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Abstract

Cognitive Constraint Modeling is an emerging model-
ing framework that allows a modeler to derive predic-
tions of asymptotic performance from (a) a specifica-
tion of architectural constraints; (b) a specification of
a space of possible task strategies; and (c) an explicit
objective (payoff) function. This approach has dis-
tinct advantages over traditional approaches in that it
reduces the degrees of freedom inherent in specifying
the details of particular strategies when explaining be-
havior; instead these specific strategies are selected on
the basis of their maximum payoff given the architec-
tural constraints. However, this approach potentially
suffers from high computational cost and intractability
on some problems because it is grounded in optimiz-
ing constraint-satisfaction techniques. To understand
and address this problem, we have built a cognitive con-
straint problem generator which stochastically generates
large populations of parametrically controlled problem
instances on which we can test CCM performance. Ini-
tial results from our use of this tool have identified at
least one clear property of problems-order strength-that
has a significant and non-linear effect on performance
time. These results, when extended, will pave the way
to efficient constraint modeling.

Introduction

It is a commonplace of psychology that human behav-
ior is adaptive, but research over the last 10-15 years
has revealed the astonishing degree to which strategic
adaptation and variability manifests itself across behav-
ioral timescales-even at the lowest levels of extremely
rapid behavior (e.g., [Meyer and Kieras, 1997]). Cog-
nitive architectures naturally admit of such strategic
variation because they are programmable. Unfortu-
nately, this general theoretical virtue becomes explana-
tory vice in trying to explain specific behaviors, because
the strategies and knowledge supplied to the architec-
ture become degrees of freedom in accounting for data
[Kieras and Meyer, 1999, Newell, 1990]. This leads to
the following question: How can we account for the com-
plex details of adaptive interactive behavior-without ef-
fectively building into the model what we are trying to
explain?

Cognitive Constraint Modeling (CCM) is an emerg-
ing framework for modeling that attempts to address
this issue by allowing modelers to work in terms of for-
mally defined spaces of strategies and formally defined
architectural theories [Howes et al., 2004]. This is an ad-
vantage in that points in the strategy space are then
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evaluated in terms of explicit theorist-defined objective
functions (such as “go as fast as possible” or “minimize
working memory load”) rather than being selected be-
cause of data fit.

The approach is realized computationally in a sys-
tem called CORE (Constraint-based Optimality Reason-
ing Engine) [Howes et al., 2004]. Computational mod-
eling in CORE has several distinguishing characteris-
tics, but we focus on two here. First, descriptions of
behavior are derived via constraint satisfaction over ex-
plicitly declared architectural, task, and strategy con-
straints, rather than running a simulation. Second, the
complex details of behavioral control emerge in part
from optimizing behavior with respect to explicit pay-
off functions ascribed to the human. Predictions of
asymptotic performance are generated from architec-
tural theory while minimizing specific assumptions about
the details of the strategies. CORE has been used
to model a range of different domains, including driv-
ing behavior [Brumby and Salvucci, 2006], a call cen-
ter [Howes et al., 2005], interactions with an Automated
Teller Machine task [Lewis et al., 2004], and interrup-
tions during procedural cockpit tasks [Eng et al., 2006].

The computational problem

Generating predictions from CORE can be computation-
ally expensive: each CORE model constitutes a con-
straint satisfaction problem defining a potentially large
search space of possible behaviors. Our practical experi-
ence with CORE suggests that even with relatively short
stretches of behavior (under 20 seconds), it may be pos-
sible to create modeling problems that takes hours or
days of CPU time to compute, as well as problems that
are essentially intractable.

We do not believe this is a problem specific to our
particular implementation of CORE. Rather, the com-
putational complexity of these models is a fundamental
problem that must be addressed for the general class
of modeling methods in which the modeler is effectively
specifying and exploring large spaces of possible strate-
gies rather than specific (and possibly arbitrary) points
in an implicit strategy space. This paper reports our
first steps at understanding and addressing this compu-
tational problem.!

!This is not the first explicit attempt to systematically
and quantitatively analyze the computational performance
of a symbolic cognitive modeling technique; many current



Our approach

Our approach to understanding and addressing this com-
putational problem is to develop a cognitive constraint
model problem generator, which allows us to stochasti-
cally generate large populations of parametrically con-
trolled problem instances on which we can test the
performance of CORE. Initial results from our use of
this tool have identified at least one clear property of
problems—order strength—that has a significant and
non-linear effect on performance time. As we discuss
below, this property has been previously identified in
the literature on constraint satisfaction techniques.

