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Abstract 

PRP (Psychological Refractory Period) is a basic but 
important form of human information processing in dual-task 
situations. This article describes a queuing network model of 
PRP that successfully modeled PRP without the need of 
setting up complex lock/unlock performance strategies 
employed in the EPIC model of PRP or drawing complex 
scheduling charts employed in the ACT-R/PM model of PRP. 
Further, by integrating queuing networks with reinforcement 
learning algorithms, the queuing network model successfully 
simulated practice effect on PRP, which has not been 
modeled in existing PRP models. The current research 
indicates that depending on an individual’s degree of practice, 
cognition can be either serial or parallel at the level of 
production or response selection. Extensions of queuing 
network model in modeling other tasks and its easiness in 
modeling concurrent tasks in practice are also discussed. 

Introduction 
PRP (Psychological Refractory Period) is one of the most 

basic and simple forms of dual task situations, and has been 
studied extensively in the laboratory for half a century 
(Meyer & Kieras, 1997a). In the basic PRP paradigm, two 
stimuli are presented to subjects in rapid succession and 
each requires a quick response. Typically, responses to the 
first stimuli (Task 1) are unimpaired, but responses to the 
second stimuli (Task 2) are slowed by 300 ms or more 
(Ruthruff et al., 2001). In the PRP paradigm of Van Selst’s 
study (1999), in task 1, subjects were asked to discriminate 
tones into high or low tones by vocal responses (audio-vocal 
responses); in task 2, subjects watched visually presented 
characters and performed choice reaction task by manual 
responses (visual-motor responses). They found that 
practice dramatically reduced dual-task interference in PRP.  

The basic PRP has been modeled by several major 
computational cognitive models based on production rules, 
notably EPIC (Meyer & Kieras, 1997a) and ACT-R/PM 
(Byrne & Anderson, 2001). Based on the major assumption 
that production rules can fire in parallel, EPIC successfully 
modeled the basic PRP effect by using complex lock and 
unlock strategies in central processes to solve the time 
conflicts between perceptual, cognitive and motor 
processing (Meyer & Kieras, 1997a). In contrast to the 
parallel cognitive processing assumption of EPIC, ACT- 
R/PM assumes serial firing of production rules in cognition. 
It modeled the basic PRP effect by relying on drawing 

scheduling charts manually to quantify the quick switching 
of central cognition in information processing, which shares 
certain similarities with the lock and unlock strategies in 
EPIC (Byrne & Anderson, 2001). All of these complex 
lock/unlock strategies or scheduling charts came from the 
arrangements by the researchers rather than the natural 
interactions among the processors or modules. Moreover, 
because of the complexity of dual tasks in practical 
situations, it may be difficult for a system designer or 
human factor specialist to figure out these complex 
strategies or scheduling charts to arrange the activities of the 
central cognitive processor. 

Furthermore, neither EPIC nor ACT-R/PM modeled the 
practice effect on PRP (Ruthruff et al., 2001).  

The current paper describes a model of PRP that 
integrates queuing network theory (Liu, 1996, 1997) and 
reinforcement learning algorithms (Sutton & Barto, 1998) 
and was developed on the basis of neuroscience findings. 
Model simulation results were compared with experimental 
results of both the basic PRP paradigm and the practice 
effect on PRP (Van Selst et al., 1999). All of the simulated 
human performance came from the natural interactions 
among servers and entities in the queuing network without 
setting up lock and unlock strategies or drawing complex 
scheduling charts.  

Modeling the Basic PRP and the Practice 
Effect on PRP with Queuing Networks 

Modeling Human Performance with Queuing 
Networks 

A queuing network is a network of servers and queues 
that allow two or more servers to act serially, in parallel, or 
in any network arrangement. Computational models based 
on queuing networks have successfully integrated a large 
number of mathematical models in response time (Liu, 
1996) and in multitask performance (Liu, 1997) as special 
cases of queuing networks. A queuing network modeling 
architecture called the Queuing Network – Model Human 
Processor (QN-MHP) has been developed and used to 
generate behavior in real time (Liu, Feyen & Tsimhoni, 
2004), including simple and choice reaction time (Feyen & 
Liu, 2001), driver performance (Tsimhoni & Liu, 2003) and 
transcription typing (Wu & Liu, 2004a, 2004b). The model 
in this paper extends QN-MHP by integrating reinforcement 
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learning algorithms and strengthening its long-term 
memory. The simulation model is easy to use and is 
implemented with Promodel®, one of the most popular 
simulation software programs in industry.  

