
Category Development and Reorganization Using a
Bidirectional Associative Memory-inspired Architecture

Gyslain Giguère (giguere.gyslain@courrier.uqam.ca)

UQÀM, Département de psychologie, A/S LEINA,
C.P. 8888, Succ. CV, Montréal, Qc, H3C 3P8

Sylvain Chartier (chartier.sylvain@gmail.com)

Université d’Ottawa, Département de psychologie,
550 Cumberland, Ottawa, Ont, K1N 6N5

Robert Proulx (proulx.robert@uqam.ca)

UQÀM, Département de psychologie, A/S LEINA,
C.P. 8888, Succ. CV, Montréal, Qc, H3C 3P8

Jean-Marc Lina (jean-marc.lina@etsmtl.ca)

École de Technologie Supérieure, Département de génie électrique
C.P. 8888, Succ. CV, Montréal, Qc, H3C 3P8

Abstract

This paper shows that the recently proposed Feature-
Extracting Bidirectional Associative Memory (FEBAM) can
create and reorganize item clusters (or categories). This
model, contrary to most other cluster-creating architectures, is
based on projection methods and follows associative model
principles (e.g. distribution of information, pattern completion
and noise tolerance). Using a bidirectional associative
memory (BAM)-inspired architecture, the resulting model is
tested by simulating iterative cluster development and
reorganization of artificial stimuli and alphanumeric patterns.
In contrast to classic clustering techniques, the model is able
to reproduce predetermined categories by iteratively
reevaluating cluster membership, and allows given category
members to move from a category to another. Because
FEBAM has been shown to possess many more interesting
properties, it is argued that the model possesses more
cognitive explanative power than other comparable models
and algorithms.

Introduction

Categories
In everyday life, humans are constantly exposed to
situations in which they must group perceptual patterns
(such as visual objects) into categories, in order to act upon
the identity and properties of the encountered stimuli. To
achieve this task properly, a cognitive system must adapt to
many different environments which necessitate a broad
range of behaviors according to context. Cognitive scientists
have historically argued over the fact that the human
cognitive system either uses generic abstractions (such as
prototypes) or very specific perceptual stimulations (such as
complete exemplars) to achieve category learning and
further classification. Seemingly, the use of one of these
representations is likely to be closely linked to specific
environmental demands and system goals (Murphy, 2002).

Clustering in Neural Nets
More generally speaking, category formation, in a
perceptual framework, is often seen as a “clustering” of
similar patterns in common categories, a process akin to
classic clustering techniques, which involve partitioning
stimulus spaces in a number of finite categories (“clusters”).

In artificial neural networks, clustering is a well-
developed technique used mainly in competitive models
(Kohonen, 1989; Grossberg, 1988). In these models, each
output unit represents a specific cluster of items. When
taking a decision, the association between an exemplar and
its determined cluster unit in the output layer is
strengthened. In “hard competitive” networks (Grossberg,
1988), exemplars may only be associated with one cluster
(i.e. only one output unit at a time can be activated).

An example of hard competitive network is the Adaptive
Resonance Theory (ART: Carpenter & Grossberg, 1987;
Grossberg, 1988). ART networks are able to deal effectively
with the exemplars-prototype scheme, while being able to
answer the stability-plasticity dilemma. These unsupervised
competitive models achieve the desired behavior by using a
novelty detector (through “vigilance”); various degrees of
generalization can be achieved with this procedure. If the
value of the vigilance parameter is low, broad categories are
developed; if it is high, narrow categories are developed,
with the network ultimately performing exemplar learning.

In “soft computing” (Kohonen, 1989), exemplars may be
associated with many clusters at differing degrees. This
provides a more distributed classification; for instance, an
exemplar may be geometrically positioned between two
clusters, and possess various degrees of membership.

PCA networks (Diamantaras & Kung, 1993) can also be
used to achieve clustering; in this case, each category is
defined by a linear sum of extracted orthogonal
components. Nonlinear PCA networks (Karhunen, Pajunen
& Oja, 1998) are not restrained by this orthogonal

In Proceedings of ICCM - 2007- Eighth International Conference on Cognitive Modeling. 97 - 102. Oxford, UK: Taylor & Francis/Psychology Press.

1

requirement; hence, correlated components can be found
(Hyvarinen & Oja, 2000). In all cases, once an item has
been linked to a specific cluster, there is no mechanism
allowing this item’s category membership to be modified.
Each model’s internal structure is based on a specific metric
that is constant over the training period.

