand-
alone program, and can be discussed as such, although its
intended and current purpose as to serve as a module within
Letter Spirit. In addition to categorizing the input as an ‘a’,
or a ‘b’, etc., it also segments the input into constituent parts
and identifying for which abstract roles those parts are
meant to fill. Finally, it returns a numeric rating of how well
the input serves a member of its perceived letter category.

yguo
251

Processing in the Examiner follows an opportunistic
course which is initially bottom-up, but seeks to exploit any
information gained to the maximal benefit in guiding future
processing. A run that accepted a relatively plain ‘b’ as
input might proceed as follows: First, a Gestalt codelet
would activate nodes in the Conceptual Memory letter
categories based upon the coarse shape properties of the
whole letterform; for a ‘b’, the Gestalt codelet would
typically activate ‘b’. This would lead to an attempt to
segment the whole letterform into parts that are appropriate
for ‘b’, namely a post on the left side distinguished from a
bowl on the right side. Activation in Conceptual Memory
would spread from ‘b’ to the nodes for ‘left-post’ and ‘right-
bowl’. After the program has attached descriptive labels
(such as ‘tall’, ‘thin’) to each part, a Sparker codelet would
attempt to bind a part to a corresponding role in memory,
based upon matches between the part’s labels and the role’s
permanent definition, but also favoring those roles that are
more highly activated. Typically, a very simple letterform
will be recognized in just a few dozen codelets. When early
attempts have failed, codelets will very likely run that
attempt to glue parts together or break bigger parts in two,
seeking a segmentation that leads to successful recognition.
After hundreds of codelets have run, the standards by which
a part is expected to match a role are gradually loosened,
allowing more and more exotic parts to be seen as members
of less obvious roles. Atypical gridletters are thus often
recognized after more time has gone by, when the right
combination of segmentation and, if necessary, role
loosening, has taken place.

The Examiner has received more development effort than
the other portions of Letter Spirit combined. Logically, its
performance is most crucial to the program as a whole (it is
not possible to know what a fancy ‘g’ is without knowing
what a ‘g’ is). It is has been tested as a stand-alone gridletter
recognizer, and the latest version of the Examiner achieves
93.5% correct categorization on a large test set for which
literate human subjects without special expertise in
typefaces were only 84.0% correct.

Adjudicator
The Adjudicator performs three tasks. First, it fills the
Workspace with a representation, in terms of stylistic
properties, of the style of a given gridletter. Second, and
concurrent with the first task, it finds ways in which the
Workspace would modify the Thematic Focus, should the
gridletter be accepted as a member of the gridfont and
worthy of being part of the definition of the goal style.
Third, it uses the degree of fit between the Workspace and
the Thematic Focus to calculate a style goodness rating for
the gridletter.

The Adjudicator’s codelet-based implementation differs
from that of the Examiner in that the Examiner’s processing
often involves emergent loops, as one gridletter
segmentation is attempted, and then rejected if it does not
lead to successful recognition. The Adjudicator, in contrast,
runs more like a straight-line program. Although the choice

its codelets, which detect a variety of stylistic properties, is
still nondeterministic, the course of a run is not open-ended.
A fixed number of style-detecting codelets runs in
nondeterministic sequence, building up a letterform-style
structure that may differ somewhat from one run to another.
The Adjudicator serves as a style evaluator as well as a style
builder, producing a numeric rating of how well a single
gridletter’s style matches that of a gridfont as a whole. It can
build up a style from many gridletters by accumulating
properties from the set, promoting more frequently
occurring ones to levels of greater significance in the
Thematic Focus.

The Adjudicator depends crucially upon the Examiner,
and expects as input the kind of output that the Examiner
provides, not just a mere gridletter, but the gridletter
annotated, as it were, in terms of letter category, parts, and
roles. Thus, when the Adjudicator judges the style of a
gridletter, it judges it as a ‘b’, or an ‘x’, or a ‘t’. Key
aspects of the Examiner’s design reflect that it is not a mere
Optical Character Recognition program, but a servant to the
Adjudicator.