In the remainder of the paper, we first summarize the
basic structure of the computational problem as it arises
in CORE, showing how CORE cognitive models are re-
duced to resource-bounded constraint satisfaction prob-
lems (RCSPs). We then briefly describe a particular
class of algorithms for solving RCSPs and the time com-
plexity of RCSPs. Next, we provide an overview of our
problem generator framework, and then report on our
initial results of experiments with this system. We con-
clude with the first set of general lessons we draw from
these experiments, and suggest practical steps to take to
make constraint modeling more efficient.

From cognitive constraint models to
scheduling problems

CORE takes in a specification of constraints and out-
puts a behavioral prediction. The architectural con-
straints are described in terms of cognitive, percep-
tual, and motor processes which use a set of proces-
sors/resources with set capabilities (following Model
Human Processor [Card et al., 1983] and CPM-GOMS
[John and Gray, 1995]) and high-level task grammars
that define a space of possible task strategies. CORE
transforms the architectural constraints and the task
grammar specification into a constraint satisfaction
problem, described as a set of variables, domains, and
constraints. This formulation allows for the treat-
ment of the models as scheduling problems, in par-
ticular, a Resource-Constrained Scheduling Problem
(RCSP). CORE uses an off-the-shelf constraint solver:
the Constraint Logic Programming over Finite Domains
(CLPFD) Sicstus Prolog solver, to solve these constraint
satisfaction problems. This solver utilizes the stan-
dard Branch and Bound algorithm for optimized solution
search.

Formulation as Resource-Constrained
Scheduling Problem

A RCSP consists of a number of different activities,
where each of the activities has a duration, and a maxi-
mum time domain in which it must be scheduled. Each
activity also has a resource requirement which it uses

production system architectures such as Soar and EPIC
[Meyer and Kieras, 1997] were made viable by early founda-
tional work on the production rule match which led to effi-
cient new algorithms [Forgy et al., 1984, Tambe et al., 1990].
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during its processing time. The activities must be sched-
uled within the total time bound (or optimized with re-
spect to time), as well as stay within the total resource
capacity at any given time. A solution schedule is an
assignment of activities such that all specifications de-
scribed are satisfied. There may be more than one so-
lution per problem, depending on the tightness of the
specifications.

A CORE cognitive constraint model can be inter-
preted as an RCSP. The variables consist of the pro-
cesses, the domains of the variables consist of the dura-
tion distributions of the processes, and the constraints
consist of (1) the task constraints denoting the flow of
information required, (2) the capacity of the resources
and the processes’ allowed resource usage, (3) the archi-
tectural constraints such as the resources’ capacities and
amount of processing allowed at any given time, and (4)
the minimization of time (or some other objective func-
tion). The space of solutions consists of the possible sets
of domain values assigned to processes such that all the
constraints are satisfied.

This interpretation is useful because it allows us to
make contact with the large body of research already
in place for RCSPs. In particular, parameters which
characterize RCSPs and measures used to evaluate the
performance of RCSP-solving algorithms have been de-
veloped, tested, and widely used [Kolisch et al., 1995,
Kolisch et al., 1998, Patterson, 1976]. This means that
input task models, the space of solutions (behavior pre-
diction), and the performance of the constraint solver
itself all may be evaluated in terms of these established
RCSP metrics.

Complexity, phrase transitions, and control

parameters
RCSP  itself is an  NP-complete  problem
[Herroelen and De Reyck, 1999]. However, there

are properties of NP-complete scheduling problems
which can be exploited to provide a characterization of
the complexity of the problem space. A particularly
useful one is that many NP-complete problems exhibit
phase transitions: sudden changes in computational
complexity. Phase transitions are products of the
way control parameters, parameters that characterize
the problems to be solved, affect the hardness of the
problem. Hard to solve instances occur around a critical
value of a control parameter, and are responsible for
the phase transition. [Herroelen and De Reyck, 1999].
Therefore one of the goals of the present work is to
search for those control parameters that predict phase
transitions in cognitive constraint models.

