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Abstract 
We present a 3-node queuing network template for simulating 
brain activity differences for different subject populations 
performing simple cognitive tasks.  We hypothesize that 
distinct areas of cortex behave similarly to queuing network 
servers, whose interactions are used to simulate the 
interactions of different brain areas.  This 3-node queuing 
network template accurately accounts for brain activity 
disparities (as found with neuroimaging techniques) for 
different subject populations performing verbal working 
memory, spatial working memory, and verbal audition tasks.  
Further, this 3-node queuing network template provides an 
account explaining the interactions between different brain 
areas.  This account suggests that reductions in service rates 
(due to changes in gray matter volume or white matter 
anisotropy) for different brain areas alters the flow or 
propagation of neural activity, causing different brain activity 
patterns for different subject populations performing the same 
cognitive tasks. 

Keywords: Queuing Networks; neuroimaging; working 
memory 

Introduction 
The brain is an enormously complex network of 
interconnected systems and sub-systems, which at this point 
cannot be easily understood.  Most standard neuroimaging 
techniques tend to focus on singular brain regions that are 
hypothesized to be responsible for singular functions, either 
general functions (global approach) or specific functions 
(local approach; Nyberg and McIntosh, 2001).  It seems 
more likely that behavior and thought result from the 
interactions of different brain regions rather than from 
singular brain region activations (Lashley, 1931; Bressler, 
1995).   

How do different brain areas interact with each other?  A 
number of models and techniques have been proposed to 
examine this question.  Such techniques include Partial 
Least Squares (PLS), Structural Equation Modeling (SEM), 
and Dynamic Bayesian Networks (DBN; Nyberg and 
McIntosh, 2001; Labatut et al., 2004).  These techniques are 
all statistical techniques that can uncover the relationships 
between different brain areas.  While these techniques are 
extremely useful, they do not explain why brain regions 
interact in such ways.   

This paper offers a new research method based on 
queuing network theory to explore brain networks. The 

unique power of this queuing network approach for 
examining cortical interactions is illustrated in this paper 
through a simple 3-node queuing network architecture that 
explains differences in brain activity for different subject 
populations (young vs. old, literate vs. illiterate) performing 
the same cognitive tasks.  

There are a number of major contributions of this paper.  
The first is to offer an alternative method to model 
connectivity in the brain and the subsequent interactions of 
different brain areas.  The second major contribution is that 
the queuing network template provides plausible, novel, and 
causal explanations, which predict when certain brain areas 
will become active and offer explanations as to why they 
become active.  The third contribution is the model’s 
breadth where the same structural template may be the 
underlying architecture mediating task performance in a 
wide range of cognitive tasks. In addition, this architecture 
did not require many model parameter changes in order to 
model these different phenomena. 

Queuing Networks and Psychology 
Queuing Networks are a mathematical discipline that are 
used to simulate and model a wide array of phenomena 
including manufacturing processes, emergency room 
workload, and airport traffic.  The queuing network 
methodology has also been applied to cognitive psychology, 
and was used to successfully unify various psychological 
models of reaction time (Liu, 1996) and multitask 
performance (Liu, 1997).  Recently, the queuing network 
approach has been successfully integrated with the symbolic 
approach (Liu et al., 2006) for both mathematical analysis 
and real time simulation of human performance in a 
multitude of settings including in-vehicle steering (Liu et 
al., 2006), transcription typing (Wu & Liu, 2004), and visual 
search tasks (Lim & Liu, 2004).  The success of the queuing 
network methodology in these domains is evidence of its 
efficacy as a model of human cognition and behavior. 

Queuing Networks and Brain Activation 
In this paper we attempt to model brain activation 
differences, as uncovered with neuroimaging, for different 
subject populations performing the same cognitive tasks.  
We will model these brain activation differences with a 
queuing network methodology and architecture.  Rather 
than model changes in blood flow or volume, we attempt to 
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model the underlying neural activity that drives the 
differences in blood flow as found empirically in these 
studies. 