Drafter
The Drafter's task is to create a gridletter; the interaction of
abstract roles and the concrete grid lead to a three-level
hierarchy of activity to consider:

(I) Drafting a gridletter.
(II) Drafting a role-filler.
(III) Drafting a single quantum.

For the Drafter to render a gridletter, it must act on the top
level. There are two ways to go about this. One is to create
the gridletter in a single step, by borrowing and adapting a
letterform from the Library. For example, an attempt at ‘d’
can be rendered by taking the mirror image of the ‘b’ (if
there is one) that is part of that style. It should be stressed
that this is not an infallible method of creating a good ‘d’;
for some styles, the mirror image of ‘b’ is not a good ‘d’ in
that style.

The alternative to that is to create the gridletter one role-
filler at a time. At that level, the Drafter may borrow a role-
filler wholesale from the Library, or it may create the role-
filler quantum by quantum. The drafting of a quantum is
carried out by a run of the Coderack, which selects the next
quantum for the role-filler out of all the eligible candidates.
In this mode of the Drafter, role-fillers are drawn one
quantum at a time, via successive point-to-point moves, as
though an ink pen were doing the drawing. A run of the
Drafter begins with the pen in some location, with various
amounts of information on where and why it should draw
next, and the output of one run of the Drafter is to decide
which quantum, if any, should be drafted next. These
coderack runs consult the Thematic Focus, as built up
previously by the Adjudicator, and also the platonic
definition of the intended letter category. The selection of
each quantum can be thought of as a democratic process,

yguo
252

with each codelet voting for the penstroke that most suits its
cause, which might be for one codelet the continuation of a
motif that is common to the typeface; for another, making
tall a part that whose role calls for tallness; for another,
making the part shorter because the style calls for shortness.
Codelets can and do conflict with one another. The eventual
output must agreeably balance all constraints. The Drafter is
in this way a good example of how the FARG architecture
can avoid the brittleness that is so often a feature of AI.

The Drafter’s output is not uniformly good. In fact, many
of its attempts at a gridletter are poor versions of the
intended letter category, or style, or both. Some attempts are
even completely unrecognizable. This does not weaken the
Letter Spirit program because no gridletter is accepted as a
final member of the gridfont without the approval of both
the Examiner and the Adjudicator.

The top-level loop
The Examiner, Adjudicator, and Drafter are each programs
of considerable sophistication. The top-level control of
Letter Spirit ties them together into a relatively detailed
model of human creativity in the domain of gridfont design.
Its task is to carry out “the central feedback loop of
creativity”, in which everything the program creates is
inspected for quality before it is deemed worthy of inclusion
in the final output. A second objective that occurs
simultaneously (in some versions of the program) is the
evolution of a new style, in which new additions to the
output can change the goal style that governs future output.

The Letter Spirit top-level program consists of two
phases:

The first phase uses the seed letters given to the program
to create a representation of the style that they have in
common. The second phase of the program is a loop, in
which a letter category is selected (nondeterministically, but
favoring those categories that do not yet have a good
version of them in the gridfont), and then the Drafter renders
a gridletter that, ideally, incorporates the goal style as well
as that letter. The Drafter's attempt is run past the Examiner
and the Adjudicator, and if the attempt is the best version
thus far for that category, as determined by the scores that
the Examiner and the Adjudicator generate, then it is kept as
the current version of that category in the gridfont. This loop
runs many times, and as it does so, the quality of the
gridfont should incrementally increase.