Because major brain areas with certain information 
processing time and capacity are localized and connected 
with each other in brain cortex via neural pathways (Bear & 
Connor, 2001; Smith et al., 1998; Roland, 1993, see Figure 
1 and Table 1), it is assumed that they form a queuing 
network. One or several brain areas are regarded as servers 
of the network with neural pathways regarded as routes and 
information to be processed in these brain areas regarded as 
the entities. Cognitive performance is the outcome of 
processing the entities in the queuing network. 

 
Modeling the Basic PRP and Practice Effect on 
PRP with Queuing Networks and Reinforcement 
Learning Algorithms 
 

Because the PRP effect prior to or at beginning of 
learning (the basic PRP) is a special case of the PRP effect 
during the learning process, the two phenomena of PRP 
(basic and learning) are modeled with the same mechanism 
in our queuing network model. The experimental tasks and 
data of Van Selst et al. (1999) were used to test the model.   

Brain areas (servers) and their routes related to the two 
PRP tasks in Van Selst‘s study were identified within the 
general queuing network structure based on recent 
neuroscience findings (Mitz et al., 1991; Fletcher et al., 
2001; Bear & Connor 2001, see Figure 1).  

Entities of task 1 (audio-vocal responses) cannot bypass 
the Hicog server because the function of phonological 
judgment is mainly located at the Hicog server, and thus 
there is only one possible route for the entities of task 1 (see 
the dotted thick line in Figure 1). However, the function of 
movement selection in task 2 (visual-motor responses) is 
located not only in the Hicog server but also in PM server. 
Therefore, there are two possible routes for the entities of 
task 2 starting at Visk server (see the gray and black solid 
lines in Figure 1).  

 
Figure 1:  The general structure of the queuing network model (QN-MHP) with servers and routes involved in the PRP task 

highlighted (server names, brain structures, major functions and processing time are shown in Table 1) 
Table 1: Server name, major function and brain structure (Capacity is mainly based on Card et al., 1986; Liu, 1997. 

Processing time is based on Rudell & Hu, 2001; Feyen, 2001; Romero, 2000; Nakahara et al., 2001) 
Server(Capacity) Brain Structure Major function (Processing logic)  Processing Time  
Eye (∞) Eye, LGN, SC, visual pathway  Visual sampling & signal transmission  Eye movement: 50ms 
VSen 
(17 letters) 

Distributed parallel area, SFS, dorsal & 
ventral system 

 
 

Visual sensory memory & perception  Normal distribution: 
M=263ms, SD=11ms 

Visk (3 chunks) Right posterior parietal cortex   Visuospatial sketchpad to store the graphic information  Included in CE server 
Ear (∞) Ear, auditory pathway  Converts sound waves to neuron signals   10 ms 
Asen (5 entities 
 of tones) 

Primary auditory cortex & planum 
temporale 

 Auditoral sensory memory and perception  50 ms 

Pho 
(3 chunks) 

Left posterior parietal cortex,  inferior 
parietal lobe 

 
 

Phonological loop to store auditoria & textual information  Included in CE server 

CE  
(3 chunks) 

Dorsal lateral prefrontal cortex & ACC  Mental response inhibition & selection, improve processing 
rate of premotor cortex via parallel learning mechanism 

 Exponential distribution: 
Mean=70ms, Min=25ms

Hicog  
(1 chunk) 

Left interior partial cortex, IPS  and 
VLFC 

 Phonological judgment, visuomotor choices by retrieving 
production rules at LTDSM 

 aAi+Bi Exp(-αiNi) 

LTDSM (∞) Hippocampus  Long-term declarative memory (e.g. production rules in 
judgments and choices) and spatial memory 

 
 

Included in Hicog 

PM (1 chunk) Premotor cortex (BA 6)  Select movement in learning visuomotor association  aAi+Bi Exp(-αiNi) 