Positron Emission Tomography (PET) and functional 
Magnetic Resonance Imaging (fMRI) are two techniques 
used to measure blood flow changes in the brain, and both 
do so in different ways (Cabeza and Nyberg, 2000).  fMRI 
measures blood flow changes via the Blood Oxygenated 
Level Dependent (BOLD) contrast and PET measures blood 
flow changes by marking blood with radioactive tracers 
(Cabeza and Nyberg, 2000).  These hemodynamic processes 
are also correlated with the underlying neural activity of 
those brain areas exhibiting blood flow changes (Logothetis 
et al., 2001).  This provides researchers with some 
confidence that while an indirect measure, these techniques 
can be used as to approximate underlying neural activity.  In 
this paper we model the underlying brain activation 
moderating these hemodynamic changes and we do so with 
a queuing network framework.   

3-Node Queuing Network (QN) Template 
While there are many different types of queuing networks, 
this paper focuses on a simple 3-node queuing network with 
one server branching out into two parallel servers, as shown 
in Figure 1.   

 
Figure 1: 3-node QN template 

 
In all of these simulations, neural activity or neural spike 
trains are treated as the customers (C) in these networks that 
will be served by the queuing network servers in the 
network1.  Each of the boxes in this network is a queuing 
network server (S) that provides a service to the customers 
that enter the network.  Each of these servers will represent 
a unique brain area(s) that provides a unique service to the 
customers that enter it.  Customers arrive at the branching 
server at some arrival rate λ customers/unit time.  Once 
customers enter the network through the branching server, 
they receive some service from the branching server with a 
service rate of μ customers/unit time. Once customers 
complete service at the branching server they then travel 
probabilistically to either parallel server 1 or parallel server 
2 for additional service.  Each of these servers services 
customers with it's own service rate.  Once customers 

                                                           
1 Initial neural activation at the Branching Server is time-locked 
with empirical stimulus onsets. 

complete service at either of those servers they have 
completed their full service and subsequently leave the 
network. 

Each server also has a service capacity (the number of 
customers it can serve at a time) and a waiting capacity or 
queue capacity, which identifies how many customers can 
wait in front of the servers for service.  The parallels 
between the queuing network methodology and the brain are 
apparent.  First, it seems that different brain areas do in fact 
provide some unique function or service that mediate 
behavioral performance.  Second, it is reasonable to assume 
that brain areas have capacity limitations in the amount of 
processing that they can accomplish and the speed with 
which they can process.  Third it seems that information in 
the brain can be queued, as information that is not processed 
immediately is not immediately lost or discarded.  

For these simulations we alter service rates for particular 
servers in the network, but we leave service capacities and 
queue capacities constant throughout, as it is beyond the 
scope of this paper to provide/hypothesize queue capacities 
for different brain areas.  We therefore set each server’s 
capacity to serve only one customer at a time with an 
infinitely large queue capacity (waiting line). 

In all of these simulations we assume that each server 
provides a unique service and that customers need to be 
served by the branching server and only one of the parallel 
servers, but not both.  Therefore, while each parallel server 
provides a unique service, each of the simulated tasks can be 
accomplished by traversing either of the parallel servers, 
which provide similar service.   

Parameters for arrival rates, λ, were set based on the 
empirical parameters of the task.  Service rate parameters 
were set based on neural evidence coming from research on 
aging and literacy.  Zimmerman et al. (2006) have found 
significant gray matter volume reductions with increased 
age, and that these reductions have been correlated with 
reductions in executive functioning and working memory 
performance.  Klingberg et al. (2000) have found that 
reductions in white matter anisotropy (connection fidelity), 
is strongly correlated with poor reading performance.   We 
draw on these findings in setting our queuing network 
parameters for these simulations.  