For the RCSP, most control parameters fall into
these categories: (1) size of the problem, (2) topo-
logical structure (morphology) of the problem, or (3)
availability of different resource types in the problem
[Herroelen and De Reyck, 1999]. A widely-used exam-
ple of these is order strength, which falls into the topo-
logical structure category. Order strength is intuitively
the strength of the partial ordering, or the density of the
network.



Definition 1 Order strength is the number of prece-
dence relations divided by the theoretical maximum of
such precedence relations: T /U, where U = n(n —1)/2,
and n is the number of activities.

In terms of the task model RCSPs, activities are
processes, precedence relations are the cascades denot-
ing the flow of information between processes, and the
network is the schedule itself, with the processes as
nodes and the precedence relations as topological con-
straints between them. Order strength has been shown
to successfully characterize phase transitions for many
of the main RCSP-solving algorithms such as Branch-
and-Bound [Herroelen and De Reyck, 1999]. There are
many other RCSP control parameters; below we present
empirical evidence that order strength is significant for
cognitive constraint models.

Cognitive Constraint Problem Generator

(CCPG) Framework

The motivation for the CCPG is to develop a tool which
can be used to systematically test the performance of
CORE on large sets of model instances that we para-
metrically define. This will allow us to identify charac-
teristics of problems which may increase or decrease ef-
ficiency. In general, the CCPG should be able to create,
run, and evaluate scheduling problems of varying com-
plexity with respect to some controlled measure. Here we
present results with respect to the controlled measure of
order strength (refer to Definition 1). The requirements
for this tool include:

1. The ability to generate scheduling problems that have
similar structure to the cognitive modeling problems
to which CORE is intended to be applied.

2. The ability to provide the modeler with enough input
flexibility to control some aspects of the scheduling
problems generated without losing the advantage of
the large variability between types of problems. For
example, one input parameter may be the number of
processes in the generated problem: using this, the
modeler can relatively control the size of the problem,
however there is a huge amount of variability in the
types of problems that can be generated with a certain
number of processes.

3. The ability to guarantee that each generated problem
in fact has a solution.

Given these requirements, we made the design choice
of creating a problem generator rather than using an
off-the-shelf RCSP generator, because existing genera-
tors (e.g., [Kolisch et al., 1998, Schwindt, 1995]) do not
satisfy 1 and do not always satisfy 2 and 3 in tandem.

CCPG structure and implementation

The CCPG is implemented in three main stages: the
first stage generates fully constrained schedules, the sec-
ond stage removes constraints systematically, creating
under-constrained scheduling problems, and the third
stage executes and evaluates the performance of these
problems in CORE. Refer to figure 1.
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Figure 1: Stages of the cognitive constraint problem gen-
erator.

Stochastic generation of fully-constrained sched-
ules The first stage receives input parameters from
the modeler and outputs a number of fully-constrained
schedules generated from those input parameters and
some randomization. The two types of input parameters
are the characteristic and shaping parameters. The char-
acteristic parameters (number of processes, number of
resources, etc.) describe the basic structure of the sched-
ules to be generated, characterizing the bounds of the
schedule space to be explored. The shaping parameters
control the general shape of the schedule, approximating
the location of this schedule in the schedule space. The
algorithm grows the schedules in a tree-like implemen-
tation, where the precedence relations between nodes of
the tree correspond to the flow of information between
processes. The scheduling of each of the processes is de-
pendent on probability distributions which are affected
by the shaping parameters. However, these parameter
constraints are not tight enough to limit the number of
schedules possible to generate.

The stochastic method allows for the generation of a
huge range of similarly-structured schedules, supporting
the requirement for variability in 2. To test if the gener-
ator gives sufficient parametric control so that schedules
produced are similar to cognitive problems of interest
(requirement 1), an assessment was carried out using a
regression analysis and common metrics used to describe
directed acyclic graphs. The analysis showed that the
parametric control is significant in shaping the sched-
ule structure and provided guidelines for the choosing
of parameters to manipulate schedule formation. This
analysis also showed that solution schedule variation is
extremely large despite the parametric control (require-
ment 2) and that the space of possible generated solu-
tions is much larger than the current scope of existing
models so absolute verification of a mapping from the
space of possible generated task models to the space of
human task models is not feasible, at least at this time
(requirement 1).

