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Abstract

Two connectionist models are reported that mimickieel
defining features of the double dissociation betwee
phonological and surface dyslexia in word readi@ne
model was a feed-forward, three-layer perceptrorg the
other included recurrent connections. Neither model
contained an architectural separation of sublexiaoal lexical
processes, nor of phonological and semantic presess
Analyses showed that the double dissociation wasilsied
because the control parameisput gain shifted the models
between conjunctive and componential modes of jgicg.
The dissociation was not simulated by any kind arhdge to
separate system components. The models are didcinstes
context of current accounts of surface and phoricddg
dyslexia.

I ntroduction

In most current models of word reading, two routds
processing are proposed to compute the sound obrd w
given its printed form (Coltheart et al., 1993, 20@laut et

phonological dyslexia is hypothesized to occur assalt of
damage to the sublexical route. Damage should tase
effect because performance on nonword stimuli preduly
relies on the componential regularities betweetlisgeand
sound (e.g., the sounds corresponding to SH, ONahdan

be pieced together to form a plausible nonword
pronunciation). By contrast, the impairment in gukar
word reading that characterizes surface dyslexia
hypothesized to occur as a result of damage tdetkieal
route. Damage should have this effect becausenmeahce
on irregular word stimuli presumably relies on word
specific knowledge (e.g., one must know the wordTPIn
order to pronounce it correctly).

There are a number of reasons why sublexical anddale
routes have been proposed to account for surface an
phonological dyslexia, but perhaps the most imparane
is the logic ofdouble dissociations. If two components of a
cognitive system operate independently, then thidymvake
independent contributions to the behavior of thattem.
Thus, a change in one component will have no effadhe

is

al., 1996; Harm & Seidenberg, 1999). One route isyehavioral contributions of the other. Such comgletary

sublexical in that it extracts and utilizes regularities et
mapping from components of orthography (e.g., isftéo
components of phonology (e.g., phonemes). The otheie
is lexical
representations of words. Localist and
representations are both considered lexical in tbistext
because they bear little or no systematic relakiipnto the
components of orthography and phonology.

effects on behavior constitute a double dissodiatiand
they are often interpreted as strong evidence that
independent system components underlie the digsdcia

in that it uses either localist or semantic hehaviors.
semantic Surface and phonological dyslexia constitute a toub

dissociation, and many researchers have interpréted
double dissociation as evidence for sublexical baxital
routes. Some researchers have alternatively prdptiss

The .GVid.ence for SU.bleXical and lexical routes Ofsemantic and ph0n0|ogica| Components may undedmnie t
processing in word naming has come from a number fissociation (Patterson & Ralph, 1999), but thisraktive

sources (for a review, see Plaut et al., 1996),heue we
focus on evidence from selective reading impairsehat
occur as a result of brain damage. One class ohinment
termed phonological dydexia is characterized by poor
reading aloud of nonwords (e.g., SHONG), with iie&y
intact word reading (Behrmann & Bub, 1992). Cowsedy,

surface dyslexia is characterized by poor reading aloud of pennington,

words with irregular spelling-sound corresponden@es.,
PINT), with relatively intact regular word and noowrd
reading (Funnell, 1983).

The complementary impairments of phonological an

surface dyslexia have a straightforward explanaticerms
of separate sublexical and lexical routes of preiogs The
impairment in nonword reading that
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also assumes that two system components underie th
dissociation, as in the dual-route hypothesis.

Despite appearances, even the purest cases of
phonological and surface dyslexia do not necessithé
existence of two processing routes or two system
components of any kind (Plaut, 1995fan Orden,

& Stone, 2001). A single-component
explanation is always a logical possibility, buttiwiut a
specific single-component account, it is just aidab
ossibility. With a single-component account, dgations
ould continue to stand as evidence for the exigteri two
system components in word reading.

characterizes
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Recently, Kello and Plaut (2003) reported on a rhadle
word reading that offers a
explanation of the double dissociation between phagical
and surface dyslexia. The model was inspired bybtwc
guestion of how reading acquisition builds upon (®r
learning that occurs during spoken language adpnsi
(also see Plaut & Kello, 1999). The acquisitionspbken
language requires the mapping from sound to meanin
(comprehension) and meaning to sound (productitm}he
context of a connectionist approach to lexical pesing, a
single, distributed level of representation candsned to

true single-component

Current Work

The goal of the current work was to use computation
analyses to determine how input gain had its diatag
effect in the simulation of word reading reported Kello
(2003). To facilitate these analyses, the esseptiatiples
and mechanisms of the single-route model of woedlirey
were distilled into two very simple connectionisbdels:
Yne model was a feed-forward, 3-layer perceptrod, the
other included recurrent connections from the otutpyer
back to the hidden layer. These models did noulsita

mediate  the  bi-directional  maopin between theword reading or dyslexia, although their resultse ar
. : 1apping compared with data from experiments with phonolabic
phonological and semantic attributes of words. The

guestion raised byhis approach is, how do printed word
forms make contact with the bi-directional mappiegrned
during spoken language acquisition?

