

8th International Conference on
Cognitive Modeling

July 26–29, 2007

University of Michigan

Ann Arbor, Michigan

Edited by

Richard L. Lewis, Thad A. Polk, and John E. Laird

Contents

About ICCM

Sponsors

Committees

Session 1: Basic Mechanisms

1. Accounting for Subliminal Priming in ACT-R [pp. 1–6]
Leendert van Maanen and Hedderik van Rijn

2. How Readers Retrieve Referents for Nouns in Real Time: A Memory-based Model
of Context Effects on Referent Accessibility [pp. 7–12]
Aryn Pyke, Robert L. West, and Jo-Anne LeFevre

3. A Model of Parallel Time Estimation [pp. 13–18]
Hedderik van Rijn and Niels Taatgen

4. A Control Perspective on Imaginal Perspective Taking [pp. 19–24]
Holger Schultheis

5. Towards Incorporating Visual Imagery into a Cognitive Architecture [pp. 25–30]
Scott D. Lathrop and John E. Laird

Session 2: Methodology and Applications

6. Evaluating the Performance of Optimizing Constraint Satisfaction Techniques for
Cognitive Constraint Modeling [pp. 31–36]
Alina Chu, Richard L. Lewis, and Andrew Howes

7. Optimizing Knowledge Component Learning Using a Dynamic Structural Model of
Practice [pp. 37–42]
Philip I. Pavlik Jr., Nora Presson, and Kenneth Koedinger

8. Creating Cognitive Models from Activity Analysis: A Knowledge Engineering
Approach to Car Driver Modeling [pp. 43–48]
Olivier Georgeon, Matthias J. Henning, Thierry Bellet, and Alain Mille

9. Comparing Modeling Idioms in ACT-R and Soar [pp. 49–54]
Randolph M. Jones, Christian Lebiere, and Jacob A. Crossman

10. Dynamic Spatial Reasoning Capability in a Graphical Interface Evaluation Tool
[pp. 55–60]
Michael Matessa, Rick Archer, and Rebecca Mui

Session 3: Adaptive Control

11. Learning to Control a Dynamic Task: A System Dynamics Cognitive Model of the
Slope Effect [pp. 61–66]
Cleotilde Gonzalez and Varun Dutt

12. Instance-Based Decision Making Model of Repeated Binary Choice [pp. 67–72]
Christian Lebiere, Cleotilde Gonzalez, and Michael Martin

13. Modeling Control Strategies in the N-Back Task [pp. 73–78]
Ion Juvina and Niels A. Taatgen

14. ACT-R Models of Cognitive Control in the Abstract Decision Making Task [pp.
79–84]
Daniel Dickison and Niels A. Taatgen

15. The Importance of Action History in Decision Making and Reinforcement
Learning [pp. 85–90]
Yongjia Wang and John E. Laird

16. Attentional Blink: An Internal Traffic Jam? [pp. 91–96]
Niels A. Taatgen, Ion Juvina, Seth Herd, David Jilk, and Sander Martens

Session 4: Learning and Memory

17. Category Development and Reorganization Using a Bidirectional Associative
Memory-inspired Architecture [pp. 97–102]
Gyslain Giguère, Sylvain Chartier, Robert Proulx, and Jean-Marc Lina

18. The Emergence of Semantic Topography in a Neurally-Inspired Computational
Model [pp. 103–108]
Lee I. Newman and Thad A. Polk

19. Simulating the Noun-Verb Asymmetry in the Productivity of Children’s Speech
[pp. 109–114]
Daniel Freudenthal, Julian M. Pine, and Fernand Gobet

20. Structural Transfer of Cognitive Skills [pp. 115–120]
Dongkyu Choi, Tolga Könik, Negin Nejati, Chunki Park, and Pat Langley

Session 5: Multitasking

21. Dialing while Driving? A Bounded Rational Analysis of Concurrent Multi-task
Behavior [pp. 121–126]
Duncan P. Brumby, Dario D. Salvucci, and Andrew Howes

22. From 1000ms to 650ms: Why Interleaving, Soft Constraints, and Milliseconds
Matter [pp. 127–132]
Bella Z. Veksler, Wayne D. Gray, and Michael J. Schoelles

23. The Costs of Multitasking in Threaded Cognition [pp. 133–138]
Jelmer Borst and Niels Taatgen

24. Goal and Spatial Memory Following Interruption [pp. 139–144]
Michel E. Brudzinski, Raj M. Ratwani, and J. Gregory Trafton

Session 6: Multiagent Interaction

25. Learning Cognitive Load Models for Developing Team Shared Mental Models
[pp. 145–150]
Xiaocong Fan, Po-Chun Chen, and John Yen

26. Effect of Communication on Belief Dynamics in Multi-Agent Systems [pp. 151–
156]
M. Afzal Upal and Ravikanth Sama

27. Using Reflective Learning to Master Opponent Strategy in Competitive
Environment [pp. 157–162]
Mark A. Cohen, Frank E. Ritter, and Steven R. Haynes

Posters

28. Toward a Large-Scale Model of Language Comprehension in ACT-R 6 [pp. 163–
168]
Jerry Ball, Andrea Heiberg, and Ronnie Silber

29. Attention and Association Explain the Emergence of Reasoning About False
Belief in Young Children [pp. 169–174]
Paul Bello, Perrin Bignoli, and Nicholas Cassimatis

30. A 3-node Queuing Network Template of Cognitive and Neural Differences As
Induced by Gray and White Matter Changes [pp. 175–180]
Marc G. Berman, Yili Liu, and Changxu Wu

31. Integrating Rational Choice and Subjective Biological and Psychological Factors
in Criminal Behaviour Models [pp. 181–186]
Tibor Bosse, Charlotte Gerritsen, and Jan Treur

32. A Dynamical System Modelling Approach to Gross’ Model of Emotion
Regulation [pp. 187–192]
Tibor Bosse, Matthijs Pontier, and Jan Treur

33. Modelling Animal Behaviour Based on Interpretation of Another Animal’s
Behaviour [pp. 193–198]
Tibor Bosse, Zulfiqar A. Memon, and Jan Treur

34. From a Formal Cognitive Task Model to an Implemented ACT-R Model [pp.
199–204]
Fiemke Both and Annerieke Heuvelink

35. A Qualitative GOMS Approach to Evaluating Diagrammatic Interfaces [pp. 205–
210]
B. Chandrasekaran and Tsviatko Yovtchev

36. The First Second of Symmetry: Towards a Model of Visual Search during
Symmetry Verification [pp. 211–216]
Kenneth Czechowski, Ronald W. Ferguson, and Rudolph L. Mappus IV

37. Diagrammatic Reasoning: Route Planning on Maps with ACT-RH [pp. 217–218]
H. A. Dye

38. Meter based Omission of Function Words in MOSAIC [pp. 219–224]
Daniel Freudenthal, Julian Pine, and Fernand Gobet

39. Storm: A Framework for Biologically-Inspired Cognitive Architecture Research
[pp. 225–230]
Douglas Pearson, Nicholas A. Gorski, Richard L. Lewis, and John E. Laird

40. Vector Generation of an Explicitly-defined Multidimensional Semantic Space [pp.
231–232]
Alex Grintsvayg, Vladislav D. Veksler, Robert Lindsey, and Wayne D. Gray

41. Dynamic Visualization of ACT-R Declarative Memory Structure [pp. 233–234]
Andrea Heiberg, Jack Harris, and Jerry T. Ball

42. A Belief Framework for Modeling Cognitive Agents [pp. 235–240]
Annerieke Heuvelink

43. A Formal Empirical Analysis Method for Human Reasoning and Interpretation
[pp. 241–246]
Tibor Bosse, Mark Hoogendoorn, Catholijn M. Jonker, and Jan Treur

44. Towards Human-Like Robustness in an Intelligent Tutoring System [pp. 247–252]
Hameedullah Kazi, Peter Haddawy, and Siriwan Suebnukarn

45. Using Simulations to Model Shared Mental Models [pp. 253–254]
William G. Kennedy and J. Gregory Trafton

46. Investigation of Procedural Skills Degradation from Different Modalities [pp.
255–260]
Jong W. Kim, Richard J. Koubek, and Frank E. Ritter

47. Information Seeking in Complex Problem Solving [pp. 261–266]
Xiaohui Kong and Christian D. Schunn

48. Modeling Memories of Large-scale Space Using a Bimodal Cognitive
Architecture [pp. 267–272]
Unmesh Kurup and B. Chandrasekaran

49. Learning and Decision Model Selection for a Class of Complex Adaptive Systems
[pp. 273–278]
Tei Laine

50. Be Wary of What Your Computer Reads: The Effects of Corpus Selection on
Measuring Semantic Relatedness [pp. 279–284]
Robert Lindsey, Vladislav D. Veksler, Alex Grintsvayg, and Wayne D. Gray

51. Queueing Network Modeling of Mental Architecture, Response Time, and
Response Accuracy: Reflected Multidimensional Diffusions [pp. 285–290]
Yili Liu

52. Are Simpler Strategies Less Error-prone in Inference from Memory? [pp. 291–
292]
Rui Mata

53. The RecMap Model of Active Recognition Based on Analogical Mapping [pp.
293–298]
Georgi Petkov and Luiza Shahbazyan

54. Modeling the Range of Performance on the Serial Subtraction Task [pp. 299–304]
Frank E. Ritter, Michael Schoelles, Laura Cousino Klein, and Sue E. Kase

55. Interactions Between Data Labeling and Ratio of Hebbian to Error-Driven
Learning in Mixed-Model Networks [pp. 305–306]
Rebecca J. Robare

56. Prototypical Relations for Cortex-Inspired Semantic Representations [pp. 307–
312]
Florian Röhrbein, Julian Eggert, and Edgar Körner

57. Cognitive Redeployment in ACT-R: Salience, Vision, and Memory [pp. 313–318]
Terrence C. Stewart and Robert L. West

58. Fast Learning in a Simple Probabilistic Visual Environment: A Comparison of
ACT-R’s Old PG-C and New Reinforcement Learning Algorithms [pp. 319–324]
Franklin P. Tamborello II and Michael D. Byrne

59. Towards a Complete, Multi-level Cognitive Architecture [pp. 325–330]
Robert Wray, Christian Lebiere, Peter Weinstein, Krishna Jha, Jonathan Springer,
Ted Belding, Bradley Best, and Van Parunak

60. Scheduling of Eye Movements and Manual Responses in Performing a Sequence
of Choice Responses: Empirical Data and Model [pp. 331–334]
Shu-Chieh Wu, Roger W. Remington, and Harold Pashler

Author index

About ICCM

ICCM is the premier international conference for research on computational models
and computation-based theories of human behavior. ICCM is a forum for presenting,
discussing, and evaluating the complete spectrum of cognitive models, including
connectionism, symbolic modeling, dynamical systems, Bayesian modeling, and
cognitive architectures. ICCM includes basic and applied research, across a wide
variety of domains, ranging from low-level perception and attention to higher-level
problem-solving and learning.

