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Abstract

We call into question game theory, as a account of how
people play two player zero-sum games. Evidence from a
modified version of the game Paper, Rock, Scissors suggests
that people do not play randomly, and not according to
certain play probabilities. We investigated the relationship
between game theory predictions and a cognitive model of
game playing based on the detection of sequential
dependencies.  Previous research has shown that the
sequential dependency model can account for a number of
empirical findings that game theory cannot. The sequential
dependency model has been implemented using both simple
neural networks and ACT-R. In this paper we used simple
neural networks (a description of how our findings relate to
the ACT-R model is included in the Conclusion section). For
simple games, such as Paper, Rock, Scissors, game theory has
been able to correctly predict aggregate move probabilities. In
this paper we show that this is an artifact of the symmetry of
the payoffs, and that for asymmetrical payoffs the game
theory solution does not predict human behavior.
Furthermore, we show that the model of game playing that
underlies game theory cannot be used to predict the results no
matter what move probabilities are used. Finally, we show
that the results can be accounted for by augmenting the
network sequential dependency model so that the reward
system is related to the game payoffs.

Introduction

Game theory (VonNeumann & Morgenstern, 1944) was not
created as a cognitive model, that is, it was not intended to
account for mechanisms underlying the manner in which
humans play games. Rather it was intended to be a formal
mathematical system for understanding game playing from a
rational perspective. However, game theory has had an
enormous influence on theories and ideas about how people
play games. Because empirical studies have shown that
game theory is poor at predicting how humans play games,
most researchers do not believe that game theory is a good
model of how humans process information during games
(Pool, 1995). Nevertheless, the game theory model of a
player is still extremely influential in terms of how we
understand human game playing.

Game theory is a large collection of mathematical
principles that are used in accounts of a variety of human
interactions. It is used by a variety of researchers including
economists, mathematicians, and behavioral psychologists to
name a few. The focus of this paper is specific to the

application of game theory as an account how people play a
relatively constrained set of non-zero sum games.
Henceforth, the use of the term 'game theory', will be used to
refer to a subset of principles within game theory commonly
used to describe this type of game.

In game theory, a game is defined as a situation in which
two players each select one move from a discrete set of
choices, the combination of which determines a payoff for
each player. There are two varieties of games. In zero-sum
games the payoffs for the players must sum to zero, and
there is no option for cooperation (i.e., one player’s gain is
always equal to the other player’s loss). In non-zero-sum
games this constraint does not exist and cooperation can be
an option. In either case, to apply game theory it is
necessary to assume that players can make random
selections from their move choices according to specific
probabilities assigned to each move. This amounts to two
assumptions about the cognitive abilities of players: (1) they
have some way of -calculating or learning move
probabilities, and (2) they are able to select moves at
random according to these probabilities. In what follows,
we will refer to these assumptions concerning players’
abilities as the game theory player model. Assuming that a
player matches the game theory player model, it is generally
possible to use game theory to calculate the optimal set of
move probabilities. We will refer to the outcome of game
theory calculations as the game theory solution.

Most research on human game playing has focused on
non-zero-sum games, where it has been shown that people
generally do not follow the game theory solution. One
reason for this is that people are often influenced by factors
that are extraneous to the game theory solution, such as
social norms concerning cooperation (Poundstone, 1992;
Samuelson, 1997). However, these results show only that
people do not play according to the game theory solution.
The game theory player model is still viable as it is possible
to explain the results in terms of people playing according to
the game theory player model (i.e., probabilistically), but
with move probabilities inconsistent with the calculated
game theory solution. In zero-sum games there is no option
to cooperate so there should be less extraneous influences.
However, there is very little direct research on human zero-
sum game playing (Poundstone, 1992). The general view of
human zero-sum game playing is based mainly on
experimental comparisons between humans and the game
theory player model. With regard to this, psychological
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studies have shown that people are very poor at the two
essential skills required by the game theory player model:
(1) learning optimal move probabilities (e.g., Gazzaniga,
1998), and (2) behaving randomly (see Wagenaar, 1972 for
areview).

