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Abstract

We report an experiment where the RoboCup simulation
environment was used to study the cognitive advantage
provided by signals, which we view as task-specific structures
generated in the environment to improve decision-making.
We used the passing problem in RoboCup as our test problem
and soccer-players' 'yells' of their 'passability' as the task-
specific signals. We found that yells improved accuracy–
agents using the yells to decide the best player performed
much better than agents computing the best pass themselves.
The accuracy advantage derives from the task-specific nature
of the yell, and such task-specific structures (signals) are used
by organisms across species. From this, we reason that player
yells are an instantiation of an implicit, evolved, and adaptive
strategy, rather than an explicitly reasoned-out process.

Many organisms generate stable structures in the world to
reduce cognitive complexity, for themselves, for others, or
both. Wood mice (Apodemus sylvaticus) distribute small
objects, such as leaves or twigs, as points of reference while
foraging. They do this even under laboratory conditions,
using plastic discs. Such "way-marking" diminish the
likelihood of losing interesting locations during foraging
(Stopka & MacDonald, 2003). Red foxes (Vulpes vulpes)
use urine to mark food caches they have emptied. This
marking acts as a memory aid and helps them avoid
unnecessary search (Henry, 1977, reported in Stopka  &
MacDonald, 2003). The male bower bird builds colorful
bowers (nest-like structures), which are used by females to
make mating decisions (Zahavi & Zahavi, 1997). Many
birds advertise their desirability as mates using some form
of external structure, like colorful tails, bibs etc (Bradbury
& Vehrencamp, 1998). Other animals have signals that
convey important information about themselves to possible
mates and even predators (Zahavi & Zahavi, 1997).

Such epistemic structures (Chandrasekharan & Stewart,
2004), usually termed signals, form a very important aspect
of animal life across biological niches. These structures
allow the organisms to hive off part of their cognitive load
to the world. How much cognitive advantage do such
structures provide in noisy, dynamic and adversarial
environments? Where do the advantages come from? What
are its components? These are the problems we address in
this paper. We used the RoboCup simulation environment to

study the cognitive advantage provided by epistemic
structure strategy.

Signaling is generally studied as communication
(considered a good thing), and most approaches do not
focus on the computational advantages provided by
signaling. To understand the computational advantage
provided by signaling, consider the peacock’s tail, the
paradigmatic instance of an animal signal.  The tail’s
function is to allow female peacocks (peahens) to make a
mating judgment, by selecting the most-healthy male
(Zahavi & Zahavi, 1997). The tail reliably describes the
inner state of the peacock, that it is healthy (and therefore
has good genes).

To see the cognitive efficiency of this mechanism,
imagine the peahen having to make a mating decision
without the existence of such a direct and reliable signal.
The peahen will need to have a knowledge base of how the
internal state, of health, can be inferred from behavioral and
other cues. Let’s say “good dancing”, “lengthy chase of
prey”, “long flights” (peacocks fly short distances), “tough
beak” and “good claws” are cues for the health of a
peacock. To arrive at a decision using these cues, first the
peahen will need to “know” these cues, and that some
combinations of them imply that the male is healthy.

Armed with this knowledge, the female has to sample
males for an extended period of time, and go through a
lengthy sorting process based on the cues (rank each male
on each of these cues: good, bad, okay). Then it has to
compare the different results, keeping all of them in
memory, to arrive at an optimal mating decision. This is a
computationally intensive process.

The tail allows the female peacock to shortcut all this
computation, and go directly to the most-healthy male in a
lot. The tail provides the peahen a single, chunked, cue,
which it can compare with other similar ones perceptually
(i.e. without computation) to arrive at a decision. The tail is
a task-specific structure. It exists just for the peahen to make
the mating decision. The other cues (like tough_beak etc.)
do not exist for this purpose, they are task-neutral
structures, which have to be synthesized by the pea-hen into
a task-specific structure, to help with the mating decision.
The tail, being a task-specific structure, allows the pea-hen
to short-cut this synthesizing process. The tail 'fits' the
peahen's task, and provides a standardized way of arriving at
a decision, with the least amount of computation. The
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peacock describes its system state using its tail. Such self-
description is one of nature’s ways of avoiding long-winded
sorting and inference.