This year’s conference features invited talks by Neil Burgess, Marcel Just, and Walt
Schneider, peer-reviewed research talks and posters, a panel discussion on how brain
imaging and cognitive modeling can better inform each other, tutorials on four
different approaches to cognitive modeling, and a doctoral consortium for students
working on dissertations in the field of cognitive modeling.

Please visit iccm2007.org for more information about the ICCM 2007 conference
program.

http://iccm2007.org

Sponsors

Platinum Sponsors

• University of Michigan, Center for Cognitive Architecture
• National Science Foundation
• Soar Technology

Gold Sponsors

• Air Force Office Scientific Research
• Army Research Lab
• Office of Naval Research
• Lockheed Martin Advanced Technology Laboratories

Silver Sponsors

• Institute of Creative Technology, University of Southern California
• Charles River Analytics

Conference Organizing & Program Committees:

General Chair:
John Laird

Program Chairs:
Richard Lewis
Thad Polk

Local Arrangements:
David Kieras

Tutorials:
Frank Ritter

Conference Secretary:
Karen Alexa: ICCM2007@eecs.umich.edu

Program Committee:

• Erik Altmann, MSU
• Matt Botvinick, Penn
• Mike Byrne, Rice University, Houston
• Balakrishnan Castelfranchi, National Research Council (CNR) Roma, Italy
• Balakrishnan Chandrasekaran, Ohio State Computer Science
• Richard Cooper, Birkbeck University of London
• Gary Cottrell, UCSD
• Matt Crocker, University of Saarland
• Fabio Del Missier, University of Trieste
• Gary Dell, Illinois
• Danilo Fum, University of Trieste
• Kevin Gluck, Air Force Research Laboratory, Mesa, AZ
• Jonathan Gratch, USC ISI
• Glenn Gunzzelmann, Air Force Research Laboratory, Mesa, AZ
• John Hale, Michigan State University
• Andrew Howes, Manchester University
• John Hummel, Illinois
• Bonnie John, Carnegie Mellon
• Matt Jones, University of Texas
• Randy Jones, Soar Tech
• Boicho Kokinov, New Bulgarian Univ. , Sophia, Bulgaria
• Adam Krawitz, University of Michigan
• Frank Lee, Drexel University , Philadelphia, PA
• Shu-Chen Li, Max Planck Institute for Human Development,Berling
• Yili Liu, UM Industrial Engineering
• Deryle Lonsdale, Brigam Young University
• Marsha Lovett, Carnegie Mellon
• Mike Matessa, NASA Ames Research Center
• Shane Mueller, Indiana University

mailto:ICCM2007@eecs.umich.edu

• Roger Remington, Australia
• Frank Ritter , Penn State University
• Dario Salvucci, Drexel University , Philadelphia, PA
• Lael Schooler, Max Planck Institute, Berlin
• Chris Schunn, University of Pittsburgh
• Travis Seymour, Santa Cruz
• Patrick Simen, Princeton
• Satinder Singh, UM Computer Science
• Andrea Stocco, Carnegie Mellon
• Ron Sun, University of Missouri-Columbia
• Niels Taatgen, Carnegie Mellon
• Hedderik van Rijn, University of Groningen , The Netherlands
• Shravan Vasishth, Potsdam University
• Boris Velichkovsky, Dresden Univ. of Technology, Dresden ,Germany
• Alonso Vera, NASA Ames Research Center
• Tor Wager, Columbia Psychology
• Amy Weinberg, Maryland
• Janet Wiles, University of Queensland
• Richard Young, UCL Interaction Centre

Accounting for subliminal priming in ACT-R

Leendert van Maanen (leendert@ai.rug.nl)

Hedderik van Rijn (D.H.van.Rijn@rug.nl)
Artificial Intelligence, University of Groningen

Grote Kruisstraat 2/1, 9712 TS Groningen, the Netherlands

Abstract

This paper presents a cognitive model of a subliminal

priming task, using Retrieval by ACcumulating Evidence

(RACE), a model of declarative memory retrieval. RACE is

implemented as an extension to the ACT-R architecture of

cognition. First, we will discuss the exact implementation

of RACE within the constraints imposed by ACT-R.

Second, we will discuss the subliminal priming task that we

modeled and present a cognitive model of this task that

incorporates RACE.

Introduction

Successful behavior depends for a large part on having

declarative knowledge available at the right time. Humans

are therefore continuously retrieving declarative facts

from long-term memory storage, based on their

continuously updated perception of the environment. The

continuous character of perception is reflected in the

memory retrieval process, as can for instance be observed

in the retrieval latencies of psychonomic experiments in

which stimuli are asynchronously presented (e.g., picture-

word interference, Glaser & Düngelhoff, 1984) or in

experiments in which the presentation durations of stimuli

are manipulated (e.g., subliminal priming, Marcel, 1983).

A cognitive model of declarative memory retrieval should

also reflect the continuous character of the input on which

memory retrievals are based. However, current cognitive

architectures such as ACT-R (Anderson, Bothell, Byrne,

Douglass, Lebiere, & Qin, 2004) or Soar (Newell, 1990)

cannot satisfactorily account for this (Van Maanen & Van

Rijn, 2006; in press). Retrieval by ACcumulating

Evidence (RACE) is a model that does describe the

process of retrieving one or more chunks of information

from memory. In RACE, memory retrieval is not

considered ballistic, but is rather thought of as a process in

which the likelihood that a piece of information will be

needed for successful behavior is continuously estimated.

Therefore, the likelihood estimate can be continuously

adapted to the changing environment.

RACE can be perceived as an interaction of ideas from

cognitive architectures that rely on symbol manipulation

(Anderson et al., 2004; Newell, 1990) and ideas from

sequential sampling models (Ratcliff & Smith, 2004;

Usher & McClelland, 2001). The architectural nature is

clear from the cognitive constraints imposed on RACE. In

the current implementation of the theory, we constrained

RACE by adopting the rational approach that is intrinsic

to the ACT-R cognitive architecture (Anderson et al.,

2004). However, the subsymbolic computations that drive

declarative memory retrieval are rooted in sequential

sampling.

This paper will describe how RACE is implemented in

the ACT-R architecture of cognition and will present a

RACE model of a subliminal priming task. We will

discuss which features of RACE naturally align with

ACT-R, and which features of RACE seem to contrast

with ACT-R. We chose to implement RACE as an

extension to ACT-R because of ACT-R’s widespread use

in the cognitive modeling world (see for instance the web

site of the ACT-R community: http://actr.psy.cmu.edu).

More importantly however, adopting an existing general

approach towards cognition will reduce the proliferation

of different cognitive theories (Newell, 1990), and will

constrain theorizing about RACE. A third reason for

choosing ACT-R as a modeling framework is that the way

ACT-R defines retrieval latency has difficulties with

modeling semantic interference (Van Maanen & Van

Rijn, 2006; in press). Extending ACT-R with RACE

might solve this issue.

ACT-R

A prominent theory that explains behavior at the symbol

manipulation level is the ACT-R architecture of cognition

(Anderson et al., 2004). Because RACE is implemented as

an extension to ACT-R, we will give a very short

overview of the architecture, concentrating on these

aspects of the theory that relate to declarative memory

retrieval.

ACT-R is a cognitive theory in which production rules

operate on declarative memory and the environment.

Production rules are conditions-actions pairs whose

actions are executed if their conditions are met. To

determine which production rule’s actions will be

executed, ACT-R contains a set of buffers of which the

content is matched against the conditions of each

production rule. If multiple production rules are

applicable – meaning that, given the buffer contents,

multiple sets of actions may be performed – the

production rule with the highest utility will be selected, a

process called conflict resolution. By default, the buffers

represent the current goal of the system, the current

perceptual state, and a declarative fact that is currently in

the focus of attention, that is, that is recently retrieved

from long-term memory. Other buffers may be defined if

necessary for the task at hand (as has for instance been

done for prospective time interval estimation, Taatgen,

Van Rijn, & Anderson, in press). The content of a buffer

is a chunk: a symbolic unit that represents a simple fact,

such as The capital of Canada is Ottawa, or The object I

am attending is green and spherical. Both these example

chunks are declarative facts, but the first example can

typically be found in the retrieval buffer, and represents a

http://actr.psy.cmu.edu

fact that has been retrieved from long-term memory,

whereas the second example represents a visually

observable fact of the world, and might be present in the

visual buffer. In the context of this paper, we are primarily

interested in the way ACT-R incorporates retrieval of

chunks from long-term memory, although we not

necessarily want to constrain RACE to declarative

memory retrieval.

