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Abstract 

We describe an approach to evaluating diagrammatic schemes 
intended to support problem solving and decision-making.  
The methodology is in the GOMS framework in HCI, and is 
based on recognizing that the use of diagrams is part of a 
process that can be decomposed into a sequence of steps, each 
of which may be a Perception on the diagram, Inference, 
Transformation of the diagram and Visual Search. How well a 
diagrammatic scheme helps in a task depends on how well the 
human cognitive architecture can perform the actions in the 
various steps, and how the steps collectively contribute to 
performance measures such as time, error rates, and memory 
stress.  We illustrate the approach by using it to analyze the 
use of some common data presentation displays in the task of 
discovering interesting relations between variables in a do-
main. Because of the current lack of quantitative empirical 
data about the execution of the basic operations by human 
architecture, the analysis is qualitative, which is nevertheless 
useful in providing useful insights. It also sets an agenda for 
empirical research to obtain the quantitative data needed, 
since the availability of such data would help significantly in 
evaluating and improving diagrammatic interfaces for 
decision support.  

Introduction 
The distinction between informational and computational 
equivalence (Larkin and Simon, 1987) of representations is 
relevant to explain the effectiveness not only of diagrams 
over text under appropriate conditions, but also of one kind 
of diagram over another for a specific task. Some 
diagrammatic schemes are lauded over others as especially 
well suited for specific tasks.  This paper discusses an 
approach to evaluate interactive diagrammatic interfaces to 
support problem solving.   

A diagrammatic scheme for a problem-solving task 
consists of specifications for representing information in a 
diagrammatic form, for meaningful perceptions on the 
diagram, and for modifying diagrams. When such a scheme 
is used to assist in problem solving, the problem solver 
engages in a series of steps, each of which may be an act of 
perception on the diagram, inference of new information by 
combining background knowledge and current information, 
including information given by an earlier act of perception, 
and transformation, i.e., modifying the diagram in some 
way to facilitate further problem solving.  Information 
obtained by perception and inference will be added to the 
problem solver's short-term memory (STM), or added to the 
diagram in some form in a transformation step for pickup in 
a future perception step. The sequence of steps ends when 
the problem solver has acquired the information 
corresponding to the solution of the problem of interest, or 
gives up for whatever reason.  Characterizing the problem 

solving activity in terms of these acts -- perception, 
inference, storage in memory, and transformation – arises 
naturally from a high-level view of the human cognitive 
architecture as comprised of central cognition, various 
perception modules and motor components.   

Recognizing that diagrams are part of such a problem 
solving activity – instead of viewing them as stand-alone 
interfaces with one-way information flow from the interface 
to the user – is useful when we wish to compare alternative 
diagrammatic schemes for solving problems of a specified 
type.  In particular, it makes possible the use of GOMS, the 
well-known analytical and comparative framework (Card, et 
al, 1983; John and Kieras, 1996).   Our goal in this paper is 
to develop a GOMS-inspired analysis technique that is 
specialized for interactive problem solving with 
diagrammatic representations, and to illustrate it by 
applying into a set of alternative diagrammatic interfaces for 
a decision support problem in visual data mining.   Another 
point of comparison is the work of Peebles & Cheng (2003).   
The measure of complexity is the number of perceptual 
attention shifts during a problem solving activity in 
comparing two graph representations for an information 
extraction task.  As we’ll see, we keep track of a more 
complex set of measures. 

      One evaluation measure of a diagrammatic interface 
might be the length – in total number of steps or time – it 
takes to solve an average problem or the hardest problem in 
a class. A variation of this measure might keep a count of 
each type of step, i.e., the numbers of perceptions, 
inferences and transformations, if the different steps 
correspond to different kinds of costs.  Further distinctions 
may be made within each of these categories, e.g., some 
transformations and perceptions may have different costs 
than others.  Another dimension of evaluation is propensity 
for error. A poorly conceived diagram might result in errors 
in one or more of the perception or transformation steps, or 
might overload STM and cause inference errors.  
Alternative diagrammatic schemes for solving a task may 
then be multi-criterially compared in terms of such 
measures.   

