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Abstract 

This paper shows that the recently proposed Feature-
Extracting Bidirectional Associative Memory (FEBAM) can 
create and reorganize item clusters (or categories). This 
model, contrary to most other cluster-creating architectures, is 
based on projection methods and follows associative model 
principles (e.g. distribution of information, pattern completion 
and noise tolerance). Using a bidirectional associative 
memory (BAM)-inspired architecture, the resulting model is 
tested by simulating iterative cluster development and 
reorganization of artificial stimuli and alphanumeric patterns. 
In contrast to classic clustering techniques, the model is able 
to reproduce predetermined categories by iteratively 
reevaluating cluster membership, and allows given category 
members to move from a category to another. Because 
FEBAM has been shown to possess many more interesting 
properties, it is argued that the model possesses more 
cognitive explanative power than other comparable models 
and algorithms. 

Introduction 

Categories 
In everyday life, humans are constantly exposed to 
situations in which they must group perceptual patterns 
(such as visual objects) into categories, in order to act upon 
the identity and properties of the encountered stimuli. To 
achieve this task properly, a cognitive system must adapt to 
many different environments which necessitate a broad 
range of behaviors according to context. Cognitive scientists 
have historically argued over the fact that the human 
cognitive system either uses generic abstractions (such as 
prototypes) or very specific perceptual stimulations (such as 
complete exemplars) to achieve category learning and 
further classification. Seemingly, the use of one of these 
representations is likely to be closely linked to specific 
environmental demands and system goals (Murphy, 2002).  

Clustering in Neural Nets 
More generally speaking, category formation, in a 
perceptual framework, is often seen as a “clustering” of 
similar patterns in common categories, a process akin to 
classic clustering techniques, which involve partitioning 
stimulus spaces in a number of finite categories (“clusters”). 

In artificial neural networks, clustering is a well-
developed technique used mainly in competitive models 
(Kohonen, 1989; Grossberg, 1988). In these models, each 
output unit represents a specific cluster of items. When 
taking a decision, the association between an exemplar and 
its determined cluster unit in the output layer is 
strengthened. In “hard competitive” networks (Grossberg, 
1988), exemplars may only be associated with one cluster 
(i.e. only one output unit at a time can be activated).  

An example of hard competitive network is the Adaptive 
Resonance Theory (ART: Carpenter & Grossberg, 1987; 
Grossberg, 1988). ART networks are able to deal effectively 
with the exemplars-prototype scheme, while being able to 
answer the stability-plasticity dilemma. These unsupervised 
competitive models achieve the desired behavior by using a 
novelty detector (through “vigilance”); various degrees of 
generalization can be achieved with this procedure. If the 
value of the vigilance parameter is low, broad categories are 
developed; if it is high, narrow categories are developed, 
with the network ultimately performing exemplar learning. 

In “soft computing” (Kohonen, 1989), exemplars may be 
associated with many clusters at differing degrees. This 
provides a more distributed classification; for instance, an 
exemplar may be geometrically positioned between two 
clusters, and possess various degrees of membership. 

PCA networks (Diamantaras & Kung, 1993) can also be 
used to achieve clustering; in this case, each category is 
defined by a linear sum of extracted orthogonal 
components. Nonlinear PCA networks (Karhunen, Pajunen 
& Oja, 1998) are not restrained by this orthogonal 
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requirement; hence, correlated components can be found 
(Hyvarinen & Oja, 2000). In all cases, once an item has 
been linked to a specific cluster, there is no mechanism 
allowing this item’s category membership to be modified. 
Each model’s internal structure is based on a specific metric 
that is constant over the training period.  

Model Overview 
In this paper, we show that the FEBAM model can be used 
to form clusters using various exemplar sets. First, it is 
shown that prototypes can be stored in the network’s 
memory, regardless of the number of units. In this situation, 
exemplars form transient memories that can be used for 
identification, while prototypes constitute attractors that can 
be used for categorization. Second, when using a unit 
recruiting procedure, the model can ultimately develop 
exemplar-based attractors. In FEBAM, it is the number of 
units that specifies category broadness (in comparison to 
novelty detection in ART models). If, for instance, 
additional units are recruited and trained during learning, 
then the model is able to develop a greater amount of 
narrower categories. Ultimately, the network can perform 
“exemplar clustering”. 

Model Description 

Architecture 
FEBAM’s architecture is based on a BAM architecture 
(Kosko, 1988) proposed by Hassoun (1989) and Chartier & 
Boukadoum (2006a). It consists in two Hopfield-like neural 
networks interconnected in head-to-toe fashion. 
 

Figure 1: FEBAM network architecture. 
 
