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Abstract

We  call  into  question  game  theory,  as  a  account  of  how
people  play two player zero-sum games.   Evidence  from a
modified version of the game Paper, Rock, Scissors suggests
that  people  do  not  play  randomly,  and  not  according  to
certain  play probabilities.   We investigated the  relationship
between game theory predictions  and a cognitive model  of
game  playing  based  on  the  detection  of  sequential
dependencies.   Previous  research  has  shown  that  the
sequential  dependency model  can account  for  a number of
empirical  findings  that  game theory cannot.  The sequential
dependency model has been implemented using both simple
neural  networks and ACT-R. In  this  paper we used simple
neural networks (a description of how our findings relate to
the ACT-R model is included in the Conclusion section). For
simple games, such as Paper, Rock, Scissors, game theory has
been able to correctly predict aggregate move probabilities. In
this paper we show that this is an artifact of the symmetry of
the  payoffs,  and  that  for  asymmetrical  payoffs  the  game
theory  solution  does  not  predict  human  behavior.
Furthermore, we show that  the model  of game playing that
underlies game theory cannot be used to predict the results no
matter  what  move probabilities  are  used.  Finally,  we show
that  the  results  can  be  accounted  for  by  augmenting  the
network  sequential  dependency  model  so  that  the  reward
system is related to the game payoffs.

Introduction
Game theory (VonNeumann & Morgenstern, 1944) was not
created as a cognitive model, that is, it was not intended to
account  for  mechanisms  underlying  the  manner  in  which
humans play games.  Rather it was intended to be a formal
mathematical system for understanding game playing from a
rational  perspective.   However,  game  theory  has  had  an
enormous influence on theories and ideas about how people
play  games.   Because  empirical  studies  have  shown that
game theory is poor at predicting how humans play games,
most researchers do not believe that game theory is a good
model  of  how humans  process  information  during  games
(Pool,  1995).   Nevertheless,  the game theory model  of  a
player  is  still  extremely  influential  in  terms  of  how  we
understand human game playing.

Game  theory  is  a  large  collection  of  mathematical
principles that are used in accounts of a variety of human
interactions.  It is used by a variety of researchers including
economists, mathematicians, and behavioral psychologists to
name  a  few.   The  focus  of  this  paper  is  specific  to  the

application of game theory as an account how people play a
relatively  constrained  set  of  non-zero  sum  games.
Henceforth, the use of the term 'game theory', will be used to
refer to a subset of principles within game theory commonly
used to describe this type of game.

In game theory, a game is defined as a situation in which
two players  each  select  one  move  from a  discrete  set  of
choices, the combination of which determines a payoff for
each player.  There are two varieties of games.  In zero-sum
games the  payoffs for  the  players  must  sum to  zero,  and
there is no option for cooperation (i.e., one player’s gain is
always equal to the other player’s loss).   In non-zero-sum
games this constraint does not exist and cooperation can be
an  option.   In  either  case,  to  apply  game  theory  it  is
necessary  to  assume  that  players  can  make  random
selections  from their  move  choices  according  to  specific
probabilities assigned to each move.  This amounts to two
assumptions about the cognitive abilities of players: (1) they
have  some  way  of  calculating  or  learning  move
probabilities,  and  (2)  they  are  able  to  select  moves  at
random according to these probabilities.  In what follows,
we  will  refer  to  these  assumptions  concerning  players’
abilities as the game theory player model.  Assuming that a
player matches the game theory player model, it is generally
possible to use game theory to calculate the optimal set of
move probabilities.  We will refer to the outcome of game
theory calculations as the game theory solution.

Most  research  on human game playing has  focused  on
non-zero-sum games, where it has been shown that people
generally  do  not  follow the  game  theory  solution.   One
reason for this is that people are often influenced by factors
that  are  extraneous  to  the  game  theory  solution,  such  as
social  norms  concerning  cooperation  (Poundstone,  1992;
Samuelson, 1997).  However, these results show only that
people do not play according to the game theory solution.
The game theory player model is still viable as it is possible
to explain the results in terms of people playing according to
the  game theory player  model  (i.e.,  probabilistically),  but
with  move  probabilities  inconsistent  with  the  calculated
game theory solution.  In zero-sum games there is no option
to cooperate so there should be less extraneous influences.
However, there is very little direct research on human zero-
sum game playing (Poundstone, 1992).  The general view of
human  zero-sum  game  playing  is  based  mainly  on
experimental  comparisons  between humans and  the  game
theory  player  model.   With  regard  to  this,  psychological
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studies  have  shown that  people  are  very poor  at  the  two
essential skills required by the game theory player model:
(1)  learning  optimal  move  probabilities  (e.g.,  Gazzaniga,
1998), and (2) behaving randomly (see Wagenaar, 1972 for
a review).