Turning schedules into problems via constraint
removal In this stage of the CCPG, constraints are
removed systematically from the fully constrained sched-
ules to create under-constrained scheduling problems.
This systematic removal guarantees that every problem
generated is solvable (but does not guarantee what the
solution is) satisfying requirement 3, and allows the vary-
ing of complexity to be controlled for evaluation with
respect to the experimenter-chosen controlled measure.
In this implementation, an RCSP control parameter, or-
der strength, is chosen. To systematically vary the or-



der strength, the type of constraints removed must be
ordering (flow of information) constraints (Definition 1
precedence relations). This investigates the strength of
the partial ordering as a property of scheduling problems
which may help characterize the space of solvable task
models for CORE.

An Empirical Investigation of the Effects
of Order Strength

We used the problem generator to empirically investigate
the effects of order strength variation on the performance
of the branch-and-bound algorithm. In what follows, we
first describe the structure of the experiment and the
parameters varied, and then report the results in terms
of execution time and time-out rates as a function of
order strength.

In light of this order-strength specific evaluation, we
have found it useful to describe the results in two stages.
First we establish the low run time model trends, us-
ing a low time-out value meaning the problems which
take more than a certain CPU time value to run will be
stopped and remain unfinished. This is a user-specified
quit mechanism in Sictus Prolog.) Then we address the
question of fitting higher run time models to these low
run time curves, evaluating the ability of the low run
time curves to predict the behavior of higher run-time
models.

Structure of the experiment

We embedded the generator in nested loops of execu-
tion which ran large numbers of models systematically
through CORE under the same machine conditions and
recorded the CPU time per run.

Our models include multiple fully-constrained sched-
ules using the same exact input parameters, and also
multiple fully-constrained schedules using different num-
bers of processes but otherwise unchanged input param-
eters. Each schedule was the starting point for multiple
sequences of constraints removed (the sequences ranging
from no constraints to all constraints removed), each ad-
ditional removal amounting to a separate model. This
allows for time complexity to be analyzed across (but not
limited to) numbers of processes, number of constraints
removed (NCRs), and order strength.

Low run time models

Figure 2 shows the results of the analysis characterizing
the behavior of low run time models: their relationship
between order strength and execution time. The data in
this plot is the result of a range of 5-30 process problems,
each with 10 different fully-constrained schedules with 10
different sequences of constraints removed each. This is
a total of 52,500 models. Each line is a local polynomial
regression fitting of the data points for the models of
one number of processes, and each line is labeled with
that number of processes. The “Average CPU time per
trial” is the average search time the constraint solver
needs to find a solution for that model. The time-out
is 100ms. (The data plotted here is only for the models
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Figure 2: Time complexity of models of different num-
bers of processes (labeled numbers in the plot) according
to order strength. For low run time models.

that finished running and did not time-out.) The rea-
son for this tight time-out value is the result of a search
through ranges of time-outs which exhibited an interest-
ing processing time duality: their run time either took
hours or was under a minute. With low run time mod-
els it is computationally feasible to run enough models
to find a trend if one exists, and if that trend can pre-
dict the complexity of the high run time models, then
the control measures used are good predictors of the the
task models’ run time complexity.

The trends in Figure 2 curve downward, and more
sharply with increasing numbers of processes. This is
consistent with the expectation that increasing order
strength (increasing strength of the partial ordering of a
problem) will decrease the run time. The stronger the
structure of the problem, the less time it will take to
find a solution because the search space is smaller. With
models of smaller numbers of processes, the search space
is small to begin with, and so the run time is still low
regardless of order strength and the lines are rather low
and flat.

A plausible explanation for the downward turn (near
0 order strength) at the peaks of some of the lines is
an effect of the order strength formulation: as the order
strength approaches 0, the equation T/U ensures that
the ratio of existing precedence relations with respect to
the theoretical maximum of all precedence relations is
getting smaller. For models with large numbers of pro-
cesses, the ratio can approach 0 fairly quickly without
the need for very small numbers of existing precedence
relations because of the unstructured nature of the prob-
lem. The point at 0 can only occur when there are no



existing precedence relations, which is fairly easy (small
run time) to schedule a problem with no constraints.

Higher run time models

imeout = 100 ms timeout =105 imeout= 10 min

Figure 3: Time complexity across increasing run time
models with respect to order strength. Raw data is be-
hind the local polynomial regression fitted line. Dotted
lines represent error within 95% confidence interval.
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Figure 4: Time complexity across increasing run time
models with respect to number of constraints removed.
Raw data in boxplot form behind the local polynomial
regression fitted line. Dotted lines represent error within
95% confidence interval.

