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Abstract

A computational model of the formation of peer groups in
children is presented. @~ We wused standard sociometric
measurements (the CDC classification of Popular, Rejected,
Neglected, and Controversial individuals) to compare the
model to empirical data. The model fit this data well in terms
of category distributions and stability, even without
introducing individual differences. When individual
differences were added, the model went on to accurately
predict a separate set of empirical results. Furthermore,
patterns arose in the results which suggested an underlying
relationship between certain types of individual differences.

Introduction

In recent years, we have started to see an increasing
willingness among researchers to examine high-level
models of human group behavior. Interesting results have
been found regarding wealth distribution (Bouchaud &
Meézard, 2000), human rioting (Granovetter, 1978), crowd
panic (Helbing, Farkas, & Vicsek, 2000), and friendship
networks (Watts & Strogatz, 1998), to name just a few. We
have also seen the development of larger frameworks for
investigating social cooperation to achieve goals in general
(for example, Sun, 2001). These models provide new
insight into these fields, along with new predictions that can
be tested.

In this paper, we present a computational model of the
formation of friendship groups among peers. In the model,
individuals meet and interact over time, becoming friends
(and possibly enemies) with each other. This process has
been empirically investigated by developmental
psychologists, who have developed standardized measures
of popularity (see Cillessen & Bukowski, 2000, for a
review). In this paper we will evaluate our model’s results
by comparison to the CDC measure (named after its
creators’ initials: Coie, Dodge, & Coppotelli, 1982), which
is the most commonly used system.

Psychologists do not consider ‘popularity’ to be an
intrinsic aspect of an individual. Rather, ‘popularity’ is a
dynamic construct formed among a group of individuals.
That is, an individual’s popularity is determined by how
others feel about them. However, explanations as to why a

person is popular or unpopular focus on individual
characteristics, particularly personality factors. Individual
factors do influence popularity; a child could be unpopular
because they are shy, aggressive, and/or socially
incompetent (Newcomb, Bukowski, & Pattee, 1993).
However, Rubin, Hymel, & Mills (1989) reviewed the
findings in this area and found that only a small percentage
of the variance could be accounted for by individual
differences.

While it is possible that the unaccounted for variance is
simply due to an inability to measure popularity and/or
personality factors well enough, another possibility is that it
can be attributed to the dynamics of the system. That is,
people’s popularity may have more to do with the dynamics
of their peer group interactions than with their own
personality. If so, this would mark a radical departure from
the common understanding of popularity as a product of
personality. We investigated this possibility through the use
of multi-agent modeling.

The CDC Measure

The goal of the CDC measure is to classify people into one
of five categories: Popular, Rejected, Controversial,
Neglected, or Average. Using interviews or questionnaires,
each person is asked to name three people in their peer
group that they like, and three people that they dislike. The
simplicity of this measurement is important for measuring
popularity in young age groups. Using the survey results,
each individual is given an Acceptance score (the total
number of times that person is listed by other people as
someone they like) and a Rejection score (the number of
times they appear on the ‘dislike’ lists). A Preference value
(Acceptance minus Rejection) and an Impact value
(Acceptance plus Rejection) are also created; where
preference refers to whether you are more liked or disliked
and impact refers to how much people pay attention to you.
Individuals are then classified into the five categories
according to the rules shown in Table 1.
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Table 1: The decision rules for classifying with CDC. All
values are normalized to a mean of 0 and a standard
deviation of 1.

Category Rule

Popular Preference>1
Acceptance>0
Rejection<0

Rejected Preference<-1
Acceptance<0
Rejection>0

Neglected Impact<-1
Never appears on anyone’s ‘like’ list

Controversial | Impact>1
Acceptance>0
Rejection>0

Average None of the Above

Comparison Data

Newcomb, Bukowski, & Pattee (1993) provide a
considerable amount of data to test our model against. To
begin with, they give complete results from nine different
studies that used CDC categorization on a total of 2,571
students, ranging from kindergarten to grade 9. These nine
studies give the following 95% confidence intervals for the
percentage of people in each category.