The peacock example (and others above) shows that the
reduction of others’ cognitive complexity using task-
specific external informational structures (what we term
epistemic structures) is very common, and it can be
considered one of the building blocks of nature. Note that
while we develop the notion of epistemic structure using
stable (or quasi-permanent) structures added to the world
like markers and tails, task-specificity is a property common
to all signals, including transient environment structures
(like vocal signals for mating, warning etc.). In our view,
transient signals are an adaptation of the basic epistemic
structure theme (of adding task-specific structures to the
world), to suit the highly dynamic or adversarial nature of
such decision-making environments. In other words,
stability is not the crucial property for being an epistemic
structure/signal, task-specificity is. To understand the
advantage provided by signaling, we have to understand the
efficiency provided by task-specific structures.

A Taxonomy of Agent-Environment Relations
Even though signaling is a basic structure of cognition, it
has received very little attention as a cognitive strategy. In
the following section we develop a framework to understand
how signaling, or the epistemic structure strategy (where the
environment is changed in a way that it contributes task-
specific structures for decision-making), fits in with other
agent-environment relationships. We categorize agent-world
relations into four strategies. To illustrate these strategies,
we use the design problem of providing disabled people
access to buildings. There are four general strategies to
solve this problem.

Strategy 1: This involves building an all-powerful, James
Bond-style vehicle that can function in all environments. It
can run, jump, fly, climb spiral stairs, raise itself to high
shelves, detect curbs etc. This design does not incorporate
detailed environment structure into the vehicle, it is built to
overcome the limitations of all environments.

Strategy 2: This involves studying the vehicle's
environment carefully and using that information to build
the vehicle. For instance, the vehicle will take into account
the existence of curbs (and them being short), stairs being
non-spiral and having rails, level of elevator buttons etc. So
it will have the capacity to raise itself to short curbs, climb
short flight of straight stairs by making use of the rails etc.
Note that the environment is not changed here.

Strategy 3: This involves adding structure to the
environment. For instance, building ramps and special doors
so that a simple vehicle can have maximum access. This is
the most elegant solution, and the most widely used one.
Here structure is added to the environment, the world is
“doped”, so that it contributes to the agent's task. Our
analysis will focus on this approach.

Strategy 4: This strategy is similar to the first, but here
the environment is all-powerful instead of the vehicle. The

environment becomes “smart”, and the building detects all
physically handicapped people, and glides a ramp down to
them, or lifts them up etc. This solution is an extreme case
of strategy III, we will ignore it in the following analysis.

The first strategy is similar to the centralized AI one,
which ignores the structure provided by specific
environments. The environment is something to be
overcome, it is not considered a resource. This strategy tries
to load every possible environment on to the agent, as
centrally stored representations. The agent tries to map the
encountered world on to this internal template structure.

The second strategy is similar to the situated AI model
promoted by Rodney Brooks (1991). This strategy
recognizes the role of the environment as a resource, and
analyses and exploits the detailed structure that exists in the
environment to help the agent. Notice the environment
remains unchanged, it is considered a given.

The third strategy is similar to one aspect of distributed
cognition, where task-specific structures are generated in the
environment, allowing the agent to hive off part of the
computation to the world. Kirsh (1996) terms this kind of
“using the world to compute” active redesign. This strategy
underlies many design techniques to minimize complexity.
At the physical level, the strategy can be found in the
building of roads for wheeled vehicles. Without roads, the
vehicles will have a hard time, or all vehicles will need to
have tank wheels. With roads, the movement is a lot easier
for average vehicles. This principle is also at work in the
“intelligent use of space” where people organize objects
around them in a way that helps them execute their
functions (Kirsh, 1995). Kitchens and personal libraries
(which use locations as tags for identifying content) are
instances of such use of space in cognition.