BG (1 chunk) Basal ganglia  Motor program retrieval   aAi+Bi Exp(-αiNi) 
LTPM  (∞) Striatal and cerebellar systems  Long term procedural knowledge storage  Included in BG server 
SMA (2 letters) Supplementary motor area & pre-SMA  Motor program assembly, error detection   188 ms 
M1 (2 letters) Primary motor cortex  Addressing  spinal motorneourons  70 ms 
Mouth (1 letter) - Converts neuron signal to movement of vocal organ  10 ms 
Hand (1 letter) - Execution of motor movement  bImlog2(D/S+0.5) 
a. See the part “learning process of individual servers” in this paper.     b. Fitt’s Law: Im=26.3,D=1.3cm, S: movement distance. 

Eye Vsen 

Visk 

Pho 

CE 

Ear Asen 

PM

BG

SMA

M1 

Mouth 

Right Hand 

Left Hand 

Right Foot 

Left Foot 

LTPM

Hicog LTDSM
S1 

Routes of entities in other tasks 

2nd Route of entities of task 2 
(Visual-motor responses) 

Route of entities of task 1 
(Audio-vocal responses) 
Retrieval information from 
long-term memory 

1st Route of entities of task 2 
(Visual-motor responses) 
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However, how do the entities of task 2 choose one of the 
two alterative routes in the network? What is the behavioral 
impact of this choice on PRP and the practice effect on 
PRP? This can be answered by integrating queuing 
networks with reinforcement learning algorithms. 

Before exploring the mechanism with which entities of 
task 2 select from the 2 routes, it is necessary to understand 
the learning process of individual brain areas. It was 
discovered that each individual brain area reorganizes itself 
during the learning process and increases its processing 
speed (Ungerleider, 2002). For example, for the simplest 
network with 2 routes (see Figure 2), if servers 2 and 3 
change their processing speeds, different routes chosen by 
an entity (1 3 4 or 1 2 4) will lead to different 
performance. Without considering the effect of error, 
entities will choose the optimal route with the shortest 
processing time if they want to maximize the reward of 
performance.  

 
Figure 2: The simplest queuing network with 2 routes 

Consequently, to model learning, it is first necessary to 
quantify the learning process in individual servers. Based on 
that, the condition under which an entity switches between 
the 2 routes shown in Figure 2 can be established and 
proved by integrating queuing network with reinforcement 
learning. Finally, this quantitative condition of route 
switching can be applied to the more complex model of 18 
servers with 2 routes (see Figure 1) to generate the basic 
PRP and reduction of PRP during the learning process. 

 
Learning Process in Individual Servers Based on the 
function of the servers in Table 1, the two long-term 
memory servers (LTDSM and LTPM) play the major roles 
in learning phonological judgments (task 1) and choice 
reaction (task 2) (Bear & Connor, 2001). Because the 
learning effects of long-term memory are represented as 
speed of retrieval of production rules and motor programs 
from the two long-term memory servers at Hicog and BG 
servers, it is important to quantify the processing time of 
Hicog and BG servers. In addition, because premotor cortex 
(PM) server is activated in learning visuomotor association 
(Mitz et al., 1991), change of the processing speed of PM 
server is also to be considered in the learning process of the 
model. 

Because exponential function fits the learning processes 
in memory search, motor learning, visual search, and 
mathematic operation tasks better than power law 
(Heathcote et al., 2000), it is applied to model the learning 
process in the individual servers (Equation 1).  
            1/µi= Ai+Bi Exp(-αiNi)                                           (1) 
    µi: processing speed of the server i; (1/µi) is its processing 
time; Ai: The minimal of processing time of server i after 
intensive practice; Bi: The change of expected value of 
processing time of server i from the beginning to the end of 

practice; αi: learning rate of server i; Ni: number of 
customers processed by server i.   
   For BG server, 1/µBG: motor program retrieving time; 
ABG: the minimal of processing time of BG server after 
practice (314 ms, Rektor et al., 2003); BBG: the change of 
expected value of processing time from the beginning to the 
end of practice (2*314=628 ms, assumed). αBG: the learning 
rate of server BG (0.00142, Heathcote et al., 2000); NBG: 
number of entities processed by server BG which is 
implemented as a matrix of frequency recorded in LTPM 
server. 