All chunks have an activation level that represents the

likelihood that a chunk will be needed in the near future.

The likelihood is in part determined by a component

describing the history of usage of a chunk called the base-

level activation (Bi in Equation 1).

 (1)

In this equation, tj represents the time since the jth

presentation of a memory chunk and d is the parameter

that controls decay, which in most ACT-R models is fixed

at 0.5 (Anderson et al., 2004). The idea is that the

activation of a chunk decays over time unless attention is

shifted to that chunk and its activation is increased. This

way, the base-level activation can be used to model both

forgetting and learning effects (Anderson & Schooler,

1991).

The total activation is the sum of the base-level

activation and another component describing the influence

of the current context (spreading activation, Equation 2).

The spreading activation component is the sum of

strengths of association from chunks j to chunk i, weighed

by Wkj, representing the importance of various buffers (k)

and of associated chunks (j).

 (2)

A more detailed description of the ACT-R cognitive

architecture is provided in (Anderson & Lebiere, 1998;

Anderson et al., 2004).

RACE model of memory retrieval

RACE is a proposal for a new retrieval mechanism in

ACT-R. In RACE, retrieval of a chunk is thought of as a

process in which the likelihood that a chunk will be

needed given the current context is continuously

estimated. This is different from ACT-R, were the context

can influence the retrieval of a chunk only at the onset of

a particular retrieval request. Note that the continuous

aspects of ACT-R’s base-level learning equation

(Equation 1) are retained in RACE. The continuous

updating of context-based activation is similar to the

account presented in the leaky competitive accumulator

model described by Usher and McClelland (2001).

Also similar to ACT-R, the accumulation process in

RACE is influenced by various sources of evidence.

Increases in activation may be caused by the current

context, which may be formed by the current buffer

contents, or other chunks that are currently active. Via a

spreading activation mechanism these chunks provide

evidence for the likelihood that other chunks will be

needed. That is, they increase the activation of these

chunks.

Another source of evidence for the likelihood that a

chunk will be needed is the history of usage of that chunk.

Frequently or recently used chunks are more likely to be

used again in the near future. In RACE, this is reflected by

the starting point of the accumulation process. The level

of activation at which accumulation starts is determined

by the base-level activation of ACT-R, which reflects the

frequency and recency of the usage of a chunk (Anderson

& Schooler, 1991).

To preserve the temporal nature of the evidence for a

chunk, the accumulated RACE activation is subject to

continuous decay. Activation of a chunk thus decreases if

not enough evidence for that chunk is present. Since the

context may change over time, the accumulation process

is not determined when a retrieval process is initiated (the

retrieval onset), but may also change. Therefore, incoming

information or the removal of information from the

buffers may influence which chunk will be retrieved.

Activation values represent the relative likelihood that a

chunk may be needed (Anderson & Lebiere, 1998), which

means that the level of activation at which a chunk has

been retrieved should also be defined relative to the

activation of other chunks. Therefore, RACE uses a

retrieval ratio that determines how much the activation of

a particular chunk must stand out against the total

activation of all competing chunks. This is analogous to

the relative stopping rule described by Ratcliff and Smith

(2004; cf., ACT-R’s former competitive latency

mechanism, discussed in Van Rijn & Anderson, 2003). If

multiple chunks match the criteria of the retrieval request,

the chunk that reaches the retrieval ratio first will be

retrieved. In these cases, the eligible chunks compete for

retrieval. If the activation levels of multiple chunks

increase, the total activation of the system also increases,

making it more difficult for a chunk to reach the retrieval

ratio. This feature of RACE will prove to be important in

explaining differences in retrieval latency, for example in

the model of subliminal priming explained later in this

paper.

So far, we described the general idea of the RACE model

of memory retrieval. In this section, the exact

implementation of RACE will be presented and how

RACE relates to the ACT-R architecture.

The accumulated activation component of RACE is

described by the following equation:

(3)

This equation reflects the idea that the accumulated

activation of a chunk at a certain moment in time

(Ci(t+ t)) is determined by the level of accumulated

activation one time step ago (Ci(t)), summed with

Bi = ln tj
d

j=1

n

Ai = Bi + WkjSji
jk

Ci(t+ t) = d accCi(t)+ Cj(t)Sji
j k

spreading activation from other chunks; that is, the

accumulated activation of other chunks (Cj(t)) weighed by

strengths of association between these chunks and the

chunk i (Sji). At retrieval onset, accumulation starts with

the history-based evidence, which is the current base-level

activation. Thus

Ci(retrieval onset) = Bi(retrieval onset) (4)

Accumulated activation decays away, the speed of

which is controlled by the parameter d
acc

. A smaller value

of d
acc

 results in faster decay. The parameter in Equation

3 controls the amount of influence of the context.

Although in ACT-R activation can have a negative value,

we have chosen in our current implementation to ignore

the spreading activation from very small – that is,

negative – activation values for reasons of computational

efficiency.

By continuously updating spreading activation towards

a chunk, the chunk may reach a level of activation at

which retrieval can take place. The time at which retrieval

takes place is the first moment after the start of

accumulation at which the following inequality holds:

 (5)

This means that for a chunk to be retrieved (i in

Inequality 5) the activation should be high with respect to

all competing chunks (j). Because ACT-R activation

values represent the relative likelihood that a chunk will

be needed, an exponential scaling is applied to eliminate

effects from possible negative values, as is common in

ACT-R equations.

Perhaps a clarification is needed on the notions base-level

activation (Bi, defined in Equations 1 and 4) and

accumulated activation (Ci in Equation 3). To incorporate

frequency and recency effects in the retrieval process, the

accumulation of activation starts at the current level of

base-level activation (Equation 4). During a retrieval

process however, activation is estimated according to

Equation 3. At retrieval, the base-level activation of the

retrieved chunk is also increased to account for the recent

encounter with the retrieved chunk, because at the next

retrieval attempt the base-level activation is again used as

the starting value of the accumulation process.

The question arises which of the two activations (Bi or

Ci) is a better predictor of the likelihood that a chunk will

be needed. We believe that at very short time intervals –

such as the SOAs from the subliminal priming experiment

discussed below – accumulated activation better aligns

with the empirical data. However, at longer time intervals,

base-level activation has been shown to give good

predictions (e.g., Anderson, Bothell, Lebiere, & Matessa,

1998; Anderson & Schooler, 1991). Because in the

subliminal priming task and model described below prime

and target are retrieved in a very small time window,

focusing on accumulated activation only will suffice to

model the priming effects. Therefore, for this model the

base-level activation values were kept constant over all

chunks.

Subliminal priming

In this section, we will discuss the task we modeled using

RACE: a subliminal priming study by Marcel (1983).

Also, we will discuss why this particular task is

interesting given the specific nature of RACE. In

subliminal priming tasks, primes are presented that are not

consciously perceived by the participant. Usually, primes

are presented for a very short period and are followed by a

visual mask, so that participants can not discriminate

between the presence and absence of a prime (Marcel,

1983; Merikle, Smilek, & Eastwood, 2001). Marcel

(1983) showed that under these circumstances priming

effects persisted. His Experiment 3 describes a Stroop-

task in which words are presented as primes, and color

patches are presented as cues. Participants had to respond

to the color patches by pressing a button associated to one

of the colors. He found the same kind of interference and

facilitation as usual in the Stroop paradigm, but a smaller

effect for the subliminal primes than for the consciously

perceived primes (Figure 3 presents the latencies that

Marcel observed). Marcel concluded that subliminal

primes have an effect on latency, even though participants

are not aware of their presence.

Four prime conditions were tested by Marcel (1983,

Experiment 3): Color congruent, color incongruent,

neutral, and no-word. In the congruent condition, the

prime was the name of the target color, whereas in the

incongruent condition the prime was the name of another

color. In the neutral condition, the prime was a non-color

word that was also unrelated to colors. The no-word

condition presented the mask only. Thus, no prime was

presented. The condition in which the prime was

subliminal was called the unaware condition. In the aware

condition, by contrast, the presentation duration was

400ms. Both prime and cue were presented at the same

time.
1

From a symbolic perspective, stimuli have to be

considered as symbols in order to engage in cognitive

processing. In ACT-R, this means that a stimulus has to

be present in a buffer. However, stimuli that are presented

for such short durations as common in subliminal priming

paradigms do not reach the visual buffer. ACT-R assumes

an attention shift to the stimulus before an object can be

encoded as a symbolic chunk, which takes a certain

amount of time, estimated at 185ms (Anderson, Matessa,

& Lebiere, 1998). This exceeds the presentation duration

1
 In the original experiment, Marcel included also another

condition with a Stimulus Onset Asynchrony between prime and

cue. This condition is similar to the picture-word interference

study by Glaser and Düngelhoff (1984), which has previously

been discussed by Van Maanen and Van Rijn (2006; in press).

Therefore, it is not included here.

eAi

eAj

j

of the prime in the unaware conditions (which is 80ms at

maximum, Marcel, 1983). In ACT-R models, stimuli that

are presented for less than the time it takes to shift

attention can therefore not influence central cognition.

The way ACT-R deals with stimulus durations is all or

none. Either the stimulus has been presented not long

enough, and the stimulus is not perceived at all, or it is

fully is perceived. Consequently, symbolic theories of

cognition cannot account for subliminal priming data. The

next section will show how RACE deals with the short

presentation durations typical in subliminal priming tasks.

