
Surface and Phonological Dyslexia:  
Modes of Processing Instead of Components of Processing 

 
Daragh E. Sibley (dsibley@gmu.edu) 

Department of Psychology, George Mason University 
Fairfax, VA 22030-4444 USA 

 
Christopher T. Kello (ckello@gmu.edu) 

Department of Psychology, George Mason University 
Fairfax, VA 22030-4444 USA 

 
 

Abstract 

Two connectionist models are reported that mimicked the 
defining features of the double dissociation between 
phonological and surface dyslexia in word reading. One 
model was a feed-forward, three-layer perceptron, and the 
other included recurrent connections. Neither model 
contained an architectural separation of sublexical and lexical 
processes, nor of phonological and semantic processes. 
Analyses showed that the double dissociation was simulated 
because the control parameter input gain shifted the models 
between conjunctive and componential modes of processing. 
The dissociation was not simulated by any kind of damage to 
separate system components. The models are discussed in the 
context of current accounts of surface and phonological 
dyslexia. 

Introduction 
In most current models of word reading, two routes of 
processing are proposed to compute the sound of a word 
given its printed form (Coltheart et al., 1993, 2001; Plaut et 
al., 1996; Harm & Seidenberg, 1999). One route is 
sublexical in that it extracts and utilizes regularities in the 
mapping from components of orthography (e.g., letters) to 
components of phonology (e.g., phonemes).  The other route 
is lexical in that it uses either localist or semantic 
representations of words. Localist and semantic 
representations are both considered lexical in this context 
because they bear little or no systematic relationship to the 
components of orthography and phonology.   

The evidence for sublexical and lexical routes of 
processing in word naming has come from a number of 
sources (for a review, see Plaut et al., 1996), but here we 
focus on evidence from selective reading impairments that 
occur as a result of brain damage. One class of impairment 
termed phonological dyslexia is characterized by poor 
reading aloud of nonwords (e.g., SHONG), with relatively 
intact word reading (Behrmann & Bub, 1992).  Conversely, 
surface dyslexia is characterized by poor reading aloud of 
words with irregular spelling-sound correspondences (e.g., 
PINT), with relatively intact regular word and nonword 
reading (Funnell, 1983).   

The complementary impairments of phonological and 
surface dyslexia have a straightforward explanation in terms 
of separate sublexical and lexical routes of processing.  The 
impairment in nonword reading that characterizes 

phonological dyslexia is hypothesized to occur as a result of 
damage to the sublexical route.  Damage should have this 
effect because performance on nonword stimuli presumably 
relies on the componential regularities between spelling and 
sound (e.g., the sounds corresponding to SH, O, and NG can 
be pieced together to form a plausible nonword 
pronunciation). By contrast, the impairment in irregular 
word reading that characterizes surface dyslexia is 
hypothesized to occur as a result of damage to the lexical 
route.  Damage should have this effect because performance 
on irregular word stimuli presumably relies on word-
specific knowledge (e.g., one must know the word PINT in 
order to pronounce it correctly). 

There are a number of reasons why sublexical and lexical 
routes have been proposed to account for surface and 
phonological dyslexia, but perhaps the most important one 
is the logic of double dissociations. If two components of a 
cognitive system operate independently, then they will make 
independent contributions to the behavior of that system. 
Thus, a change in one component will have no effect on the 
behavioral contributions of the other. Such complementary 
effects on behavior constitute a double dissociation, and 
they are often interpreted as strong evidence that 
independent system components underlie the dissociated 
behaviors.  

Surface and phonological dyslexia constitute a double 
dissociation, and many researchers have interpreted this 
double dissociation as evidence for sublexical and lexical 
routes. Some researchers have alternatively proposed that 
semantic and phonological components may underlie this 
dissociation (Patterson & Ralph, 1999), but this alternative 
also assumes that two system components underlie the 
dissociation, as in the dual-route hypothesis.  