For Hicog and PM servers, to avoid building an ad-hoc 
model and using the result of the experiment to be simulated 
directly, nine parameters in Hicog and PM servers were 
calculated based on previous studies (see Appendix 1).  
 
Learning Process in the Simplest Queuing Network with 
2 routes Based on the learning process in individual servers, 
the condition under which an entity switches between the 2 
routes in the simplest form of queuing networks with 2 
routes (each capacity equals 1) (from route 1 2 4 to route 
1 3 4, see Figure 2) was quantified and proved by the 
following mathematic deduction. 
 1) Q Online Learning Equation (Sutton & Barto, 1998).  
Qt+1(i,j) Qt (i,j)+ ε {rt+ γ max k [Qt(j, k)]-Qt(i,j)}            (2)   
• Qt+1(i,j): online Q value if entity routes from server i to 

server j in t+1 th transition 
• maxk[Q(j,k)]: maximum Q value routing from server j 

to the next  k server(s) (k>=1) 
• rt=µj,t: reward is the processing speed of the server j if 

entity enters it at t th transition  
• Njt: number of entities goes to server j at t th transition;  
• ε:  learning rate of Q online learning (0< ε<1)   
• γ: discount parameter of routing to next server (0<γ<1) 
• p: probability of entity routes from server 1 to server 3 

do not follow the Q online learning rule if Q (1,3)> Q 
(1,2). For example, if p=0.1, then 10% of entity will go 
from server 1 to server 2 even though Q (1,3)> Q (1,2). 

State is the status that an entity is in server i; Transition is 
defined as an entity routed from server i to j. Equation 2 
updates a Q value of a backup choice of routes (Qt+1(i,j)) 
based on the Q value which maximizes over all those routes 
possible in the next state (maxk[Q(j,k)]). In each transition, 
entities will choose the next server according to the updated 
Qt(i,j). If Q (1,3)>Q (1,2), more entity will go from server 1 
to server 3 rather than go to server 2.   
 2) Assumption 
• ε  is a constant which do not change in the current 

learning process (0< ε<1)   
• Processing speed of server 4 (µ4) is constant 
 3) Lemma  1. At any transition state t (t≠0), if 1/µ2,t< 
1/µ3,t, then Qt+1(1, 2)>Qt+1(1, 3)   
Proof of Lemma 1 (see Appendix 2).  
Based on Lemma 1 and equation 1, we got Lemma 2:  
 4) Lemma 2. At any transition state t (t≠0), if A2+B2Exp(-
α2N2t)  < A3+B3Exp(-α3N3t),  then  Qt+1(1,2)>Q t+1 (1,3)  
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Prediction of the Basic PRP and the Practice Effect on 
PRP with the Queuing Network Model Based on equation 
1 and Lemma 1 and 2, we can predict the possible 
simulation result of PRP and PRP practice effect.  

For the entities in task 2 (see Figure 1), at the beginning 
of the practice phrase, because the visual-motor mapping is 
not ready in PM (Mitz et al., 1991), PM takes a longer time 
to process the entities than the CE and Hicog. Thus, the Q 
value from Visk to PM (Q (1,3)) is lower than the Q value 
from Visk to CE (Q (1,2)). According to Lemma 1, the 
majority of the entities will go to the CE and Hicog server at 
the beginning of the learning process in dual tasks. 
Consequently, because entities from task 1 also go through 
the CE and Hicog server, a bottleneck at the Hicog server 
would form at this stage which produces the basic PRP 
effect. 

During the learning process, CE will send dummy entities 
which increase the processing speed of PM based on the 
parallel learning mechanism between visual loop (including 
CE) and motor loop (including PM) (Nakahara et al., 2001, 
see Table 1). Therefore, when Q value of the 2nd route of 
task 2 increases, more and more entities of task 2 will travel 
in the 2nd route, forming an automatic process and two 
parallel routes in this dual-task situation. However, because 
the learning rate of PM server (1/16000) is lower than that 
of Hicog server for the entities in task 2 (1/4000), the 
majority of the entities will still go through the Hicog 
server.  