The answer offered by Kello and Plaut (2003) ist tha
orthography maps into the level of representatibat t
mediates semantics and phonology (see Figure &f)jns
rather than mapping into semantics and phonolog
themselves. This architecture effectively “kills awbirds
with one stone”: the mediating representations igev
access to both the semantic and phonological fasmsnly
one route is necessary. While there is a logicpkapto this
single-route architecture, it is unclear how it Icoaccount
for the dissociation between surface and phono#dgic
dyslexia because there is no architectural separaoif
sublexical and lexical processes.

In a subsequent analysis of this single-route mdgello
(2003) showed that an impairment in the processifig
nonwords could, in fact, be dissociated from anaimpent
in the processing of irregular words. The methodduto
simulate this dissociation was to shift the modetween
sublexical and lexical “modes” of processing by meaf a
control parameter termedinput gain (see Model
Architecture section). The simulation results shaythe
dissociation are graphed in Fig 1. The use of igaih was
inspired by simulations of other behavioral datese(¥ello
& Plaut, 2003), but the function of input gain sutiat it
caused this dissociation was never elucidated.
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Figure 1: Results from the single-route model ofdvo
reading reported in Kello (2003)
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and surface dyslexics. Rather, the main purposehef
models was to replicate the dissociating effednpfit gain
in a more controlled and analytically tractable tean This
tractability enabled us to determine that inpungzan shift
a connectionist model betweercomponential and
conjunctive modes of processing, and that it is this function
of input gain that was responsible for the simolatiof

¥Jhonological and surface dyslexia reported by KEI03).

Simulation M ethods

Input and Output Representations were constructed from
a 12 dimensional binary space. Out 6f 2 4096 possible
input patterns, one fourth (1024) were chosen rdaen to
constitute the corpus of known items. Each chosgiti
pattern was associated with one output patternp@ut
patterns were created in three steps. First, egalt pattern
was copied to its corresponding output pattern,, (itkee
identity mapping). Second, frequencies were asdigioe
each item according to Zipf's la,= r®°, wherer was an
arbitrarily assigned rank from 1 to 1024. Thirck thit value
of each dimension, for each output pattern, wapdéd with
a probability governed by Zipfs lawp = 0.82°° The
result of this formula was that the more frequésrns were
more likely to be irregular, and more likely to Ipgore
irregular (i.e., have more flipped values), comparéth the
less frequent items. The multiplicative constan0&2 was
set such that there was a 5% probability on avemafge
flipping each target value across the set of kndtems.
There were 580 fully regular items (no flipped hitand
444 irregular items with at least one flipped bér ptem.
The 3072 remaining patterns served to test
generalization of learning to novel items.

Each of the 12 input dimensions were coded by twuati
units, one coding on-bits as 1 and off-bits ash@, ather
coding the reverse of the first. Thidlx coding scheme
was used because the models were trained via
backpropagation. In backpropagation, no learning w
occur on a unit’'s sending weights when the actvatialue
of that unit is zero. Therefore, th¢l—x coding scheme
ensured that weight derivatives were generatedef@ry
input dimension, on every training episode. Tk&-x
coding was not necessary for the output unitshecetwere
only 12 output units, each one corresponding dirdotone
of the 12 output dimensions.

the
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The
essential properties of quasi-regularity as itniplemented
in most connectionist models of word reading. Sfxdly,
each input unit had a systematic relationship waitie
output unit, much like the way that each orthograpmit
would have a systematic relationship with at lease
phonological unit (e.g., a unit for the letter Pthe initial
position would have a systematic relationship waittnit for
the phoneme /p/ in the first position). Moreovengde
relationships were never entirely systematic, milahreal
guasi-regularity in spelling-sound correspondences.