Model Overview
In this paper, we show that the FEBAM model can be used
to form clusters using various exemplar sets. First, it is
shown that prototypes can be stored in the network’s
memory, regardless of the number of units. In this situation,
exemplars form transient memories that can be used for
identification, while prototypes constitute attractors that can
be used for categorization. Second, when using a unit
recruiting procedure, the model can ultimately develop
exemplar-based attractors. In FEBAM, it is the number of
units that specifies category broadness (in comparison to
novelty detection in ART models). If, for instance,
additional units are recruited and trained during learning,
then the model is able to develop a greater amount of
narrower categories. Ultimately, the network can perform
“exemplar clustering”.

Model Description

Architecture
FEBAM’s architecture is based on a BAM architecture
(Kosko, 1988) proposed by Hassoun (1989) and Chartier &
Boukadoum (2006a). It consists in two Hopfield-like neural
networks interconnected in head-to-toe fashion.

Figure 1: FEBAM network architecture.

When connected, these networks allow a recurrent flow

of information to be processed bidirectionally. As shown in
Figure 1, the W layer returns information to the V layer and
vice versa. As in a standard BAM, both layers serve as a
teacher for the other layer and the connections are explicitly
depicted in the model1. To enable a BAM to perform

1 In opposition, the architecture of multi-layer Perceptrons strictly
illustrates a series of input-output relationships, without ever

clustering, one set of those explicit connections must be
removed. Thus, in contrast with the standard BAM
architecture, the “initial output” y(0) is not obtained
externally, but is instead acquired by iterating once through
the network, as depicted in Figure 2.

Figure 2: Output iterative process used for learning
updates.

In the context of item cluster creation, the W layer will be

used to determine the maximal number of clusters created
by the network; the more units in that layer, the more
possible clusters. The exact relationship between these
quantities is the following: the theoretical maximal number
of categories developed by the network is equal to 2n, where
n is the number of units in the network.

Output Function
FEBAM’s output function is expressed by the following
equations:

3

1, If () 1
 , ..., , (1) 1, If () 1

(1) () () (),

i

i i

i i

t
i N t t

t t Elseδ δ

>
∀ + = − < −
 + −

Wx
y Wx

Wx Wx
 (1)

and

3

1, If () 1
 , ..., , (1) 1, If () 1

(1) () () (),

i

i i

i i

t
i M t t

t t Elseδ δ

>
∀ + = − < −
 + −

Vy
x Vy

Vy Vy
 (2)

where N and M are the number of units in each layer, i is the
index of the respective vector element, y(t+1) and x(t+1)
represent the network outputs at time t + 1, and δ is a
general output parameter. Like in any nonlinear dynamic
system, to guarantee that a given output converges to a fixed
point such as x*(t) or y*(t), the slope of the outputs
function’s derivative must be positive and smaller than one
(Chartier & Proulx, 2005; Kaplan & Glass, 1995):

2(1) 0 (1) 3 (()) 1
()

d t t
d t

δ δ+
= < + − <

y Wx
Wx

 (3)

2(1) 0 (1) 3 (()) 1
()

d t t
d t

δ δ+
= < + − <

x Vy
Vy

 (4)

specifying the origin of the teacher’s information. This is less
desirable in a neuropsychological perspective.

Wx(0) y(0)

V

W

x(1)

y(1)

2

This condition is satisfied when 0 < δ < 0.5 for bipolar
stimuli2. Figure 3 illustrates the shape of the output function
when δ = 0.4. This output function possesses the advantage
of exhibiting continuous-valued (gray-level) attractor
behavior. Such properties contrast with networks using a
standard nonlinear output function, which can only exhibit
bipolar attractor behavior (e.g. Kosko, 1988).

Figure 3: Output function for δ = 0.4.

