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Abstract

While cognitive models of complex tasks have begun to
incorporate increasingly sophisticated models of human
multitasking, most models have utilized customized
executives (Kieras et al., 2000) that fine-tune specific
multitasking mechanisms for particular applications.  This
paper proposes a general executive for multitasking that
facilitates the integration of separate task models and
subsequent prediction of the effects of multitasking and
task interaction.  Developed in the ACT-R cognitive
architecture, the general executive is specified as a new
goal module that orders goals by urgency and their own
requested running times.  The paper demonstrates the
predictive power of the general executive in the driving
domain by integrating separate models of control and
monitoring and predicting drivers’ gaze distributions
across various regions of the driving environment.

Introduction
Whereas much of traditional cognitive modeling has focused
primarily on cognitive processes in small-scale laboratory
tasks, modeling efforts have been rapidly maturing to
address increasingly complex task domains and phenomena.
Some of the most successful models for such complex tasks
have arisen in work using unified cognitive architectures
such as ACT-R (Anderson et al., in press), EPIC (Meyer &
Kieras, 1997), and Soar (Newell, 1990) — for example,
models of driving (e.g., Aasman, 1995; Salvucci, Boer, &
Liu, 2001), piloting combat aircrafts (Jones et al., 1999),
and air-traffic control (e.g., Lee & Anderson, 2001).  As
such efforts evolve, the modeling community is facing
several major new challenges in the study and modeling of
complex tasks, and among the most critical of these is the
study of human multitasking — the ability to integrate,
interleave, and perform multiple tasks and/or component
subtasks of a larger complex task.

Recent explorations of multitasking in cognitive
architectures have examined the integration of two tasks,
where the tasks are either discrete (i.e., short tasks of
roughly 1-10 sec) or continuous (i.e., extended tasks).  For
instance, researchers have investigated how architectures can
account for switching costs in successive discrete tasks
(e.g., Sohn & Anderson, 2001), psychological refractory
period (PRP) effects in concurrent discrete tasks (e.g., Byrne
& Anderson, 2001; Meyer & Kieras, 1997b), and error
effects in elementary continuous tasks (see Kieras et al.,
2000).  In addition, the models for the complex tasks listed

above (driving, piloting, etc.) all incorporate some
multitasking in having to perform various subtasks at
various intervals (e.g., occasionally checking wind direction
in the air-traffic control task).  These models, however, use
customized executives for multitasking (Kieras et al., 2000)
that have been fine-tuned to the particular domain, resulting
in domain-specific models of multitasking that can be
difficult to generalize.

In this paper, we propose an initial formulation of a
general executive for human multitasking in the ACT-R
cognitive architecture.  The general executive manages a set
of current goals and dictates when each goal may proceed
given ordering constraints based on desired initiation times
for each goal.  The proposed general executive attempts to
balance the individual goals’ desires for unhindered progress
in each task with the overall system’s need for fair resource
allocation across tasks as well as achievement of higher-
level goals.  The executive also encourages modularity and
model re-use by allowing for the integration of separate
models, possibly developed in isolation of one another, into
an integrated task model that interleaves multiple subtasks.

We first describe the general executive mechanism as
developed in the framework of the ACT-R architecture,
including a discussion of the many considerations that arise
in specifying such a mechanism.  We then demonstrate the
predictive power and usefulness of the mechanism in an
application to the domain of driving, showing how the
general executive can automatically interleave the subtasks
of control (steering and speed control) and monitoring (for
situation awareness) and accurately model human drivers’
allocation of attention to these two subtasks.

The ACT-R General Executive
The ACT-R general executive proposed here provides a
mechanism that schedules and interleaves multiple subtasks.
The goal of creating a general executive has both scientific
and engineering implications.  As a scientific endeavor, we
desire a psychologically plausible mechanism that fits well
theoretically with the existing cognitive architecture and
generates sound predictions that fit available human data.
As an engineering endeavor, we desire a mechanism that
facilitates independent development of task models as well
as model re-use.  Of course, taken as a whole, the topic of
multitasking spans an enormous array of phenomena and
empirical literature.  For the purposes of this paper, we
focus specifically on the integration of two continuous tasks
— that is, two tasks that must be performed continually for

yguo
In Proceedings of the Sixth International Conference on Cognitive Modeling, 267-272. Mahwah, NJ:  Lawrence Earlbaum.

yguo
267



a long time (several minutes to hours) and must be
interleaved at short intervals (hundreds of milliseconds to
seconds), like the driver control and monitoring subtasks
analyzed in a subsequent section.  Of note, we are not
currently addressing explicit discrete task switching or the
one-shot behavior that arises in psychological refractory
period (PRP) tasks; instead, we focus on continuous tasks
in which people (and models) must schedule and interleave
multiple tasks for an extended period of time, sharing
cognitive and other resources to maintain execution of all
tasks in a fair manner.