     Decision support systems (DSS) are an important class 
of applications of diagrammatic representations.   There is 
usually a much greater role for transformations in DSS’s 
than is normally the case in the use of simple diagrams.  
DSS's may be used in widely disparate circumstances: In 
one situation the cost of physical interaction may be high, 
with a corresponding preference for interfaces that do not 
require many transformations.  In another situation, say 
where a user is multi-tasking, a DSS that entails many 
interactions would be preferable to one that places high 
stress on STM. Because of such wide variations in the 

In Proceedings of ICCM - 2007- Eighth International Conference on Cognitive Modeling. 205 - 210. Oxford, UK: Taylor & Francis/Psychology Press.

1



  

conditions of use, a simple uni-dimensional measure of their 
performance, such as total time, is usually not adequate. 

      We introduce PTIS, a version of GOMS tailored to 
our needs.   We then consider a set of alternate 
diagrammatic interfaces for a simple problem in data 
understanding:  deciding if there are any interesting 
correlations between variables in a given domain of interest.  
The field of data mining focuses on problems of this type, 
and the interfaces we consider are often proposed as good 
visual presentations of data.  However, the interfaces and 
the task are used as examples of the methodology, rather 
than the main subjects of the paper.   

The PTIS Framework 
When applying GOMS, operators are chosen that are 
generic enough to be applicable to the analysis of a variety 
of task/interface combinations of certain types. Two 
properties of an operator are especially important and are 
typically empirically obtained from studies on trained 
humans: the time it takes to apply the operator, and any 
error rates associated with application of the operator.  

The operators we develop in our GOMS analysis of 
diagrammatic interfaces are at much higher grain sizes and 
complexity than the ones that GOMS research usually deals 
with (such as clicking buttons).  For example, a basic 
operation in our domain is the perception of the best-fit 
straight line that approximates a cluster of data points.  This 
is a common skill needed in experimental research. A 
person might need some training in this task, but once 
trained, he can visualize such a line.  A corresponding motor 
operator is to draw such a line on a screen or on paper 
displaying such a cluster of points.  Empirical data for time 
and error rates for operators at the grain sizes of interest to 
us are not yet available, so our current analysis is 
qualitative. However, the qualitative results are still useful 
in many situations, as we will demonstrate.  When empirical 
data become available, it would be easy to convert the 
results to quantitative ones.   

What is common in the use of all diagrammatic displays 
for decision support is that the user’s actions belong to one 
of the following four types: Perception, Transformation, 
Inference, and (Visual) Search.  The information obtained 
by Perception1 or Inference is automatically placed in STM, 
i.e., it is not usually treated an operation. Since STM is 
capacity-limited, analysis should track STM load.    

 The operations in the Perception and Transformation 
categories respectively are chosen to represent basic units of 
the actions of the agent required for the task, but generic 
enough to be used as operations in a variety of tasks using 
diagrammatic interfaces.  The best way to think of a 
Perception in this analysis is not as a gestalt perception act 
whose details the user does not access, but as a step in 
which the user is acquiring information from the display, 
and that the step has generality and reusability. Examples in 

                                                           
1 In the following analysis, we capitalize Perception, 
Transformation, Inference, etc when we intend to refer to 
operations that are to be taken as formally in the various sets of 
operations.  We use lower case when we intend to refer to the 
general actions meant by the terms.   

data analysis are: visualizing a straight line that best 
summarizes a set of data; and visualizing the midpoint of a 
set of points.  Because these Perceptions are general enough 
to be useful across a variety of data analysis tasks, investing 
in determining the timing and error rates associated with 
trained human perception would be worthwhile. (How these 
are learned would require a separate study.)  