Another application of task-specific structures is bar
coding. Without bar coding, the checkout machine in the
supermarket would have to resort to a phenomenal amount
of querying and object-recognition routines to identify a
product. With bar coding, it becomes a simple affair.  The
Semantic Web enterprise is another instance. The effort is to
generate task-specific structure in an information
environment (the Web) so that software and human agents
can function effectively in it. This principle is also at work
in the Physical Markup Language effort, which tries to
develop a common standard to store information in low-cost
Radio-frequency Identification (RFID) tags. These tags can
be embedded in products, like meta-tags in web pages. Such
tagged objects can be easily recognized by agents fitted with
RFID readers (for instance, robots in a recycling plant).

The epistemic structure strategy is applied at the social
level as well, especially in instances involving trust.
Humans add structures to the environment to help others
make trust decisions. Formal structure created for trust
includes credit ratings, identities, uniforms, badges, degrees,
etc. These structures serve as reliable signals for people to
make trust decisions. Less reliable, and informal, structure
we create include standardized ways of dressing, talking etc.

yguo
 59



Using RoboCup to Study Epistemic Structure
Given this broad range of current and potential applications
of this strategy, it is important to understand how the
epistemic structure strategy works, how it evolved, how
efficient it is compared to other strategies, in what
conditions it works, and where it breaks down.

We have modeled organisms learning to add task-specific
structures to the world, across generations and within their
lifetime, using genetic algorithms and Q-learning
(Chandrasekharan & Stewart, 2004). In both cases, we used
an environment with no adversaries and almost no noise.
The results show that the advantage of using the epistemic
structure (ES) strategy is quite significant, agents spend
58% of their time generating such structures. But since most
organisms live in noisy, dynamic, adversarial environments,
static environments do not provide a sense of the
comparative advantage of the ES strategy over others.

The RoboCup simulation environment, which simulates a
soccer game, provides an interesting dynamic and
adversarial environment to study the efficiency of the
epistemic structure strategy. Briefly, the simulation
environment consists of a standard central server and two
teams of decision-making agents (usually 11 to a team) that
connect to the server. Researchers around the world develop
agent teams to study multi-agent systems, while the server is
maintained by the RoboCup administration as a standard
test-bed for such systems.

 In a game, the server sends the agents field information
(like current coordinates, coordinates of opponents or
teammates seen, coordinates of the ball etc.). The agents use
this information to update their world model, and analyze
this information to send action commands back to the server
(like kick, dribble, turn, turn_neck etc.), which are then
‘executed’ by the server, thereby changing the state of the
agents and what they can perceive. This process also
changes the configuration of the field in a very dynamic
fashion, akin to a soccer game. The agents can communicate
with each other using a narrow channel broadcast by the
server (each agent can hear utmost 2 messages in a cycle),
but every message by every agent is heard by every other
agent, an approximation to player yells in a real soccer field.

Being a game environment, Robocup does not provide
much scope to add stable task-specific structure to the
environment. However, it does allow transient task-specific
structure to be added, these are ‘yells’, or signals from
teammates. We used this structure to study the advantage
provided by task-specific structures, using the passing
problem (i.e. how an agent in control of the ball can decide
whom to pass the ball) as our test decision-making problem.
For our study, we developed three RoboCup teams (11
agents each) that used three different approaches to passing.
The teams were based on the publicly available UvA
TriLearn 2002 team (Kok, 2002), which implements some
basic low-level skills (like dribbling, kicking etc.).

Team 1: Centralized Passing
This team (A1) uses strategy 1 in our agent-world
taxonomy. A1 does all computations centrally, and does not
depend on task-specific information from other agents. In
A1, when an agent has possession of the ball (i.e., the ball is
within a kickable margin), it calculates the pass suitability
(passability) for each teammate, and passes the ball to the
teammate with the highest passability. If no teammate has
passability above a fixed threshold value, the agent will
dribble the ball toward the opponent goal.