Subliminal priming model

The subliminal priming model comprises three chunk

types, as outlined in Figure 1: Lemmas, concepts, and

motor mappings. The concept chunks can be regarded as

representations of semantic properties. Chunks of the

lemma type can be regarded as sets of orthographic and

syntactic properties of a word. The motor mapping chunks

represent the information which button to press for which

color.

Now, for example in a no-word condition, the cue

(being a color patch) spreads activation to its associated

concept, which spreads activation to the associated motor

mapping resulting in a button press. A similar flow of

activation will occur in the other conditions, albeit that

because of the presentation of a prime word, lemma

chunks will also be activated. The activation of multiple

motor mapping chunks causes competition in RACE,

because the retrieval ratio is harder to reach with multiple

accumulating chunks.

Before the experiment, Marcel determined for each

participant the critical presentation duration for which

participants could not discriminate between presence and

absence of a prime (see Marcel, 1983 for details of the

procedure). The presentation durations he found ranged

from 30 to 80 ms. We used the presentation duration as an

extra parameter in fitting the model to the data, with the

constraints that its value should be in the range that

Marcel found and that the activation of the prime chunk

would not exceed the retrieval ratio (Inequality 5).

Because the primes in the original experiment were

visually masked, we assume that the presentation duration

is equal to the time that the prime is available to the visual

system.

Table 1: Estimated parameter values for the subliminal

priming model.

Parameter Value

Acolor 1.8

Atext 1.5
 .255

d
acc

.72

t 5 ms

 .81

aware presentation duration 400 ms

unaware presentation duration 70 ms

Table 1 presents all relevant parameters for the subliminal

priming model. The presentation duration of primes in the

aware condition is 400ms, as in the original experiment.

The unaware presentation duration was estimated at 70ms,

serving as the model’s critical presentation duration. This

duration depends on the RACE parameters presented in

bold-face in Table 1. These parameters were not estimated

for this experiment, but rather copied from a RACE model

of picture-word interference (an updated version of Van

Maanen & Van Rijn, 2006; in press). Hence, the only

parameters presented here that were estimated for this

model were the activation of the words (Atext) and of the

color (Acolor). The association values (Sji) between chunks

are presented in Figure 2.

Results

The results of the subliminal priming model are presented

in Figure 3. We present here differences in latency

relative to the no-word condition as this model only

captures the memory retrieval process, which comprises

the time course from the start of retrieval of a chunk until

the retrieval of the motor mapping chunk. The model

Figure 2: Associative values between different chunks
in the subliminal priming model.

Figure 1: The flow of activation in the congruent
condition of the subliminal priming model.

captures quite nicely the effects observed in the data
2
 by

Marcel (1983) (r
2
 = 0.987).

In the unaware conditions, only the target chunks

reached the retrieval ratio, and no other chunks.

Therefore, these chunks are the only ones that are

consciously perceived by the model. The model thus

remained unaware of all other chunks, as is required for

these conditions.

An explication of how the activation flows through the

model will be insightful. We split this up in four sections,

each describing one condition.

Neutral

In the neutral condition, there is no competition between

motor mappings, because there is no button associated

with the neutral word. The activation cascades through the

network similarly to the no-word condition, because no

association exists between the neutral word and the target

color, both at the lemma level and at the concept level.

Therefore, the activation of the motor mapping associated

with the target color increases similarly to the no-word

condition because the activation of all the motor mapping

chunks increases as in the no-word condition.

As an example, Figure 4 gives the activation

accumulation in the neutral unaware condition. The

activation of the neutral word lemma increases, but, due to

the short presentation duration, it does not reach the

retrieval ratio. This indicates that the neutral word does

not reach awareness.

No-word

The no-word condition is similar to the Neutral condition,

because no distractor stimulus is present, resulting in the

same behavior of the model as in the Neutral condition.

Because in the no-word condition, there is no distractor,

there is no difference between aware and unaware.

2
 As the variance in the original data cannot be deduced from the

published results, a sensible formal comparison is not possible.

Congruent

Both target and distractor stimuli activate the same

concept: the color chunk directly, the text chunk mediated

via the lemma chunk. Spreading activation towards the

associated motor mapping chunk is therefore higher than

in the Neutral and No-word conditions, resulting in faster

retrieval.

Incongruent

Because both target stimulus and distractor activate a

motor mapping, competition for retrieval takes place at

the motor-mapping level. Higher activation for competing

chunks means that it is more difficult to cross the retrieval

ratio, leading to longer retrieval latencies. The effect is

strongest in the aware condition, representing the longer

presentation duration of the prime, and thus the longer

accumulation of activation of prime-related chunks.

Figure 3: Comparison of the latencies found by
Marcel (1983) (a) and the latencies predicted by the
subliminal priming model (b). Shown here are the

latency differences relative to the no-word condition.

Figure 4: Activation accumulation in the Neutral
Unaware condition. The stimuli are a red color patch
and an unrelated prime word. The vertical dotted line
indicates when the presentation of the prime ends. At
this point, the activation of the related lemma has not
crossed the retrieval ratio. After 100ms the red motor

mapping chunk does cross the retrieval ratio.

Discussion

A difficult question when modeling cognitive tasks that

deal with awareness is how awareness is defined within

the model. We chose to set a strict boundary for

awareness, the retrieval ratio. When a chunk reaches the

retrieval ratio, it becomes available inside the buffers. We

assume that people are aware of chunks that are currently

in the buffers (Taatgen, submitted), and not aware of

chunks that have not yet reached the activation needed to

enter the buffers.

RACE involves a direct connection between

information in the external world (that is, the visual

module) and the activation values of declarative chunks in

declarative memory. In this respect, RACE deviates from

ACT-R, in which all visual information must be mediated

by the visual buffer. However, since the visual buffer is

associated with awareness as chunks appearing in the

visual buffer enter the declarative system, another

pathway must be present to account for the subliminal

priming data modeled in this paper. We hypothesize that

the connections in RACE from the visual module to the

declarative memory module may represent part of the

ventral visual pathway, that is known to involve

connections from striate cortex (associated with ACT-R’s

visual module) to temporal brain regions (associated with

the declarative memory module, Anderson et al., 2004).

The model of subliminal priming discussed in this paper

demonstrates that RACE can account for the retrieval

latencies observed by Marcel (1983, Experiment 3). By

using standard RACE parameter values, the fit of our

model to the data set of Marcel was quite good. In

combination with previous models of declarative memory

retrieval that use RACE (Borst & Van Rijn, 2006; Van

Maanen & Van Rijn, 2006; in press), this suggests that

RACE might be regarded as a general model of

declarative memory retrieval. The added value of the

RACE model is that it gives a rational account of how the

process of declarative memory retrieval develops. Even

the effects on declarative memory retrievals of changes in

the world that last only milliseconds can now be taken

into account.

References

 Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, C., & Qin, Y. (2004). An integrated theory of
the mind. Psychological Review, 111(4), 1036-1060.

Anderson, J. R., Bothell, D., Lebiere, C., & Matessa, M.
(1998). An integrated theory of list memory. Journal of
Memory and Language, 38(4), 341-380.

Anderson, J. R., & Lebiere, C. (1998). The atomic
components of thought. Mahwah, NJ: Lawrence
Erlbaum.

Anderson, J. R., Matessa, M., & Lebiere, C. (1998). The
visual interface. In J. R. Anderson & C. Lebiere (Eds.),
The atomic components of thought. Mahwah, NJ:
Lawrence Erlbaum.

Anderson, J. R., & Milson, R. (1989). Human memory:
An adaptive perspective. Psychological Review, 96(4),
703-719.

Anderson, J. R., & Schooler, L. J. (1991). Reflections of
the environment in memory. Psychological Science,
2(6), 396-408.

Borst, J. P., & Van Rijn, H. (2006). Memory decay
problems in a level-repetition switch task model. In D.
Fum, F. Del Missier & A. Stocco (Eds.), Proceedings of
the Seventh International Conference on Cognitive
Modeling (pp. 351-352). Trieste, ITA.

Glaser, W. R., & Düngelhoff, F. J. (1984). The time
course of picture-word interference. Journal of
Experimental Psychology: Human Perception and
Performance, 10(5), 640-654.

Marcel, A. J. (1983). Conscious and unconscious
perception: Experiments on visual masking and word
recognition. Cognitive Psychology, 15(2), 197-237.

Merikle, P. M., Smilek, D., & Eastwood, J. D. (2001).
Perception without awareness: Perspectives from
cognitive psychology. Cognition, 79(1-2), 115-134.

Newell, A. (1990). Unified theories of cognition.
Cambridge, MA: Harvard UP.

Ratcliff, R., & Smith, P. L. (2004). A comparison of
sequential sampling models for two-choice reaction
time. Psychological Review, 111(2), 333-367.

Taatgen, N. (submitted). Consciousness in the ACT-R
architecture. To appear in Oxford companion to
consciousness: Oxford UP.

Taatgen, N., Van Rijn, H., & Anderson, J. R. (in press).
An integrated theory of prospective time interval
estimation: The role of cognition, attention and
learning. Psychological Review.

Usher, M., & McClelland, J. L. (2001). The time course of
perceptual choice: The leaky, competing accumulator
model. Psychological Review, 108(3), 550-592.

Van Maanen, L., & Van Rijn, H. (2006). An accumulator
model account of semantic interference in memory
retrieval. In D. Fum, F. Del Missier & A. Stocco (Eds.),
Proceedings of the Seventh International Conference on
Cognitive Modeling (pp. 322-327). Trieste, ITA.

Van Maanen, L., & Van Rijn, H. (in press). An
accumulator model of semantic interference. Cognitive
Systems Research.