The relationship between Search and Perception needs 
clarification, since some of the Perceptions may also involve 
search.  What we mean to capture in the Search category is 
the visual action needed to locate the objects that are the 
arguments for the specific Perception (and also for a specific 
Transformation).  For example, on a display consisting of 
50 labeled vertical bars whose lengths are proportional to 
the populations of 50 states, the Perception, ?Longer(bar 
x, bar y), would require the user to locate the two bars 
for the two states, and then apply the Longer Perception.  
Since comparing lengths of bars is an operation that would 
be useful for many tasks, and for which we can determine 
empirically the parameters for the human architecture, it is a 
good idea to separate this basic perception from searching 
for the items.  The parameters for the perception operation 
would apply both to cluttered and uncluttered displays.  
Another reason to separate Search is that a visual search 
operation may also be applicable to Transformations, where 
a user may need to search and locate a button for a specific 
Transformation.   In brief, we mean to include in Search 
visual search needed to identify the objects involved in 
given Perceptions and Transformations.   

 Inference is the name we give to the cognitive activity 
that processes the information in STM, by rule-based 
reasoning or mental imagery-like operations to obtain 
additional information. This process may involve additional 
elements brought from LTM to STM. Deciding on the next 
steps as well as solving the problem would typically require 
Inference steps.     

In complexity the decision support tasks we consider 
occupy a place midway between using a display once to get 
some needed information, and open-ended interaction 
during which the steps are not pre-determined but require 
the user to engage in problem solving, e.g., to decide what 
Transformation should be applied next.  We will assume in 
our framework that the user knows how to efficiently and 
effectively use the display for his purposes. This means that 
the tasks and the user’s expertise are such that the next 
action to take is clear to the user, and that he has all the 
background knowledge needed for making the needed 
inferences.  This is a fair assumption since displays for a 
task need to be compared based on intended optimal use of 
the display.  (How hard it is to learn the best method for a 
display for a task is a separate issue, not dealt with here.)       

Precision and Accuracy of the Various Operations.  
All the motor and perception related operations – 
Perception, Transformation and Search – are assumed to be 
potentially error-prone. For example, a user might make an 
error when required to choose the longer of two lines of 
almost equal length, or to distinguish between objects with 
very similar colors. It might also be hard to select a region 
with the mouse exactly within some planned coordinates, 
and finally, while searching among numerous items, one 
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Fig. 3. Parallel Coordinates 
Fig. 4. Star Glyph; bottom, glyphs 

ordered by values of one of the variables Fig. 2. Scatter diagram for two variables.

might miss the item that is sought or choose the wrong item. 
A heavy load on STM might result in loss of data, thus 
making the inference also unreliable. The PTIS technique 
allows for error rates, determined from empirical work, to 
be associated with the affected operation types.   

Illustrative Task 
We illustrate the approach by systematically applying it to a 
task that is common in data mining.  The domain D of 
interest is characterized by a set of n numeric-valued 
variables {x1, x2, ..xn}, and we have a set S of data about m 
entities in D. Then S = {d1, d2, ..dm} where di = (xi1, xi2…xin). 
We assume that the data are fully specified. Developing an 
understanding of the structure of D given S is a problem of 
great interest in data mining.  A common form of such 
understanding is developing an account of any correlations 
that may exist between pairs of variables in {x1, x2, ..xn}, 
and the ranges in which such correlations exist. The fact that 
correlations might exist over parts rather than the whole of 
the range makes visual means of hypothesizing such 
correlations especially useful, since standard correlation-
detecting statistical algorithms might miss such correlations.  

For example, in a case where there is a positive correlation 
over half the range and a negative correlation in the 
remainder, such algorithms would report no correlation at 

all.  In contrast, a well-designed display (as we shall soon 
see) can help the user hypothesize such correlations easily.   

A technical caveat is in order: such visual displays can 
only suggest correlations.  The significance level of the 
correlation and the actual correlation coefficient can only be 
properly computed by statistical algorithms.  We assume 
that once the user hypothesizes such correlations and ranges 
using visual displays, the data, the pair of variables and the 

ranges are input to an appropriate statistical algorithm.  
With the added information about the ranges, the algorithm 
can calculate the correlation parameters accurately.  In the 
rest of the paper, we will focus on just the hypothesizing 
part of correlation discovery.     