Based on this, a common view of individual humans as
game players is that we are poor game theory players. That
is, we play in a way consistent with the game theory player
model but we are not good at learning the optimal move
probabilities, we are poor at being random, and we are
influenced by considerations extraneous to the game theory
framework (e.g., norms about cooperation). Attempts have
been made to adapt the game theory player model to better
capture human behavior. The focus in this area has been on
introducing a learning component to explain how humans
acquire move probabilities. Game theorists have studied the
effects of using learning algorithms to acquire move
probabilities (Fudenburg & Levine, 1998), and there have
been some attempts to build cognitively plausible versions
of the game theory player model using cognitive
architectures (e.g., see Ritter & Wallach, 1998 for examples
using ACT-R and SOAR). However, all of this work is
based on the implicit acceptance of the game theory player
model as an appropriate framework for understanding
human game playing behavior.

An alternative player model

A psychologically plausible alternative to the game theory
player model is that instead of trying to learn advantageous
move probabilities, people try to detect sequential
dependencies in their opponents' play and use this to predict
their opponents' moves (Lebiere & West, 1999; West, 1998;
West & Lebiere, 2001). That is, players learn recognize
patterns of consecutive moves in their opponents' play. This
model is consistent with a large amount of psychological
research showing that when sequential dependencies exist,
people can often detect and exploit them (e.g., Estes, 1972;
Restle, 1966; Rose & Vitz, 1966; Vitz & Todd, 1967). It
also explains why people tend to do poorly on tasks that are
truly random - they persist in trying to predict the outcomes
even though doing so results in sub-optimal results (e.g.,
Gazzaniga, 1998; Ward, 1973; Ward, Livingston, & Li,
1988).

West and Lebiere (2001) used neural networks to examine
the possibility that people play games by attempting to
detect and exploit sequential dependencies in their
opponent’s play. The networks were designed to detect
sequential dependencies in the game of Paper, Rock,
Scissors (hence forth PRS). PRS was chosen because it is
familiar to most people and because it is very easy to play.
It is also a zero-sum game and therefore does not involve the
complications associated with the option to cooperate. The
players were modeled using very simple two layer neural
networks rewarded by adding 1 and punished by subtracting
I from the connection weights (all of which started with a
weight of 0). The inputs to the network were the opponent’s
previous moves (referred to as lags), and the outputs were
the moves the player would make on the current play. The

goal in creating these networks was to use the simplest
possible model of sequential dependency detection.

The simulations revealed that processing more lags is an
advantage. That is, a network that processed the last two
lags (a lag 2 network) would reliably win against a network
that processed only the last lag (a lag 1 network). Also a
network that treated ties as losses (an aggressive network)
could reliably win against a network that was neither
punished nor rewarded for ties (a passive network).
Furthermore, these effects were additive and approximately
equal in magnitude. Another important finding was that the
interaction between the networks produced a chaos-like
behavior that made them appear to be playing randomly.
Subsequent to examining the play of the neural network
models, West & Lebiere (2001) investigated the play of
humans against the models. They found that humans could
reliably beat both the aggressive lag 1 network and the
passive lag 2 network. This suggested that humans play
similarly to the aggressive lag 2 network. Although there
was a small but statistically significant tendency for people
to lose against the aggressive lag 2 model rather than tie, this
was attributed to the humans being unable to play as
consistently as the network model. This interpretation was
supported by the fact that subjects reported getting frustrated
when playing the aggressive lag 2 network (i.e., playing
hundreds of trials is only fun if you are winning). Both the
network model and the game theory solution predicted that,
on average, people would play each of the three play options
with equal frequency. However, the game theory model
(i.e., the combination of the game theory player model and
the game theory solution) predicted that people would tie
against the networks, which was not the case.

