In Proceedings of the Sixth International Conference on Cognitive Modeling, 326-331.

Mahwah, NJ: Lawrence Earlbaum.

Vergence Control in Fixation with Minimal Disparity Information

Welilie Yi (wyi@cs.rochester.edu)
Department of Computer Science, University of Rochester
Rochester, NY 14627 USA

Dana H. Ballard (dana@cs.rochester.edu)
Department of Computer Science, University of Rochester
Rochester, NY 14627 USA

Abstract

Vergence control is an important part of biologically
plausible models of active vision, which plays an im-
portant role in cognition. Our vergence system is based
on the output of three disparity-selective neurons corre-
sponding to zero, near, and far disparities. A neuron’s
output is defined as the distance between the feature
vectors of two points in the left and right images. Ver-
gence control is generated by using these three disparity
values, in search for global minimum of disparity. To es-
cape from local minima, the image is subsampled, and
gradually expanded to the original scale. Empirical re-
sults shows that the method is effective and robust when
applied to targets in natural scences.

Introduction

In the human binocular visual system, because of the
different viewpoints of the eyes, two retinas receive sim-
ilar, but slightly different images of the physical world.
To ensure the object of interest is in the fovea, where
the majority of optical sensors gather (Yarbus, 1967),
the brain sends motor control signals to muscles in the
eyes and orient the eyeballs, according to the images per-
ceived by the visual cortex. When the intersection of the
lines of sights falls on the object of interest, the object
is fixated on, and the vergence control is completed.

A central component of any visual system is the ability
to perform figure-ground segmentation. Vergence con-
trol ability can greatly facilitate this process by isolating
the parts of the world that have small disparities near
the point of gaze. The small disparity constraint can be
as powerful as color and shape cues(Coombs, 1992) in
isolating useful objects. Vergence is also special because
it provides depth information needed for reaching.

Vergence control has been implemented in various arti-
ficial binocular active vision systems (Hansen and Som-
mer, 1996; Manzotti et al., 2001; Sturzl et al., 2002).
The goal of active control is to minimize the distance
between the central pixel/patches of the two views. For
the sake of simplicity, one camera could be designated
as the reference camera, and computation of vergence
control parameters only occurs on the other camera.

There are basically two methods to determine the con-
trol parameters to verge the second camera. One is to
solve the Stereo Correspondence Problem. This prob-
lem asks which pixel in the first image corresponds to
which pixel in the second one, or, in this case, which
pixel in the verging camera’s image corresponds to the

central pixel of the dominant camera’s image. Solving
this problem involves heavy computation, because every
possible pixel in the vergence view has to be compared
with the central pixel in the reference view, and the one
with maximal similarity is labeled as the corresponding
pixel(Manzotti et al., 2001).

The other method is to use a close loop control mod-
ule, which takes error as input and uses PID control
to generate vergence parameters(Hansen and Sommer,
1996). This method does not guarantee convergence be-
cause the error curve could have multiple minima with
various values due to the change of image characteris-
tics in an nonlinear and unpredictable fashion(Manzotti
et al., 2001).

In a symmetrical binocular vision system, which
doesn’t have a dominant camera, the same problem per-
sists(Sturzl et al., 2002).

To make the vergence control computationally efficient
and biologically more plausible, we incorporated the idea
of disparity selective cells(Ohzawa et al., 1996) and mini-
mized the amount of information needed for the vergence
control problem. The motivation is that, in a foveated
visual system, the majority of information comes from
the fovea. So the computation has to focus on the cen-
ters of retinal images. In our approach, three neurons
are responsible for detecting zero, tuned near and tuned
far disparities respectively. According to the relative val-
ues of these three neuron’s output, control command is
generated and the two views are updated, entering the
next loop of execution. Inspired by psychopysiological
studies, we also applied Scale Space Theory to ensure a
better convergence.

The rest of this paper is arranged as follows. The
next section introduces the simple cell model and our
basic algorithm for vergence control. Section 3 provides a
modified version of this algorithm. Experimental results
are presented in Section 4. Finally, conclusive remarks
are given in Section 5.

Vergence Control Algorithm

In our binocular vision system, only horizontal dispari-
ties exist. Further more, since the fovea lies in the cen-
ter of the image, we only consider the distance between
the central point in one image and points on the mid-
dle horizontal line of the other image, neglecting vertical
varieties. As shown in Figure 1, an error curve has all
the information we need to compute the vergence control
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Figure 1: Error curve for the right eye. The X axis is the
relative horizontal position from the center of the retinal
image. The Y axis is the Euclidean distance, between
the image patch at position X in the right image and the
one at position -X in the left image. For example, the
patches in the center of the two images have an error of
about 150, while the patch centered at (4, 0) in the right
image and the patch centered at (-4, 0) in the left image
have an error of around 80. To fixate on any particular
point, the vergence system must reduce its error to zero.

parameters. The minimum of this curve corresponds to
the optimal verge angle. In our algorithm, we only use
a minimal subset of it to direct the vergence, instead of
searching for the minimum in a brute force manner.