Though the more complex versions of the task raise 
additional interesting issues (see Yovtchev, 2005, for 
evaluation of the displays on the various versions of the 
task), in the available space, we will restrict ourselves to the 
simple version, below:  

• Task.  Given the set of data about some domain in the 
form of the values that m entities from that domain 
take on two variables x1 and x2, hypothesize all the 
subranges of the variables x1 and x2 where the 
correlation coefficient differs from 0. 

Diagrammatic Displays Considered 
A number of diagrammatic forms have been proposed to 
represent data of the type we described2. In this paper, we 
use a subset of these displays – sufficient to introduce the 
approach and make the main points.  
 

Spectra.  In this display (Fig. 1), 
each variable is represented by a 
horizontal strip – the strips are 
typically normalized so that their 
ranges take up approximately the 
same length – and each of the 
entities in the data set is represented 
by a vertical stripe (the height of the 
stripe has no significance) in the 
default color, say blue, at the 
location corresponding to the value 
of the entity on that variable.  More 

than one entity may have the same value for a variable, so 
the entities might be stacked at that location, and when 

entities are dense, i.e, many are close together, they may not 
be visibly distinct.   

                                                           
2 For Spectra and Scatter plots, we used the Viewer (Josephson, et 
al, 1998), available from Aetion Technologies LLC, 
www.aetion.com. For Parallel Coordinates and Star Glyphs, we 
used XMDV tool (Ward, 1994).      

Fig. 1. The Spectrum display.  (The figure has to be viewed in color.) 
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Transformations.  The user can select a window of 
variable size on any of the spectra (e.g., the window [18-16] 
in the “Time to 60” Spectrum in Fig. 1).  This changes the 
color of the entities in the window (in Fig. 1 they appear in 
red), not only in the Spectrum where the window was 
selected, but on all the other Spectra as well. (As a new 
window is selected, the old window is automatically 
cleared.)  
Scatter Diagrams.  This display (example in Fig. 2) is a 2-
axis Cartesian graph, with one variable on each axis.  For n 
variables, a maximum of n*(n-1)/2 scatter plots are possible.  
The entities are represented as points at locations 
corresponding to their values on the variables. Remarks we 
made on stacking and density of entities in the Spectrum 
case apply here as well.   
Transformations.  The user can select a rectangular window 
in any of the scatter plots, and the entities in the window 
will change color, not only in that scatter plot, but in all 
other scatter plots that are constructed.   
 

Parallel Coordinates. This display (Fig. 3) has n parallel 
axes - one per variable displayed.  The m alternatives are 
displayed as m paths of n-1 straight-line segments crossing 
the axes at positions corresponding to the entity values in 
the respective variables (Fig. 3 shows just two variables).  
Remarks on stacking and density that we made earlier also 
apply for this display.    

Transformations.  The user can select a range in any of 
the variables, and the entities in the selection window, and 
the lines connecting the values on other axes of each of 
these entities will change color. Fig. 3 shows a selection.   

Star Glyphs. Each entity is represented as a glyph, which 
consists of n rays (for n variables) going out of its center 
whose endpoints are connected to form a polygon, as in Fig. 
4 which shows an example for 3 variables.  The length of a 
ray is proportional to the value of the entity on that variable. 
Making a glyph requires a minimum of three variables. The 
bottom of Fig. 4 shows a Star Glyph display of 3 objects, 
each represented on 3 variables, and ordered by the values 
on the variable on the ray at 0o.  There are no 
Transformations available.   

Performance Analyses 
Sizes of Selection Windows. Many of the methods call for 
making selections using a window, whose size the user 
needs to set. First, the window size needs to be large enough 
to capture enough samples so that the hypotheses are 
statistically meaningful.  The size also determines the 
smallest range over which meaningful correlations may be 
hypothesized.  If the window size is say 10% of the range of 
the variable, then any changes in correlations in ranges of 
the same order cannot be detected.  There are precise 
statistical formulas available (Yovtchev, 2005) to make 
these estimates.     
Spectrum Display 
Method:  

1. Transform display by making a selection window over 
the range of x1 of size at most half as large as the smallest 
subrange over which any existing correlation is to be 

detected, where the window starts at the beginning of the 
range of x1. 