When connected, these networks allow a recurrent flow 

of information to be processed bidirectionally. As shown in 
Figure 1, the W layer returns information to the V layer and 
vice versa. As in a standard BAM, both layers serve as a 
teacher for the other layer and the connections are explicitly 
depicted in the model1. To enable a BAM to perform 

                                                           
1 In opposition, the architecture of multi-layer Perceptrons strictly 
illustrates a series of input-output relationships, without ever 

clustering, one set of those explicit connections must be 
removed. Thus, in contrast with the standard BAM 
architecture, the “initial output” y(0) is not obtained 
externally, but is instead acquired by iterating once through 
the network, as depicted in Figure 2. 

 

 
Figure 2: Output iterative process used for learning 
updates. 

 
In the context of item cluster creation, the W layer will be 

used to determine the maximal number of clusters created 
by the network; the more units in that layer, the more 
possible clusters. The exact relationship between these 
quantities is the following: the theoretical maximal number 
of categories developed by the network is equal to 2n, where 
n is the number of units in the network. 

Output Function 
FEBAM’s output function is expressed by the following 
equations: 
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where N and M are the number of units in each layer, i is the 
index of the respective vector element, y(t+1) and x(t+1) 
represent the network outputs at time t + 1, and δ is a 
general output parameter. Like in any nonlinear dynamic 
system, to guarantee that a given output converges to a fixed 
point such as x*(t) or y*(t), the slope of the outputs 
function’s derivative must be positive and smaller than one 
(Chartier & Proulx, 2005; Kaplan & Glass, 1995):  
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specifying the origin of the teacher’s information. This is less 
desirable in a neuropsychological perspective. 
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This condition is satisfied when 0 < δ < 0.5 for bipolar 
stimuli2. Figure 3 illustrates the shape of the output function 
when δ = 0.4. This output function possesses the advantage 
of exhibiting continuous-valued (gray-level) attractor 
behavior. Such properties contrast with networks using a 
standard nonlinear output function, which can only exhibit 
bipolar attractor behavior (e.g. Kosko, 1988).  

 

 
Figure 3: Output function for δ = 0.4. 

Learning Function 
Learning is based on time-difference Hebbian association 
(Chartier & Proulx, 2005; Kosko, 1990; Oja, 1989; Sutton, 
1988), and is formally expressed by the following 
equations: 

T( 1) ( ) ( (0) ( ))( (0) ( ))k k t tη+ = + − +W W y y x x  (5) 

and 
T( 1) ( ) ( (0) ( ))( (0) ( ))k k t tη+ = + − +V V x x y y  (6) 

where η represents a learning parameter; T is the usual 
transpose operator, y(0) and x(0), the initial patterns at t = 0, 
y(t) and x(t), the state vectors after t iterations through the 
network, and k the learning trial. The learning rule is thus 
very simple, and can be shown to constitute a generalization 
of hebbian/anti-hebbian covariation in its autoassociative 
memory version (Chartier & Boukadoum, 2006a). For 
weight convergence to occur, η must be set according to the 
following condition (Chartier & Proulx, 2005; Chartier, & 
Boukadoum, M., 2006b): 
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General Procedure 
To obtain the various vectors needed for weight updates, 
stimuli iteration is performed as depicted in Figure 2. First, 
an initial stimulus (x(0)) is introduced to the W layer, 
yielding an initial output (y(0)). This output represents the 
input’s classification into a distributed cluster. Second, 
using this initial output, the information is sent back to the 
input layer using the V layer’s connections; this results in 
another output, x(1). Third, this novel output is then used to 
                                                           
2 Generalization to real-valued stimuli can be found in Chartier & 
Boukadoum (2006a). 

obtain the final classification output (y(1)) by using the W 
connections once again.  

As stated by Equations 5 and 6, weights can only 
converge when “internal feedback” is identical to the initial 
inputs (that is, y(1) = y(0) and x(1) = x(0)) (in other words, 
when the network resonates). The function therefore 
correlates directly with network outputs, instead of 
activations. As a result, the learning rule is dynamically 
linked to the network’s output (unlike most BAMs). 

Simulations 

Simulation 1 
A first simulation was conducted in order to demonstrate the 
network’s ability to cluster exemplars into categories. For 
this simulation, artificial pixel-based stimuli were created. 
Stimuli examples are shown in Figure 4.  
 

 
 
Figure 4: Examples of a prototype (left image) with three 
associated exemplars. 
 