Learning Function
Learning is based on time-difference Hebbian association
(Chartier & Proulx, 2005; Kosko, 1990; Oja, 1989; Sutton,
1988), and is formally expressed by the following
equations:

T(1) () ((0) ())((0) ())k k t tη+ = + − +W W y y x x (5)

and
T(1) () ((0) ())((0) ())k k t tη+ = + − +V V x x y y (6)

where η represents a learning parameter; T is the usual
transpose operator, y(0) and x(0), the initial patterns at t = 0,
y(t) and x(t), the state vectors after t iterations through the
network, and k the learning trial. The learning rule is thus
very simple, and can be shown to constitute a generalization
of hebbian/anti-hebbian covariation in its autoassociative
memory version (Chartier & Boukadoum, 2006a). For
weight convergence to occur, η must be set according to the
following condition (Chartier & Proulx, 2005; Chartier, &
Boukadoum, M., 2006b):

1
2

1 ,
2(1 2) [,]Max N M

η δ
δ

< ≠
−

 (4)

General Procedure
To obtain the various vectors needed for weight updates,
stimuli iteration is performed as depicted in Figure 2. First,
an initial stimulus (x(0)) is introduced to the W layer,
yielding an initial output (y(0)). This output represents the
input’s classification into a distributed cluster. Second,
using this initial output, the information is sent back to the
input layer using the V layer’s connections; this results in
another output, x(1). Third, this novel output is then used to

2 Generalization to real-valued stimuli can be found in Chartier &
Boukadoum (2006a).

obtain the final classification output (y(1)) by using the W
connections once again.

As stated by Equations 5 and 6, weights can only
converge when “internal feedback” is identical to the initial
inputs (that is, y(1) = y(0) and x(1) = x(0)) (in other words,
when the network resonates). The function therefore
correlates directly with network outputs, instead of
activations. As a result, the learning rule is dynamically
linked to the network’s output (unlike most BAMs).

Simulations

Simulation 1
A first simulation was conducted in order to demonstrate the
network’s ability to cluster exemplars into categories. For
this simulation, artificial pixel-based stimuli were created.
Stimuli examples are shown in Figure 4.

Figure 4: Examples of a prototype (left image) with three
associated exemplars.

Methodology Eight category prototypes were produced by
generating bipolar-valued vectors, for which the value of
each vector position (or “feature”) followed a random
discrete uniform distribution. The presence of a feature
(black pixel) was represented by a value of +1, and the
absence of a feature (white pixel) by a value of -1. Each
prototype vector comprised 100 features. Correlations
between category prototypes are shown in Table 1.

Table 1: Correlations between category
prototypes for Simulation 13.

 P2 P3 P4 P5 P6 P7 P8

P1 -0.04 0.04 -0.02 0.12 0.14 -0.04 -0.16
P2 -0.04 0.06 0.08 0.30 -0.08 0.12
P3 0.02 -0.12 0.22 0.00 -0.16
P4 0.02 0.20 0.02 -0.10
P5 -0.02 0.04 0.08
P6 0.02 0.02
P7 -0.04

Ten exemplars were generated using each prototype, for a

total of 80 items. Each exemplar was created by randomly
“flipping” the value of between one to six features. Average
within-category correlations are presented in Table 2.

3 Px represents the Category x prototype. In this Table, as well as
all following Tables, Pearson’s r scores are reported.

3

Table 2: Average within-category
correlations for Simulation 14

C1 C2 C3 C4 C5 C6 C7 C8

0.86 0.88 0.89 0.89 0.88 0.86 0.84 0.85

Learning followed the following procedure:
0. Random weight initializations;
1. Random selection of a given exemplar;
2. Weight updates according to Equations 5 & 6;
3. Repetition of 1 and 2 for 600 learning trials.

To assess the network’s behavior, several simulations

were performed using different numbers of units for the W
layer.

Figure 5: Number of clusters developed by the network as a
function of the number of recall iterations. Each line
represents a different number of units present in the W layer
of the network.

Results Looking at Figure 5, one finds that for adequate
clustering, the network needs at least n2log units. Here,
because there were eight predetermined categories, the
network thus needed a theoretical minimum of three units
(38log2 =). However, if there are much less units than
exemplars, the network is likely to develop a greater number
of categories than necessary. In this example, it was the case
when 4, 8 or 16 units were used. If the number of units was
sufficient, the number of categories developed by the
network then matched the number of desired categories. In
this example, when 32, 64 or 128 units were used, the
network correctly developed eight categories.

In addition, when using 32 units or more, Figure 5
indicates that as the number of iterations increases, the
network switches from a specific identification to a
categorization process. For the first few iterations (~10 or
less), there are almost as many clusters as there are
exemplars. When achieving more iterations (~30 or more),
the number of clusters is reduced so that it becomes similar
to the number of prototypes (or categories). Consequently, if
the number of units is great enough, FEBAM can be used to
identify specific exemplars even though its memory has

4 Cx represents Category x.

extracted the corresponding prototypes, depending on the
time allowed (i.e. number of iterations performed) before an
output is required.