Based on this,  a common view of individual humans as
game players is that we are poor game theory players.  That
is, we play in a way consistent with the game theory player
model but  we are not good at  learning the optimal move
probabilities,  we  are  poor  at  being  random,  and  we  are
influenced by considerations extraneous to the game theory
framework (e.g., norms about cooperation).  Attempts have
been made to adapt the game theory player model to better
capture human behavior.  The focus in this area has been on
introducing a learning component to  explain how humans
acquire move probabilities.  Game theorists have studied the
effects  of  using  learning  algorithms  to  acquire  move
probabilities (Fudenburg & Levine, 1998),  and there have
been some attempts to build cognitively plausible versions
of  the  game  theory  player  model  using  cognitive
architectures (e.g., see Ritter & Wallach, 1998 for examples
using ACT-R and  SOAR).  However,  all  of  this  work is
based on the implicit acceptance of the game theory player
model  as  an  appropriate  framework  for  understanding
human game playing behavior.

An alternative player model
A psychologically plausible alternative to the game theory
player model is that instead of trying to learn advantageous
move  probabilities,  people  try  to  detect  sequential
dependencies in their opponents' play and use this to predict
their opponents' moves (Lebiere & West, 1999; West, 1998;
West  & Lebiere,  2001).   That  is,  players learn recognize
patterns of consecutive moves in their opponents' play.  This
model  is  consistent  with a  large amount of  psychological
research showing that when sequential dependencies exist,
people can often detect and exploit them (e.g., Estes, 1972;
Restle, 1966; Rose & Vitz, 1966; Vitz & Todd, 1967).  It
also explains why people tend to do poorly on tasks that are
truly random - they persist in trying to predict the outcomes
even  though doing so  results  in  sub-optimal  results  (e.g.,
Gazzaniga,  1998;  Ward,  1973;  Ward,  Livingston,  &  Li,
1988).

West and Lebiere (2001) used neural networks to examine
the  possibility  that  people  play  games  by  attempting  to
detect  and  exploit  sequential  dependencies  in  their
opponent’s  play.   The  networks  were  designed  to  detect
sequential  dependencies  in  the  game  of  Paper,  Rock,
Scissors (hence forth PRS).  PRS was chosen because it is
familiar to most people and because it is very easy to play.
It is also a zero-sum game and therefore does not involve the
complications associated with the option to cooperate.  The
players were modeled  using very simple two layer  neural
networks rewarded by adding 1 and punished by subtracting
1 from  the connection weights (all of which started with a
weight of 0).  The inputs to the network were the opponent’s
previous moves (referred to as lags), and the outputs were
the moves the player would make on the current play.  The

goal  in  creating  these  networks  was  to  use  the  simplest
possible model of sequential dependency detection. 

The simulations revealed that processing more lags is an
advantage.  That is, a network that processed the last two
lags (a lag 2 network) would reliably win against a network
that processed only the last lag (a lag 1 network).  Also a
network that treated ties as losses (an aggressive network)
could  reliably  win  against  a  network  that  was  neither
punished  nor  rewarded  for  ties  (a  passive  network).
Furthermore, these effects were additive and approximately
equal in magnitude.  Another important finding was that the
interaction  between  the  networks  produced  a  chaos-like
behavior  that  made  them appear  to  be  playing randomly.
Subsequent  to  examining  the  play  of  the  neural  network
models,  West  & Lebiere  (2001)  investigated  the  play  of
humans against the models.  They found that humans could
reliably  beat  both  the  aggressive  lag  1  network  and  the
passive  lag 2  network.  This  suggested  that  humans play
similarly to the aggressive lag 2 network.  Although there
was a small but statistically significant tendency for people
to lose against the aggressive lag 2 model rather than tie, this
was  attributed  to  the  humans  being  unable  to  play  as
consistently as the network model.  This interpretation was
supported by the fact that subjects reported getting frustrated
when playing  the  aggressive  lag  2  network  (i.e.,  playing
hundreds of trials is only fun if you are winning).  Both the
network model and the game theory solution predicted that,
on average, people would play each of the three play options
with equal  frequency.   However,  the  game theory  model
(i.e., the combination of the game theory player model and
the game theory solution)  predicted  that  people  would tie
against the networks, which was not the case. 