In addition one of the major assumptions of this paper is 
our hypothesized explanation for how neural activity flows 
or moves through brain neural networks. Neural activation 
flows in this network based on the comparative processing 
rates of the parallel servers, and is mediated by the 
following equation: 

 
Pi = [μi]/([ μi] +  [μj])(Eq. 1) 

 
Where μi = the service rate for server i, and Pi is the 
probability of traveling to server i.  

   
One can see that if the service rate of one parallel server in 
relation to the other server is much greater, then it is more 
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likely that neural activity or spike trains would propagate to 
that server and vice versa.   
 
There is also neural evidence that supports this routing 
equation.  It is known that stronger synaptic connection 
strengths of an individual neural route, increase the 
probability (Pi) that neural spike trains (the customers in our 
network) travel through that route (Black, 1999;  
Chklovskiii et al., 2004; Habib, 2003).  Synaptic connection 
weights can also be decomposed into waiting times and 
processing times of customers traveling a particular route 
(Wu, 2007).  Therefore, equation 1 is supported by the 
aforementioned neural evidence.  
 

Studies to Be Modeled 
In this paper we model the neuroimaging results from 2 
separate PET studies.  These two studies were selected for 
two reasons.  First each study found brain activity 
differences for different subject populations performing the 
same cognitive tasks.  Second, in all the studies, subjects 
activated the same brain areas, in other words, different 
brain areas were not recruited for the different populations 
of subjects, only the distribution of the brain activation 
differed.   

The first study, from Reuter-Lorenz et al. (2000), 
explored the difference in brain activity for old and young 
adults performing verbal and spatial Working Memory 
(WM) tasks. The second study from Petersson et al. (2000), 
investigated brain activity during a pseudoword generation 
task for illiterate and literate subjects. Though we have 
restricted the number of studies simulated in this paper, our 
results could conceivably be applied to many other studies 
of this kind. 

All of our simulations were run for 30 minutes, roughly 
mimicking the total time of the empirical studies.  In 
addition each simulation was run for 100 replications. 

 
Study1: Reuter-Lorenz et al., 2000 
In this study young and old subjects performed verbal and 
spatial working memory tasks.  The authors used PET to 
identify the brain areas activated to perform these tasks and 
also explored the brain activation differences between the 
two groups of subjects.  The major finding was that for 
verbal working memory young subjects showed substantial 
left lateralized frontal activation and for spatial working 
memory those subjects showed substantial right lateralized 
frontal activation.  Older adults on the other hand showed 
bilateral frontal activation for both spatial and verbal 
working memory suggesting that older adults may be 
recruiting other brain areas to compensate for neural 
declines (Reuter-Lorenz et al., 2000).  In addition, few 
differences were found in posterior activations for these two 
subject populations.   

 
Simulation Parameters The queuing network template 
used to model these data can be seen in figure 2.  The 

anterior and posterior brain areas that compose these servers 
can be seen in table 1.   
 

 
Figure 2: 3-node QN templates used to model Reuter-

Lorenz et al. (2000) data 
 
Table 1: Brain areas that compose the Queuing Network 
Servers as treated singularly by Reuter-Lorenz et al. (2000). 

 Verbal Working 
Memory Task 

Spatial Working 
Memory Task 

Anterior ROIs BA 45, 46, 10, 9 and 
44 (Broca’s); 
BA6(Supplementary 
Motor and premotor 

BA 9, 46, 47 
(DLPFC, VPFC); 
SMA and 
Premotor 

Posterior 
ROIs 

BA 40, 7 (parietal) and 
temporal sites BA 42 
and 22 

BA 40, 7 
(parietal); BA 18, 
19 (striate and 
extrastriate); BA 
31 (Precuneus) 

 
Arrival rates of the stimuli were set to be 5 seconds as this 
was the presentation rate of the trials to the subjects in the 
empirical study.   