Table 2: The 95% confidence intervals indicating the
percentage of people in each CDC category.
Popular | Rejected | Neglected | Contro. | Average
7%-32% | 12%-26% | 0-28% 1.6-16% [5.9-69%

This data set gives us our first basis of comparison
between the model and reality. In particular, if we find that
a model gives results outside of this range, then we can
conclude that it is not a suitable model.

The next set of data that we can use for comparison is the
stability of these measurements over time. Cillessen,
Bukowski, & Haselager (2000) give the results of a meta-
study which collected the change in CDC categorization
over periods of time ranging from one month to four years.
The results give the percentage of people who were in the
same category at the beginning and at the end of the study
period. The following figure gives the 95% Confidence
Interval for this data.

Table 3: The 95% confidence intervals for the stability of
each CDC category.

Rejected | Neglected | Contro.

39-49% | 20%-30% | 24%-36%

Popular
33-44%

Average
51%-69%

In addition, the results showed no significant change
related to the amount of time in the study period. In other
words, there is no significant difference between the
stability over four months and stability over four years. We
should thus expect a good computational model to not only
match the stability data shown in table 3, but also to give

this result independent of the number of interactions
simulated.

Creating a Benchmark

To further evaluate our model, we created a benchmark for
evaluating CDC results. Specifically, we wanted to create a
null condition result, representing “no effect” for the CDC
measure. To do this used a completely random response
scheme. That is, we determined what would happen if the
‘like most” and ‘like least’ responses were generated by
having each person nominate three others completely at
random. This data was then subjected to the standard CDC
analysis, as described. We chose a group size of 30 to be
consistent with real-life situations.

After generating 1000 groups, we collected the CDC
classification data and found the following distribution.

Table 4: The distribution of individuals in the benchmark.
Popular | Rejected | Neglected | Contro. | Average
12% 12% 7% 2% 67%

Surprisingly, the null condition results did not fall outside
the confidence intervals for the categorization data in table
2. Thus the categorization distribution results cannot be
considered to be different from chance. When we turn to the
stability data, however, we do find a statistically significant
difference. Given the simplicity of this random model,
since an individual has a 12% chance of being classified as
Popular, when we re-run the simulation that same person
will still have only a 12% chance of being Popular this time.
This means that the stability data will be identical to the
previous table

Table 5: The stability of categorization in the benchmark.
Popular | Rejected | Neglected | Contro. | Average
12% 12% 7% 2% 67%

These results were well outside the confidence intervals
presented in table 3 (p<<0.001). The null condition clearly
does not capture important aspects of the process. The
results for the stability data show that the CDC findings are
meaningful. However, the results for the categorization data
show that the apparent differences in the sizes of the
categories can be viewed as an artifact of the way the CDC
system works.

Given this baseline, we can see that predicting the
category distribution data (Table 2) would only provide
weak support for a model. However, if a model was able to
predict both the distribution and the stability data, then we
could be confident that it is matching the real-world data
well.

Our Model

In developing our model, we tried to determine the simplest
system possible that had the following characteristics:
1. Each person should remember how much they like
each other person
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2. People should use this memory to determine how
they will ‘interact’ with others

3. People should use the results of this ‘interaction’ to
change how much they like the person they just
interacted with

This led us to the following algorithm:

1. Let a[i,j] be the amount person i likes person j

2. For all pairs of individuals i,j:
a. Have i use a[i,j] to decide how to behave towards j
b. Have j use a[j,i] to decide how to behave towards 1
c. Update a[i,j] based on how j behaves towards i
d. Update a[j,i] based on how i behaves towards j

3. Repeat (2) for as many iterations as desired

To implement this, we needed to define an algorithm for
each agent to use to decide how to behave towards another,
based on how much they like each other (steps 2a and 2b).
We chose a simple method: take the value of a[i,j], add a
random value from a Gaussian distribution, and use the
resulting value to represent how 'good' individual i is going
to behave towards j.

b[i,j]=a[i,j]+N(0,1) (formula 1)

The random variable has a deviation of 1. Changing this
deviation does not affect the behavior of the model.