Despite appearances, even the purest cases of 
phonological and surface dyslexia do not necessitate the 
existence of two processing routes or two system 
components of any kind (Plaut, 1995; Van Orden, 
Pennington, & Stone, 2001). A single-component 
explanation is always a logical possibility, but without a 
specific single-component account, it is just a logical 
possibility. With a single-component account, dissociations 
would continue to stand as evidence for the existence of two 
system components in word reading. 
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Recently, Kello and Plaut (2003) reported on a model of 
word reading that offers a true single-component 
explanation of the double dissociation between phonological 
and surface dyslexia. The model was inspired by the basic 
question of how reading acquisition builds upon the prior 
learning that occurs during spoken language acquisition 
(also see Plaut & Kello, 1999).  The acquisition of spoken 
language requires the mapping from sound to meaning 
(comprehension) and meaning to sound (production).  In the 
context of a connectionist approach to lexical processing, a 
single, distributed level of representation can be learned to 
mediate the bi-directional mapping between the 
phonological and semantic attributes of words.  The 
question raised by this approach is, how do printed word 
forms make contact with the bi-directional mapping learned 
during spoken language acquisition? 

The answer offered by Kello and Plaut (2003) is that 
orthography maps into the level of representation that 
mediates semantics and phonology (see Figure 1, inset), 
rather than mapping into semantics and phonology 
themselves. This architecture effectively “kills two birds 
with one stone”: the mediating representations provide 
access to both the semantic and phonological forms, so only 
one route is necessary. While there is a logical appeal to this 
single-route architecture, it is unclear how it could account 
for the dissociation between surface and phonological 
dyslexia because there is no architectural separation of 
sublexical and lexical processes. 

In a subsequent analysis of this single-route model, Kello 
(2003) showed that an impairment in the processing of 
nonwords could, in fact, be dissociated from an impairment 
in the processing of irregular words. The method used to 
simulate this dissociation was to shift the model between 
sublexical and lexical “modes” of processing by means of a 
control parameter termed input gain (see Model 
Architecture section). The simulation results showing the 
dissociation are graphed in Fig 1. The use of input gain was 
inspired by simulations of other behavioral data (see Kello 
& Plaut, 2003), but the function of input gain such that it 
caused this dissociation was never elucidated. 
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Figure 1: Results from the single-route model of word 

reading reported in Kello (2003) 
 

Current Work 
The goal of the current work was to use computational 

analyses to determine how input gain had its dissociating 
effect in the simulation of word reading reported by Kello 
(2003). To facilitate these analyses, the essential principles 
and mechanisms of the single-route model of word reading 
were distilled into two very simple connectionist models: 
one model was a feed-forward, 3-layer perceptron, and the 
other included recurrent connections from the output layer 
back to the hidden layer.  These models did not simulate 
word reading or dyslexia, although their results are 
compared with data from experiments with phonological 
and surface dyslexics. Rather, the main purpose of the 
models was to replicate the dissociating effect of input gain 
in a more controlled and analytically tractable context. This 
tractability enabled us to determine that input gain can shift 
a connectionist model between componential and 
conjunctive modes of processing, and that it is this function 
of input gain that was responsible for the simulation of 
phonological and surface dyslexia reported by Kello (2003). 

Simulation Methods 
Input and Output Representations were constructed from 
a 12 dimensional binary space. Out of 212 = 4096 possible 
input patterns, one fourth (1024) were chosen at random to 
constitute the corpus of known items. Each chosen input 
pattern was associated with one output pattern. Output 
patterns were created in three steps. First, each input pattern 
was copied to its corresponding output pattern (i.e., the 
identity mapping). Second, frequencies were assigned to 
each item according to Zipf’s law, f = r-0.5, where r was an 
arbitrarily assigned rank from 1 to 1024. Third, the bit value 
of each dimension, for each output pattern, was flipped with 
a probability governed by Zipf’s law, p = 0.82r-0.5. The 
result of this formula was that the more frequent items were 
more likely to be irregular, and more likely to be more 
irregular (i.e., have more flipped values), compared with the 
less frequent items. The multiplicative constant of 0.82 was 
set such that there was a 5% probability on average of 
flipping each target value across the set of known items.  
There were 580 fully regular items (no flipped bits), and 
444 irregular items with at least one flipped bit per item. 
The 3072 remaining patterns served to test the 
generalization of learning to novel items. 