Service rate parameters were initially set to be 
exponentially distributed with a mean of 18 ms and have 
been validated by other researchers (Feyen, 2002; Wu, 
2007).  For young adults, service rate parameters were set in 
ways to show frontal lateralization.  Therefore, for the 
verbal working memory task, the right anterior server’s 
processing rate was treated as a free parameter and set to a 
value that would show lateralization (we used the same 
parameter value for the left anterior server for the spatial 
working memory task).   

In addition, we feel it makes intuitive sense that left 
frontal areas should have disproportionately faster service 
rates for verbal tasks (compared to right frontal areas), and 
right frontal areas should have disproportionately faster 
service rates for spatial tasks (compared to left frontal 
areas), as these areas seem to be most active in the service 
of those respective tasks.  If there were not such a difference 
in the processing abilities of these areas of cortex mediating 
performance in these tasks, we would not expect such robust 
lateralized activity. 

 
For setting processing rates for older adults we used 
equations 2 and 3.   
 

Lateral frontal = 67,043 -.47 * Age (Eq. 2) 
Note: the units are in mm3 
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Equation 2, was provided by Zimmerman et al. (2006) and 
explains how gray matter volume in lateral frontal areas 
decreases with increased age.  Equation 3, describes how 
gray matter volume changes for older adults translates into 
slower processing rates in lateral frontal areas.  Here we are 
assuming that gray matter reductions reduce the abilities of 
those cortical areas to process information, and that this 
reduction in processing is additive to initial processing 
values.  Tables 2 and list the parameters used to simulate the 
results from Reuter-Lorenz et al. (2000). Note: the mean age 
for young adults was 24, and for older adults was 69. 

In addition, one may note that for older adults the service 
rates change for frontal areas, but not for posterior areas.  
With aging, there is more gray matter loss in frontal areas, 
compared to posterior areas, which can explain more 
deficits in planning, organizing and performing other 
executive functions with age (Zimmerman et al., 2006). 
 
Table 2. Processing rates for old and young in the verbal 
WM task 
Population Older Adults Younger Adults 
Arrival rate (λ)3 1 every 5 sec 1 every 5 sec 
Service rate Left 
Posterior Regions 

Exponential mean 
18 ms per neural 
spike train4

Exponential mean 
18 ms per neural 
spike train 

Service rate Right 
Anterior Regions 

Exponential Mean 
86 ms  per neural 
spike train 

Exponential mean 
54 ms per neural 
spike train 

Service rate Left 
Anterior Regions 

Exponential Mean 
50 ms per neural 
spike train 

Exponential mean 
18 ms per neural 
spike train 

 
Table 3. Processing rates for old and young adults in the 
spatial WM task 
Population Older Adults Younger Adults 
Arrival rate (λ) 1 every 5 sec 1 every 5 sec 
Service rate Left 
Posterior Regions 

Exponential 
mean 18 ms per 
neural spike 
train 

Exponential mean 
18 ms per neural 
spike train 

Service rate Right 
Anterior Regions 

Exponential 
Mean 50 ms  per 
neural spike 
train 

Exponential mean 
18 ms per neural 
spike train 

Service rate Left Anterior 
Regions 

Exponential 
Mean 86 ms per 
neural spike 
train 

Exponential mean 
54 ms per neural 
spike train 

                                                           
2 δ is a scaling parameter was set to 100 for simulation 1 and set to 
18 for simulation 2. 
3The arrival rates were based on empirical stimulus presentation 
rates  
4 See Liu, Feyen and Tsimhoni (2006) 

From tables 2 and 3 one can see how the initial imbalance 
between left and right service rates for the verbal and spatial 
tasks would cause more neural spike train activity to 
propagate to left anterior areas for the verbal task, and right 
anterior areas for the spatial task (see equation 1).  Again, 
for older adults, service rate parameters in anterior areas 
were set based on equations 2 and 3. 
 
Simulation Results Figure 3 displays the simulation results 
and the empirical results from the Reuter-Lorenz et al. 
(2000) study.  The fits of our simulation results have an R2 
= 0.64 for the verbal working memory task, and an R2 = 
0.72 for the spatial working memory task.   