Simulation Result 
Figure 3 shows the simulation result of the basic PRP 

effect compared with the experiment data (Van Selst et al., 
1999). The linear regression function relating the simulation 
and experiment results is: Y =1.057X-58 (Y: Experiment 
Result; X: Simulated Result; R square =.984, p<.001; sig. of 
constant > .05). 
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Figure 3: Comparison of simulation and experiment results 

at the beginning of practice (basic PRP effect) 

Figure 4 compares of simulation and experiment result of 
PRP effect at the end of practice (after 7200’s trials). The 
linear regression function relating the simulated results and 
experiment results is: Y=1.03X+105 (R square =.891, 
p<.001; sig. of constant > 0.05). 
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Figure 4: Comparison of the simulation and experiment 
results at the end of practice 

Figure 5 shows the comparison of simulation and 
experiment results during the practice process (7200 trials). 
The linear regression function relating the simulated results 
and experiment results is: Y=0.965X +10 (R square =.781, 
p<.001; sig. of constant > 0.05). Moreover, it was found that 
the Q value of the 2nd route of task 2 never exceeded that of 
the 1st route of task 2 during the practice process and the 
majority of entities of task 2 went through the 1st route 
rather than the 2nd route. 
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Figure 5: Comparison of simulation and experiment results 
during the practice process (7200 trials) 

Discussion 
Integrating queuing networks and reinforcement learning 

algorithms, the extended version of QN-MHP simulated 
both basic PRP effect and the practice effect on PRP in Van 
Selst (1999)’s study without setting up lock and unlock 
strategy or drawing complex scheduling chart.  

With the formation of an automatic process during 
learning, two parallel routes were formed in the dual-task 
situation, which partially eliminated the bottleneck at the 
Hicog server. The PRP effect is reduced greatly with the 
decrease of the processing time in both the Hicog and the 
PM server. However, since the majority of the entities of the 
two tasks still went through the Hicog server, the effect of 
the automatic process on PRP reduction does not exceed the 
effect of the reduction of RT 1 on the PRP. This is 
consistent with the result of Van Selst (1999) that automatic 
process does grow from weak to strong but only contributes 
small PRP reduction. 

The current model indicates that depending on an 
individual’s degree of practice, cognition can be either serial 
or parallel at the level of production or response selection.  
At the beginning of practice, a bottleneck at the Hicog 
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server within the central cognition is critical for the 
generation of PRP effect, which is consistent with the 
assumption of ACT-R/PM that cognition must be serial 
without considering the effect of practice. However, the 
formation of a parallel process in production selection after 
practice indicates that there are two response or production 
selection processors running in parallel in the cognitive 
system in the well-learned situation, which is different from 
the basic assumption in ACT-R/PM. This parallel 
processing in the well-learned situation in the current model 
is supported by Van Selst (1999)’s study and the review of 
fMRI study by Collette (2001) who found that in dual task 
situations not only the brain area of CE server (BA9/46: 
DLPFC & ACC) but also the area of well-learned 
visuomotor control (BA 6: premotor area, PM server) were 
activated simultaneously. In addition, it is also important to 
note that the formation of two parallel processing routes in 
the current model is different from the assumption and 
mechanism of EPIC because the two routes were formed 
with reinforcement learning naturally without using any 
unlock and unlock strategies.  

Because the queuing network model was built in a general 
structure of human information processing, it can be easily 
transformed to model other task situations involving 
concurrent activities in practical situations, e.g. dual tasks in 
transcription typing (Wu & Liu, 2004b). In contrast to 
complex unlock and lock strategies in EPIC or drawing 
complex scheduling charts in ACT-R/PM, the current model 
can model concurrent tasks more easily by adding a route 
for the secondary task in the model, feeding the stimuli of 
the secondary task to the model, and coding the task 
description into an easy-to-use Excel sheet. This unique 
feature offers great potential of the model for easy 
application and learning by researchers and engineers in 
practice. 

Acknowledgments 
   This article is based upon work supported by the 

National Science Foundation under Grant No. NSF 
0308000. However, any opinions, findings and conclusions 
or recommendations expressed in this article are those of the 
authors and do not necessarily reflect the views of the 
National Science Foundation (NSF). 