Aggregate behavior

The West & Lebiere (2001) results show that the sequential
dependency player model can account for results in simple
zero-sum games that game theory model cannot. In
addition, the sequential dependency player model is
consistent with the empirical facts. Specifically, people are
poor at being random and poor at learning optimal move
probabilities because they are instead trying to detect and
exploit sequential dependencies. However, the game theory
solution did correctly predict that, on average, humans
played paper, rock, and scissors with approximately equal
frequency. This raises the question of whether game theory
can still be considered viable for predicting aggregate move
probabilities for this type of game. That is, regardless of the
details of how people play, does game theory capture certain
higher-level stochastic properties of game playing behavior?
After all, even if people do not process game information in
the manner suggested by the game theory player model, it
may still be the case that across time and across individuals,
human game playing can legitimately be viewed as (pseudo)
randomly emitting moves according to certain probabilities.
To test this possibility and to probe deeper into the
relationship between game theory and the sequential
dependency player model we tested a variant of PRS.
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Rock=2

An aspect of PRS that makes it a very simple game is that
each of the three play options is functionally identical to the
other two. That is, each move beats one of the other two
moves and loses to the remaining move. In addition, a win
is worth the same amount for each move. Thus, it is not
surprising that the game theory solution for playing PRS is
to play the three options with equal probabilities. The
reason this is somewhat problematic is that the agreement
between the game theory solution and human behavior for
this game may be an artifact of the simplicity and symmetry
of the game. To clarify this issue, a modified version of
PRS was developed. The new game was identical to the
original PRS game except that a win using rock counted for
2 points while a win with scissors or paper counted for only
1 point. In this way, each of the three choices were unique.
Rock could win two points and lose only one, scissors could
lose two points and win only one, and paper could win or
lose only one point. The game theory solution to this
modified version of Paper, Rock, Scissors differs depending
on whether a zero-sum or non-zero-sum interpretation of the
game is adopted. That is, whether a player is trying to
maximize the difference in points between himself and the
other player, or whether each player is attempting only to
maximize the total number of points for themselves.
However, since we instructed our subjects to try to
maximize the points difference we will focus on the zero-
sum interpretation. In this case, the game theory solution is
to play paper 50% of the time, rock 25% of the time, and
scissors 25% of the time, for the expected outcome of a tie.

The simulated opponents

For this study we used the same simple network models as
West & Lebiere (2001) and created three simulated
opponents for our human subjects to play against. The first
two opponents were taken directly from the West & Lebiere
(2001) study. They were, the aggressive lag 2 model and
the aggressive lag 1 model. We did this to test the
hypothesis that people simply try to maximize wins in this
type of game. If this were the case then the results against
these two models would replicate the results of West &
Lebiere (2001) as neither the humans nor the models would
be influenced by rock wins being worth more points. To
create the third simulated opponent we adapted the
aggressive lag 1 model so that it rewarded the relevant
connection weights by 2 instead of 1 when it won with rock.
This model was created to pit the human players against a
model that might better take advantage of winning with
rock, but still had some weaknesses that humans could
exploit (i.e., it was only a lag 1 network and it was not set to
avoid losing with scissors thereby allowing the opponent to
win with rock). The reason for this was that games where
humans win are much more informative than games where
humans lose, as the loss can be attributed to extraneous
factors such as lack of effort, boredom, or frustration. To
distinguish this model we will refer to it as the rock=2 lag 1
model.

Method

Ten human subjects played against each of the three network
models. They were instructed to try to maximize the points
difference in their favor by as much as possible. This goal
corresponded to the zero-sum interpretation of the game.
The subjects were also told that the network models did not
play randomly and that they could be beaten. Additionally,
the subjects were instructed to play naturally, not to play too
slowly, nor to think too much about their play. The order in
which the subjects played the network models was random.
Subjects were required to play one game (300 trials) against
each of the three different network models. This process
took from between 30 to 45 minutes in total depending on
the speed at which the subject played.