Each of the 12 input dimensions were coded by two input 
units, one coding on-bits as 1 and off-bits as 0, the other 
coding the reverse of the first. This x|1–x coding scheme 
was used because the models were trained via 
backpropagation.  In backpropagation, no learning will 
occur on a unit’s sending weights when the activation value 
of that unit is zero.  Therefore, the x|1–x coding scheme 
ensured that weight derivatives were generated for every 
input dimension, on every training episode. The x|1-x 
coding was not necessary for the output units, so there were 
only 12 output units, each one corresponding directly to one 
of the 12 output dimensions. 
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The input and output representations captured the 
essential properties of quasi-regularity as it is implemented 
in most connectionist models of word reading. Specifically, 
each input unit had a systematic relationship with one 
output unit, much like the way that each orthographic unit 
would have a systematic relationship with at least one 
phonological unit (e.g., a unit for the letter P in the initial 
position would have a systematic relationship with a unit for 
the phoneme /p/ in the first position). Moreover, these 
relationships were never entirely systematic, much like real 
quasi-regularity in spelling-sound correspondences. 

 
Model Architecture.  In both the feed-forward and 
recurrent models, the input units were fully connected to 
200 hidden units, and the hidden units were fully connected 
to the output units. In the recurrent model, the output layer 
was also fully connected back to the hidden layer. The 
number of hidden units was determined through pilot testing 
to be about 50 units more than the minimum needed to learn 
the mapping.  However, results were very similar over a 
range of hidden unit numbers.  Unit activations were 
calculated with the hyperbolic tangent function,  

( )( )[ ]]1[][]1[][ tanh −− −∆+= t
j

t
j

t
j

t
j IItIa γ , 

where γ  was input gain, ∆t was an integration constant fixed 
at 0.166, and Ij

[t] was the net input at time t. For the feed-
forward network, there was no time course of processing, so 
there was no integration constant, and activations were 
simply a function of the instantaneous net input. Input gain 
was fixed at 1 during training, and varied during testing (see 
next section). The net input to each unit was calculated as 
the dot product between the activation vector over its 
sending units, and the weight vector over its incoming 
connections. The hyperbolic tangent is analogous to the 
logistic, except it has asymptotes at +1 and −1 instead of 0 
and 1. Low levels of input gain flatten the activation 
function, making it more linear.  High levels sharpen it into 
a step function, making it more nonlinear. 

Forward connection weights were initialized to random 
values in the range ±0.1, and recurrent weights (for the 
recurrent model) were initialized in the range ±0.5. A larger 
range was used for recurrent weights to ensure that they had 
a substantial impact on processing. Weights were learned by 
gradient descent, 

( )ijij wEw ∂∂=∆ η , 

where wij was the connection weight from unit j to i, η  was 
the learning rate (fixed at 0.001), and E was cross-entropy 
error (Rumelhart et al., 1995), which was scaled by each 
item’s frequency. Prior to each weight update, each of the 
1024 items in the corpus were presented once to the 
network. Weight derivatives were calculated for each item 
as follows: input units were set to a given item’s input 
pattern, activations were propagated forward through the 
network, and an error signal was calculated from the 
difference between actual and target outputs.  In the feed-
forward model the error signal was then backpropagated to 
generate the weight derivatives. In the recurrent model, 

activations were propagated forward for 18 ticks, error was 
injected on the last 12 ticks, and then error was 
backpropagated in time. 

Weight updates were repeated until every output unit was 
within 0.1 of its target for every item in the training corpus.  
This criterion was reached in the feed-forward model after 
62000 passes through the corpus, and in the recurrent model 
after 56000 passes.  
 