Model Architecture. In both the feed-forward and
recurrent models, the input units were fully coriedcto
200 hidden units, and the hidden units were fullprected
to the output units. In the recurrent model, thgatlayer
was also fully connected back to the hidden laydre
number of hidden units was determined through pésting
to be about 50 units more than the minimum needéektrn
the mapping. However, results were very similaeroa
range of hidden unit numbers. Unit activations ever
calculated with the hyperbolic tangent function,

al= tani'MI A +At(| M= j“'”))J,

wherey was inPut gain/At was an integration constant fixed
at 0.166, and,'! was the net input at timee For the feed-
forward network, there was no time course of preicgs so
there was no integration constant, and activatioese
simply a function of the instantaneous net inpoput gain
was fixed at 1 during training, and varied duriagting (see
next section). The net input to each unit was dated as
the dot product between the activation vector oitsr
sending units, and the weight vector over its incgm
connections. The hyperbolic tangent is analogoush&
logistic, except it has asymptotes at +1 atidinstead of 0
and 1. Low levels of input gain flatten the actigat
function, making it more linear. High levels shamgt into
a step function, making it more nonlinear.

Forward connection weights were initialized to ramd
values in the range 0.1, and recurrent weights {fie
recurrent model) were initialized in the range +@®3arger
range was used for recurrent weights to ensurethiesthad
a substantial impact on processing. Weights wemnél by
gradient descent,

aw, =17(0E/ow, ),
wherew; was the connection weight from upito i,  was
the learning rate (fixed at 0.001), akdwas cross-entropy

error (Rumelhart et al., 1995), which was scaledebgh
item’s frequency. Prior to each weight update, eafcthe

input and output representations captured thactivations were propagated forward for 18 ticksprewas

injected on the last 12 ticks, and then error was
backpropagated in time.

Weight updates were repeated until every outputwas
within 0.1 of its target for every item in the tmaig corpus.
This criterion was reached in the feed-forward nhadter
62000 passes through the corpus, and in the returnedel

after 56000 passes.

Testing Procedure. The models were tested by setting the
input units to a given input pattern, and recordimg output
activations. In the recurrent network, activationgre
recorded on the first tick for which all 12 outpugdes were
within 0.1 of an asymptote. If a node did not redhis
criterion after 18 ticks, the output was judgedirarrect.
The criterion for correct performance was having th
activations of all 12 output units on the targelesof zero.
Targets for items in the corpus were set accorttingach
item’s output pattern. Targets for the 3072 nowems
were set according to each item’s input pattem, ithe
identity mapping.

To dissociate item-based and regularity-based psing,
input gain was varied as a single control parameter the
hidden units. The reported levels of input gainevMeetween
0.33 and 3. This range was chosen to show asyroptoti
performance at the lower and upper ends. Perforenditt
not change substantially beyond this range.

Simulation Results

To simplify the presentation of results, known itemere
divided into categories of high frequency and low
frequency. The high frequency category consistethe
256 most frequent trained items (upper quartiled ¢he
low frequency category consisted of the 256 legsjuent
trained items (lower quartile). Mean accuraciestlfer feed-
forward model are graphed in Figure 2 as a funadioinput
gain and item type (high and low frequency regulagh
and low frequency irregular, and novel). The sane
graphed for the recurrent model in Figure 3.

Figures 2 and 3 show that both models exhibitetkarc
dissociation in performance on irregular items cared
with novel items. At low levels of input gain, gaalization
of the identity mapping to novel inputs was essdigti
perfect, as was performance on regular items.cd@rast,
performance on irregular items dropped to 0%, aickwh
point all inputs were computed as the identity miagp For
irregular items, application of the identity mappioan be
considered as eegularization error because, for the quasi-
regular domain constructed here, the identity magps the

1024 items in the corpus were presented once to tH&gular mapping.

network. Weight derivatives were calculated forre#tem
as follows: input units were set to a given itenmput
pattern, activations were propagated forward thhotlge

At high levels of input gain, performance on knowams
was better than performance on novel items. Atrthei
maximum difference, mean accuracies in the feeddod

network, and an error signal was calculated frore th model were 97% for known items, and 46% for noteshs.

difference between actual and target outputs. héinfeed-
forward model the error signal was then backpropeayto
generate the weight derivatives. In the recurrewideh
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The same comparison in the recurrent model was 8ddo
35%, respectively. The biggest difference betweba t
models was that performance on known items was near
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ceiling at all high levels of input gain in the &eforward

dyslexia; as stated earlier, the models were rtenhded to

model, whereas performance on known items dropffet o simulate dyslexia.

sufficiently high levels of input gain in the recemt model.
This difference is explained by the fact that highels of
input gain amplify the effect of nonlinearities ithe
activation function on processing (see below). Rerce
caused this amplification to increase to the podrft

Table 1. Surface dyslexic MP and KT, compared
with feed-forward (FF) and recurrent (Re) models at
different levels of input gain, on high frequency

distorting the course of processing. Given that the

dissociation was maintained despite this distortiffgct,
we did not see it as informative with respect te th
dissociating effect of input gain.