Aggregate behavior
The West & Lebiere (2001) results show that the sequential
dependency player model can account for results in simple
zero-sum  games  that  game  theory  model  cannot.   In
addition,  the  sequential  dependency  player  model  is
consistent with the empirical facts.  Specifically, people are
poor  at  being random and poor  at  learning optimal move
probabilities because they are instead trying to detect and
exploit sequential dependencies.  However, the game theory
solution  did  correctly  predict  that,  on  average,  humans
played paper,  rock, and scissors with approximately equal
frequency.  This raises the question of whether game theory
can still be considered viable for predicting aggregate move
probabilities for this type of game.  That is, regardless of the
details of how people play, does game theory capture certain
higher-level stochastic properties of game playing behavior?
After all, even if people do not process game information in
the manner suggested by the game theory player model, it
may still be the case that across time and across individuals,
human game playing can legitimately be viewed as (pseudo)
randomly emitting moves according to certain probabilities.
To  test  this  possibility  and  to  probe  deeper  into  the
relationship  between  game  theory  and  the  sequential
dependency player model we tested a variant of PRS.
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Rock=2
An aspect of PRS that makes it a very simple game is that
each of the three play options is functionally identical to the
other two.  That is, each move beats one of the other two
moves and loses to the remaining move.  In addition, a win
is worth the same amount for each move.  Thus, it is not
surprising that the game theory solution for playing PRS is
to  play  the  three  options  with  equal  probabilities.   The
reason this is somewhat problematic is  that the agreement
between the game theory solution and human behavior for
this game may be an artifact of the simplicity and symmetry
of the game.  To  clarify this issue, a modified version of
PRS was developed.   The new game was identical  to the
original PRS game except that a win using rock counted for
2 points while a win with scissors or paper counted for only
1 point.   In this way, each of the three choices were unique.
Rock could win two points and lose only one, scissors could
lose two points and win only one, and paper could win or
lose  only  one  point.   The  game  theory  solution  to  this
modified version of Paper, Rock, Scissors differs depending
on whether a zero-sum or non-zero-sum interpretation of the
game is  adopted.   That  is,  whether  a  player  is  trying to
maximize the difference in points between himself and the
other player, or whether each player is attempting only to
maximize  the  total  number  of  points  for  themselves.
However,  since  we  instructed  our  subjects  to  try  to
maximize the points difference we will focus on the zero-
sum interpretation.  In this case, the game theory solution is
to play paper 50% of the time, rock 25% of the time, and
scissors 25% of the time, for the expected outcome of a tie.

The simulated opponents
For this study we used the same simple network models as
West  &  Lebiere  (2001)  and  created  three  simulated
opponents for our human subjects to play against.  The first
two opponents were taken directly from the West & Lebiere
(2001) study.  They were, the aggressive lag 2 model and
the  aggressive  lag  1  model.   We  did  this  to  test  the
hypothesis that people simply try to maximize wins in this
type of game.  If this were the case then the results against
these  two models  would  replicate  the  results  of  West  &
Lebiere (2001) as neither the humans nor the models would
be influenced by rock wins being worth more points.  To
create  the  third  simulated  opponent  we  adapted  the
aggressive  lag  1  model  so  that  it  rewarded  the  relevant
connection weights by 2 instead of 1 when it won with rock.
This model was created to pit the human players against a
model  that  might  better  take  advantage  of  winning  with
rock,  but  still  had  some  weaknesses  that  humans  could
exploit (i.e., it was only a lag 1 network and it was not set to
avoid losing with scissors thereby allowing the opponent to
win with rock).  The reason for this was that games where
humans win are much more informative than games where
humans  lose,  as  the  loss  can  be  attributed  to  extraneous
factors such as lack of effort, boredom, or frustration.  To
distinguish this model we will refer to it as the rock=2 lag 1
model.

Method
Ten human subjects played against each of the three network
models.  They were instructed to try to maximize the points
difference in their favor by as much as possible.  This goal
corresponded  to  the  zero-sum interpretation  of  the  game.
The subjects were also told that the network models did not
play randomly and that they could be beaten.  Additionally,
the subjects were instructed to play naturally, not to play too
slowly, nor to think too much about their play.  The order in
which the subjects played the network models was random.
Subjects were required to play one game (300 trials) against
each of the three different  network models.   This  process
took from between 30 to 45 minutes in total depending on
the speed at which the subject played.