Results and Discussion

The points differences between each of the human players
and each of the network models were calculated for each
trial by subtracting the network score from the human score.
Thus a positive score indicated that the human was ahead
and a negative score indicated that the network was ahead.
The mean total points difference at the end of each game
(see Table 1) revealed that the humans were able to win
against all of the network models. To test the significance
of this we ran a regression on the group points difference
data for each different type of opponent across trials. The
regression coefficients thus corresponded to the average rate
of points accumulation (i.e., points difference/trials) for the
humans against each network opponent (the intercept was
forced through zero). 95% confidence intervals for the
coefficient values revealed that all of them were
significantly above zero. That is, against each network
models, there was a significant tendency for the humans to
win.

The fact that people could beat the aggressive lag 2 model
under these conditions, whereas they tended to lose in West
& Lebiere (2001), where all three varieties of wins were of
equal value, indicates that they were able to exploit the fact
they knew that wins using rock were rewarded with 2 points.
Thus, the hypothesis that people simply try to maximize the
number of wins regardless of the number of points awarded
for wins, was refuted. That is, the profiles of the humans'
play suggested wins with rock were preferred to wins with
paper or scissors.

Given that people were sensitive to the payoff information
the next question was whether, as in West & Lebiere (2001),
the game theory solution predicted the move probabilities
for the human players. Figure 1 displays the probabilities
for playing paper, rock and scissors for the human subjects,
for each of the opponents they faced, with 95% confidence
intervals. Figure 1 also displays the predicted probabilities
from the game theory solution. As can be seen, the game
theory solution was significantly different from the human
probabilities.
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Table 1: The game results of the human versus the neural network models.

Mean points  Expected points
Network Model Play ratios (P,R,S) difference difference Strategy Index
Lag 1 28.8%, 39.6%, 31.5% 16.5 4.86 11.64
Lag?2 32.3%, 38.1%, 29.5% 5.7 11.38 -5.68
Rock=2 lag 1 33.5%, 39.7%, 26.8% 25.6 5.76 19.84

Table 2: Regression analysis on the performance of human subjects against the three network models.

Regression Confidence Intervals
Network Model coefficient R Squared Lower 95% Upper 95%
Lag 1 0.0886 0.0208 0.0835 0.0938
Lag 2 0.0212 -0.0163 0.0160 0.0264
Rock=2 lag 1 0.0539 0.0251 0.0488 0.0590

We also examined whether the human results could be
explained by using the game theory player model without
the optimal game theory solution. That is, did the human
subjects win by using move probabilities that exploited non-
optimal move probabilities produced by the network
models? Table 1 shows the average difference in score
along with what the difference in score would be if it were
determined solely by the overall move probabilities of the
two players. The strategy index number is the difference
between these two. A score of zero on the strategy index
would indicate that the score difference could be accounted
for entirely by move probabilities. In all cases the strategy
index was significantly different from zero (P<0.05,
determined by confidence intervals). Given the move
probabilities, against the two lag 1 models the humans
played significantly better than expected, while against the
lag 2 model they played significantly worse than expected.
This can be interpreted as the humans being better at
exploiting sequential dependencies than the lag 1 models,
but not as not as good as the lag 2 model. This agrees with
the results of West & Lebiere (2001) and suggests that
humans were able to narrowly beat the lag 2 because of their
knowledge of the payoffs.

Game Theory Solution
and Human Play Probabilities
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Figure 1: Game Theory Solution and Human Play
Probabilities.
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Modeling the Human results

Our next step was to construct a neural network model of
how the humans played. For the model we assumed that
people detect sequential dependencies in a way similar to a
lag2 network. Although the results of this paper and West &
Lebiere (2001) show that in games against the lag 2
network, humans seem to be slightly worse at detecting
sequential dependencies, we again assumed this was due to
humans finding the lag 2 less fun to play against because it
is a stronger opponent. In both studies the advantage for the
lag 2 network was relatively small. Additionally, West &
Lebiere (2001) found that they could account quite well for
the results of the other games by modeling humans as
aggressive lag 2 networks. To account for the findings in
this study we modeled people as aggressive lag 2 networks
with the ability to adjust their rewards and punishments so as
to best take advantage of the payoffs in the game.