Testing Procedure.  The models were tested by setting the 
input units to a given input pattern, and recording the output 
activations. In the recurrent network, activations were 
recorded on the first tick for which all 12 output nodes were 
within 0.1 of an asymptote. If a node did not reach this 
criterion after 18 ticks, the output was judged as incorrect. 
The criterion for correct performance was having the 
activations of all 12 output units on the target side of zero. 
Targets for items in the corpus were set according to each 
item’s output pattern.  Targets for the 3072 novel items 
were set according to each item’s input pattern, i.e., the 
identity mapping.  

To dissociate item-based and regularity-based processing, 
input gain was varied as a single control parameter over the 
hidden units. The reported levels of input gain were between 
0.33 and 3. This range was chosen to show asymptotic 
performance at the lower and upper ends. Performance did 
not change substantially beyond this range. 

Simulation Results 
To simplify the presentation of results, known items were 
divided into categories of high frequency and low 
frequency.  The high frequency category consisted of the 
256 most frequent trained items (upper quartile), and the 
low frequency category consisted of the 256 least frequent 
trained items (lower quartile). Mean accuracies for the feed-
forward model are graphed in Figure 2 as a function of input 
gain and item type (high and low frequency regular, high 
and low frequency irregular, and novel).  The same are 
graphed for the recurrent model in Figure 3. 

Figures 2 and 3 show that both models exhibited a clear 
dissociation in performance on irregular items compared 
with novel items.  At low levels of input gain, generalization 
of the identity mapping to novel inputs was essentially 
perfect, as was performance on regular items.  By contrast, 
performance on irregular items dropped to 0%, at which 
point all inputs were computed as the identity mapping.  For 
irregular items, application of the identity mapping can be 
considered as a regularization error because, for the quasi-
regular domain constructed here, the identity mapping is the 
regular mapping.   

At high levels of input gain, performance on known items 
was better than performance on novel items. At their 
maximum difference, mean accuracies in the feed-forward 
model were 97% for known items, and 46% for novel items.  
The same comparison in the recurrent model was 94% and 
35%, respectively. The biggest difference between the 
models was that performance on known items was near 
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ceiling at all high levels of input gain in the feed-forward 
model, whereas performance on known items dropped off at 
sufficiently high levels of input gain in the recurrent model.  
This difference is explained by the fact that high levels of 
input gain amplify the effect of nonlinearities in the 
activation function on processing (see below). Recurrence 
caused this amplification to increase to the point of 
distorting the course of processing. Given that the 
dissociation was maintained despite this distorting effect, 
we did not see it as informative with respect to the 
dissociating effect of input gain.  
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Figure 2: Mean accuracies for the feed-forward model 
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Figure 3: Mean accuracies for the recurrent model 

 
The models’ behavior was reminiscent of the double 

dissociation seen in surface and phonological dyslexia.  
Table 1 compares the word naming performance of two 
surface dyslexic patients (MP, Behrmans & Bub, 1992; KT, 
McCarthy & Warrington, 1986) with each model’s 
performance at low levels of input gain. These levels were 
chosen to best match the patients’ patterns of performance. 
Table 2 similarly compares the word naming performance 
of a phonological dyslexic patient (WB, Funnell 1983) with 
each model’s performance. The purpose of these tables was 
only to draw a relation between the current models and 

dyslexia; as stated earlier, the models were not intended to 
simulate dyslexia.  

Table 1. Surface dyslexic MP and KT, compared 
with feed-forward (FF) and recurrent (Re) models at 
different levels of input gain, on high frequency 
(HF), low frequency (LF), regular (Reg), and 
irregular (Irr) items.   

 MP FF.66 Re.71 KT FF.55 Re.55 

HFReg 95% 100% 100% 100% 100% 100% 
LFReg 98% 100% 100% 89% 100% 99% 
HFIrr 93% 89% 86% 47% 57% 25% 
LFIrr 73% 58% 74% 26% 19% 24% 
Novel 96% 82% 65% 100% 86% 82% 

 
Table 2. Phonological dyslexic WB, compared with 
feed-forward (FF) and recurrent (Re) models at 
different levels of input gain. 