2. Perceive and store in memory the midpoint (mean) of 
the resulting selection in x2. 

3. Transform display by defining another selection 
window of the same size as the first one, but beginning 
where the first one ended. (We assume in analysis that the 
current window is automatically cleared.) 

4. Compare the midpoint (mean) of the resulting selection 
in x2 with previous k memorized ones. Infer and remember 
the trend that resulted from the comparison, and the 
beginning of the range where the trend emerged, or Infer the 
end of a trend that has been present so far.  (Here by “trend” 
means whether the midpoint moves to the right or left 
systematically as the window moves to the right, or whether 
the midpoint movement has no systematic connection to the 
direction of the movement of window.)  

5. Repeat the procedure until the end of the range of x1 is 
reached.   

Perception: Perceiving midpoint of a set of points. In this 
Perception the user mentally estimates the midpoint of a 
given set of points on a line, e.g., the midpoint of the set of 
red points in the “Highway Range” Spectrum in Fig. 1.  
This activity has an associated error measure. It may involve 
sequential mental computations, but it is useful to treat it for 
our purposes as a reusable unit of mental activity.  

Transformation: The only Transformation operation is 
window selection.  In some display versions, a window may 
need to be explicitly deleted; in that case, the number of 
Transformations will double.   

Inference: Determining the trend in mid-point position.  
This action can be modeled in finer detail as keeping the 
previous k midpoint locations in STM, and comparing their 
values, to determine if a trend, positive or negative exists, 
and if there was a trend, whether it continues or has stopped.  
The higher the value of k, the more reliable the estimate, but 
higher also the load on STM.   

Analysis: The sequence of operations is as follows: Select 
window (Transformation) in x1, Perceive midpoint in x2, 
Clear-and-Select next window (Transformation), Perceive 
midpoint, ..Infer trend in direction of midpoint, Transform, 
Perceive, Infer.. 

Without making finer distinctions, for a first 
approximation, the process takes r/s Perceptions, 
Transformations, and Inferences, where r is the range of x1 
and s is the size of the selection window measured in the 
same units as the range.   

The maximum load on STM would be (k + 3), the sum of 
the number of previous perceptions over which the trend is 
inferred, and a pair of locations and one sign (positive or 
negative) for each of the correlation ranges discovered.   

Errors. In addition to the intrinsic error rate in the 
Perception of the midpoint, the display adds another 
potential for error: since more than one entity can occupy 
the same point, the user has no immediate access to the 
density information, and the midpoint estimate might be 
skewed.  Because of missing density information, and due 
to the inherent human error in the basic perception involved, 
correlations may be missed, and even when detected, the 
starting and ending points could be off by some amount.  
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The load on STM, which can be quite high, can also lead to 
errors due to data loss.  The error in tracking the direction of 
the movement of the midpoint due to STM load can be 
decreased by the user revisiting earlier window locations 
and repeating the movements, but this is at the cost of an 
increase in the number of Transformations.   

Ideas for Display Improvement.  The big source of error, 
viz., potential high stress on STM, can be minimized by 
changes in display design.  If the user had access to a 
Transformation whereby beginning and end of each 
hypothesized correlation range can be marked on the screen 
along with its sign, STM load would be minimized.  
However, this would increase the total number of 
Transformations by 3 per correlation range.  Further trade-
offs between STM load and increase in number of 
Transformations are possible.    
 
Scatter Diagrams 

Method: In the case of 2 variables, there is only one 
scatter diagram, as in Fig. 2.  The scatter diagram is the 
most direct way to perceive any correlations.  It calls for 
Perceiving correlation regions directly, as one can see in 
Fig. 2, that there is a negative correlation from x1 value of 
30 to 45, and a positive correlation from 45 to 60.   