Similarly, we needed to update how much i likes j, based
on j’s actions. One idea would be to simply add b[j,i] (how
‘nicely’ j has behaved toward i) to a[i,j]. However, this
approach can be easily shown to cause a positive feedback
loop which would mean that if i currently likes j and j
currently likes i, they will keep increasing how much they
like each other to astronomical values. This is clearly does
not capture the ebb and flow of real human relations.
Instead, we use a slightly more complex formula which
acknowledges the role that a[i,j] (the amount person i likes
person j) could play in determining how person i would
react to the behavior of person j.

Aal[i,j] = wi(b[j,i]-a[i,j]) (formula 2)

The result of this was that individuals in the model
evaluated the actions of others according to the expectations
they had for those others. This was based on the insight that
we expect a friend to be friendly and an enemy to be
unfriendly, and we are not surprised when this happens.
However, if a friend were to be unfriendly we could be quite
hurt. Likewise, if an enemy were to be kind it would
surprise us and could cause us to reevaluate our feelings
toward them.

Since repeated iterations of this model will cause a[i,j]
and a[j,i] to interact with one another, it is instructive to
view what typically happens to these variables over time.
Figure 1 illustrates the effect. The results show that the
model can potentially capture the ups and downs of real
human relationships.
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Figure 1: Two individuals interacting over 300 iterations
of the model. Shown is a[i,j] and a[j,i]. w;, is 0.1.

It should be noted that in doing this we have introduced
the first parameter into this model: wy.. This is the ‘learning
rate’ and controls how quickly an individual changes its
opinions of others. It can be considered to be similar to the
learning rate parameters found in a wide variety of other
computational models. This is a very interesting parameter
because creates a potential link between cognitive abilities
and popularity, something that has not been previously
explored. Essentially, the model examines the role of
memory, learning and expectations in human relationships.

Category Distribution Results

Interestingly, it turns out to be very easy to show that this
new model is exactly as good as the random model at
predicting the distributions of categories. We first note that,
given the preceding algorithm, the values a[i,j] and a[j,i]
change in a manner that is independent of anything else in
the simulation. This means that when the CDC nominations
occur (i.e. when we check each individual to see which
three others they like and dislike the most), the chance of a
particular person j nominating another person i is
independent of person k also nominating person i. This in
turn means that, for any given CDC evaluation, the number
of nominations an individual receives (both positive and
negative) will have the same sort of distribution as the initial
completely random model. This predicts that we will
continue to have exactly the same distributions of categories
in this new model as under the random model. We ran the
simulations anyway, and found that we did, in fact, get the
same distributions (for all values of wy,).

Table 5: The distribution of individuals in the model.
Popular | Rejected | Neglected | Contro. | Average
12% 12% 7% 2% 67%

Category Stability Results

We can now determine how well this model predicts the
category stability data. In order to do this, we first need to
choose a value for wy, (the learning rate which controls the
speed of adaptation of an individual’s ‘liking’ of another).
Possible values range from 0 to 1. To deal with this, we can
run the simulation for multiple values of wy,.

We also need to determine how many iterations our
model should be run for. Given the real-world data from
Cillessen, Bukowski, & Haselager (2000), we know that a
good model will result in asymptotic stabilities. That is,
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over time the stability of the Popular category should
approach a value between 33% and 44%.  Similar
expectations exist for the other four categories.

Figure 2 shows our model’s stability results for each of
the five CDC categories. Each line in each graph represents
a different setting for w;,.. The x-axis indicates the number
of iterations (i.e. time) between the two category
measurements. The far right gives our results after 20 time
steps. Overlaid on each of these graphs is the 95%
confidence interval from the real-life stability data.

Analyzing this data, we can see that the precise value of
wi: does not significantly affect our results. That is, we can
set our learning rate parameter anywhere within its possible
range and still get very similar results. Our model is thus
effectively a zero-parameter model.