Simple Cell Model

On the visual pathway of the brain, visual stimuli are
sent from the retina to the primary visual cortex via
LGN (lateral geniculate nucleus) (Hubel, 1988). The
majority of the orientation sensitive neurons are called
simple cells, whose receptive fields can be modeled by
Gabor filters (Petkov and Kruizinga, 1997). In the clas-
sical view, binocular neurons in the visual cortex receive
inputs from simple cells and they are tuned to specific
disparity values (Hubel, 1988) (Qian, 1994) (Qian and
Zhu, 1997). Disparity selective binocular neurons can
be classified to five categories, according to their tuning
curve: tuned zero disparity cells, tuned near/far dispar-
ity cells and untuned near/far disparity cells.

Receptive Fields

The base representation, or the receptive fields of the
first layer image processing units, could be modeled by
Gabor filters (Daugman, 1980). The general form of a
2-D Gabor filter is:
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We will use Gaussian derivatives to approximate Ga-
bor filters (Rao and Ballard, 1995):
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Basing on Egs. 3 and 4, orientation selective receptive
fields with the same spatial frequency could be synthe-
sized as:

G = k1 (0)GY + kan (0)GT? (5)
where 6 is the preferred orientation and

k11(0) = cos(9)
k21 (0) = sm(@)

Similar steerability exists in other orders. For each
pixel on the image, a feature vector V is computed bas-
ing on a set of selective fields, typically Oth to 3th Gaus-
sian derivatives, by doing convolution with discrete fil-
ters on the image.

V(a:,y) = z I(laJ)G(Z_an_y) (6)

ji=2|<RJj-y|<R

where G is a vector of discretized Gaussian derivative
receptive fields. A screen shot of the computation of
base representation is in Fig. 2.

Minimal Information Model

Of the five categories of disparity selective neurons, we
only used one neuron from the first 3 categories (tuned
zero, tuned near and tuned far), whose receptive field is
easy to implement. The zero disparity neuron’s output
is defined as the Euclidean distance between the feature
vectors of the central pixels of two images.

d#er’ = (Vl(u%’g)_vr(x".’g))(Vl(u,ﬁ’g)_VT‘(i.’g))T (7)

where < #,{ > is the central pixel of an image, and V*
and V" stand for the feature vectors of left image and
right image respectively. The near and far disparities are
defined as

neor _ (Vz(ﬂl,g)_vr@,g)).(vl(£+1,g)_v’“(£,:&()g;

' = (V!(@-1,9)=V"(&,9)-(V'(@-1,9)-V"(&9)"

9)

The vergence control algorithm only uses the output
of these three disparity tuned neurons.
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Figure 2: Filter Outputs. (a) shows the raw image sent over network, and (b) shows five filtered images used in a
vergence control operation. These filters, from left to right, are 1st order and 2nd order Gaussian derivatives. The

sizes of these filters are all 15 by 15

The Basic Vergence Control Algorithm

Our basic vergence control algorithm, which doesn’t
work well, is like follows.

| Vergence Control Algorithm 1 |

calculate errors;
WHILE (d_near < d_zero OR d_far < d_zero)
{
IF (d_near < d_zero)
converge the eyes;
ELSE
diverge the eyes;
re-calculate errors;

}

The vergence control here is symmetric: Both cameras
adjust their orientation symmetrically basing on the out-
put of the three disparity neurons. In the loop, outputs
of the three disparity neurons are compared. We tried
to used quadratic function to model the local error curve
according to the three values, but failed due to the unpre-
dictable nature of the views. This algorithm terminates
when the minimum is found, e.g. the zero disparity value
is smaller than both near and far disparities.

A problem with this algorithm is that it is always look-
ing for a minimum which is next to the starting point.
The minimum it finds is not guaranteed to be a global
one. We will address this problem in the next section.

Saccadic Suppression and
Scale Space Theory

The solution of the local minimum problem is motivated
by a psychological observation called saccadic suppres-
sion and the Scale Space theory in computer vision.
Psychological studies discovered that when the eye is
performing a saccadic movement, the resolution of the
images sent to the visual cortex is reduced to keep the
stability of the view(Ross and Ma-Wyatt, 2004; Thilo
et al., 2004). This is mainly because of the prohibitive
lateral retinal interconnections(Hubel, 1988). Computa-
tionally speaking, retinal images are subsampled before
being sent over the optic nerve. Since every saccade is

generally followed by a fixation, fixation can take advan-
tage of saccadic suppression by processing the shrunken
images.