100% -ichokddckdokdddkd A Ad R P

90%

(HF), low frequency (LF), regular (Reg), and
irregular (Irr) items.

MP FF.66 Re71 KT FF.55 Re55
HFReg| 95% 100% 100% 100% 100% 100%
LFReg | 98% 100% 100% 89%  100% 99%
HFIrr | 93% 89% 86% 47% 57% 25%
LFlrr | 73% 58% 74% 26% 19% 24%
Novel | 96% 82% 65% 100% 86%  82%
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Figure 2: Mean accuracies for the feed-forward rhode
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Figure 3: Mean accuracies for the recurrent model

The models’ behavior was reminiscent of the double’

dissociation seen in surface and phonological digsle
Table 1 compares the word naming performance of tw
surface dyslexic patients (MP, Behrmans & Bub, 199P,
McCarthy & Warrington, 1986) with each model's
performance at low levels of input gain. These leweere
chosen to best match the patients’ patterns obpeence.
Table 2 similarly compares the word naming perfaraea
of a phonological dyslexic patient (WB, Funnell 398vith
each model’s performance. The purpose of thesedakhs
only to draw a relation between the current modsis
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Table 2.Phonological dyslexic WB, compared with
feed-forward (FF) and recurrent (Re) models at
different levels of input gain.

WB FF3 Re3
Words/Known| 89% 93%  44%
Novel 0% 42% 19%

The results reported here show that the manipulatio
input gain as a single control parameter, ovemnglsilevel
of representation, caused a double dissociatiorbath
models. Thus, we can conclude that the dynamiodyzed
by recurrent connectivity is not required to givgut gain
its dissociating effect. While this result is infeative, it
does not fully elucidate the computational prineglby
which input gain has its dissociating effect. Thdofwing
analyses were designed to explicitly show that fingain
affects the extent to which processing is compadakent
versus conjunctive, and that it is this propertyrgfut gain
that is responsible for its dissociating effect.

Componential Versus Conjunctive Processing. In the
context of the current models, componential praogss
occurs when each input dimension is used indepéiyde
all other input dimensions in computing an outpattgrn.
That is, each input dimension is treated as anpiedgent
component of the input pattern. By contrast, codcijwe
processing occurs when conjunctions of input dinwerss
are used to compute outputs.

We measured the degree of componential versus
onjuctive processing in the feed-forward and ihsted
models by manipulating the value of a single input
gimension, while holding the remaining dimensions
constant at a neutral value of 0.5. In this waye th
manipulated dimension was responsible for any obsuiig
output activations. As a given input dimension was
manipulated, activation values were monitored fog 1
output units that didot correspond to the manipulated input
dimension. The polarity of each activation value.(ihow
close it was to an asymptote) was then calculated,these
polarities were averaged across all output dimensior
manipulations of all 12 input dimensions. This cédtion
was a measure of the conjunctivity of processingabse
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higher values indicated that a change in one idpuénsion
was affecting multiple output dimensions that it diot
correspond to, and lower values indicated thatangé in
one input dimension only affected its correspondngput
dimension.

This measure of conjunctivity is plotted in Figuteas a
function of input gain and model type. The figutews
that, in both models, the conjunctivity of processi
increased with higher levels of input gain. In thext two
sections, we explain why componential processingpat
levels of input gain could not support the proasgsof
irregular items, and why conjunctive processinghat high
levels of input gain could not support the proasgsof

novel items.
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Figure 4: Conjunctivity as a function of input gain

0.33

Low Levels of Input Gain. Low levels of input gain

High Levels of Input Gain. High levels of input gain
cause the sigmoidal shape of the activation functio
sharpen and more closely mimic a step function. The
consequence of this sharpening is that hidden unit
activations are more likely to be near their asyotgs. This
point is important because it is the asymptoticavédr of
hidden units that enables them to use conjunctidrisput
values in mapping their inputs onto their outp@sReilly,
2001). The XOR function is the quintessential exkmip
which the conjunction of two input values must be
considered in order to produce the correct outpat at
least one nonlinear hidden unit is necessary topctenthis
function in a feed-forward neural network. In therrent
quasi-regular mapping, it was the irregularitiest thngaged
the asymptotic behavior of the hidden units in orte
process conjunctions of input values. On this lpgite can
say that high levels of input gain placed a greatephasis

on conjunctive processing of input values.