ACT-R, Buffers, and Goals
The ACT-R cognitive architecture (Anderson et al., in press;
see also Anderson & Lebiere,  1998) is a production-system
architecture that posits two types of knowledge: declarative
knowledge comprising factual chunks and procedural
knowledge comprising condition-action production rules.
The most recent version of the architecture (5.0: Anderson et
al., in press) centers on “buffers” that pass information
between central cognition and various modules, such as the
retrieval module for memory recall and the visual and aural
modules for perceptual input.  To use a module and its
associated buffer, a production rule typically passes a
request to the module and when the module has obliged the
request, another production rule “harvests” the result by
examining the buffer; for example, if a production rule
requests that the visual module look at and encode an object
at a specific location, the visual module performs this task
and places the result in the visual buffer and a subsequent
rule can examine this buffer and use the information therein.

One of the buffers posited in the architecture is the goal
buffer, which stores the current goal (itself a declarative
chunk) and directs the system to perform a specific task.
One natural way to interpret multitasking in ACT-R is that
multitasking represents the scheduling and management of
what goal is currently in the goal buffer.  Interestingly,
although ACT-R has a goal buffer, it currently has no full-
fledged module associated with this buffer as it does for
other modules — production rules simply set the goal
buffer explicitly without making requests in the same
manner as the other buffers.  Older versions of ACT-R
(Anderson & Lebiere, 1998) used a goal stack that allowed
for pushing onto and popping from the stack which in a
sense provided an instantiation of a possible goal module,
but the stack-based instantiation was difficult to justify
from the standpoint of clear psychological plausibility
(Altmann & Trafton, 2002).  We view our ACT-R general
executive as a specification for a new goal module, one that
maintains a set of active goals and manages the setting of
goals through the goal buffer.

Specification of the General Executive
The proposed general executive centers on the maintenance
and scheduling of a goal set that contains all currently
active goals.  Maintenance of the goal set is accomplished
by allowing production rules to add and remove goals to
and from the goal set.  To add a new goal, a rule specifies
the new goal chunk and also notes the goal’s delay time

— that is, when the goal should run, specified as a time
offset from the current time.  The delay time, noted as a slot
in the goal chunk, models the fact that some goals may not
need to run immediately but rather can be scheduled for
execution at a later time — for instance, the periodic
monitoring of some aspect of a display, such as checking
wind direction in the air-traffic control task (Lee &
Anderson, 2001).  For convenience, we also allow for a
constant ‘now’ as special a value for the delay time that
mandates that the goal execute immediately.  For removal
of goals, a rule simply notes the termination of the current
goal and thus its removal from the goal set.

The implementation of this mechanism in ACT-R is
fairly parsimonious.  In the current ACT-R syntax, the
command “+goal” sets the current goal to a new goal; we
simply alter the command’s semantics such that this same
command adds a goal to the current goal set — in essence,
specifying the desire that a certain goal be performed, much
like requests to the retrieval or visual modules.  For
convenience and also to maintain consistency with current
syntax, the first such command also removes the current
goal from the goal set.  Whenever a goal is added or
removed, the goal set is reordered according to the
scheduling criteria described previously, and the most
urgent goal is placed in the goal buffer for execution.

Given the current set of goals, we require some method
of ordering and scheduling the goals to ensure fairness
across tasks.  All goals on the set are ordered based on their
urgency as indicated by their desired start time (i.e., creation
time plus delay time): the executive simply orders the goals
from most urgent to least urgent, that is, from earliest to
latest start time.  However, we also expect some amount of
noise in this ordering scheme, just as many mechanisms in
the ACT-R architecture and the human system itself exhibit
variability in behavior.  For this purpose, and to maintain
consistency with the architecture, we utilize a logistic noise
distribution on start times with variance 

€ 

σ 2 = π 2s2 / 3 as
dictated by the noise parameter  s; this same distribution is
used for noise throughout the architecture including noise
on expected gain of potential production-rule instantiations.