Figures 3 and 4 are examples of the results comparing
the behavior of the previous low run-time models to two
other sets of higher run time models. The changes across
the systematically varied run times was gradual; these
particular sets were chosen to illustrate the differences
between the higher and lower run time models. (These
examples also come from a range of 5-30 process models,
same as the low run time models). The trends shown by
these examples are representative of the results gathered;
they are shown by example to facilitate viewing of the
data.

Figure 3 shows the relationship between order strength
and execution time across increasing run time models.
The vertical line notates the order strength at which
the maximum execution time of the smoothed fit occurs,
used to compare the hill-shaped trends observed in the
lower run time models with the higher run-time models.
The top of the hills shift between the different time-out
plots, however there is a set range between 0.1 and 0.2
order strength within which the peak of the hill (across
all models) lies.

The processing time duality referring to the sudden
increase in computational complexity of certain models
can be seen here in the 10min time-out plot. The major-
ity of the models have an execution time similar to the
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100ms and 10s models, however there are a few models
which have a very sudden increase in complexity. These
models cause the smoothed hill in that plot to be peaked
at that order strength, however, when compared to the
lower time-out plots, the peak is very close to the predic-
tion of the lower run time models. Because these trends
were observed across the total data set, it suggests that
order strength may be able to identify those problem-
atic models that have run time complexity many orders
of magnitude above its similar but low run time neighbor
models.

However, order strength does not explain the reason
for the jump in complexity. We are currently examining
“minimal pairs” of scheduling problems that are identical
in number of processes and resources and differ only in
the removal of a single constraint—but which show rad-
ically different complexities in that one of the problems
takes at least 3 orders of magnitude longer to solve than
the other. Such minimal pairs will help us to identify
perhaps a different set of control parameters underlying
the phase transitions.

These particulars make it worthwhile to compare the
same run time data against the number of constraints re-
moved (NCR) from the fully-constrained schedule. The
difference between NCR and order strength is subtle: the
order strength measures a structural aspect: the density
of the problem regardless of the size, and the partic-
ular constraint removed does not matter to the NCR
measure, however it does to order strength because of
the transitive relations involved. Figure 4 consists of
the same data as Figure 3. The same basic trends can
be recognized (as expected, because of the correlation
between the number of constraints removed and order
strength). However the shift in the peak of the hill cov-
ers a wide range of the NCR metric and does not seem
to be bounded well. This suggests that order strength
might be a better indicator of those highly computation-
ally complex run time models.

Discussion

We have examined the computational nature of task
models used in Cognitive Constraint Modeling. CCM is
an approach to computational modeling which is unique
in that it formulates cognitive models as optimized con-
straint satisfaction problems. Although it may be ar-
gued that all cognitive architectures treat modeling as
a type of constraint satisfaction problem with resource
constraints, it has not been as precisely formulated as it
is here. CCM models may be interpreted as resource-
constrained scheduling problems, allowing us to take ad-
vantage of the complexity and control measures that the
RCSP literature has to offer. We have created a prob-
lem generator framework to allow for time complexity
experimentation with the Branch-and-Bound algorithm
used by CORE—a standard approach to algorithm in-
vestigation in the planning and constraint satisfaction
fields—and we have exploited the advantages of RCSPs
both in the framework and in the choice of analyses. This
has allowed us to take a very close look at the structure
of the problems themselves, and their effect on the com-



putational feasibility of CORE modeling. Our initial use
of this tool has yielded promising results. First, it has
confirmed that order strength is a predictor of problem
complexity for the subclass of RCSPs that are generated
in cognitive constraint modeling. Second, it has created
a large set of minimal pairs of problems whose constraint
removal straddles phase transitions, which should yield
insight into the precise characteristics that give rise to
such transitions.

The practical implications of this work are signifi-
cant: If we can precisely characterize the space of the
computational complexity of CORE models, we can use
the information to make constraint modeling not only
more efficient, but in some cases, possible at all. These
changes to the constraint modeling may include chang-
ing the model specifications by adding or subtracting
constraints in a way that does not compromise the theo-
retical goals of the modeler; use different specialized al-
gorithms on models of high complexity (some algorithms
may be better than others at particular kinds of hard-
ness; e.g.[Patterson, 1976]); and also providing the mod-
eler with characterization of the expected complexity of
models before they are executed.
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