Perception, Transformation and Inference: Perceiving 
plausible regions of correlation can be modeled as cluster 
detection, where the clusters are characterized by scatter 
around a straight line, perceiving the beginning and end 
points of the straight lines and the sign of their slopes.  The 
task calls for distinguishing between clusters whose axis has 
a slope of 0 from those with a non-0 slope. Subject to 
confirmation from empirical data, it seems to us that 
correlation hypothesizing in this case is much less error-
prone than in the Spectrum case – no stressing of STM; also 
faster, since it is direct and skips those inference steps that 
are needed for the Spectrum display. Nevertheless, in 
comparison with the optimal algorithms, there are bound to 
be some errors in the precise location of the end points, and 
also there are potentials to miss and mis-hypothesize 
correlations with a low correlation coefficient.  Assuming 
that the hypotheses generated are to be fed to mathematical 
algorithm to generate quantitative information about the 
correlation, users might be trained to err in the direction of 
hypothesizing correlations when they are doubtful, with the 
idea that the numerical procedures might be able to reject 
dubious hypotheses.   

There are no Transformations or Inferences needed for the 
2-variable case, and thus there is little load on STM.   

Analysis: With the proviso that the act of Perception 
described above is complex, involving a sequence of mental 
operations, the task simply calls for one act of Perception. 
The temporal complexity of this Perception is 
approximately linear in the number of correlation regions, 
with a minimal part that would exist even when there are no 
correlations.   

Errors. As mentioned, there are inherent errors in human 
perception of correlation, the error increasing as the 
correlation coefficient decreases.  There are also errors in 
the locations of the end points.  We hypothesize that both 
these errors are inversely proportional to the number of 

entities, i.e., human performance would have less error as 
the number of entities increases.  

Display Improvement. An additional Transformation, 
Zoom, might help if applied for repeated Perception 
operations to locate the end points.  Of course, this change 
to the display design will increase the number of 
Perceptions and Transformations for completing the task.   

Because of its simplicity, low error rates and low stress on 
STM in comparison to the alternatives, the Scatter Diagram 
can be taken as the gold standard display for the task under 
consideration.  

  
Parallel Coordinates 

Method: Depending on the density of the data, different 
methods seem to be appropriate.  

Relatively Sparse Data. When the density of the data is 
low enough that the values that an entity takes on different 
axes can be distinguished, the correlation regions, if any, 
and the directions of the correlation are available for 
Perception.  

Relatively Dense Data.  In this case, since lines 
connecting the values of the individual entities cannot be 
distinguished (Fig. 3), the method is similar to that for the 
Spectrum display.  A variation on this method is track the 
average slope of the lines created by the window (the 
average slope of the red lines in Fig. 3).  If the slope starts 
and stays positive (negative) within a region, positive 
(negative) correlation may be hypothesized.    

Perception, Transformation and Inference: In the case 
of Sparse data, the basic Perception is not gestalt as in 
cluster recognition in the case of the Scatter Diagrams, but 
involves a sequence of comparisons.  The user sweeps 
through a range of x1 and visually follows the slopes of the 
lines connecting to x2.  Thus, it is likely to take longer time, 
and is possibly more error-prone.  In the Dense case, once 
selection is made, the required Perception is similar to that 
in the Sparse case, and the same remarks apply.  For Sparse 
Data, as in the case for Scatter Diagrams, there is no need 
for Transformation and Inference operations; for Dense 
Data, remarks made in the case of Spectrum display apply.  

Analysis: For Sparse, except for likely higher error rates 
in Perception, the same analysis as for Scatter Diagrams 
applies.  For Dense, remarks similar to that in the Spectrum 
case apply, with possibly different values for error rates for 
Perception.   

Design Ideas: The error analysis of the cases coincides 
respectively with the Viewer's Spectrum and Scatter 
Diagram error analysis. Hence, it leads to the same design 
ideas -- zoom functionality, and markup operations to mark 
starts and ends of hypothesized correlations.  The latter 
trades off STM overload for an increase in the number of 
Transformations.   
 