Reference 
Bear, M., & Connor, B. (2001). Neuroscience: Exploring 

the Brain (2nd edition). Lippincott Williams& Wilkins 
Publisher 

Byrne, M.D., & Anderson, J.R. (2001). Serial Modules in 
Parallel: The Psychological Refractory Period and Perfect 
Time Sharing. Psychology Review, 108, 4, 847-869 

Card, S., Moran, T., & Newell, A. (1986). The Model 
Human Processor: An engineering model of human 
performance. In Boff, K. (Eds.) Handbook of Perception 
and human performance, New York: Wiley  

Collette, F. & Linden, M.V. (2002). Brain Imaging of the 
Central Executive Component of Working Memory. 
Neuroscience and Biobehavioral Review, 26, 105-125 

Feyen, R.G. & Liu, Y. (2001). Modeling Task Performance 
Using the Queuing Network Model Human Processor 
(QN-MHP). Proceedings of the Fourth International 
Conference on Cognitive Modeling, 73-78 

Fletcher.P.C., & Henson, R.N.A. (2001). Frontal Lobes and 
Human Memory: Insights from Functional Neuroimaging. 
Brain, 124, 849-881 

Flynn, B.M. (1943). Pitch discrimination: the form of the 
psychometric function and simple reaction time to liminal 
differences. Archives of Psychology (Columbia 
University), 280, 41 

Heathcote, A., Brown, S., & Mewhort, D.J.K (2000). The 
power law repealed: the case for an exponential law of 
practice. Psychological Bulletin, 7, 2, 185-207 

Liu, Y. (1996). Queuing network modeling of elementary 
mental processes. Psychological Review, 103, 1, 116-136 

Liu, Y. (1997). Queuing network modeling of human 
performance of concurrent spatial and verbal tasks. IEEE 
Transactions on Systems, Man, Cybernetics, 27, 195-207 

Liu, Y., Feyen, R., and Tsimhoni, O. (2004). Queuing 
Network – Model Human Processor (QN-MHP): A 
Computational Architecture for Multitask Performance in 
Human Machine Systems. Technical Report 04-05. 
Department of Industrial and Operations Engineering, 
University of Michigan 

Meyer, D.E & Kieras, D.E. (1997a). A computational theory 
of executive cognitive. Psychology Review, 104, 1, 3-65 

Mitz, A. R., Godshalk, M., & Wise, S.P. (1991). Learning –
dependent activity in the premotor cortex: activity during 
the acquisition of the conditional motor assassinations. 
The Journal of Neuroscience, 11, 6, 1855-1872 

Mowbray, G. H., & Rhoades, M.V. (1959). On the 
reduction of choice reaction time with practice. Quarterly 
Journal of Experimental Psychology, 14, 1-36 

Mustovic. H., Scheffler, K., Di Salle, F. (2003). Temporal 
integration of sequential auditory events: silent period in 
sound pattern activates human planum temporale. 
NeuroImage, 20, 429–434 

Nakahara, H., Doya, K., & Hikosaka, O. (2001). Parallel 
Cortico-Basal Ganglia Mechanisms for Acquisition and 
Execution of Visuomotor Sequences-A Computational 
Approach. Journal of Cognitive Neuroscience, 13, 5, 
626–647 

Rektor, I., Kanovsky, P., Bares., M. (2003). A SEEG study 
of ERP in motor and premotor cortices and in the basal 
ganglia. Clinical Neurophysiology, 114, 463–471 

Roland, P.E. (1993). Brain Activation. John Wiley &Sons 
Romero, D.H, Lacourse, M.G, Lawrence,K.E. (2000). 