In our revised algorithm, vergence control begins with
a highly shrunken image pair. Suppression is imple-
mented as another loop which gradually decreases the
suppression factor so that the images become finer and
more details are unveiled. As the original sized images
are restored, the accuracy of vergence comes to a max-
imum. With this suppression loop, the pixel pair with
global minimum of distance is always close to the centers
of the images.

Closely related to the saccadic suppression observa-
tion, Scale Space Theory was introduced to study the
properties of images in different scale levels(Lindeberg
and Romeny, 1994; Lindeberg, 1994). For any image
I, a continues family of images I(x,y, o) is a series of
blurred versions of I(z,y) in which I(z,y, o) is the orig-
inal image I(z,y) when o = 0:

I(0) = I1® G(0) (10)

where G(o) is a Gaussian kernel G(z,y,0) =
1 _ 22442 . .
Nor Pt 202 and ® is a convolution operator. The space

(z,y,0) is called a scale space, and o the scale parame-
ter.

One of the basic properties of the scale space is “non-
creation of extrema” (Lindeberg, 1994), which means, as
the scale parameter increases, local extrema would merge
together, and when ¢ is above a certain value, only one
extremum exists.

The Enhanced Vergence Control Algorithm

Inspired by the theories described above, we revised our
algorithm to simulate the suppression process. Intu-
itively when the scale parameter, or equivalently the
suppression factor, increases, local minimum tend to dis-
appear and only the global one persists, at a slightly
different location, because of the blurring effect. Our
enhanced vergence control algorithm is as follows.
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| Vergence Control Algorithm 2

initialize scale
WHILE(scale > 0)
{
calculate errors;
WHILE (d_near < d_zero OR d_far < d_zero)
{
IF (d_near < d_zero)
converge the eyes;
ELSE
diverge the eyes;
re-calculate errors;
}
lower scale;

}

Note that this algorithm doesn’t guarantee conver-
gence to the global minimum of error, which in some
extreme cases, e.g. wall paper illusion, is impossi-
ble(McKee and Mitchison, 1988).

Experiments

We implemented this algorithm in the Virtual Reality
Laboratory at University of Rochester. A virtual hu-
man running on an SGI station walks in a town, and the
images it sees are sent over network to a PC where the
algorithm runs. This PC has a Datacube’  MaxRev-
olution image processing board, which is dedicated to
the computation of image convolutions. Vergence con-
trol commands are sent back to the virtual human and
the view ports of its two eyes are updated.

The changes of disparity curves are illustrated in Fig-
ure 3. Note only the three disparity values, d"*", d*¢"°
and df%", as shown in Figure 3(b), were actually used
in the experiments, while Figure 3(a) gives the complete
disparity curves for reference.

Since vergence facilitates depth perception. We used
the deictic information, the distance between two eyes,
to compute how far the fixated object is from the viewer.
In our experiment, the object gradually moves away and
so the vergence angle decreases. We calculated the dis-
tance by solving the following equation

e/2 = dtan(a/2) (11)

where e is the distance between two eyes, d is the dis-
tance between the fixated object and the viewer, and « is
the vergence angle. In our experiments, e = 0.05m. We
used linear regression to extract the relation between the
computed distance and the true distance which is avail-
able from the simulator program. The result is shown in
Figure 4.

Conclusions

We presented a biologically and psychologically plausi-
ble model for vergence control. In this single cell based
model, minimal disparity was used to determine the ver-
gence command. Inspired by Scale Space Theory and
saccadic suppression, a coarse-to-fine loop was intro-
duced to help the process converge.
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Figure 3: Vergence Control and Error Curves. This plot
shows how the error curve (the curve on an error-position
plane) changes over the iterations. Only the iterations
with the starting scale parameter are illustrated. Later
ones with scale parameters down to zero are not dis-
played for the sake of clarity. Subfigure (a) shows the
complete error surface, while (b) only shows the output
of the three disparity tuned neurons, which correspond
to positions -1, 0 and 1. Only these three values are used
in our algorithm, which successfully reduce the error at
the point x=0 to zero.

We cannot compare this model to others at this time
because we do not have a proper criteria. For instance, it
is not reasonable to compare the computational complex-
ity of various models without considering the physiolog-
ical mechanism, which is the object of these models, and
which is unknown. Our work suggests, it is likely that
the brain can go around the Correspondence Problem
and do vergence control with visual information which
is very local to the fovea.
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