 WB FF 3 Re 3 
Words/Known 89% 93% 44% 
Novel 0% 42% 19% 

 
The results reported here show that the manipulation of 

input gain as a single control parameter, over a single level 
of representation, caused a double dissociation in both 
models.  Thus, we can conclude that the dynamics produced 
by recurrent connectivity is not required to give input gain 
its dissociating effect. While this result is informative, it 
does not fully elucidate the computational principles by 
which input gain has its dissociating effect. The following 
analyses were designed to explicitly show that input gain 
affects the extent to which processing is componential 
versus conjunctive, and that it is this property of input gain 
that is responsible for its dissociating effect.  
 

Componential Versus Conjunctive Processing. In the 
context of the current models, componential processing 
occurs when each input dimension is used independently of 
all other input dimensions in computing an output pattern. 
That is, each input dimension is treated as an independent 
component of the input pattern. By contrast, conjunctive 
processing occurs when conjunctions of input dimensions 
are used to compute outputs.  

We measured the degree of componential versus 
conjuctive processing in the feed-forward and distributed 
models by manipulating the value of a single input 
dimension, while holding the remaining dimensions 
constant at a neutral value of 0.5. In this way, the 
manipulated dimension was responsible for any changes in 
output activations.  As a given input dimension was 
manipulated, activation values were monitored for the 11 
output units that did not correspond to the manipulated input 
dimension. The polarity of each activation value (i.e., how 
close it was to an asymptote) was then calculated, and these 
polarities were averaged across all output dimension, for 
manipulations of all 12 input dimensions. This calculation 
was a measure of the conjunctivity of processing because 
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higher values indicated that a change in one input dimension 
was affecting multiple output dimensions that it did not 
correspond to, and lower values indicated that a change in 
one input dimension only affected its corresponding output 
dimension. 

This measure of conjunctivity is plotted in Figure 4 as a 
function of input gain and model type. The figure shows 
that, in both models, the conjunctivity of processing 
increased with higher levels of input gain. In the next two 
sections, we explain why componential processing at low 
levels of input gain could not support the processing of 
irregular items, and why conjunctive processing at the high 
levels of input gain could not support the processing of 
novel items. 
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Figure 4: Conjunctivity as a function of input gain 

 
Low Levels of Input Gain.  Low levels of input gain 
caused the sigmoidal shape of the hyperbolic tangent 
function to flatten and become more linear.  Linear hidden 
units can only support a linearly separable mapping between 
the inputs and outputs. It is also the case that input 
dimensions are processed as independent components in a 
linearly separable mapping. In the quasi-regular mapping 
created for these models, the identity mapping was linearly 
separable, whereas the exceptions to the identity mapping 
were not.   

Moreover, hidden units operated in their linear range 
early in training because the positive and negative random 
initial weights tended to cancel each other out on any given 
input; therefore, net inputs to the hidden units tended to be 
small early in training, as if input gain was low (even 
though input gain remained fixed at 1 throughout training).  
The consequence is that the linearly-separable identity 
mapping was learned in the linear range of the hidden units 
early in training, and exceptions to the identity mapping 
were learned only after hidden unit activations moved closer 
to their asymptotes.  An analysis confirmed this statement: 
after only 30 epochs of learning, the model applied the 
identity mapping to all 4096 possible input patterns, and 
hidden unit activations were 0.35 away from zero on 
average, i.e., they were mostly operating in their linear 
range.  Therefore, one can hypothesize that low levels of 
input gain invoked the componential, linearly-separable 
identity mapping that was learned early in training (further 
analyses are needed to test this hypothesis). 
 