Event-related potentials as a function of movement 
parameter variations during motor imagery and isometric 
action. Behavioral Brain Research, 117, 83–96 

Rudell, A.P. & Hu, B. (2001). Does a warning signal 
accelerate the processing of sensory information? 
Evidence from recognition potential responses to high and 
low frequency words. International Journal of 
Psychophysiology, 41, 31-42 

http://www-personal.engin.umich.edu/%7Eyililiu/QueueingNetwork.pdf
http://www-personal.engin.umich.edu/%7Eyililiu/QueueingNetwork.pdf
yguo
324



Ruthruff, E., Johnston, J.C & Selst, M.V. (2001). Why 
Practice Reduces Dual-Task Interference. Journal of 
Experimental Psychology: Human Perception and 
Performance, 27, 1, 3-21 

Schmidt, R.A. (1988). Motor control and learning Human 
Kinetics Publishers, 82-298 

Smith, E.E, & Jonides, J. (1998). Neuroimaging analyses of 
human working memory. Proc. Natl. Acad. Sci. USA, 95, 
12061–12068 

Sutton, R.S. & Barto, A.G. (1998). Reinforcement Learning: 
An Introduction. MIT Press: Cambridge, Massachusetts.  

Tsimhoni,O., & Liu, Y.(2003). Modeling steering with the 
Queuing Network-Model Human Processor (QN-MHP). 
Proceedings of the 47th Annual Conference of the Human 
Factors and Ergonomics Society, 81-85 

Ungerleider, L.G., Doyon, J., & Karni, A. (2002). Imaging 
Brain Plasticity during Motor Skill Learning. 
Neurobiology of Learning and Memory, 78, 553–564  

Van Selst, M., Ruthruff, E. & Johnston, J.C. (1999). Can 
Practice Eliminate the Psychological Refractory Period 
Effect? Journal of Experimental Psychology: Human 
Perception and Performance, 25, 5, 1268-1283 

Wu, C. & Liu, Y. (2004a). Modeling behavioral and brain 
imaging phenomena in transcription typing with queuing 
networks and reinforcement learning algorithms. 
Proceeding of Sixth International Conference on Cognitive 
Modeling, Pittsburgh, PA, USA (In press).  

Wu, C. & Liu, Y. (2004b). Modeling human transcription 
typing with queuing network-model human processor. 
Proceedings of the 48th Annual Meeting of Human 
Factors and Ergonomics Society, New Orleans, 
Louisiana, USA (In press). 

 
Appendix  

1. Parameters Setting at Hicog and PM server 
1) AHicog-symbol: minimal value of the processing time of task 2 

entity in Hicog server. Since choice reaction time (RT) of 4 
alternatives can be reduced to RT of 2 alternatives with practice 
(Mowbray et al., 1959), after intensive practice, RT of 8 alternative 
choices in Van Selst’s experiment will reduce to RT of 4 
alternatives without intensive practice. AHicog-symbol equals the RT 
of 4 alternatives (Hick’s Law, intercept:150ms, slope:170ms/bit, 
Schmidt, 1988) minus 1 average perception cycle (100ms), 2 
cognitive cycles (2*70 ms) and 1 motor cycle (70ms) (Card et al., 
1986). Therefore, AHicog-symbol=150+170*Log2(4)-100-2*70-
70=180 ms. 

 2) BHicog-symbol: change of processing time of task2 entity in 
Hicog server at the beginning and end of practice. At the beginning 
of the practice in single task 2, RT of the 8 alternatives (Hick’s 
Law, intercept:150ms, slope:170ms/bit, Schmidt, 1988) is 
composed of 1 perception cycle (100ms), maximum processing 
time at Hicog (AHicog-symbol+BHicog-symbol), and 1 motor cycle (70ms) 
(Card et al., 1986). Therefore, BHicog-symbol=150+170*Log2(8)-100-
AHicog-symbol-70=170ms. 

3) α Hicog-symbol, α Hicog-tone: learning rate of  Hicog server in 
processing the task 2 and task 1 entities. Based on α=0.001 
approximately in Heathcote et al. (2000)’s study, learning 
difficulty increased 4 times because of the 4 incompatible 
alternatives. Thus, α Hicog-symbol= α Hicog-tone=0.001/4=1/4000. 

4) AHicog-tone: minimal value of the processing time of task1 
entity in central executive. After intensive practice, the 
discrimination task of the 2 classes of tones in Van Selst  (1999) ‘s 
experiment can be simplified into a choice reaction time of two 
alternatives, requiring the minimum value of 1 cognitive cycle 
(25ms) (Card et al., 1986).  