Methodology Eight category prototypes were produced by 
generating bipolar-valued vectors, for which the value of 
each vector position (or “feature”) followed a random 
discrete uniform distribution. The presence of a feature 
(black pixel) was represented by a value of +1, and the 
absence of a feature (white pixel) by a value of -1. Each 
prototype vector comprised 100 features. Correlations 
between category prototypes are shown in Table 1. 
 

Table 1: Correlations between category 
prototypes for Simulation 13. 

 
 P2 P3 P4 P5 P6 P7 P8 

P1 -0.04 0.04 -0.02 0.12 0.14 -0.04 -0.16 
P2  -0.04 0.06 0.08 0.30 -0.08 0.12 
P3   0.02 -0.12 0.22 0.00 -0.16 
P4    0.02 0.20 0.02 -0.10 
P5     -0.02 0.04 0.08 
P6      0.02 0.02 
P7       -0.04  

 
Ten exemplars were generated using each prototype, for a 

total of 80 items. Each exemplar was created by randomly 
“flipping” the value of between one to six features. Average 
within-category correlations are presented in Table 2. 

 

                                                           
3 Px represents the Category x prototype. In this Table, as well as 
all following Tables, Pearson’s r scores are reported. 
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Table 2: Average within-category 
correlations for Simulation 14 

 
C1 C2 C3 C4 C5 C6 C7 C8 

0.86 0.88 0.89 0.89 0.88 0.86 0.84 0.85  
 

Learning followed the following procedure: 
0. Random weight initializations; 
1. Random selection of a given exemplar; 
2. Weight updates according to Equations 5 & 6; 
3. Repetition of 1 and 2 for 600 learning trials. 
 
To assess the network’s behavior, several simulations 

were performed using different numbers of units for the W 
layer.  

 

 
 
Figure 5: Number of clusters developed by the network as a 
function of the number of recall iterations. Each line 
represents a different number of units present in the W layer 
of the network. 

 
Results Looking at Figure 5, one finds that for adequate 
clustering, the network needs at least n2log  units. Here, 
because there were eight predetermined categories, the 
network thus needed a theoretical minimum of three units 
( 38log2 = ). However, if there are much less units than 
exemplars, the network is likely to develop a greater number 
of categories than necessary. In this example, it was the case 
when 4, 8 or 16 units were used. If the number of units was 
sufficient, the number of categories developed by the 
network then matched the number of desired categories. In 
this example, when 32, 64 or 128 units were used, the 
network correctly developed eight categories.  

In addition, when using 32 units or more, Figure 5 
indicates that as the number of iterations increases, the 
network switches from a specific identification to a 
categorization process. For the first few iterations (~10 or 
less), there are almost as many clusters as there are 
exemplars. When achieving more iterations (~30 or more), 
the number of clusters is reduced so that it becomes similar 
to the number of prototypes (or categories). Consequently, if 
the number of units is great enough, FEBAM can be used to 
identify specific exemplars even though its memory has 

                                                           
4 Cx represents Category x. 

extracted the corresponding prototypes, depending on the 
time allowed (i.e. number of iterations performed) before an 
output is required. 

Simulation 2 
The purpose of the second simulation was to study the 
number of categories developed by FEBAM as a function of 
the number of output units. In this simulation, not all units 
were initially available. A unit recruiting mechanism was 
introduced to allow the network to slowly converge towards 
a number of categories equal to the number of exemplars. A 
new unit was recruited by the model after a certain amount 
of learning trials had been achieved. 
 
Methodology Four prototypes were generated using the 
method detailed for Simulation 1. Correlations between 
category prototypes are shown in Table 3. 

 
Table 3: Correlations between category  

prototypes for Simulation 25. 
 

 P2 P3 P4 
P1 0.02 0.08 0.08 
P2  -0.02 0.02 
P3   0.12  

 
Ten exemplars were generated using each prototype, for a 

total of 40 items. Each exemplar was created by randomly 
flipping the value of between two to ten features. Average 
within-category correlations are presented in Table 4. 

 
Table 4: Average within-category 

correlations for Simulation 26 
 

C1 C2 C3 C4 
0.76 0.77 0.78 0.77  

 
The simulation was conducted, starting with two initial 

units in the W layer. The number of units in the V layer 
remained constant at 100. After each phase of 600 learning 
trials, another unit was added to the W layer. This was 
repeated until there were 64 units. After each learning 
phase, a recall test was performed to estimate the number of 
categories developed by the network. At test, each given 
stimulus was iterated 200 times in the network before the 
final stabilized output was given. This was done to establish 
the nature of the network’s attractors after each step.  

Learning followed the following procedure: 
0. Random weight initializations;  
1a. Random selection of exemplars for learning, 

according to Equations 5 and 6;  
1b. Repetition of 1a for 600 learning trials; 
2. Addition of a new output unit; 
3. Repetition of 1 and 2 until the number of output 

units is equal to 64.  