The goalie in this team is based on the original UvA
algorithm, except for one modification: in a goal kick or free
kick, the goalie will use A1 to calculate the best receiver for
a pass and kick the ball to that teammate. This differs from
the UvA standard behavior of the goalie kicking the ball
straight down the field. The A1 passing algorithm is
described below:

A1: Centralized Passing
Input(s):  None.
Output(s): Best pass receiver

// set the minimum passability
Pb <- passabilityThreshold

// initialize best pass receiver to none
receiver <- none

for each Teammate except goalie
Pt <- calculatePassability( agent, Teammate

) // see P1
if ( Pt > Pb ) then

Pb <- Pt
receiver <- Teammate

end if
end for

return receiver

The following section describes P1, the algorithm that
computes the suitability of an agent to receive a pass, or
what we term passability.

P1 Calculate Passability

Input(s): source - the agent who has
possession of the ball
target - the target player whose passability is
to be calculated
Output(s): passability - a real number
indicating pass suitability of target player

posSource <- global position of source
posTarget <- global position of target

// draw a line between source and target
Line L <- Line::makeLineFromTwoPoints(
posSource, posTarget )
sumOfDistances <- 0.0;

// for each opponent, add their distance to the
line to the
// sum of distances
for each Opponent

oppDistToLine <- L.getDistanceWithPoint(
position of Opponent )

// only add opponents that are close to the
line

if ( oppDistToLine < 15.0 ) then
sumOfDistances += oppDistToLine

end if
end for

yguo
 60



passability <- sumOfDistances

// modify passability to favour forward passing
if ( angle to opponent goal -

angle to posTarget < 50 ) then
passability *= 1.3

else
passability *= 0.4

end if

// modify for congestion
if ( target is congested ) then

passability *= 0.5
end if
if ( source is congested ) then

passability *= 0.5
end if
// modify to prevent long passes
if ( distance to target > 20.0 ) then

passability *= 0.5
end if

The passability values used above are based on test
games, where different pass situations and passabilities were
tested. The algorithm modifies the original UvA player’s
decision-making algorithm and is used by all our agents.

Team 2: Passing with Yells
This team (A2) is an implementation of the epistemic
structure approach. Here every agent calculates its own
passability using P1. This calculation is done for every cycle
a teammate has control of the ball. The fastest player in a set
who can reach the ball is determined to have control of the
ball. Once the passability value is calculated, each player
uses the ‘say’ command to signal this value to teammates.

When updating the world model, every agent uses these
‘yells’ from teammates to track the best passability at a
given time. If a message arrives announcing a higher
passability, then the sender of the message becomes the new
best pass receiver. Every five cycles, the best passability is
reset to the minimum threshold, to ensure that old
information is not used to make the passing decision.

As in centralized passing, the goalie uses A1 to calculate
the pass receiver, but unlike its teammates, the goalie uses
the centralized approach with no input from teammates.
This ensures that the goalie always passes to someone.

Team 3: Passing with Filtered Yells
This team (A3) is also an implementation of the signaling
strategy, but it has some properties of the Brooksian
approach, because it takes into consideration the limitation
of the communication channel, which is a significant
property of the environment. A3 also uses P1, and in the
same way as the A2 algorithm. However, instead of agents
yelling their passability every cycle, here agents listen to
others’ yells and compare their passability with the ones
they hear. That is, they compare their passability with the
current best value, and announce their passability only if it
is better. This lowers the load on the communication
channel, by allowing only the best messages through. Once
again, the goalie uses the centralized approach to passing.

Experiment
To test the efficiency provided by the task-specific structure
strategy, our three teams were pitted against the original
UvA team. Each team played 10 games. Logs of individual
agents' decision-making were collected and analyzed to
extract the successful and unsuccessful passes, and the
passability values. Note that even though A1 uses
centralized decision-making to pass, the other agents in A1
calculate their own passabilities and store these values. In
effect, all agents in all the three conditions calculate their
passabilities using P1 when a team mate has the ball. In A2
and A3, this information was ‘yelled’, and the passing
agent’s decision to pass was based entirely on this
information. In A1, there was no yelling by individual
agents, they just stored their passability values. The passing
agent here used the P1 algorithm in a centralized manner, to
calculate the passability for everyone else.

Results
Since we are interested in understanding the performance of
the strategies in making the passing decision, we analyze
only the completion of passes, and not the goals scored,
which is affected by many factors other than passing.