To get an idea of how people could be adjusting the
rewards and punishments we obtained self-reports on the
strategies used by several of our more successful subjects.
These reports generalized to favoring rock wins to paper
wins, and paper wins to scissors wins. That is, they were
focused first on getting rock wins and second on blocking
the opponent from getting rock wins. With this in mind we
ran a genetic algorithm to find a system of rewards and
punishments for the neural network model that would match
the human point difference results. The result was the
following: rock wins = 3, paper wins = 2 scissors wins = 0;
rock tie = -1, paper tie = -1, scissors tie = 0; and -3 for all
losses. Note that not rewarding scissors wins makes sense
as winning frequently with scissors would be associated with
the opponent playing paper more often and that would block
rock.

The model was played against each of the three networks
that the humans faced. Each simulation consisted of 1000
games of 300 trials each. For each game, the net points
difference between the models, the probabilities by which
the human model selected each of the three play choices,
and the strategy index for the human model was recorded.
These three measures were used to determine how well the
model fit the human data.
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Results

The results showed that the model matched the point
differences well (see Figure 2). The model also reproduced
the human move probabilities against each opponent with a
high degree of accuracy. The correlation between the model
move probabilities and the human move probabilities was
0.964 (p<0.0005). Also, the model provided a good overall
fit to the human strategy index data (see Figure 2).
Although the model did not match the data as well when the
opponent was the lag 2 network, this is actually consistent
with our position that humans do not detect sequential
dependencies as well against the lag 2 network due to
confounding factors, which would not apply to the network
model of human behavior. Also, the fact that the model was
able to match two sets of results that it was not explicitly
designed to match (the move probabilities and the strategy
index values) suggests that the results were reasonably
robust.
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Figure 2: Points Difference Comparison. The shaded
bars indicate the mean final points difference. The heads
of the T-bars represent the expected final points
difference; and, the length of the T-bars indicate the
magnitude of the strategy index values.

Conclusions

The results of this study replicate the West & Lebiere (2001)
findings that the commonly used probabilistic game theory
model (as defined in this paper) cannot account for the game
results when humans play against agents programmed to
play by exploiting sequential dependencies. We also
demonstrated that when the game payoffs are not all equal,
the game theory solution does not predict the aggregate
move probabilities. We further demonstrated, using the
actual move probabilities, that the results could not be
accounted for by the game theory player model. That is, the
actual move probabilities did not predict the final points
differences. These results show that the game theory player
model, with or without the game theory solution, is
fundamentally different from the way people process
information in this type of situation.

In terms of modeling, we replicated the West & Lebiere
(2001) result that this type of human game playing can be

accurately modeled wusing simple lag 2 networks.
Furthermore, we extended the original model by showing
that people are sensitive to different game payoffs and that
this can be modeled by adjusting the rewards and
punishments associated with different play outcomes. These
results are also consistent with a number of ACT-R studies
showing that people play a variety of games using the lag 2
strategy (PRS: Lebiere & West, 1999: non-zero-sum games:
Lebiere, Wallach, & West, 2000; baseball: Lebiere, Gray,
Salvucci, & West, 2003). The ACT-R model works by
using the ACT-R declarative memory system as a neural
network for detecting sequential dependencies, and produces
results similar to the simple networks we used (Lebiere &
West, 1999). An ACT-R model equivalent to the one in this
paper could be created by “popping” the “chunks”
representing sequential dependency patterns a different
number of times for different outcomes. Likewise, a genetic
algorithm could be used to fit the model. However, this
approach would sidestep the next important issue, which is
modeling how humans adjust their reward structure in
response to the game payoffs.
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