High Levels of Input Gain.  High levels of input gain  
cause the sigmoidal shape of the activation function to 
sharpen and more closely mimic a step function. The 
consequence of this sharpening is that hidden unit 
activations are more likely to be near their asymptotes. This 
point is important because it is the asymptotic behavior of 
hidden units that enables them to use conjunctions of input 
values in mapping their inputs onto their outputs (O'Reilly, 
2001). The XOR function is the quintessential example in 
which the conjunction of two input values must be 
considered in order to produce the correct output, and at 
least one nonlinear hidden unit is necessary to compute this 
function in a feed-forward neural network. In the current 
quasi-regular mapping, it was the irregularities that engaged 
the asymptotic behavior of the hidden units in order to 
process conjunctions of input values. On this logic, one can 
say that high levels of input gain placed a greater emphasis 
on conjunctive processing of input values. 

Given this functional effect of input gain, why would an 
emphasis on conjunctive processing cause a selective 
impairment in the processing of novel input patterns?  The 
answer begins with the fact that the conjunctive processing 
was used to handle irregularity in the quasi-regular 
mapping, whereas it is the regularity in this mapping that 
provides the basis of correct performance on novel inputs.  
Therefore, the conjunctions learned for irregular inputs will 
tend to be incorrectly applied to novel inputs at high levels 
of input gain.  

This logic leads one to ask, why was performance on 
regular known items intact at high levels of input gain?  If 
conjunctions were learned only to process irregularities, 
then one would have to conclude that the emphasis on 
conjunctions at high levels of input gain should interfere 
with the identity mapping for all input patterns, both novel 
and known. What is missing here is that conjunctions were 
learned not only to process the irregularities for known 
items, but regularities as well. This consequence of using 
conjunctions necessarily followed from the use of 
distributed representations over the hidden units.  When the 
asymptotic behavior of hidden units was engaged through 
learning, it affected the processing of all known inputs, both 
irregular and regular, because every hidden unit contributed 
to the processing of every input dimension, for every input 
pattern. Therefore, conjunctions had to be learned for the 
regularities in the known items, and these conjunctions 
supported correct performance on all known items at high 
levels of input gain. 

Conclusions 
The current simulations demonstrated how a double 
dissociation can occur in a non-modular system via the 
manipulation of a control parameter.  Analyses showed that 
input gain shifted the current models between conjunctive 
and componential modes of processing.  This shift was 
reminiscent of the word naming impairments that 
characterize phonological and surface dyslexia.  Conjuctive 
modes impaired the processing of novel items, whereas 
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componential modes impaired the processing of irregular 
items.  

The current simulations and the single-route model of 
word reading (Kello & Plaut, 2003; Kello, 2003) comprise 
the beginnings of a single-route alternative to dual-route 
theories of word reading. They address one of the biggest 
challenges to any single-route theory of word reading, 
namely, the neuropsychological evidence for separable 
sublexical and lexical processing routes.  However, many 
challenges remain.  How would a single-route alternative be 
consistent with evidence for separable brain regions 
correlated with sublexical and lexical processing, to the 
extent that such evidence exists? What would be the neural 
mechanisms that underlie the hypothesized function of input 
gain? Could a large-scale single-route model account for 
any of the more detailed findings in the vast literature on 
word reading? These questions await further research. 

Acknowledgments 
This work was funded in part by NIH Grant MH55628, and 
NSF Grant 0239595. The computational simulations were 
run using the Lens network simulator (version 2.6), written 
by Doug Rohde (http://tedlab.mit.edu/~dr/Lens). 

References 
Behrmann, M., & Bub, D. (1992). Surface dyslexia and 

dysgraphia: Dual routes, single lexicon. Cognitive 
Neuropsychology, 9, 209-251. 

Coltheart, M., Curtis, B., Atkins, P., & Haller, M. (1993). 
Models of reading aloud: Dual-route and parallel-
distributed-processing approaches. Psychological Review, 
100, 589-608. 

Coltheart, M., Rastle, K., Perry, C., Langdon, R. & Ziegler, 
J. (2001). DRC: A dual route cascaded model of visual 
word recognition and reading aloud. Psychological 
Review, 108, 204-256. 

Funnell, E. (1983). Phonological processes in reading: New 
evidence from acquired dyslexia. British Journal of 
Psychology, 74, 159-180. 