Figure 1 illustrates an example of how two task goals
might be scheduled.  In the first frame, Task 1 has a delay
time of 400 ms while Task 2 is scheduled to execute right
away.  Even with noise added to these times, it is most
likely that Task 2 will be allowed to execute.  In the second
frame, Task 2 (specifically a new goal that continues the
task) has a new start time of 250 ms, and again this most
likely wins out over Task 1.  In the third frame, Task 2 has
a later start time than Task 1, and thus the first task most
likely proceeds; note that when the goals come closer
together in time, as in the third frame, the noise increases
the chance of a later goal superceding an earlier goal.

Theoretical and Practical Considerations
Kieras et al. (2000) have reviewed a number of theoretical
issues and considerations for the development of a general
executive within a cognitive architecture, many of which are
related to basic concepts used in today’s computer operating
systems.  One of the most critical issues is that of task
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scheduling.  Our proposed general executive uses a variant
of a “first come, first served” scheduler that also appears in
operating systems.  However, the executive is more flexible
than a strict first-come, first-served algorithm in two ways:
first, it allows for time delays in the start time of processes
(i.e., the goal delay times); and second, it incorporates noise
into start times to enable randomness in task scheduling.

As a related point, another critical issue is that of
conflict resolution, where the executive must avoid
deadlocks within processes and ensure that no process
experiences “starvation” with respect to needed resources.  In
a broader context, the executive must strike a balance
between allowing processes to utilize necessary resources as
much as possible but at the same time interrupting
processes to allow others to proceed.  Our executive
interrupts processes between goals — corresponding roughly
to the level of unit tasks — without interrupting within
goals.  We believe that this approach provides a good
balance of fairness between tasks as desired by a robust
general executive.  It does, however, rely critically on the
structure of declarative knowledge in that different
declarative goal structures (e.g., as might arise from
different instructions) may greatly affect when and how
people perform multiple tasks.  However, this reliance on
declarative structure is not necessarily a disadvantage; in
fact, a recent empirical study has demonstrated such a
dependence (Vera, personal communication) and thus might
be best modeled with an executive like that proposed here.

Along with such theoretical considerations, a general
executive can have practical considerations in providing a
robust workable mechanism that facilitates modeling in the
cognitive architecture.  One advantage of our proposed
executive is that the task models can be developed
independently of one another and later merged.  Such
modularity greatly facilitates model re-use and, in turn,
increases the predictive power of newly integrated models
(see, e.g., Salvucci, 2001).  The executive also does not
affect the behavior of existing ACT-R models, since
existing models’ explicit setting of goals is equivalent to a
goal set with exactly one goal throughout execution.

Case Study: Driver Control and Monitoring
To illustrate how the proposed general executive facilitates
the modeling of human multitasking, we now describe an
application to the domain of driving.  As a complex yet
ubiquitous task, the task of driving is actually an
integration of several subtasks performed fluidly by the
driver to successfully navigate the environment.  Of these
various subtasks, the two (arguably) most critical subtasks
are control and monitoring: control of steering and
acceleration that maintains the car’s safe position, speed,
and heading; and monitoring that maintains a consistent,
up-to-date awareness of the current situation as is critical for
normal maneuvers (e.g., lane changes) or emergency
maneuvers (e.g., swerving to avoid an obstacle).  We now
explore how the general executive facilitates the integration
of basic models of driver control and monitoring into a
single multitasking model that switches between these
tasks.  Of course, the evaluation of any general mechanism
requires application not in a single domain but in many
domains; nevertheless, we consider the driving application
as an initial foray into evaluating and testing the benefits
and limitations of our general executive in a complex,
dynamic, real-world domain.

Component Models
To build a model of driver behavior in the spirit of the
general executive, we started with models for the component
subtasks involved in driving and then integrated these using
the general executive.  We extracted the component models
from an existing ACT-R model of driver behavior
(Salvucci, Boer, & Liu, 2001) that navigates a highway
environment.  The component models studied here are:

•  Control model: The control model updates the
positions of the steering wheel and the accelerator and
brake pedals.  This update is based on observed
positions and changes in salient visual points in the
driving environment (e.g., the vanishing point of the
road or the position of a lead vehicle).

Figure 1: Example of scheduling and execution of two goals in the goal set as a function of time.
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•  Monitoring model: The monitoring model randomly
samples the environment — with equal probability, it
chooses a lane (left or right in a two-lane highway) and
direction (forward or backward in the mirror) and looks
there for the presence of a vehicle; if a vehicle is present,
the model notes its position in declarative memory.  