The other promising result is that each of the five stability
measurements end up in or near the 95% Confidence
Interval. This is a very encouraging finding, since no
parameter tweaking was required.

Individual differences

Although our model matches the data well without
introducing individual differences, it is still the case that
these differences have been found to have some influence
on popularity. To investigate this factor, we systematically
introduced different sorts of variations in our model to
investigate four well-known effects. In all of these
simulations, we allowed a particular aspect of each
individual in the model to vary across a normal distribution.
The size of this distribution was made as large as possible
while still matching to the real-life data.

To begin with, we looked at the Hostile Attribution Bias.
This refers to the fact that certain individuals tend to
interpret the actions of others in a more negative light than
is intended. Research has shown that rejected children
(particularly those who are aggressive) are more likely to
assume malevolent intent when they are faced with
ambiguous social cues (Crick & Dodge, 1994; Dodge,
Lansford, Burks, Bates, Pettit, Fontaine, & Price, 2003). To
model this we inserted this individual difference into our
model by adjusting formula (2) in the following way:

Aa[i,j] = wi(b[j,i] + B[i] - a[i,j])

In this new formula, B is an individual interpretation bias.
Note that in our simulation, agents could be biased to be
either overly negative or overly positive in how they
interpreted the actions of others.

We then ran the simulation over 1000 groups of 30 agents
each. Each agent had a value of B chosen from a normal
distribution with a deviation as large as possible while still
matching the aforementioned results. After 50 simulation
iterations, CDC classification was performed. We then
measured the effect size. This involved determining how
many standard deviations above or below the mean the
values of B were within each category. This method was
used for all individual differences investigated.

"Popular’ stability for different learning rates

—+— 0.
—a—01

+—05

Stability (%)

[ (=] — o0
_ A —_ e
Simulation Rerations

'Rejected” stability for different learning rates

—— 0.0

——01
+—0.5

Stability (%)

- [=7] — (s
Simulation Herations

'Neglected’ stability for different learning rates

B0
—+—0.01
50 ‘\" —a—01
£ |* \‘\ 05
=40 —— 075 ———
o
=
=230
|
@ 20
1D T T T T T T T T T T T T T T T T T 1
— [xr] Loy r- [=7] — [xr] Loy r- [=7]
Simulation ltérations T
'‘Controversial' stability for different learning rates
70 q
- —e— 001
&0 —a—01
ESD 4 +—05 |
b —h— 073
&40
/30 -
t
20
1D T T T T T T T T T T T T T T T T T 1
— [xr] o r- [=7] — [xr] Loy r- [=7]
Simulation ltérations T
"Average' stability for different learning rates
a0

3 —+—0.01
540 —=—01
a0 +—05
—h— 075
2':' T T T T T T T T T T T T T T T T T 1
— [xs] Lo [ o — )

Simulation Herations

Lo = (=]
— —

Figure 2: Simulation stability results compared to real-world
data from (Cillessen, Bukowski, & Haselager, 2000),
compared over a range of settings for wy,.
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The results in Figure 3 show that, as predicted, the
Rejected agents tended to be overly negative in interpreting
the behaviors of others, while the Popular agents tended to
be overly positive. It was also interesting that the Neglected
agents also tended to be somewhat negative.

j - o i 61 : o : o 3
Figure 3: Effect size of varying interpretation bias (the
average number of deviations a group is from the mean)

Another well-known finding is that Popular children tend
to have good social skills whereas rejected children tend to
have poor social skills. (e.g., Coie, Dodge, & Kupersmidt,
1990; Newcomb, Bukowski, & Pattee, 1993; Parkhurst &
Hopmeyer, 1998). To reflect this in the model we biased the
mean of the Gaussian distribution used in Formula 1.
Specifically, a positive value created a bias toward behaving
nicely and a negative value created a bias toward behaving
badly. Figure 4 displays the results and shows that the
manipulation had the intended effect. Interestingly, the
neglected agents were again shown to be somewhat similar
to the rejected agents.
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Figure 4: Effect size of varying behavior bias (the average
number of deviations a group is from the mean)