Simulation 2
The purpose of the second simulation was to study the
number of categories developed by FEBAM as a function of
the number of output units. In this simulation, not all units
were initially available. A unit recruiting mechanism was
introduced to allow the network to slowly converge towards
a number of categories equal to the number of exemplars. A
new unit was recruited by the model after a certain amount
of learning trials had been achieved.

Methodology Four prototypes were generated using the
method detailed for Simulation 1. Correlations between
category prototypes are shown in Table 3.

Table 3: Correlations between category

prototypes for Simulation 25.

 P2 P3 P4
P1 0.02 0.08 0.08
P2 -0.02 0.02
P3 0.12

Ten exemplars were generated using each prototype, for a

total of 40 items. Each exemplar was created by randomly
flipping the value of between two to ten features. Average
within-category correlations are presented in Table 4.

Table 4: Average within-category

correlations for Simulation 26

C1 C2 C3 C4
0.76 0.77 0.78 0.77

The simulation was conducted, starting with two initial

units in the W layer. The number of units in the V layer
remained constant at 100. After each phase of 600 learning
trials, another unit was added to the W layer. This was
repeated until there were 64 units. After each learning
phase, a recall test was performed to estimate the number of
categories developed by the network. At test, each given
stimulus was iterated 200 times in the network before the
final stabilized output was given. This was done to establish
the nature of the network’s attractors after each step.

Learning followed the following procedure:
0. Random weight initializations;
1a. Random selection of exemplars for learning,

according to Equations 5 and 6;
1b. Repetition of 1a for 600 learning trials;
2. Addition of a new output unit;
3. Repetition of 1 and 2 until the number of output

units is equal to 64.

5 Px represents the Category x prototype.
6 Cx represents Category x.

4

Figure 6: Simulation 2. Number of categories developed by
the network as a function of the number of units iteratively
added.

Results Figure 6 indicates that as more units are added to
the network, more categories are developed. Hence, the
network’s architecture does “take advantage” of the
recruiting mechanism properly, by separating the stimuli in
more and more specific ways, iteratively going from
groupings around a generic abstraction to single exemplars.
Hence, this simulation shows that FEBAM can act as both
an exemplar and a prototype memory, depending on the
number of units that have been dynamically recruited.

This is clearly visible in Figure 7, which displays a
tendency towards creating one-exemplar clusters as the
number of possible clusters increases. Figure 7 also shows
that while the unit recruiting mechanisms allows for some
cluster reorganization (for example, some items associate
with different cluster members when adding units), the
exemplars always closely follow the predetermined
categorical segmentation, that is they tend to cluster with
items generated by the same prototype.

Simulation 3
Simulation 2 was replicated, but this time using stimuli with
no predetermined categorical (or cluster) membership. Pixel
representations of letters of the alphabet were chosen
because they represent a wide range of intercorrelations.

Figure 8: Set of patterns used for training.

Methodology The patterns used for the simulations are
shown in Figure 8. Each pattern consisted of a 7 x 7 pixel
matrix representing a letter of the alphabet. Once again,
white and black pixels were respectively assigned
corresponding values of -1 and +1. Correlations between the
patterns varied from 0.02 to 0.84.

The simulation procedure was identical to that of
Simulation 2, except for the number of stimuli involved (26
instead of 40).

Figure 9: Simulation 3. Number of categories developed by
the network as a function of the number of units iteratively
added.

Results As in Simulation 2, Figure 9 indicates that the
network takes advantage of the recruiting mechanism; as
more units are added to the network, more categories are
developed. However, as Figure 10 shows, a member from a
given category is not tied to a specific type of categorical
clustering. In fact, given exemplars can aggregate into a
given cluster, and later on leave their present cluster to join
another one, or form a new cluster with other exemplars.
This contrasts markedly from classic clustering techniques.

Figure 7. Clusters developed by the network as a function of the number of units. Some exemplars cluster with different
items as the number of units increases. As can be seen, as soon as the number of units (two) allows for the formation of four
clusters, each formed cluster exhibits its predetermined belonging exemplars.

5

Figure 10. Clusters developed by the network as a function of the number of units. Once again, cluster reorganization can be
detected as the number of possible clusters increases.