Van Rijn, H., & Anderson, J. R. (2003). Modeling lexical
decision as ordinary retrieval. In F. Detje, D. Dörner &
H. Schaub (Eds.), Proceedings of the Fifth International
Conference on Cognitive Modeling (pp. 207-212).
Bamberg. GER.

How Readers Retrieve Referents for Nouns in Real Time:
A Memory-based Model of Context Effects on Referent Accessibility

Aryn Pyke (aryn.pyke@gmail.com)
Institute of Cognitive Science, Carleton University,1125 Colonel By Drive

Ottawa, ON K1S 5B6 Canada

Robert L. West (rlwest@connect.carleton.ca) Jo-Anne LeFevre (jlefevre@connect.carleton.ca)
 Institute of Cognitive Science, 1125 Colonel By Drive Department of Psychology, 1125 Colonel By Drive

Ottawa, ON K1S 5B6 Canada Ottawa, ON K1S 5B6 Canada

Abstract
When a reader encounters a noun, she tends to rapidly
associate the noun with a mental referent (representation of
entity in question). Our computational model confirms that a
memory-based account is sufficient to account for a high rate
of success at preliminary referent retrieval. Definite noun
phrases ("The dog") can be used anaphorically to refer to
referents already mentioned in the text, but they also
frequently introduce a new referent into the mix (Poesio &
Vieira,1998). An adequate model must account for how a
reader makes an explicit or implicit decision about each
noun's anaphoric status. We suggest that LTM contains both
generic referent types and specific referent tokens, which
simultaneously compete for retrieval via resonance. Our
ACT-R simulation operationalizes the memory-based view to
model the pre and post-noun activations of referents in
memory. It predicts which referent will be retrieved (i.e. the
most active), and consequently whether an anaphor will be
initially treated as a new referent. The influence of anaphor
word choice is explained, and encompasses metaphoric
anaphors. Simulations results are congruent with human
performance in our eye-tracked reading study, in which
regressions to reanalyze an anaphor are indicative of the
incidence of preliminary error.

Keywords: noun anaphora; memory-based text processing;
resonance; reference assignment; cognitive modeling; ACT-R

Introduction
Evidence suggests that readers interpret incoming sentences
incrementally, as the words become serially available (e.g.,
Sevidy, et al., 1999). In particular, human interpreters make
a rapid preliminary association of a noun phrase (e.g., "the
fruit) with a referent almost immediately after they
encounter the noun (Just & Carpenter, 1980; see also Dell,
McKoon, & Ratcliff, 1983, Sanford & Garrod, 1989). The
term ‘referent’ is used here in the cognitive sense (as in
Gundel, Hedberg, & Zacharski, 2001) to mean a mental
representation of the person or object in question. At the
time a noun is encountered, the processing system is not
privy to information in the sentence that occurs after said
noun. Thus, a reader's preliminary referent assignment is
influenced by the preceding context and the noun itself.
Our objective was to model this preliminary, on-line
referent assignment for definite noun phrases. Such
preliminary referent assignments may in turn be subject to

subsequent adjustment. However, the present focus is on
the nature and accuracy of the preliminary referent
assignment process itself. The performance of the model
will be compared with the accuracy of human data.

The Cognitive Task: Referent Assignment
To motivate the model, we first discuss the cognitive task

(problem space) in more detail. In general, a noun can be
used to introduce a new referent into the discourse
(introductory use), or to refer to a referent that was
previously discussed (anaphoric use). To enable us to
process these two uses, we have two types of referents in
memory: representations of specific people and objects that
the cognitive agent is already familiar with (e.g., the
particular apple in your bag), and more generic/prototypical
representations (e.g. a generic apple). The latter, generic
referents are appropriate to retrieve when the noun is used in
an introductory capacity. For example, in (2) “fruit" is used
anaphorically to denote the referent introduced by the
antecedent “apple” in (1). Note that an anaphoric noun need
not match the label that was previously used for that
referent, and the same noun "apple" can be used to refer to
different referents in (1) and (3).

(1) John bought an apple.
(2) John bit into the fruit.
(3) The apple Mary bought was green.

 A more fundamental issue is that a definite noun, "The
apple" bears no explicit indication of whether it used in an
introductory or anaphoric capacity. The definite article “the”
was often assumed to indicate that the intended referent is
already familiar to the reader (e.g., Clark & Sengul, 1979;
Garnham, 1989; Just & Carpenter, 1987). However, as
exemplified in (3), corpus analyses have established that
definite noun phrases are equally likely to introduce new
referents into the discourse as to denote referents that have
already been mentioned (Gundel et al., 2001; Poesio &
Vieira, 1998). Thus, readers are not privy to the anaphoric
status of a definite noun a priori. Consequently, during
preliminary assignment, readers may sometimes
misinterpret an anaphoric noun as if it is introducing a new
referent (or an introductory noun as anaphoric). In the
literature, the reader’s task upon encountering a definite
noun phrase is sometimes dubbed anaphor resolution, but

mailto:rlwest@connect.carleton.ca

this terminology clearly under-represent the full scope of the
reader’s (and modeler’s) task. Thus, the job of the present
model is to describe the means in which a referent for a
noun (in a given context) is rapidly selected on-encounter.
And in so doing, the model should serve to predict the
likelihood that the selected referent will be the correct one
(i.e., will it be generic-new or specific).

The present treatment applies to the preliminary
assignment of referents to definite nouns. As Gernsbacher
(1989) suggests, that this memory-based process may apply
to other types of referring expressions like names (John) and
pronouns, (he). However, this issue goes beyond our
present data. Furthermore, in contrast to nouns, which can
be introductory or anaphoric, pronouns are almost
exclusively anaphoric (Kintsch, 1998), and are subject to
more syntactic constraints, so there is reason to believe that
the problem space and process may be somewhat different.
Consequently, appropriate referents for non-noun referring
expressions are effectively hard-coded in our simulation.

Criteria for a Cognitive Referent Retrieval Model
Reference assignment is addressed by some non-cognitive
Natural Language Processing algorithms (e.g., Bean &
Riloff, 1999; Vieira & Poesio, 2000), however, they involve
multiple passes forward and back through the text, and do
not directly speak to the development of a cognitive model
of on-line processing. Thus, to set the stage for the proposed
model, we layout the general criteria for a psychologically
plausible model of referent retrieval for noun phrases.

1. Incremental Processing: The system should be able to
make use of information in each incoming sentence
incrementally, roughly word-by-word.
2. Appropriate Representational Units: In line criteria
1, the unit of analysis for the processing system must be
smaller than a complete sentence. The cognitive task being
modeled is to associate a definite noun phrase with a mental
representation of its referent, so the system must, minimally,
have representations (though possibly atomic ones) for
individual nouns and potential referents, in order to model
the task of associating the former to the latter.
3. Context Sensitivity: The model should allow and
account for the influence of: (i) preceding context sentences,
and (ii) preceding parts of the current sentence, and (iii) the
current noun itself, on the processing of the current noun.
To account for the processing of a particular anaphor, the
model should also, as a pre-requisite, model the processing
of the prior context, to get the memory system into the
appropriate state (so relative accessibilities of specific and
generic referents reflect the influence of prior context).
4. Real-Time Simulation: Ideally, the reading process
should be simulated in real-time units (e.g., ms vs. 'cycles').
Cognitive effects like priming (spreading activation) are
time-sensitive and subject to decay. The system should
ideally model such memory effects (fluctuations in
activation over time), and should simulate processing of the
text at a representative reading rate (e.g., 150 ms/word).

5. Appropriate Problem Space: Models necessarily
abstract away from some level of detail, but care must be
taken to ensure that the problem space in the model is not
artificially skewed or trivially sparse. The characterization
of the task and the representation of the problem space (e.g.,
range of possible referent choices) should be sufficiently
rich to reflect the interpretation challenge facing a real
reader, and so permit key types of possible errors. Since
readers do not know a priori whether a current definite noun
phrase is anaphoric or introductory, the explicit or implicit
determination of this property is part of the referent
assignment process. Thus, the model should ideally be able
to operate on and discriminate between (though not always
accurately) both anaphoric and non-anaphoric definite noun
phrases. In this vein, the memory system must be populated
with not only the correct referent, but also the other
referents in the discourse, and generic referent prototypes.

We are unaware of a previous model that fulfills all of
these criteria. Other models (e.g. Budiu & Anderson, 2004,
Lemaire & Bianco, 2003) fulfill some but not others,
notably criteria 2 and 5. In view of these criteria, the model
was implemented in ACT-R (discussed later). Next, we
outline the theoretical framework underlying our model.