The third effect we investigated was that neglected
children have been shown to interact with their peers less
frequently than average children (Dodge, Coie, & Brakke,
1982; Coie & Dodge, 1988). To reflect this in our model,
we added an interaction probability for each agent. The
percentage chance for two agents interacting was
determined by multiplying their interaction probabilities
together. As illustrated in Figure 5, this manipulation was
successful in capturing the effect. However, it also produced
the unexpected effect that a high level of interaction was
associated with being controversial.

0.36 0.36 s l
N I — :
P R c

Figure 5: Effect size of varying interaction probability (the
average number of deviations a group is from the mean)
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Finally, we examined the finding that controversial
children tend to display a combination of positive and
negative social behaviors (e.g., Coie & Dodge, 1988). We
modeled this lack of consistency by varying the standard
deviation of the Gaussian distribution in Formula 1. The
results, displayed in Figure 6 supported our interpretation
that Controversials tend to be highly variable in their
behavior. The results also revealed an unexpected effect in
which neglected individuals tended to be more reliable in
their behavior (lower variability).
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Figure 6: Effect size of varying behavior deviation (the
average number of deviations a group is from the mean)

Insights and Predictions

The model also gave us the opportunity to explore other
possible individual differences. The first that we looked at
was the initial value for a[i,j]. For this simulation some
agents started off more predisposed to liking everyone (a
high value of a[i,j] for all j), and others more predisposed to
disliking everyone (a low value of a[i,j] for all j). This was
meant to represent the effect of previous experience, before
entering the group (e.g., family experiences or other peer
group experiences). The results of this simulation are
displayed in Figure 7. Note that the results of this simulation
were very similar to the results of the hostile attribution
simulation and the social skills simulation. All of these
showed an expected association between strong positive
biases and being popular, and strong negative biases and
being rejected. But they also all showed a somewhat
unexpected association between moderate negative biases
and being neglected. Taken together, these results show that
the model is very robust in producing this pattern of results
in response to factors that bias an agent to be more positive
or more negative.

1.27

BT

Figure 7: Effect size of varying the initial value of a[i,j] (the
average number of deviations a group is from the mean)

We also analyzed the effect of individual differences on
wy, That is, how does having a different learning rate affect
one’s eventual CDC categorization. The results, displayed
in Figure 8, were interesting, in that they were very similar
to the results of the interaction probability simulation and
the behavior consistency simulation. The most
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straightforward interpretation of this is that having a high
learning rate or having many interactions can have the effect
of making one appear to be more variable in behavior. This
result is also important since we earlier (see Figure 2)
showed that varying the overall learning rate among all the
individuals had no effect.

1.36
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Figure 3: Classification effect size of varying wy, (the
average number of deviations a group is from the mean)

Conclusions

This model has presented us with a number of intriguing
results. We have shown that the distribution of individuals
into the five CDC categories is an artifact of the
measurement system itself. The model we have presented
predicts both the distribution data and the long-term stability
data of these categories very well (the model predicts
Neglected individuals have a stability which is 5% lower
than the real-life data, but for all other categories it is within
the 95% confidence interval). Our model can do this
without recourse to any individual differences. Instead,
these categorizations arise from the dynamics of the
interpersonal interactions. These results hold over all
settings for the model’s one parameter, which means it is
effectively a zero-parameter model.

When we introduced individual differences into the
model, it predicted a number of standard effects of such
differences in real children. Furthermore, these effects
indicated underlying similarities in the processes involved.
For example, we have consistently seen that changes which
correlate with an individual being Rejected tend to also have
a smaller effect associated with being Neglected. Also, we
showed a striking similarity between the results of varying
the learning rate, the behavioral wvariability, and the
interaction probability. These patterns suggest new ways of
looking at current research in popularity.
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