Star Glyphs 
Since the glyphs have to have a minimum of 3 variables, we 
add a pseudo variable whose values are the same for all the 
entities (or it is a real variable in the domain whose values 
we ignore).  Let us also assume that the glyphs are ordered 
on their values on x1 as in the bottom part of Fig. 4.  
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Method: Scanning the glyphs in order of the value of x1, 
for glyph i, compare its x2 value with k previous values to 
infer whether a trend of increase or decrease has begun, and 
if already begun, maintained. If the trend just began or 
ended, save the value of i to STM.  Continue until all the 
glyphs are scanned.  The value of k is set based on 
considerations described when we discussed inference in the 
use of the Spectrum display, i.e., to smooth out random 
local variations. As before, higher k reduces statistical error, 
but errors due to resulting overload of STM might reduce or 
eliminate the advantage.   

Perception, Transformation and Inference: The basic 
Perception is one of local comparison of x2 values to decide 
if an increase or decrease is observed.  There are no 
Transformation operations.  The issues regarding Inference 
are similar to our corresponding discussion for the Spectrum 
case.  That is, the x2 values of k glyphs are kept in STM, and 
their values are compared to determine beginning, 
maintenance or end of positive or negative covariation 
trends.  As before, the higher the value of k, the more 
reliable the estimate, but higher also the load on STM.     

Analysis: The number of basic Perception steps is (m-1), 
the number of glyphs. The number of Inference steps is (m – 
k). Maximum load on STM is (k + 3* number of 
correlations ranges hypothesized), since each correlation 
region requires remembering 2 end points and its sign.  
Because no windows are used to average out behavior, the 
numbers of Perception and Inference steps are quite large.    

Error rates.  The basic Perception is quite reliable, except 
when the increase or decrease is very small, in which case 
the error does not likely matter much. The Inference step is 
error-prone because of the complexity of calculation, and 
the requirement on STM to keep k items.  Starting and end 
point assessments are especially likely to be error-prone 
because of natural statistical variations on x2 values, which 
need to be smoothed out during the Inference step.  

Design Ideas. As before, the load on STM may be 
reduced by providing Transformation operations to mark the 
beginnings, ends and the signs of the correlations.   
 
Comparing Displays 
Even this level of qualitative analysis is useful in making 
comparisons.  The Scatter Diagrams are the most direct – no 
Transformation operations, no Inference, and little stress on 
STM. The Glyphs are especially laborious to use, and the 
Perception and Inference steps seem prone to high error 
rates for both the Glyph and Spectrum displays. Whatever 
the general attractiveness of the Glyph displays, they are not 
well suited for the specific task we considered.   

Concluding Remarks 
The paper outlines an approach in the GOMS framework to 
systematize investigating how good specific diagrammatic 
schemes are for specific families of tasks.  Unlike earlier 
applications of the GOMS framework, which involved 
elementary operations at a relatively low level of 
granularity, diagrammatic interfaces used in decision 
support systems involve relatively complex perceptions and 
physical interactions. We illustrated the approach by a 

comparative performance analysis of several candidate 
diagrammatic interfaces for the task of discovering relations 
between variables in some domain of interest. The analysis 
results in estimates of the numbers of various basic 
operations, such as Perception, Transformation, Search and 
Inference, and of stress on short-term memory. For many 
DSS applications qualitative results as we obtained are 
sufficient. The precise timings about how long the entire 
process would take may be less important than whether the 
display calls for significantly more interaction compared to 
another display, whether perceptions are more likely to be 
error-prone in one than another, etc.  However, empirical 
data about the timing and error rates of the human cognitive 
architecture on the basic operations can be used for more 
precise predictive evaluations.  We expect to launch such an 
initiative soon.  
    The approach can help to identify aspects of the display 
that need improvement.  Adding Transformations to mark 
partial results on the display may be considered if the 
analysis indicates potential for STM stress. If analysis 
indicates that the contribution of errors in specific 
Perception is significant, alternatives might be considered.    

Goodness of an interface given the best method is not the 
same as how good it is in helping someone learn the best 
method.  Our methodology can be applied to the latter task 
as well, and it is an important future direction of research.   
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