The dependent variable that Reuter-Lorenz et al. (2000) 
report is the % change in brain activation for experimental 
working memory trials compared to control trials.  For the 
experimental trials there was a higher working memory load 
compared to the control trials (roughly 4 times that of 
controls).  Therefore in our simulations we altered 
processing by a scalar value (4) to reflect the changes in task 
demands from control trials to experimental trials.  We 
report the changes in server utilization from control trials to 
experimental trials. 

 

Figure 3: Empirical Results and simulation results for 
Verbal WM Task and spatial WM task from Reuter-Lorenz 
et al. (2000).  Blue solid bars are left anterior areas, and 
magenta dashed bars represent right anterior areas.  Top row 
shows the empirical results and the bottom row the 
simulation results5

 
From figure 3, one can see that our simulations do capture 
the empirical results well, especially the overall pattern of 
less lateralization with increased age.  This reduced 
lateralization was due to processing declines mediated by 
gray matter loss, which reduced the ratio in processing rates 
of one parallel server relative to the other. 
 

                                                           
5 The apparent reversal in lateralization for older adults in both the 
verbal and spatial working memory tasks was not significant 
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Study2: Petersson et al., 2000 
In this study literate and illiterate participants performed a 
task where they needed to repeat verbally auditorily 
presented words and pseudowords.  It was found that literate 
and illiterate subjects had similar behavioral performance in 
repeating words, but illiterate subjects were impaired in 
repeating pseudowords.  It was also found that the neural 
networks supporting pseudoword repetition were different 
for the two groups, suggesting that learning to read causes 
functional changes in brain circuitry.   

Here we concentrate on path weight differences (as found 
with Structural Equation Modeling; SEM) between inferior 
Parietal Cortex (iPC; BA 7/40) with Broca’s area (BA 44)  
and iPC with prefrontal cortex (PFC; BA 45/46).  The 
authors found that the path weight between iPC and Broca’s 
was higher for literate subjects (by .18), while the path 
weight between iPC and PFC was higher for illiterate 
subjects (by .26).  These path weight changes may reflect 
more efficient phonological loop processing for literate 
participants, and subsequently more reliance on executive 
processes for illiterate subjects to perform the pseudoword 
repetition task.  Note: we report correlations rather than path 
weights, but the path weights were based on the correlation 
matrix of the empirical study. 
 
Table 4. Processing rates for Literate and Illiterate Subjects 
Population Literate Subjects Illiterate Subjects 
Arrival rate 
(1/lambda) U(6, 1) sec U(6, 1) sec 

Service rate 
iPC 

Exponential mean 
18ms per spike 
train 

Exponential mean 18ms 
per spike train 

Service rate 
Brocas 

Exponential mean 
18ms per spike 
train 

Exponential mean 29 ms 
per spike train 

Service rate  
PFC 

Exponential mean 
27 ms per spike 
train 

Exponential mean 27 ms 
per spike train 

 
Simulation Parameters Table 4 lists the parameters that 
were used to simulate the data from Petersson et al., (2000).  
Arrival rates were set based on empirical parameters, where 
stimuli were presented every 6 seconds.  However, we 
needed to include some variance so that we could calculate 
the correlation of neural activations in our queuing network 
servers. 

We set parameters for literate subjects in a similar manner 
to that of our simulations of Reuter-Lorenz et al. (2000).  
We treated service rate in the PFC as a free parameter as 
younger adults are biased to utilize the route connecting iPC 
and Brocas over iPC and PFC. 

For setting parameters for illiterate subjects we depended 
on differences in white matter anisotropy.  While there may 
be gray matter volume differences between literate and 
illiterate subjects, we were guided by white matter 
anisotropy (connection integrity) differences between good 
and poor readers (Klingberg et al., 2000).   