Results and Discussion 
The points differences between each of the human players
and each of the network models were calculated for  each
trial by subtracting the network score from the human score.
Thus a positive score indicated that the human was ahead
and a negative score indicated that the network was ahead.
The mean total points difference at the end of each game
(see Table  1)  revealed  that  the humans were able  to  win
against all of the network models.  To test the significance
of this we ran a regression on the group points difference
data for each different type of opponent across trials.  The
regression coefficients thus corresponded to the average rate
of points accumulation (i.e., points difference/trials) for the
humans against  each network opponent (the intercept  was
forced  through  zero).   95%  confidence  intervals  for  the
coefficient  values  revealed  that  all  of  them  were
significantly  above  zero.   That  is,  against  each  network
models, there was a significant tendency for the humans to
win.

The fact that people could beat the aggressive lag 2 model
under these conditions, whereas they tended to lose in West
& Lebiere (2001), where all three varieties of wins were of
equal value, indicates that they were able to exploit the fact
they knew that wins using rock were rewarded with 2 points.
Thus, the hypothesis that people simply try to maximize the
number of wins regardless of the number of points awarded
for wins, was refuted.  That is, the profiles of the humans'
play suggested wins with rock were preferred to wins with
paper or scissors. 

Given that people were sensitive to the payoff information
the next question was whether, as in West & Lebiere (2001),
the game theory solution predicted  the move probabilities
for the human players.  Figure 1 displays the probabilities
for playing paper, rock and scissors for the human subjects,
for each of the opponents they faced, with 95% confidence
intervals.  Figure 1 also displays the predicted probabilities
from the game theory solution.  As can be seen, the game
theory solution was significantly different from the human
probabilities.
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Table 1: The game results of the human versus the neural network models.

Table 2: Regression analysis on the performance of human subjects against the three network models.

We  also  examined  whether  the  human  results  could  be
explained by using the game theory player model without
the optimal game theory solution.  That is, did the human
subjects win by using move probabilities that exploited non-
optimal  move  probabilities  produced  by  the  network
models?   Table  1  shows the  average  difference  in  score
along with what the difference in score would be if it were
determined solely by the overall move probabilities of the
two players.   The strategy index number is  the difference
between these two.  A score of zero on the strategy index
would indicate that the score difference could be accounted
for entirely by move probabilities.  In all cases the strategy
index  was  significantly  different  from  zero  (P<0.05,
determined  by  confidence  intervals).   Given  the  move
probabilities,  against  the  two  lag  1  models  the  humans
played significantly better than expected, while against the
lag 2 model they played significantly worse than expected.
This  can  be  interpreted  as  the  humans  being  better  at
exploiting sequential  dependencies  than the lag 1 models,
but not as not as good as the lag 2 model.  This agrees with
the  results  of  West  &  Lebiere  (2001)  and  suggests  that
humans were able to narrowly beat the lag 2 because of their
knowledge of the payoffs.

Figure 1: Game Theory Solution and Human Play
Probabilities.

Modeling the Human results
Our next step was to construct a neural network model of
how the humans played.  For  the model we assumed that
people detect sequential dependencies in a way similar to a
lag2 network.  Although the results of this paper and West &
Lebiere  (2001)  show  that  in  games  against  the  lag  2
network,  humans  seem  to  be  slightly  worse  at  detecting
sequential dependencies, we again assumed this was due to
humans finding the lag 2 less fun to play against because it
is a stronger opponent.  In both studies the advantage for the
lag 2 network was relatively small.  Additionally, West &
Lebiere (2001) found that they could account quite well for
the  results  of  the  other  games  by  modeling  humans  as
aggressive lag 2 networks.  To account for the findings in
this study we modeled people as aggressive lag 2 networks
with the ability to adjust their rewards and punishments so as
to best take advantage of the payoffs in the game. 