The original driver model has a third component model for
decision making that decides whether and when to change
lanes based on its current situation awareness; due to space
constraints in this paper, we ignore decision making here
and focus solely on control and monitoring.  Readers can
find further details about the component models in the full
description of the model (Salvucci, Boer, & Liu, 2001).

The component models have associated goals control
and monitor that perform the respective subtasks.  It is
critical to note that both of these goals perform incremental
work of approximately 100-300 ms and then pass control to
a new goal of the same type: one control goal will update
steering and acceleration and then create a new control goal
to perform the next iteration, and one monitor goal will
attempt one glance in a chosen lane/direction and then create
a new monitor goal to continue this task.  As a result, both
models operate independently (in fact, they could each run
alone without the other) and continually refresh their
respective subtasks with a new goal.

Model Integration
The creation of the original integrated model required a
customized executive that passed control back and forth
between control and monitoring.  Now, with the general
executive, model integration happens easily: we simply add
one production rule that adds both control and monitor to
the goal set, and the general executive handles the rest.  As
each incremental goal finishes and creates a new goal, the
general executive reschedules the current goals in the set and
allows the most urgent goal (as computed using start times
with noise) to proceed.

The default integration above treats both subtasks
equally, with one iteration of control and one of monitoring

alternating one after another during execution.  While this
integration indeed successfully navigates a realistic
environment, the resultant task switching does not
necessarily match people’s tolerance for when to switch
between tasks.  Thus, we explored two possibilities for
changing the default scheduling:

•  Control stability: The original driver model contains a
stability threshold that switches away from control only
when the external environment is “stable,” where
stability measures the lateral displacement from the lane
center and the lateral velocity of the vehicle.  We
maintained this scheme in the new integrated model: if
the control goal finds that the environment is not stable,
it dictates that the next control goal should be done
immediately by means of a now value for the when slot.
In addition, we define a parameter Fstable that scales the
threshold to allow us to estimate drivers’ degree of
stability acceptance.

•  Control delay time: The default integrated model
specifies a delay (when) time of 0 for new control goals,
indicating that they should execute as soon as possible.
However, given a stable environment, there is the
possibility that control need not execute for a given
period of time.  Therefore, we define a second parameter
Dcontrol that specifies the delay time for a new control
goal assuming a stable environment.

We also have a third parameter dictated by the general
executive, namely the s parameter that controls the amount
of noise in the scheduling times; note that eventually as the
general executive extends to more domains, this parameter
should be estimated across all domains like the other noise
parameters in the ACT-R architecture.

Parameter estimation was done first informally to find
reasonable settings for parameter values, then more
systematically to improve the fits to the results below.  The
resulting values for the parameters were as follows:
Fstable = .71, Dcontrol = 500 ms, s = .075.
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Figure 2: Ratio of gaze dwell time in various regions of the driving environment.
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Data Collection
To validate the integrated model, we would like to compare
the model’s behavioral data to that of human drivers.  The
human driver data comes from the original study (Salvucci,
Boer, & Liu, 2001) in which 11 drivers navigated a multi-
lane highway for a total of 311 minutes (548 km) of driving
data.  The model data comes from running three 10-minute
simulations in the same conditions as the human data;
because the model drives in the same environment as did
human drivers in the driving simulator (minus the rendering
of complex graphics), a model simulation generates a
completely analogous protocol that can be analyzed in an
identical manner as the human data.

Results
To analyze drivers’ switching between control and
monitoring, we examine and compare the eye movements
produced by the human drivers and the integrated driver
model (through its perceptual mechanisms and EMMA
model of eye movements: Salvucci, 2001b).  Figure 2
shows the ratio of gaze dwell time in various regions of the
driving environment: the near road, far road, lead car, and
other cars in the current lane; the same regions in the other
lane (given the two-lane highway); the rear-view mirror; and
oncoming cars (in the opposite two lanes).  For both the
human drivers and the model, the majority of the gaze is
directed at the far road and lead car of the current lane
— both critical regions for controlling the vehicle (both
laterally and longitudinally).  The far road and lead car of
the other lane also garner some attention, as does the rear-
view mirror, as indicators of occasional monitoring glances
to these areas.  Also, both humans and the model rarely
look at the near road, at other cars in the two lanes, and at
oncoming cars.  Thus, the model nicely captures the overall
distribution of gaze across the visual regions, R=.97.