                                                           
5 Px represents the Category x prototype. 
6 Cx represents Category x. 
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Figure 6: Simulation 2. Number of categories developed by 
the network as a function of the number of units iteratively 
added. 

 
Results Figure 6 indicates that as more units are added to 
the network, more categories are developed. Hence, the 
network’s architecture does “take advantage” of the 
recruiting mechanism properly, by separating the stimuli in 
more and more specific ways, iteratively going from 
groupings around a generic abstraction to single exemplars. 
Hence, this simulation shows that FEBAM can act as both 
an exemplar and a prototype memory, depending on the 
number of units that have been dynamically recruited. 

This is clearly visible in Figure 7, which displays a 
tendency towards creating one-exemplar clusters as the 
number of possible clusters increases. Figure 7 also shows 
that while the unit recruiting mechanisms allows for some 
cluster reorganization (for example, some items associate 
with different cluster members when adding units), the 
exemplars always closely follow the predetermined 
categorical segmentation, that is they tend to cluster with 
items generated by the same prototype. 

Simulation 3 
Simulation 2 was replicated, but this time using stimuli with 
no predetermined categorical (or cluster) membership. Pixel 
representations of letters of the alphabet were chosen 
because they represent a wide range of intercorrelations.  
 

 
Figure 8: Set of patterns used for training. 

 
Methodology The patterns used for the simulations are 
shown in Figure 8. Each pattern consisted of a 7 x 7 pixel 
matrix representing a letter of the alphabet. Once again, 
white and black pixels were respectively assigned 
corresponding values of -1 and +1. Correlations between the 
patterns varied from 0.02 to 0.84. 

The simulation procedure was identical to that of 
Simulation 2, except for the number of stimuli involved (26 
instead of 40).  

 

 
 
Figure 9: Simulation 3. Number of categories developed by 
the network as a function of the number of units iteratively 
added. 

Results As in Simulation 2, Figure 9 indicates that the 
network takes advantage of the recruiting mechanism; as 
more units are added to the network, more categories are 
developed. However, as Figure 10 shows, a member from a 
given category is not tied to a specific type of categorical 
clustering. In fact, given exemplars can aggregate into a 
given cluster, and later on leave their present cluster to join 
another one, or form a new cluster with other exemplars. 
This contrasts markedly from classic clustering techniques.  
 

 

 
Figure 7. Clusters developed by the network as a function of the number of units. Some exemplars cluster with different 
items as the number of units increases. As can be seen, as soon as the number of units (two) allows for the formation of four 
clusters, each formed cluster exhibits its predetermined belonging exemplars. 
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Figure 10. Clusters developed by the network as a function of the number of units. Once again, cluster reorganization can be 
detected as the number of possible clusters increases. 
 

Discussion 
In this paper, it has been shown that FEBAM, which is 
based on an associative learning architecture, is able to 
create increasingly precise clusters by recruiting 
additional units, and reorganize these clusters during 
training. Results from the first simulation have shown that 
the developed memory can be used to perform 
identification as well as categorization. This property is 
made possible by the dynamic memory recall process. In 
this case, specific exemplars are “transient” memories, 
while prototypes are attractors. However, simulations 2 
and 3 show that by using a unit recruiting process, 
exemplars can also become attractors. In previous studies, 
FEBAM has been shown to achieve perceptual feature 
extraction and learning in noisy environments (Giguère, 
Chartier, Proulx & Lina, in press), as well as nonlinear 
principal component extraction and blind source 
extraction (Chartier, Giguère, Renaud, Lina & Proulx, in 
press). Moreover, FEBAM, being a special case of BAM, 
can also be used to simulate other applications such as 
categorization (Chartier & Proulx, 2005), classification 
(Chartier & Boukadoum, 2006a), many-to-one association 
and multi-step pattern recognition (Chartier & 
Boukadoum, 2006b). FEBAM is therefore believed to 
constitute a serious candidate for larger-scale cognitive 
modeling of human perceptual and categorical processes.  

Further studies should investigate the frequency effects 
of both exemplars and categories. Based on results 
expressed by Figure 5, further studies should also 
investigate the categorization and classification processes 
as a given input (or exemplar) iterates through the 
network. FEBAM could ultimately link, through a 
dynamic memory system, both exemplar and prototype 
approaches. In its present form, the model is able to 
cluster together information if between-category 
variability is greater than within-category variability. 
Various variability clustering techniques adding an 
external teacher or reinforcement should therefore also be 
explored. 
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