The top-level program of Letter Spirit lacks most of the
characteristics of the FARG architecture, and is, in fact, a
relatively simple program. The simplicity serves a number
of causes. First, this makes it a relatively clean test of the
strategy of the central feedback loop of creativity. Second,
as a model of higher-level activity, it requires less in the
way of fine-grained detail to model humanlike activity.
And, of course, it is easier to begin with a simple
implementation and add features and functionality in future
work. A thorough exploration of Letter Spirit as it stands
now is a valuable precursor to any future work that will
increase the sophistication of the top-level program.

Results
Letter Spirit and its constituent modules have each been
tested in a variety of circumstances. For the sake of brevity,
the only results that will be reported here are those of the
whole Letter Spirit program. These runs each began with the
program receiving five gridletters (in each case, ‘b’, ‘c’, ‘e’,
‘f’, and ‘g’) taken from one of five different human-
designed gridfonts. Then the program strove to finish each
gridfont by designing the remaining gridletters. In these
runs, the program used up to 300 Drafter runs to generate
multiple (a mean of 14) attempts for the 21 non-seed
categories, keeping the attempt it rated best in each case.
The resulting gridfonts appear in Figure 1.

Figure 1: Five Letter Spirit-designed gridfonts.

Observations
The gridfonts are both relatively legible and relatively
coherent stylistically. Out of the non-seed gridletters (105 in
all), all but perhaps five are easily recognized as members of
their intended letter category. By scanning across the figure,
one can easily see the general stylistic trend of each
gridfont, although each gridfont has a few members that
show little, if any, of the intended style. Approximately 30%
of the gridletters are the exact ones used by the human
designer in the original gridfont. Many of the remaining
ones are only slightly different, or reflect the intended style
despite going about the matter in a manner different than
that of the original designer. In other cases, such as the tall
‘d’ in the third gridfont of Figure 1, which otherwise
features short ascenders and descenders, or the squared-off
‘w’ of the first gridfont, one sees inconsistency in the
program; it is not the case that Letter Spirit always does
good work, but that it is capable of doing so. Fine examples
of incorporation of letter with style are seen in the ‘z’ of the
first gridfont, the ‘v’ and the ‘x’ of the second gridfont.
Letter Spirit output has been exhibited in art shows (Rehling
and Hofstadter, 2000) and, subjectively speaking, is of
moderate, although not excellent, quality.

Essential aspects of this approach
Letter Spirit has commonalities with other approaches in
cognitive modeling, but diverges from them in important
ways. For example, the Coderack has certain computational
similarities to the way that production rules are
implemented in architectures like Soar and ACT-R. Also,
the review-and-revision strategy is a species of the
widespread and more general generate-and-test approach
that is ubiquitous in computer programming of all sorts.

yguo
253

However, it is important to note key aspects of the Letter
Spirit program without which these mechanisms would be
incapable of producing aesthetically plausible output. First,
the nondeterministic production style of the Drafter is
essential to the success of the review-and-revision approach.
Simply put, it is of no benefit to produce multiple attempts
at a product if all of those many attempts are identical.
Second, the subcognitive level of codelets in all three Letter
Spirit modules crucially distinguishes this work from
cognitive modeling in the symbolic tradition. In order to
display purposeful variability in behavior at one level of
processing, a model must concern itself with a lower level.
In the case of typeface design, there can be no rules at the
role-filler level that instruct the model in definitive terms
how to make tradeoffs between letter and style. Instead, the
model must allow these pressures to compete with one
another, allowing a range of possible results in the output,
because it is not predictable a priori which influences should
prevail in any given situation.