To  get  an  idea  of  how people  could  be  adjusting  the
rewards  and  punishments  we obtained  self-reports  on  the
strategies used by several of our more successful subjects.
These reports  generalized  to  favoring rock wins to  paper
wins, and paper wins to scissors wins.  That is, they were
focused first on getting rock wins and second on blocking
the opponent from getting rock wins.  With this in mind we
ran a  genetic  algorithm to  find  a  system of  rewards  and
punishments for the neural network model that would match
the  human  point  difference  results.   The  result  was  the
following: rock wins = 3, paper wins = 2 scissors wins = 0;
rock tie = -1, paper tie = -1, scissors tie = 0; and -3 for all
losses.  Note that not rewarding scissors wins makes sense
as winning frequently with scissors would be associated with
the opponent playing paper more often and that would block
rock.  

The model was played against each of the three networks
that the humans faced.  Each simulation consisted of 1000
games of  300  trials  each.   For  each game,  the net  points
difference between the models,  the probabilities by which
the human model selected each of the three play choices,
and the strategy index for the human model was recorded.
These three measures were used to determine how well the
model fit the human data.

Regression Confidence Intervals
Network Model coefficient R Squared Lower 95% Upper 95%
Lag 1 0.0886 0.0208 0.0835 0.0938
Lag 2 0.0212 -0.0163 0.0160 0.0264
Rock=2 lag 1 0.0539 0.0251 0.0488 0.0590

Mean points Expected points 
Network Model Play ratios (P,R,S) difference difference Strategy Index
Lag 1 28.8%, 39.6%, 31.5% 16.5 4.86 11.64
Lag 2 32.3%, 38.1%, 29.5% 5.7 11.38 -5.68
Rock=2 lag 1 33.5%, 39.7%, 26.8% 25.6 5.76 19.84

Game Theory Solution
 and Human Play Probabilities
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Game Theory Aggressive Lag 1
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Results
The  results  showed  that  the  model  matched  the  point
differences well (see Figure 2).  The model also reproduced
the human move probabilities against each opponent with a
high degree of accuracy.  The correlation between the model
move probabilities and the human move probabilities was
0.964 (p<0.0005).  Also, the model provided a good overall
fit  to  the  human  strategy  index  data  (see  Figure  2).
Although the model did not match the data as well when the
opponent was the lag 2 network, this is actually consistent
with  our  position  that  humans  do  not  detect  sequential
dependencies  as  well  against  the  lag  2  network  due  to
confounding factors, which would not apply to the network
model of human behavior.  Also, the fact that the model was
able to match two sets of results that it was not explicitly
designed to match (the move probabilities and the strategy
index  values)  suggests  that  the  results  were  reasonably
robust.

Conclusions
The results of this study replicate the West & Lebiere (2001)
findings that the commonly used probabilistic game theory
model (as defined in this paper) cannot account for the game
results  when  humans  play  against  agents  programmed  to
play  by  exploiting  sequential  dependencies.   We  also
demonstrated that when the game payoffs are not all equal,
the  game  theory  solution  does  not  predict  the  aggregate
move  probabilities.   We  further  demonstrated,  using  the
actual  move  probabilities,  that  the  results  could  not  be
accounted for by the game theory player model.  That is, the
actual  move  probabilities  did  not  predict  the  final  points
differences.  These results show that the game theory player
model,  with  or  without  the  game  theory  solution,  is
fundamentally  different  from  the  way  people  process
information in this type of situation. 

In terms of modeling, we replicated the West & Lebiere
(2001) result that this type of human game playing can be

accurately  modeled  using  simple  lag  2  networks.
Furthermore,  we extended the  original  model  by showing
that people are sensitive to different game payoffs and that
this  can  be  modeled  by  adjusting  the  rewards  and
punishments associated with different play outcomes.  These
results are also consistent with a number of ACT-R studies
showing that people play a variety of games using the lag 2
strategy (PRS: Lebiere & West, 1999: non-zero-sum games:
Lebiere,  Wallach, & West,  2000; baseball:  Lebiere,  Gray,
Salvucci,  & West,  2003).   The  ACT-R model  works  by
using the  ACT-R declarative  memory system as  a  neural
network for detecting sequential dependencies, and produces
results similar to the simple networks we used (Lebiere &
West, 1999).  An ACT-R model equivalent to the one in this
paper  could  be  created  by  “popping”  the  “chunks”
representing  sequential  dependency  patterns  a  different
number of times for different outcomes.  Likewise, a genetic
algorithm could be  used to  fit  the  model.   However,  this
approach would sidestep the next important issue, which is
modeling  how  humans  adjust  their  reward  structure  in
response to the game payoffs.
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