 

 
 

 
Figure 4. 3-Node queuing network used to simulate 

Petersson et al. (2000) data 

Klingberg et al. (2000) found that white matter anisotropy 
in a volume connecting parietal and temporal cortices in the 
left hemisphere was significantly reduced in poor readers 
compared to normal readers, and that anisotropy in this 
region was significantly correlated with reading 
performance.  We used this significant reduction in 
anisotropy connecting temporal and parietal cortex to 
change the processing rate of Broca’s area for illiterate 
subjects as this white matter region would be connecting 
iPC with Broca's. We assumed that this reduction in 
anisotropy in this region would alter the relationship 
between iPC and Broca’s area for illiterate subjects. 

Klingberg et al. (2000) found that anisotropy in this white 
matter region was correlated with reading performance r = 
0.84.  Using behavioral data from the Petersson et al. (2000) 
study (via Castro-Caldas et al., 1998) and Klingberg et al.’s 
(2000) regression equation we calculated the anisotropy 
values for literate and illiterate subjects.  These calculations 
yielded a 60% decrease in anisotropy for illiterate subjects 
compared to literate.  Using Equation 3., we substituted 
white matter changes between literate and illiterate subjects 
(instead of gray matter) to obtain the service rate for Broca’s 
area for illiterate subjects. 
 
Simulation Results The simulation results for this task are 
summarized in Table 5.  We obtained an R2 = .96 for these 
simulation data (pitting our simulated correlation values 
against Petersson et al. (2000) path weights).  One can see 
the changes in correlated activity match the pattern of 
differences in path weights exhibited from the Petersson et 
al. (2000) study where literate participants exhibit increased 
correlations between iPC and Broca’s compared to illiterate 
subjects, and illiterate participants exhibit increased 
correlations between iPC and PFC compared to literate 
participants.  We did not find the same magnitude increase 
in correlated activity between iPC and PFC as was found 
empirically, however, we did find the same overall pattern.  
These results indicate good coherence between our 
simulation and the empirical findings.  
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Table 5. Simulation and Empirical Results from Petersson et 
al. (2000) 
 Empirical Simulation 
Increase in iPC and Brocas 
Relation for Literate 
compared to Illiterate 

+. 18 +. 10 

Decrease in iPC and PFC 
Relation for Literate 
compared to illiterate 

-.26 -.10 

 
Conclusion 

In sum, our 3-node queuing network templates were able to 
successfully model the activity of brain networks for 
different populations of subjects performing the same 
cognitive tasks.  We drew on neuroscience evidence in 
selecting parameters and explained changes in brain 
networks as being caused by relative differences in service 
rates, which alter neural activation propagation.  We hope 
that with the queuing network architecture we will be able 
to understand more complicated brain networks and make 
new predictions for the behavior of brain networks that 
underlie human cognition. 

Acknowledgments 
This research was supported in part by an NSF graduate 
fellowship to MGB and an NSF grant to YL. 

References 
Black, I.B. (1999). Trophic regulation of synaptic plasticity. 

Journal of Neurobiology, 41 (1), 108-118. 
Bressler, S. L. (1995). Large-scale cortical networks and 

cognition. Brain Research Reviews. Vol. 20, 288-304. 
Cabeza R. and Nyberg L.(2000).  Imaging cognition II: An 

empirical review of 275 PET and fMRI studies. J of 
Cog Neuro. 12 (1): 1-47  

Castro-Caldas A., Petersson KM, Reis A, Stone-Elander S, 
Ingvar M. (1998).  The illiterate brain - Learning to 
read and write during childhood influences the 
functional organization of the adult brain.  BRAIN 
121(6): 1053-1063  

Chklovskii, D.B., Mel, B.W., and Svoboda, K. (2004). 
Cortical rewiring and information storage. Nature, 431 
(7010), 782-788. 

Feyen R. (2002).  Modeling Human Performance Using the 
Queuing Network - Model Human Processor (QN-
MHP). Unpublished Dissertation, University of 
Michigan, Ann Arbor, Michigan. 