5) BHicog-tone: change of processing time of task1 entity in Hicog 
at the beginning and end of practice. At the beginning of the single 
task 1, the reaction time to discriminate the 2 classes of tone is 
642ms (Flynn, 1943), which is composed of 1 perception cycle 
(100ms), 2 cognitive cycles (70*2 ms),  (AHicog-tone+BHicog-tone) and 
1 motor cycle (70ms). Therefore, BHicog-tone=642-100-2*70-AHicog-

tone-70=307ms. 
6) APM-symbol: minimal value of the processing time of task 2 

entity in PM. After intensive practice, RT of the 8 alternative 
choices in Van Selst’s experiment will transform to RT of 8 most 
compatible alternatives (RT=217ms, Schmidt, 1988) which is 
composed 1 perception cycle and 1 motor cycle. Therefore, APM-

symbol=217-100-70=47ms. 
7) BPM-symbol: change of processing time of task2 entity in PM at 

the beginning and end of practice. At the beginning of practice in 
single task 2, RT of 8 alternative choice reaction time (Hick’s Law: 
50ms, slope: 170ms/bit) is composed of 1 average perception cycle 
(100ms), (APM-symbol+BPM-symbol), 1 motor cycle (70ms). Thus, BPM-

symbol=150+170*Log2(8)-100- APM-symbol-70=443 ms. 
8) αPM-symbol : learning rate of  PM in processing the task2 entity 

The speed of formation of the automatic process in PM is slower 
than Hicog because it receive the dummy entities from CE server 
via the indirect parallel learning mechanism with the 4 
incompatible alternatives (Nakahara et al., 2001). Thus, αPM-

symbol=(0.001/4)/4=1/16000.  
 

2. Proof of Lemma 1 
Lemma 1. At any transition state t (t≠0), if 1/µ2,t< 1/µ3,t, then 
Qt+1(1, 2)>Qt+1(1, 3) 
Proof. Using mathematic deduction method  
 i) At t=0: Q1 (1,3)=Q1 (1,2)=Q1 (2,4)=Q1 (3,4)=0 
 ii) At t=1: Using the online Q learning formula: 
 Q2(1,3)=Q1(1,3) + ε [rt + γQ1(3,4)-Q1(1,3) ] = εµ3,1 
Note: because entity routes to only one server (server 4) maxb 
Qt(St+1,b)=Q(3,4), Q2(1,2)= εµ2,1, Q2(3,4)= εµ4,  Q2(2,4)= εµ4; If 
1/µ2,1 <1/µ3,1, then εµ3,1< ε µ2,1 (given 0< ε<1), i.e.Q2(1,2) > Q2(1,3) 
Thus, Lemma is proved at t=1. 
 iii) According to Mathematic Deduction Method， Lemma 1 is 
correct: i.e. at transition state t=k: if 1/µ2,k< 1/µ3,k, then  
Qk+1(1,2)>Q k+1 (1,3). We want to prove at transition state k+1, 
Lemma is still correct: i.e.At transition state t=k+1:  
if 1/µ2,k+1< 1/µ3,k+1, then  Qk+2(1,2)>Q k+2 (1,3)                               
At t=k+1:  
Qk+2(1,2)= Qk+1(1,2)+ ε [ µ2,k+1 + γεµ4-Qk+1(1,2) ] 
Qk+2(1,3)= Qk+1(1,3)+ ε [ µ3,k+1 + γεµ4 -Qk+1(1,3) ]    
Qk+2(1,2)- Qk+2(1,3) 
= Qk+1(1,2)+ ε [µ2,k+1 + γεµ4-Qk+1(1,2) ] –{Qk+1(1,3)+ ε [µ3,k+1 + γ ε 
µ4-Qk+1(1,3) ]} 
= (1- ε)[Qk+1(1,2)- Qk+1(1,3)]+ (ε µ2,k+1- ε µ3,k+1) 
With equation 3 and 0<ε<1, we have:  
(1- ε)[Qk+1(1,2)- Qk+1(1,3)]>0 
Given 1/µ2,k+1< 1/µ3,k+1  and 0<ε<1, then (ε µ2,k+1- ε µ3,k+1)>0, i.e. 
Qk+2(1,3)- Qk+2(1,2) >0  
Thus, Lemma 1 is correct at t=k+1. Lemma 1 is proved. 
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