While it is usually the case that mature work in cognitive
modeling includes a quantitative comparison between
human and model data for the sake of partial validation of
the approach, we have no intention of undertaking such an
analysis here. It is possible in the case of models of aesthetic
creation to perform strained versions of the comparison-
with-subjects exercise but it is, we feel, for numerous
reasons not only beside the point but also misleading. The
goal of this work was not to implement most or all of the
complexity of human-level creativity but rather to identify
mechanisms that are sufficient to enable a semblance of
creative behavior and to provide a case study that allows
one to begin to consider which of those mechanisms are
necessary. Any effort to quantitatively assess progress
would derive more from the statistical methods used than it
did from the model. It is certainly not a coincidence that
artistic creativity is an endeavor that is hard or undesirable
to evaluate quantitatively and that it has been less the
subject of modeling work than human behavior that is easily
captured quantitatively. Members of the artistic community
itself have argued vehemently, if not always with logic, that
quantitative expressions of aesthetic quality are misguided
(Rehling, 2000), and we would argue that adhering to the
usual standards of empirical validation is actually a
hindrance to the enterprise of modeling creative behavior.

Analysis
Letter Spirit produces moderately impressive output thanks
to several positive aspects in its implementation, described
in greater detail than is possible here in (McGraw, 1995)
and (Rehling, 2000). One strength is the cognitive
plausibility of its modules, particularly that of the Examiner.
Another is the review-and-revision strategy of creativity, an
approach that is probably hard to beat in terms of
performance with one-pass approaches that do not review
their own output and hope to create high-quality output on
their first and only try.

Letter Spirit also has some clear shortcomings that could
be addressed in future work. First, the Drafter completely
finishes drafting an attempt of a gridletter before that
gridletter is evaluated for quality (by the other modules).

This allows the program to draft blindly and leads to Drafter
output being clearly inferior to human-designed gridletters.
A second problem is that gridletters that are rated poorly by
the Examiner and Adjudicator are simply discarded, so that
the Drafter must begin its next attempt at that category from
scratch. A human designer can modify flawed products,
correcting their flaws to make a good final product. Future
work should allow Letter Spirit to review-and-revise on the
role-filler level, as well as on the letter level. A third
problem is that style needs to be represented in richer and
more flexible ways. It is hoped that this work’s strengths
will motivate future work on this project and projects
applying the same architecture to other domains.

References

Erman, L., Hayes-Roth, F., Lesser, V., and Raj Reddy, D.
(1980). The Hearsay-II Speech-understanding System:
Integrating knowledge to resolve uncertainty. Computing
Surveys, 12(2):213-253.

French, R. (1992). Tabletop: An emergent stochastic
computer model of analogy-making. PhD thesis,
University of Michigan, Ann Arbor, Michigan.

Grebert, I., Stork, D., Keesing, R., and Mims, S. (1992).
Connectionist generalization for production: An example
from GridFont. Neural Networks, 5.

Hofstadter, D., and the members of FARG (1995). Fluid
Concepts and Creative Analogies: Computer Models of
the Fundamental Mechanisms of Thought. New York:
Basic Books.

McClelland, J., and Rumelhart, D. (1981). An interactive-
activation model of context effects in letter perception:
Part 1, an account of basic findings. Psychological
Review, 88(5):375-407.

McGraw, G. (1995). Letter Spirit (part one): Emergent
high-level perception of letters using fluid concepts. PhD
thesis, Indiana University, Bloomington, Indiana.

Marshall, J. (1999). Metacar: A self-watching cognitive
architecture for analogy-making and high-level
perception. PhD thesis, Indiana University, Bloomington,
Indiana.

Mitchell, M. (1993). Analogy-making as Perception.
Cambridge, Massachusetts: MIT Press/Bradford Books.

Rehling, J. (2000). Letter Spirit (part two): Modeling
creativity in a visual domain. PhD thesis, Indiana
University, Bloomington, Indiana.

Rehling, J. and Hofstadter, D. (1997). The parallel terraced
scan: An optimization for an agent-oriented architecture.
Proceedings, IEEE First International Conference on
Intelligent Processing Systems.

Rehling, J. and Hofstadter, D. (2000). Letter Spirit: A model
of creativity in a visual domain. Art show at the XVI
Congress of the International Association of Empirical
Aesthetics.

Smolensky, P. (1988). On the proper treatment of
connectionism. Behavioral and Brain Sciences, 11:1--23.

yguo
254