The Framework: Memory-based Processing
Our model is inspired by the memory-based view of text-
processing (see Gerrig & O’Brien, 2005 for a review). In
particular, we propose that preliminary referent retrieval is
driven by general-purpose memory mechanisms. In
particular, under the resonance model (e.g., Gernsbacher,
1989; Myers & O’Brien, 1998) current information in
working memory (i.e., the anaphoric noun) serves as a cue
that automatically boosts activation of other entities
throughout long-term memory -- including, ideally, the
intended referent -- in accord with their conceptual overlap
with the cue. Thus, at the time the anaphor ‘fruit’ in (2) is
encountered, the apple referent can be automatically re-
activated via resonance in virtue of its conceptual overlap
with the anaphor (a pre-existing conceptual association). In
our model (see also see also Budiu & Anderson, 2004), the
strengths of conceptual associations were estimated using
Latent Semantic Analysis (LSA) values (lsa.colorado.edu;
see Landauer, Foltz, & Laham, 1998 for a review), which
give a maximum similarity of 1 (i.e., similarity of a concept
to itself). So had the anaphor used been "apple" it would
have provided an even larger activation boost to the
intended referent [R1:apple], than was provided by the
anaphor "fruit" (LSAs:<apple,fruit>=.47,<apple,apple> =1).
Thus choice of noun itself exerts an immediate impact on
the relative accessibilities of referents via resonance.
 This memory-based account can be contrasted with a
more special-purpose process of referent retrieval. Some
suggest that when a reader encounters an anaphoric noun,
he/she undertakes a proactive search for a referent
mentioned within the current text (e.g., Clark & Sengul,
1979; Kintsch & Vandijk, 1978; O'Brien, Plewes, &
Albrecht, 1990). The discourse might be mentally

http://lsa.colorado.edu/

represented as a series or network of propositions, and the
reader might systematically troll backwards through it in
search of a referent that (according to some criterion) could
constitute a match to the current anaphor term. However,
since many definite nouns not anaphors such a proactive,
process-of-elimination search would often be a waste of
time. Further, if general memory mechanisms are often
sufficient to automatically bring a referent to mind,
parsimony argues against the proposal of a proactive
special-purpose search process. The model in this paper
confirms that memory-based accounts are sufficient to
account for a high rate of success at preliminary referent
retrieval for anaphoric nouns. The theoretical and empirical
arguments against a special-purpose search account are
outlined more fully in Pyke, West and LeFevre (2007).
 In our model, generic referents and specific discourse
referents simultaneously compete for retrieval. The most
active referent is retrieved. Thus,it is not the failure to
find/retrieve a referent that then, serially, leads to treating a
noun as a new referent. Rather, retrieval, per se, typically
always succeeds. Whether it is a specific or generic referent
that is retrieved determines whether the noun as treated as
anaphoric or introductory in preliminary analysis.

Factors Affecting the Activation Levels of Referents

Each referent’s accessibility during preliminary noun
processing owes to two components: i) the activation
boost/spread from the noun term currently being processed;
and ii) its ‘context dependent’ pre-noun activation level.
Such context factors are outlined below.

1.Spread of Activation from Pre-Anaphor Words. Just
as the anaphor resonates with, or spreads activation to,
referents, our model assumes that such activation spread
generally occurs as each content word in the discourse is
encountered. The activation boosts received by referents
may persist (as do lexical priming effects, e.g., Collins &
Loftus, 1975) even when the reader progresses on to the
next word. While such effects decay they may exert a
cumulative effect on a referent’s activation.

3.Recency and Frequency of Use of the Referent.
These general factors affect any mental representation’s
accessibility. Evidence indicates that the further back that
an antecedent is (in sentences, and consequently in time),
the more challenging it is to process the anaphor (e.g., Clark
et al., 1979; Duffy & Rayner, 1990; Levine, Guzman, &
Klin, 2000). A referent referred to many times in a text,
and/or referred to in the sentence preceding the critical
anaphor should be more active, ceteris paribus, than a
referent mentioned only once several sentences back.
 4.Sentence Wrap-Up Effects. Just and Carpenter (1980)
suggested that integrative processes occur at sentence end,
which is why readers spend tend to spend relatively longer
on the final word in each sentence. These wrap-up
processes may result in sentence-end activation effects
(Balogh, Zurif, Prather, Swinney, & Finkel, 1998). Probe
studies suggest that a referent mentioned early in a sentence
may also produce facilitation effects at sentence end (e.g.,

Dell et al., 1983; McKoon & Ratcliff, 1980). In our model,
the processes at sentence end result in an activation boost of
the specific referents mentioned in the sentence.
 5. Discourse Dependent Associations. In addition to
pre-existing associations like those we are modeling with
LSA, discourse dependent associations may be formed in
memory. Spread of activation through such associations
may produce intermittent (yet cumulatively significant)
activation contributions to an intended referent during pre-
anaphor processing. For example, each sentence (and
proposition) in a discourse may contain several referents. In
Dell et al. (1983, see also McKoon & Ratcliff, 1980), two
referents which have appeared in a common sentence are
called companions. The comprehension process appears to
forge a lasting association between companion referents in
memory, possibly during sentence wrap-up, such that when
a referent is subsequently encountered, its companion(s)
from prior sentences also become re-activated right away,
and to a comparable degree (Dell et al., 1983). Thus, in our
model, whenever a referent is mentioned, its companions
are also boosted in activation, thereby making them more
accessible as referent candidates for up-coming nouns.
 Our treatment extends the prior treatments in the
literature in that it provides a more explicit, comprehensive,
quantitative and real-time operationalization of such
contextual influences on the LTM referents’ pre-anaphor
activation levels. Furthermore, most discussions of noun
anaphor processing in the literature (c.f., Garrod, Freudenthal
& Boyle, 1994, Levine et al, 2000), fail to address the fact
that the reader does not know that a noun is an anaphor a
priori (The classification problem, see also Pyke, West &
LeFevre, 2007), so the incidence of new-referent errors
during preliminary assignment has been largely unexplored
and, in our view, underestimated.

The Data: Human Performance
How likely are readers to associate an anaphoric noun to a

new referent on encounter? It was originally believed that
people made almost no preliminary errors in assigning a
referent to noun anaphors (Sanford & Garrod, 1989),
however subsequent evidence has established that such
errors do indeed occur (e.g., Levine, Guzman & Klin, 2000,
and the present research). Such errors were elicited by
manipulating factors related to the accessibility of the
intended referent (e.g., the referent had not been mentioned
for several sentences).

Because a reader's preliminary referent assignment for a
noun occurs on-line, (mid-sentence), and is not directly
observable by an experimenter, information about the nature
(accuracy) of such preliminary assignments is somewhat
challenging to empirically obtain. Note that the reader's
final interpretation at sentence end may reflect the influence
of subsequent processes and information. We observe that a
reader's eye-movements can provide a useful indication of
the effectiveness of preliminary referent assignment. In the
course of processing the remainder of the sentence after the
anaphor, errors in preliminary assignment are often

detected. In general, when readers detect that they have
made earlier errors in interpretation, they often regress their
eyes back to the site of the initial misinterpretation to do an
overt reanalysis (e.g., Altmann, Garnham, & Dennis, 1992;
Meseguer, Carreiras, & Clifton, 2002). We conducted an
eye-tracked reading study to determine the relative
likelihood of regressions to reanalyze the anaphor, when we
manipulated the choice of anaphoric noun.

Experiment
The stimuli were 42 stories that were each 4 sentences

long. The fourth, critical sentence commenced with a
definite noun phrase: “The (noun)”, and this noun was
intended anaphoricallly to denote a target referent
introduced in the first or second sentence. For example:

Mary had a pet terrier.
It was white and shaggy.
She took it to the beach.
The terrier/dog/mop barked at the birds.

Anaphor word choice was manipulated so each of the 42
stories had three different versions: i) antecedent-match
(terrier-terrier), – anaphor was identical to the noun which
originally introduced the referent ii) category (terrier-dog);
and iii) metaphoric (terrier-mop). Recent research suggests
that the same general mechanisms apply to the processing of
literal and figurative content (Budiu & Anderson, 2004,
Giora, 2002; Glucksberg, 2003; Kintsch, 1998, chap. 5.3).
The memory-based model is compatible with this claim.
Activation spreads automatically in accord with similarity,
so just as activation spreads from the anaphor dog to the
referent [R1:white, shaggy, terrier], activation should also
spread, from the anaphor mop to the mental representation
of the white, shaggy terrier. The latter case provides less
spread of activation (LSAs: <dog, white-shaggy-terrier>=
.18, <mop, white-shaggy-terrier>=.07), so readers should be
more prone to make a preliminary new-referent assignment
errors for the metaphoric anaphors.
 Procedure. Stories were presented line-by-line to
participants (N=24), while an EyeGaze™ System tracked
their right eye. Story versions were counterbalanced, so
each participant saw only one version of each story, and
thus saw 14 stories of each anaphor type.
 Results. Eye-movements were analyzed for the critical
sentence. First-pass reading time for the anaphor did not
vary for the different noun versions (p>0.05, word length
and frequency as co-variates), however, the likelihood of
later regressing the eye back to the anaphor differed,
F(3,71.9) = 7.51, MSE = 1.60, p = .000. Readers made a
regression back to the anaphor on 52% of metaphoric
anaphors, 36% of category anaphors and 41% of antecedent-
match anaphors (see also Figure 2).
 Discussion: Regressions to the antecedent-match and the
category anaphors were comparable, though, somewhat
surprisingly, more regressions were made to the antecedent-
match anaphors. Readers regressed most to the
metaphorically intended anaphors, presumably because they
had made many preliminary assignment errors and treated

them as new referents. This explanation was confirmed in a
follow-up cloze study. Readers were presented with the first
3 sentences and the critical noun phrase (e.g., The
mop_____________), and created their own completion of
the sentence. The completions revealed whether the reader
had associated the noun with the intended referent or had
treated it as a new referent. In 48% of the trials, readers
associated the metaphoric anaphor with a new referent.

The Model
In the model, the referent retrieval process in play while

reading the anaphoric noun is basic, blind and strictly
memory-based: When 'reading' the noun, activation
automatically spreads from the noun to all referents in
memory (both generic and specific), and then the most
active referent from memory is retrieved. The impact of
prior discourse processing will be entirely mediated by its
lingering effect on the activations of the various referents in
LTM. Thus, to model the preliminary referent assignment
for a particular noun, we must also simulate the processing
of the preceding discourse, but only so far as is necessary to
approximate its effect on the immediately pre-anaphor
activation levels of the various referents in LTM.