Given this functional effect of input gain, why wduwan
emphasis on conjunctive processing cause a sadectiv
impairment in the processing of novel input pat@rnThe
answer begins with the fact that the conjunctivecpssing
was used to handle irregularity in the quasi-regula
mapping, whereas it is the regularity in this magpthat
provides the basis of correct performance on noyalts.
Therefore, the conjunctions learned for irregutgouits will
tend to be incorrectly applied to novel inputs @hhlevels
of input gain.

caused the sigmoidal shape of the hyperbolic tangen Thjs |ogic leads one to ask, why was performance on

function to flatten and become more linear. Link@den
units can only support a linearly separable mappetgveen
the inputs and outputs. It is also the case thautin
dimensions are processed as independent compaoneats
linearly separable mapping. In the quasi-regulappiray
created for these models, the identity mapping hwasirly
separable, whereas the exceptions to the identitgpmg
were not.

Moreover, hidden units operated in their lineargean
early in training because the positive and negatarelom
initial weights tended to cancel each other outiny given
input; therefore, net inputs to the hidden unitedes to be
small early in training, as if input gain was lowvén
though input gain remained fixed at 1 throughoaining).
The consequence is that the linearly-separabletitgen
mapping was learned in the linear range of the dndahits
early in training, and exceptions to the identityapping
were learned only after hidden unit activations etbeloser
to their asymptotes. An analysis confirmed th&esnent:
after only 30 epochs of learning, the model applikd
identity mapping to all 4096 possible input patsgrand
hidden unit activations were 0.3&way from zero on
average, i.e., they were mostly operating in tHiiear
range. Therefore, one can hypothesize that lowldeof
input gain invoked the componential, linearly-seyde
identity mapping that was learned early in train{figther
analyses are needed to test this hypothesis).

24

regular known items intact at high levels of ingain? If
conjunctions were learned only to process irregfigar
then one would have to conclude that the emphasis o
conjunctions at high levels of input gain shouldeifere
with the identity mapping for all input patterngtbh novel
and known. What is missing here is that conjunctiaere
learned not only to process the irregularities koown
items, but regularities as well. This consequentc@sing
conjunctions necessarily followed from the use
distributed representations over the hidden unit$en the
asymptotic behavior of hidden units was engagedutin
learning, it affected the processing of all knowpdits, both
irregular and regular, because every hidden umitrdmted
to the processing of every input dimension, forrguaput
pattern. Therefore, conjunctions had to be learfoedhe
regularities in the known items, and these conjonst
supported correct performance on all known itemkiglh
levels of input gain.

of

Conclusions

The current simulations demonstrated how a double
dissociation can occur in a non-modular system thia
manipulation of a control parameter. Analyses sitbvhat
input gain shifted the current models between awijue
and componential modes of processing. This shds w
reminiscent of the word naming impairments that
characterize phonological and surface dyslexianj@ive
modes impaired the processing of novel items, wdsere
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componential modes impaired the processing of ulegg McClelland, J. L., & Patterson, K. (2002). Rules or

items. connections in past-tense inflections: What does th
The current simulations and the single-route maafel evidence rule outTrends in Cognitive Sciences, 6, 465-

word reading (Kello & Plaut, 2003; Kello, 2003) cprise 472.

the beginnings of a single-route alternative toldaate  Minsky, M., & Papert, S. (1969). Perceptrons: An

theories of word reading. They address one of iggest introduction to computational geometry. Cambridge:
challenges to any single-route theory of word negdi MIT Press.
namely, the neuropsychological evidence for separab O'Reilly, R. C. (2001). Generalization in interaeti
sublexical and lexical processing routes. Howewveany networks: The benefits of inhibitory competition dan
challenges remain. How would a single-route aétBve be Hebbian learningNeural Computation, 13, 1199-1241.
consistent with evidence for separable brain regionPatterson, K. & Ralph, M. (1999). Selective disosdef
correlated with sublexical and lexical processitg,the reading?Current Opinion in Neurobiology, 9, 235-239.
extent that such evidence exists? What would ben¢hugal Plaut, D. C. (1995). Double dissociation without
mechanisms that underlie the hypothesized funaifanput modularity: Evidence from connectionist
gain? Could a large-scale single-route model adcéom neuropsychologyJournal of Clinical and Experimental
any of the more detailed findings in the vast &tare on Neuropsychology, 17, 291-321.
word reading? These questions await further rekearc Plaut, D. C. & Gonnerman, L. M. (2000). Are non-seiic
morphological effects incompatible with a distribdt
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