While the overall distribution provides some sense of
drivers switching between tasks, we can also analyze more
revealing finer-grain data that indicate exactly when drivers
switched between these tasks.  As a first step in exploring

this idea, we classified the gaze regions as either control or
monitoring regions based on their function in the
environment: the control regions included the far and near
road regions as well as the lead car, and the monitoring
regions included the lead and other car in the other lane as
well as the rear-view mirror.  Using this classification, we
extracted all single gazes at one region (consecutive eye-
movement samples ignoring single-sample “blips”) and
computed histograms of the frequencies of gaze durations,
using 1/4-second increments to alleviate data noise.

Figure 3(a) shows the human and model gaze-duration
histograms for control gazes, with points representing
frequencies of gaze durations within a .25 s range.  The
graph of the human data (solid line) clearly indicates a drop
over time, with the highest frequency (and highest standard
deviation) occurring in the first 1/4 second and steadily
decreasing out to 2 seconds.  The pattern for the model data
(dotted line) arises primarily from its stability threshold for
switching: often the model can switch away after controlling
up to 1/4 second, but on occasions when the vehicle incurs
some instability (such as steering into and out of a curve),
the model must stay with control until stability is again
achieved.  The model thus produces a very similar
histogram to that of human drivers, R=.99.

Figure 3(b) shows the analogous histograms for
monitoring gazes.  For the human data, we see a very
different pattern compared to the control gazes: the peak of
the distribution lies around 1/4-1/2 s, and drops steeply
thereafter, with very few gazes lasting more than 1 s.  The
model nicely captures the human data, the critical aspect
being the control delay time incorporated into the model.
In essence, the control goal requests a new goal only after
the control delay time (500 ms), thus giving monitoring
time to perform several iterations before switching back to
control.  At the same time, after the delay time threshold
has passed, the model’s urgency to switch back becomes
increasingly larger, thus producing very few gaze durations
greater than 1 second and a good overall fit to the human
drivers’ gaze pattern, R=.97.
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Figure 3: Frequency of gaze durations in various regions of the driving environment for (a) control and (b) monitoring.
Data points represent frequencies of durations within a .25 s range; bars indicate standard deviations.
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General Discussion
We have described a general executive for multitasking in
the ACT-R architecture that schedules multiple tasks and
interleaves them to execute reasonable multitasking
behavior.  One of the most significant implications for this
work is the ability to develop task models independently
and later integrate them into a fuller model.  While we have
demonstrated such an integration for driver control and
monitoring, there are of course many real-world applications
for such integration.  In the driving domain itself, there is a
clear application with great potential — namely, to
secondary device use and driver distraction.  While recent
work has shown the predictive power of integrated ACT-R
models to account for driver distraction (Salvucci, 2001;
Salvucci & Macuga, 2002), these models have customized
executives that specify how the models should interleave
driving and the secondary task.  Now, the new general
executive offers the potential to make a priori predictions
about when and how interleaving takes place, allowing a
modeler to develop secondary-task models independently
and then easily integrate them with the driver model for
predictions of their distraction potential.

This general executive nicely handles the type of
multitasking in driving — and we would argue in similar
complex dynamic tasks — that interleave multiple tasks at
roughly the level of hundreds of milliseconds to a few
seconds.  However, there are clearly other levels of
multitasking that are not yet addressed by this general
executive.  On one end of the spectrum, people can
multitask at the level of several minutes to hours — e.g.,
word processing and checking email.  On the other end,
people can perform discrete rapid tasks together in a highly
optimized manner to produce PRP effects (Byrne &
Anderson, 2001; Meyer & Kieras, 1997b).  At this time, we
have focused our general executive on a level in between,
but we hope that in the long term, this mechanism can
generalize to account for multitasking at other such levels.

Another critical aspect involves the modeling of
improvement in multitasking over time (Chong, 1998), or
put another way, transitions between the “stages of
multitasking skill acquisition” (Kieras et al., 2000).
Learning in multitasking of course involves learning of the
individual tasks, but even when people are skilled at
particular individual tasks, the integration adds another layer
of complexity (e.g., driving and talking on a phone).
Again, we view the proposed general executive as currently
occupying one point on this continuum: the multitasking
being represented should be sensible but not necessarily
highly optimized.  One of our most important long-term
goals involves extending the general executive to handle
learning and optimization for particular sets of tasks — for
instance, using ACT-R’s production compilation
mechanism (Taatgen & Lee, 2003) to create new “compiled”
production rules for both tasks and integrate these tasks in
an increasingly automated manner.
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