The 3 versions of each story are identical up until the
anaphor. Thus the pre-anaphor activation levels of the
intended referent and other specific referents in the story are
the same across versions (say, [R1:Mary]: 2.4,
[R2:terrier]:1.4, [R3:beach]:2.8). What about generic
referents? The anaphor term determines the relevant (most
competitive) generic referent in play. If the anaphor is
"mop", the intended referent [R2:terrier] competes not just
with the other story referents but also with the generic
referent [G1::mop]. For the version of the story with the
anaphor dog, the relevant generic competitor is [G2:dog].
The activation levels of the generic competitor will depend
on the spread of activation it receives from the pre-anaphor
words and the anaphor itself. In contrast, specific referents
in the story also get activation boosts from sentence-wrap
up and companion spreading.

Overview of Operation
0. LTM is seeded with generic referents for various

discourse concepts, including, importantly the antecedent
concept and also (if different) the anaphor concept. For the
"mop" version of our example story, memory will be seed
with [R1:Mary], [G1:terrier], [G2:Beach], [G3:birds] and
[G1:mop]. If, upon reading

1. Words of a story are then processed serially.
2. Each content word (e.g., noun, adjective, verb)

automatically spreads activation to both specific and generic
referents in memory according to the LSA similarity
between the word and the referent.

3. If the current word is a referring term (noun, name,
pronoun), a referent is retrieved from memory. The referent
retrieved will be the most active one, be it specific or
generic. In the latter case, the generic referent is used to
create a new specific referent to associate with the noun.

The assigned referent is automatically boosted in activation
(in virtue of it's current use), and activation also spreads
from it to its companion referents from previous sentences.
A fan-effect applied, so if the current referent had n
companions in the previous sentence, the weight factor for
activation spread to each companion will be (1/n).

4. At the end of a sentence during wrap-up, the sentence's
referents become reactivated and mutually associated.

Besides the original descriptor used to introduce a referent

(e.g., "terrier"), other properties can also be explicitly
mentioned in a text (e.g., white & shaggy). In step 2 above,
activation from incoming words spreads to each explicit
attribute of each referent [R1:terrier,white,shaggy]. Each
attribute then spreads activation to the referent
representation as a whole. The more active (recently
mentioned or primed) an attribute is, the stronger its relative
contribution (weight = attribute's activation level *
LSA<current word, attribute>).

Implementation Architecture: ACT-R
The criteria outlined previously motivated the choice of

ACT-R (Anderson et al., 2004) as a suitable cognitive
modeling platform for our model. In particular, we used the
python extension of ACT-R (Stewart & West, in press).

The ACT-R architecture is predicated on a Unified
Theory of Cognition (Newell, 1987) - that is, on the belief
that our performance on a vast range of tasks can be
accounted for parsimoniously by a common cognitive
system operating with general-purpose mechanisms and
principles. As such, ACT-R is spiritually compatible with
the memory-based framework in which referent retrieval is
attributed to general-purpose memory mechanisms.

Computer implementations do not inherently impose any
psychological constraints on the character of the model, nor
do they necessarily simulate the process in real-time.
Consequently, the cognitive plausibility of one-off task-
specific models is sometimes open to question. ACT-R has
in-built psychologically motivated constraints, though it
does have some 'arbitrarily' adjustable parameters. However,
the architecture has proved conducive to modeling a vast
range of cognitive tasks, and the data accrued has provided
theoretically and empirically motivated constraints for the
values/ranges for its key parameters. In our model, key
parameters are set to recommended 'universal' defaults (e.g.,
noise=0.3, decay=0.5, production time=50 ms).

ACT-R supports two concurrent levels of functionality:
(i) a production system that carries out sequences of

situation-driven productions (i.e. if-then rules) that serve as
the procedural building blocks (steps) for various tasks.

(ii) a dynamic memory system which contains the various
respresentational units (called chunks) upon which the
productions act. The memory system can simulate the real-
time fluctuation of activation of a representational unit. For
example, the effect of recency and frequency of use on the
activation level of representation Ri is quantified by BRi,

where tj is the time since use j, and d is a constant whose
default value is .5 (Anderson et al., 2004).

 BRi = ln tj^-d ∑
=

N

j 1

Thus, ACT-R affords sufficient functionality to fulfill
almost all of the desired criteria: i) incremental processing:
cognitive operations (productions) can be executed at a rate
of one per 50ms, so a model can perform several operations
(e.g. recognize word, spread activation, retrieve referent)
during the typical reading time for each incoming word (150
ms); ii) representational units – the modeler can specify the
types and numbers of representations in memory, for
example, noun-chunks, generic referent chunks, and specific
referent chunks, iv) problem space – the architecture allows
the modeler to define the task (set of productions) and
populate memory (set of chunks) as appropriate, iii) real-
time simulation – the rate of productions is paced to reflect
the time for the mind to perform a single simple operation,
and the memory system can simulate the fluctuations in
activation of the chunks (referents) over time.

The content that is currently in the system's focus (e.g.,
the noun-chunk), can spread activation to other chunks (e.g.,
referent-chunks) in memory. However, in traditional ACT-R
the boost in activation received by a chunk (referent) from a
stimulus (word) is removed as soon as the stimulus word is
no longer in focus. This precludes any priming effects of
spreading activation from prior words. To allow for such
persistent effects in our model, we introduced this
functionality into python ACT-R. In so doing, we feel
we've augmented rather than circumvented the
psychological plausibility of the architecture.

Simulation Results
The model was run 100 times on each version (match,

category, metaphor) of each of 42 stimuli stories. Figure 1
depicts mean pre and post anaphor activation levels of the
intended referent (R) and the relevant generic competitor
(G). Match anaphors produced the highest, absolute post-
spread R-activations. The simulation revealed considerable
variation in pre-anaphor accessibility of the target referent
from story to story. However, the pre-anaphor R-activation
is the same for all 3 versions of a given story. In general, the
greater the activation ‘head-start’ a specific intended
referent has due to pre-anaphor context influences, the
greater the latitude in anaphor word choice.

Figure 2 indicates how frequently the simulation retrieved
the correct referent. These results are correlated with the
likelihood of regression for the 42*3 items in the human
data (r=-.333, p=.000). For match anaphors, humans
regressed on more trials than would be expected in light of
the minimal number of preliminary referent retrieval errors
predicted by the model (<10%). Regressions in the
antecedent-match case may result not only from preliminary
errors but may be inflated due to a pragmatic "repeated
name effect" (Kennison & Gordon, 1997). When a reader
does regress, they may be re-engaging the memory-based

referent retrieval process, at a time when the referent's
accessibility may be boosted due to priming from post-
anaphor words. We will extend our simulation to test this.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

R G R G R G

metaphor
(e.g.mop)

category
(e.g., dog)

match
(e.g.

Figure 1: Pre(lower half) & Post-spread activation level for
the intended referent (R) and its generic competitor (G).

0

20

40

60

80

100

metaphor (e.g.
mop)

category (e.g.
dog)

match (e.g.
terrier)

simulation (% new referent assignments)
human (% regressions)

Figure 2:Comparison of Simulation & Human Performance

Concluding Remarks
Our model operationalizes the memory-based view to

estimate the (pre & post-noun) accessibilities of referents in
memory, and thus predicts when a particular anaphor will be
initially misinterpreted as a new referent. Such a simulation
tool could have a practical application to assess how
comprehensible (each referring expression in a) text is. And
in psycholinguistics research to check whether accessibility
levels are controlled/comparable across stimuli. Although
readers can often later correct preliminary errors, their final
representation of the text may be degraded since vestiges of
misinterpretations persist in memory (Johnson & Seifert,
1998). Further research is necessary to explore such
potential long-term ‘costs’ of using anaphors that are
difficult to resolve during preliminary analysis.

Acknowledgments
We express our thanks to Terry Stewart and NSERC.

References
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere,

C., & Qin, Y. L. (2004). An integrated theory of the mind.
Psychological Review, 111, 1036-1060.

Balogh, J., Zurif, E., Prather, P., Swinney, D., & Finkel, L. (1998).
Gap-filling and end-of-sentence effects in real-time language
processing. Brain and Language, 61, 169-182.

Bean, D. L. & Riloff, E. (1999). Corpus-based identification of
non-anaphoric noun phrases. In Proceedings of the 37th Annual
Meeting of the Assoc. for Computational Linguistics., 373-380.

Budiu, R. & Anderson, J. R. (2004). Interpretation-based
processing: a unified theory of semantic sentence
comprehension. Cognitive Science, 28, 1-44.

Clark, H. H. & Sengul, C. J. (1979). In search of referents for
nouns and pronouns. Memory & Cognition, 7, 35-41.

Dell, G., McKoon, G., & Ratcliff, R. (1983). The activation of
antecedent information during the processing of anaphoric
reference..J. of Verb. Learning and Verb. Behav 22,121-132

Duffy, S. A. & Rayner, K. (1990). Eye-movements and anaphor
resolution - Effects of antecedent typicality and distance.
Language and Speech, 33, 103-119.

Garrod, S., Freudenthal, D., & Boyle, E. (1994). The role of
different types of anaphor in the online resolution of sentences
in a discourse. Journal of Memory and Language, 33, 39-68.

Gerrig, R., & O’Brien, E. (2005). The scope of memory-based text
processing. Discourse Processes, 39(2&3), 225-242.

Gernsbacher, M. A. (1989). Mechanisms that improve referential
access. Cognition, 32, 99-156.

Gundel, J., Hedberg, N., & Zacharski, R. (2001). Definite
descriptions and cognitive status in English. Journal of English
Language and Linguistics, 5, 273-295.

Just, M. A. & Carpenter, P. A. (1987). The psychology of reading
and language comprehension. Boston: Allyn and Bacon, Inc.

Kennison, S. & Gordon, P. (1997). Comprehending Referential
Expressions During Reading. Discourse Processes, 24, 229-252

Kintsch, W. (1998). Comprehension: A Paradigm for Cognition.
New York: Cambridge University Press

Kintsch, W. & Vandijk, T. A. (1978). Toward a model of text
comprehension. Psychological Review, 85, 363-394.