Pass Completion: Pass completion is a measure of the
ability of a player to pick the correct pass recipient.
Although pass completion primarily depends on the
effectiveness of the passability function P1, it can also show
the relative effectiveness of the three algorithms with
respect to each other. We analyzed the log files of games
played with the three passing strategies, and checked who
next kicked or caught the ball after a player made a pass. If
it was the intended recipient, the pass was completed,
otherwise the pass failed. Table 1 shows the results of
running our three teams against the original UvA team, and
testing over ten games for each team. The centralized
approach achieved the best results with A2 and A3
achieving a similar percentage of pass completion.

Table 1: Number of passes completed

Team Completed
passes

Total Passes Percentage

A1 1110 2416 45.94%
A2 804 2384 33.72%
A3 1324 3455 38.32%

Correct Passing: To understand the effectiveness of the
three algorithms in deciding the right player, we determined
the number of 'correct' passes, which is defined as passes
where the agent in possession of the ball passes to the best
player (the agent with the highest passability value). This
view assumes that an individual player’s judgment of its
passability is the ‘correct’ value. The validity of this view is
tested in the next section.

yguo
 61



For A1, this analysis provides a sense of how often the
centralized algorithm agreed with the individuals’
assessment of their own passabilities. For A2 and A3, which
depend entirely on signaled structures to decide on passing,
a correct pass indicates that the message from the most
suitable player got through to the passing agent. As the
communication channel bandwidth is low, the agent may
not always know the best passability in the team, and
therefore will make an incorrect pass. Thus, for A2 and A3,
the ratio of correct passes to incorrect passes reveals the
effectiveness of the communication channel, irrespective of
the performance of the passing algorithms.

The results (in Table 2) show that the centralized
algorithm makes the ‘correct’ judgment around 39 percent
of the time. A3, the filtered yell model, is more effective
than A2 in allowing agents to know the teammate with the
highest passability in any given cycle. Overall, the A3
strategy is better in choosing the player with the highest
passability, even though the signaling channel is feeble.

Table 2: Number of passes where the player with the highest
passability was chosen

Team Best Player
chosen

Total Passes Percentage

A1 942 2416 38.99%
A2 803 2384 33.68%
A3 1454 3455 42.08%

Correct and Completed Passes: The above tables give us
our preliminary data. Given the narrow communication
channel, there is no direct way of gauging the effectiveness
of the epistemic structure strategy, because only a third of
the signals get through to the decision-making agent. To
understand the effectiveness of the ES strategy, we need to
create a ‘what if’ scenario, i.e. what if all the messages get
through? To find out this, we have to first find out the
effectiveness of knowing the best player, i.e. what
percentage of time did knowing the best player result in a
completed pass? To get this value, we extracted the
intersection of the two tables above -- the completed passes
when the best player was chosen. This is given in Table 3.

Table 3: Number of passes completed when the best player
was chosen

Team Passes
completed

Best player
chosen

Percentage

A1 510 942 54%
A2 344 803 42.8%
A3 668 1454 45.9%

Averaging for the three teams, this means nearly 48% of
the time, when the best player (the player with the highest
passability, according to his own estimate) is chosen, the
pass is completed. We consider this quite impressive for a
simple passing algorithm. This is the maximum advantage

provided when an agent uses task-specific structures for
decision-making in the Robocup environment.

What about the mirror of this, how many times was the
pass completed when the player chosen was not the best
player? Table 4 below provides these values.

Table 4: Passes completed when the best player was not
chosen

Team Passes
completed

Best player
not chosen

Percentage

A1 512 1474 34.7%
A2 400 1581 25.3%
A3 563 2001 28.1%

Comparing with the earlier table, this means knowing the
passability value (task-specific structure) can provide
around 20% improvement in passing for A1 and 18% for A2
and A3. This means individuals’ calculation of their own
passability is more accurate than others’ calculation of the
same value. This justifies the assumption we made about
‘correctness’ above. Once computed, signaling of this task-
specific structure to a decision-making agent can result in
around 19% improvement in success rate overall, in a
dynamic and adversarial environment like robocup.