Harm, M. W., & Seidenberg, M. S. (1999). Phonology, 
reading, and dyslexia: Insights from connectionist models. 
Psychological Review, 163, 491-528. 

Joanisse, M. F., & Seidenberg,  M. S. (1999). Impairments 
in verb morphology following brain injury: a 
connectionist model. Proceedings of the National 
Academy of Sciences of the United States of America, 96, 
7592-7597. 

Kello, C. T. (2003). The emergence of a double dissociation 
in the modulation of a single control parameter in a 
nonlinear dynamical system. Cortex, 39, 132-134. 

Kello, C. T., Plaut, D.C. (2003).  Strategic control over rate 
of processing in word reading: A computational 
investigation of the temp-naming task. Journal of Memory 
and Language, 48, 207-232.  

McCarthy, R., & Warrington, E.K. (1986). Phonological 
reading: Phenomena and paradoxes. Cortex, 22, 359-380. 

McClelland, J. L., & Patterson, K. (2002). Rules or 
connections in past-tense inflections: What does the 
evidence rule out? Trends in Cognitive Sciences, 6, 465-
472. 

Minsky, M., & Papert, S. (1969). Perceptrons: An 
introduction to computational geometry. Cambridge, MA: 
MIT Press.  

O'Reilly, R. C. (2001). Generalization in interactive 
networks: The benefits of inhibitory competition and 
Hebbian learning. Neural Computation, 13, 1199-1241. 

Patterson, K. & Ralph, M. (1999). Selective disorders of 
reading? Current Opinion in Neurobiology, 9, 235-239. 

Plaut, D. C. (1995). Double dissociation without 
modularity: Evidence from connectionist 
neuropsychology. Journal of Clinical and Experimental 
Neuropsychology, 17, 291-321. 

Plaut, D. C. & Gonnerman, L. M. (2000). Are non-semantic 
morphological effects incompatible with a distributed 
connectionist approach to lexical processing? Language 
and Cognitive Processes, 15, 445-485. 

Plaut, D. C., McClelland, J. L., Seidenberg, M. S., & 
Patterson, K. (1996). Understanding normal and impaired 
word reading: Computational principles in quasi-regular 
domains. Psychological Review, 103, 56-115. 

Plaut, D. C., & Kello, C.T. (1999). The emergence of 
phonology and from the interplay of speech 
comprehension and production: A distributed 
connectionist approach. In B. MacWhinney (Ed.), The 
Emercenge of Language (381-415). Maweh, NJ: Erlbaum.  

Pinker, S. (1999). Words and Rules: The Ingredients of 
Language. New York: Basic Books. 

Pinker, S., & Ullman, M. T. (2002). The past and future of 
the past tense. Trends in Cognitive Sciences, 6, 456-463. 

Rumelhart, D. E., Durbin, R., Golden, R., & Chauvin, Y. 
(1995). Backpropagation: The basic theory. In C. Yves & 
D. E. Rumelhart (Eds.), Backpropagation: Theory, 
architectures, and applications (pp 1-34). Hillsdale, NJ: 
Lawrence Erlbaum. 

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). 
Learning representations by back-propagating errors. 
Nature, 323, 533-536. 

Rumelhart, D. E., McClelland, J. L. (1986). On learning the 
past tenses of English verbs. In D. E. Rumelhart, 
McClelland, J. L., and The PDP Research Group (Eds.), 
Parallel distributed processing: Explorations in the 
microstructure of cognition (pp. 216-271). Cambridge, 
MA: MIT Press. 

Ullman, M. T., Corkin, S., Coppola, M., Hickok, G., & et al. 
(1997). A neural dissociation within language: Evidence 
that the mental dictionary is part of declarative memory, 
and that grammatical rules are processed by the 
procedural system. Journal of Cognitive Neuroscience, 9, 
266-276. 

Van Orden, G.C., Pennington, B.F., & Stone, G.O. (2001). 
What do double dissociations prove? Cognitive Science, 
25, 111-172. 

 

yguo
25