Discussion
In this paper, it has been shown that FEBAM, which is
based on an associative learning architecture, is able to
create increasingly precise clusters by recruiting
additional units, and reorganize these clusters during
training. Results from the first simulation have shown that
the developed memory can be used to perform
identification as well as categorization. This property is
made possible by the dynamic memory recall process. In
this case, specific exemplars are “transient” memories,
while prototypes are attractors. However, simulations 2
and 3 show that by using a unit recruiting process,
exemplars can also become attractors. In previous studies,
FEBAM has been shown to achieve perceptual feature
extraction and learning in noisy environments (Giguère,
Chartier, Proulx & Lina, in press), as well as nonlinear
principal component extraction and blind source
extraction (Chartier, Giguère, Renaud, Lina & Proulx, in
press). Moreover, FEBAM, being a special case of BAM,
can also be used to simulate other applications such as
categorization (Chartier & Proulx, 2005), classification
(Chartier & Boukadoum, 2006a), many-to-one association
and multi-step pattern recognition (Chartier &
Boukadoum, 2006b). FEBAM is therefore believed to
constitute a serious candidate for larger-scale cognitive
modeling of human perceptual and categorical processes.

Further studies should investigate the frequency effects
of both exemplars and categories. Based on results
expressed by Figure 5, further studies should also
investigate the categorization and classification processes
as a given input (or exemplar) iterates through the
network. FEBAM could ultimately link, through a
dynamic memory system, both exemplar and prototype
approaches. In its present form, the model is able to
cluster together information if between-category
variability is greater than within-category variability.
Various variability clustering techniques adding an
external teacher or reinforcement should therefore also be
explored.

References
Carpenter, G. A. and Grossberg, S. (1987). A massively

parallel architecture for a self-organizing neural pattern
recognition machine. Computer Vision, Graphics, and
Image Processing. 37, 54-115.

Chartier, S., Boukadoum, M. (2006a). A bidirectional
heteroassociative memory for binary and grey-level

patterns. IEEE Transactions on Neural Networks, 17,
385-396.

Chartier, S., Boukadoum, M. (2006b). A sequential
dynamic heteroassociative memory for multistep
pattern recognition and one-to-many association. IEEE
Transactions on Neural Networks, 17, 59-68.

Chartier, S., Giguère, G., Renaud, P., Lina, J.M., Proulx,
R. (2007, in press). FEBAM : a feature-extracting
bidirectional associative memory. Proceedings of the
20th International Joint Conference on Neural
Networks.

Chartier, S., Proulx, R. (2005). NDRAM: nonlinear
dynamic recurrent associative memory for learning
bipolar and nonbipolar correlated patterns. IEEE
Transactions on Neural Networks, 16, 1393-1400.

Diamantaras, K.I., Kung, S.Y. (1996). Principal
Component Neural Networks. New York: Wiley.

Giguère, G., Chartier, S., Proulx, R., Lina, J.M. (2007, in
press). Creating perceptual features using a BAM-
inspired architecture. Proceedings of the 29th Annual
Conference of the Cognitive Science Society.

Grossberg, S. (1988). Nonlinear Neural Networks:
Principles, Mechanisms, and Architectures. Neural
Networks, 1, 17-61.

Hassoun, M.H. (1989). Dynamic heteroassociative neural
memories. Neural Networks, 2, 275-287.

Hyvarinen, A., Oja, E. (2000). Independent component
analysis: algorithms and applications, Neural Networks,
13, 411-430.

Kaplan, D., & Glass, L. (1995). Understanding nonlinear
dynamics (1st ed.). New-York: Springer-Verlag.

Karhunen, J., Pajunen, P., Oja, E. (1998). The nonlinear
PCA criterion in blind source separation: Relations with
other approaches. Neurocomputing, 22, 5-20.

Kohonen, T. (1989). Self-Organization and Associative
Memory (3rd ed.). Berlin: Springer-Verlag.

Kosko, B. (1988). Bidirectional associative memories.
IEEE Transactions on Systems, Man and Cybernetics,
18, 49-60.

Kosko, B. (1990). Unsupervised learning in noise. IEEE
Transactions on Neural Networks, 1(1), 44-57.

Murphy, G.L. (2002). The Big Book of Concepts.
Cambridge, MA: MIT Press.

Oja, E. (1989). Neural networks, principal components,
and subspaces. International Journal of Neural
Systems, 1, 61-68.

Sutton, R.S. (1988). Learning to predict by the methods of
temporal difference. Machine Learning, 3, 9-44.

6