Habib, M. (2003). Rewiring the dyslexic brain. Trends in 
Cognitive Sciences, 7 (8), 330-333. 

Klingberg, T., Hedehus, M., Temple, E., Salz, T., Gabrieli, 
J. D. E., Moseley, M. E., et al. (2000). Microstructure 
of temporo-parietal white matter as a basis for reading 
ability: Evidence from diffusion tensor magnetic 
resonance imaging. Neuron, 25(2), 493-500.  

Labatut, V., Pastor, J., Ruff, S., Demonet, J., Celsis, P. 
(2004). Cerebral modeling and dynamic Bayesian 

networks. Artificial Intelligence in Medicine. Vol. 30, 
119-139. 

Lashley, K.S. (1931).  Mass Action in Cerebral Function.  
Science.  Vol. 73(1888), 245-254. 

Lim, J., and Liu, Y. (2004).  A Queueing Network Model 
for Visual Search and Menu Selection. Proceedings of 
the 48th Annual Conference of the HFES. 

Liu, Y. L. (1996). Queueing network modeling of 
elementary mental processes. Psychological review, 
103(1), 116-136.  

Liu, Y. L. (1997). Queueing network modeling of human 
performance of concurrent spatial and verbal tasks. Ieee 
Transactions on Systems Man and Cybernetics Part A-
Systems and Humans, 27(2), 195-207.  

Liu, Y., Feyen, R., & Tsimhoni, O. (2006). Queueing 
Network-Model Human Processor (QN-MHP): A 
Computational Architecture for Multi-Task 
Performance in Human-Machine Systems.  ACM 
Transactions on Computer-Human Interaction.    

Logothetis, NK; Pauls, J; Augath, M; Trinath, T; 
Oeltermann, A. 2001. Neurophysiological investigation 
of the basis of the fMRI signal. NATURE 412 (6843): 
150-157. 

Nyberg, L., & McIntosh, A. R. “Functional Neuroimaging: 
Network Analyses.” Handbook of Functional 
Neuroimaging of Cognition. Eds. Roberto Cabeza and 
Alan Kingstone.  A Bradford Book: MIT Press, 2001. 
49-72.  

Pastor, J., Ruff, S., Demonet, J., Celsis, P. (2004). Cerebral 
modeling and dynamic Bayesian networks. Artificial 
Intelligence in Medicine. Vol. 30, 119-139. 

Petersson, K. M., Reis, A., Askelof, S., Castro-Caldas, A., 
& Ingvar, M. (2000). Language processing modulated 
by literacy: A network analysis of verbal repetition in 
literate and illiterate subjects. Journal of cognitive 
neuroscience, 12(3), 364-382.  

Reuter-Lorenz, P. A., Jonides, J., Smith, E. E., Hartley, A., 
Miller, A., Marshuetz, C., et al. (2000). Age differences 
in the frontal lateralization of verbal and spatial 
working memory revealed by PET. Journal of cognitive 
neuroscience, 12(1), 174-187.  

Wu C. (2007).  Queueing Network Modeling of Human 
Performance and Mental Workload in Perceptual-Motor 
Tasks.  Unpublished Dissertation, University of 
Michigan, Ann Arbor, Michigan. 

Wu, C., & Liu, Y. (2004).  Modeling Human Transcription 
Typing with QN-MHP (Queueing Network - Model 
Human Processor).  Proceedings of the 48th Annual 
Conference of the HFES. 

Zimmerman, M. E., Brickman, A. M., Pau, R. H., Grieve, S. 
M., Tate, D. F., et al. (2006). The relationship between 
frontal gray matter volume and cognition varies across 
the healthy adult lifespan. American Journal of 
Geriatric Psychiatry, 14(10), 823-833. 

 

 66


	Introduction
	Queuing Networks and Psychology
	Queuing Networks and Brain Activation
	3-Node Queuing Network (QN) Template

	Studies to Be Modeled
	Study2: Petersson et al., 2000

	Acknowledgments
	References