At the strategy level, this illustrates why signaling is a
preferred strategy in making mating decisions – because an
agent revealing his/her own system state is always more
accurate than another agent’s judgment of the same state.
We hypothesize that this is also the reason why soccer
players yell. Anecdotal evidence (from soccer-players)
indicates that yells are used heavily by players while making
passing decisions, suggesting an implicit understanding of
this accuracy advantage. Given that it is the task-specificity
of the yell that is contributing to its accuracy and use, and
this task-specificity is shared by signals across species, it is
also reasonable to assume that yelling is not an explicitly
thought-out process, but an instantiation of an evolved,
general, adaptive strategy. Even novice and beginner players
yell. In tasks or functions involving cooperation (like
mating, or hunting in a group), adding task-specific
structures about your system (status, intention, perspective)
to the world has adaptive value.

On the receiver side, a decision-maker would be basing
her decision on more accurate information when she is using
such structures. Of course, this is complicated by the
problem of judgement, reliability (mimicry in organisms)
and ‘eavesdropping’, where other agents ‘listen in’ and use
the signal to further their own interests. It is interesting to
note that this complexity has not lead to organisms dropping
the signaling strategy altogether. Instead, they have evolved
ways to counter mimicry and eavesdropping. This means the
adaptive advantage provided by signaling is quite high.

The above analysis shows the improvement in
performance for individual players. What about team
performance? To understand this, we extracted the number
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of times the home team got the pass when the best player
was chosen.

Table 5: Home team got the ball when the best player was
chosen

Team Home team
got ball

Best player
chosen

Percentage

A1 653 942 69.3%
A2 560 803 69.7%
A3 976 1454 67.1%

When the best player was chosen, the ball stayed with the
home team nearly 70% of the time. This is probably a result
of the passability algorithm taking into account the number
of opponent players in the pass trajectory, or the movement
of the agents towards the pass trajectory. Either way, the
passability calculations by individuals provide an overall
advantage for the team.

The individual and team performance in retaining control
of the ball (when individual passabilities are known) shows
that the epistemic structure strategy is quite effective. The
environment contributing to cognition provides significant
advantages in improving accuracy.

Limitations and Future Work
The current experiment investigated one aspect of decision-
making based on the ES strategy, the advantage in accuracy,
i.e. identifying the best player to pass. In the next set of
experiments, we are planning to investigate a second aspect
of the task-specific structure strategy, the advantage in
processing load, by measuring the time taken for passability
calculations by agents with different perspectives. The
efficiency of a cognitive strategy is a combination of both
accuracy and processing efficiency. We are interested in
both, and also in the way they interact.

One of the major limitations of the study is the indirect
way of assessing the effectiveness of the epistemic structure
strategy. This is a direct result of the narrow communication
channel. If the server parameters had allowed us to
manipulate the number of messages the agents can hear to
beyond 2 messages per cycle, it would have been possible to
judge the effectiveness of the strategy better. The ability to
vary the size of the communication channel would have also
provided a way to better understand the relationship
between channel-width and signal effectiveness in a
dynamic environment. Such freedom to change parameters,
and a more user-friendly way of doing this, could lead to the
RoboCup environment being used more widely by
disciplines like cognitive science and ethology.

In this study, the opponent team was the same in all the
games. Even though this could be considered as providing a
standardization for the results reported here, it is desirable to
test a cognitive strategy in a variety of situations.

A further limitation is that the opponent team was not
designed to intercept the passability messages, or to
manipulate them. So the adversarial nature of the
environment was limited to pass interception. In future
work, we plan to use different teams against our teams.

We also plan to investigate how unreliable messages
affect decision-making based on the ES strategy. This is the
equivalent of mimicry in biological systems. Another
interesting study would be to examine how centralized
decision-making can be combined with ES-based strategies,
and in what conditions such combinations are effective.
Varying the noise parameters for different combinations of
strategies may provide insight into how the structure of the
environment can lead to different decision-making
strategies.
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