Landauer, T.,Foltz, P.& Laham,D.(1998).An introduction to
latent semantic analysis. Discourse Processes,25, 259-284

Lemaire, B. & Bianco, M. (2003). Context effects on metaphor
comprehension: Experiment and simulation. In Proceedings of
5th Int.Conf. on Cognitive Modelling (ICCM), 153-158

Levine, W. H., Guzman, A. E., & Klin, C. M. (2000). When
anaphor resolution fails. J. of Mem. and Language, 43, 594-617.

Myers, J. L. & O'Brien, E. J. (1998). Accessing the discourse
representation during reading. Discourse Processes,26, 131-157.

O'Brien, E. J., Plewes, P. S., & Albrecht, J. E. (1990). Antecedent
retrieval-processes. JEP: LMC, 16, 241-249.

Poesio, M. & Vieira, R. (1998). A corpus-based investigation of
definite description use. Computational Linguistics, 24,183-216.

Pyke, A., West, R. L., & LeFevre, J. (2007). On-line reference
assignment for anaphoric and non-anaphoric nouns. In Proc. of
the 29th Annual Meeting of the Cognitive Science Society.

Sanford, A. J. & Garrod, S. C. (1989). What, when, and how?:
Questions of immediacy in anaphoric reference resolution.
Language and Cognitive Processes, 4, 235-262.

Sedivy, J., Tanenhaus, M., Chambers, C., & Carlson, G. (1999).
Achieving incremental semantic interpretation through
contextual representation. Cognition, 71, 109-147.

Stewart, T.C., West, R.L. (in press). Deconstructing and
Reconstructing ACT-R: Exploring the Architectural Space.
 Cognitive Systems Research.

A model of parallel time estimation

Hedderik van Rijn
1
 and Niels Taatgen

1,2

1Department of Artificial Intelligence, University of Groningen

Grote Kruisstraat 2/1, 9712 TS Groningen

2Department of Psychology, Carnegie Mellon University

5000 Forbes Av., Pittsburgh PA 15212

Abstract

In earlier work, Taatgen, Van Rijn and Anderson (in press)
have shown that embedding a simple module that generates
temporal information in a more general cognitive architecture
explains timing phenomena that were earlier attributed to a
hypothesized more complex temporal system. However, the
embedded temporal module does not support parallel time
estimations, of, for example, two concurrent estimations.
Explaining the human capacity of doing multiple time
estimations requires either adding additional temporal
modules, or assuming higher level processing to strategically
use a single timer for parallel timing. This paper presents an
experiment and a computational model that show that the
latter approach is more plausible for human parallel time
estimation.

Keywords: parallel time estimation; temporal processing;
temporal arithmetic; ACT-R; cognitive modeling.

Introduction

Timing is an essential aspect of human behavior, both inside

and outside psychological laboratories. How long does one

wait before pressing the back-button in an Internet browser

when the requested page does not appear? How does one

know how time passes during a lexical-decision experiment
in which one has to be as fast and accurate as possible?

Several theories have tried to describe the nature of time

estimation both in terms of brain areas and processes (e.g.,

Buhusi & Meck, 2005), and in terms of behavior (e.g.,

Gibbon, 1977). Although accounts differ on the exact

mechanisms, all assume time is perceived on a logarithmic

scale, which means that two longer intervals that differ in

duration by a certain amount of time are considered to be

more similar than two shorter intervals differing by the same

amount of time. In other words, perceived differences grow

smaller as the duration increases. Because a logarithmic

scale needs a starting point, a start signal is needed to
indicate the beginning of an interval. The logarithmic scale

is reflected in empirical observations such as the scalar

property (the variance of a time-estimation distribution is

linearly related to the duration of the estimated time,

Gibbon, 1977) and bisection phenomena (a duration exactly

in between a long and a short interval is more often

considered long than short, Allan & Gibbon, 1991).

The requirement of a start-signal and a logarithmic scale

raises the question whether and how multiple overlapping

time intervals can be measured. Several studies have

investigated this question, and have concluded that both

animals and humans are capable of estimating multiple

intervals (Meck & Church, 1984; Ivry & Richardson, 2002;

Brown & West, 1990; Penney, Gibbon & Meck, 2000).

These studies either seem to suggest or are the basis for

claims that there are multiple clocks that can operate in
parallel. However, an alternative explanation is that there is

only a single clock that is intelligently used by the cognitive

system to estimate multiple intervals in parallel. To test this

hypothesis, we designed the experiment presented below. In

this experiment, participants have to produce two time

intervals that overlap partially. They receive a start signal

for one of the intervals, and after a SOA of 500-1500ms the

start signal for the second interval. They then have to

respond to each of the intervals at the appropriate moment.

The random interval between the two start signals prevents

fixed timing strategies, and produces a variable overlap

between the two intervals (Figure 1).

Figure 1: Experimental paradigm used in the experiment

Based on our approach to time perception, which we will

discuss in more detail later, two accounts of multiple,

parallel time estimation can be proposed. One proposal is to

have multiple timers that can be used independently1, an

account similar to that suggested by Meck and Church

(1984). If humans can recruit multiple parallel timers, the

timers themselves should not produce any decrease in

performance when multiple parallel intervals have to be

estimated. A decrease in performance, however, can be due
to other factors like attention, dual-tasking costs, the need to

learn multiple different intervals, etc. These factors are

either independent of the overlap between the two intervals,

or, in the case of dual-tasking costs, increase with the

1 Note that this does not necessarily imply multiple neural

clocks. It might be that a single time source, for example an
oscillating group of neurons, is driving multiple estimations.

amount of overlap. The general finding is that multi-tasking

increases the length of time estimations (Block & Zakay,

1997). The multiple timer account would therefore predict

either complete independence of the estimates, or an

increase of the estimates with an increased amount of

overlap between the intervals.
A second proposal is a single source of time information

that can be used strategically by the general cognitive

architecture to estimate multiple parallel time intervals

sequentially. To produce the two intervals in Figure 1, the

SOA between the two start signals has to be remembered

during the production of the first interval. After the response

on the first interval has been made, one has to wait for a

duration equal to the remembered SOA before making the

second response. The consequence of this method is that

estimates are no longer independent. For example, if the

first estimate is too long we also expect the second estimate

to be too long. A second consequence of serialization is that
the logarithmic time scale will bias the second estimate. The

800ms between the onset of stimulus one and two is

internally represented on the logarithmic scale, resulting in,

for example, an internal length of 5. When this internal

representation is added to the first interval to estimate the

second interval, this length of 5 represents a longer time

than was earlier perceived. This temporal discounting

results in overestimates of the second interval, which

becomes larger as the SOA increases. A larger SOA leads to

a smaller overlap between intervals, so where the single-

timer account predicts longer estimates for larger SOAs
(because of the logarithmic scale), the multiple-timer

account predicts either no effect (no multitask penalty) or

shorter estimates for large SOAs than for short SOAs

(assuming a multitask penalty).

Experiment

Method

Subjects Twenty-six students from Carnegie Mellon
University were paid $8 for participation in the experiment.

Five participants were excluded from further analysis

because of not adhering to the instructions.

Design The experiment consists of two blocks. The purpose

of the first block was to have the participants learn a solid

and correct representation of the to be estimated time.

Hereto, no parallel timing was necessary in this block:

participants were required to estimate just a single interval

per trial. For each trial, correctness feedback was given. In

the second block, this learned duration had to be reproduced

twice per trial as illustrated in Figure 1. The main
manipulation in this second block was the stimulus onset

asynchrony.

Stimuli & Procedure In the first block of 46 trials,

participants were asked to estimate an unspecified interval.

Each trial started with a colored circle being shown on

either the left or the right side of the screen. The participants

were instructed to press a key when the presented stimulus

was on the screen for the to be estimated time. For the left,

green stimulus the “z” had to be pressed, for the right, blue

stimulus the “/”. During 6 startup trials, their response was

plotted on a timeline where an area was marked as correct.
This way, participants could infer whether they had to

lengthen or shorten their estimated durations. The marked

region ranged from 1750 to 2250ms, making a response of

2000ms optimal. After the six startup trials with timeline

feedback, feedback was only given in terms of “correct”,

“too fast” or “too slow”. In the second, experimental block

of 120 trials, participants had to respond to both left and

right stimuli in each trial. Either stimulus appeared first in

half of the trials. The stimulus onset asynchrony (SOA) was

randomly sampled from the interval a=<500, 900> or

b=<1100, 1500>. For both stimuli, feedback was given as

“correct”, “too fast” or “too slow”.

Results and Discussion

The first block of trials was presented to internalize the to be

estimated duration and to asses single estimation

performance. The average estimated duration in the last ten

trials of the first block was 1930ms (SD=383). Note that

given the positive skew in the distribution of time

estimations, an estimated time shorter than 2000ms is

optimal. The proportion of correct responses is .583, which

is close to the expected proportion given the used

correctness-range.

The proportion of correct responses in the second,
experimental block was .448 for the first estimation and

.435 for the second estimation. This difference is not

significant (t(20)=0.59). When compared with Block 1, both

first and second estimations of Block 2 show worse

performance than during the last phase of Block 1

(t(20)=2.46), p = 0.023 and t(20)=2.72, p=0.013

respectively). At first sight, this seems to be in line with a

multiple independent clocks account with a dual-tasking

penalty. However, another prediction of this account is that

the amount of overlap – and therefore the SOA – should

influence the accuracy. For short SOAs, associated with a
longer overlap and therefore a higher dual-tasking penalty,

the accuracy should be lower than for long SOAs, which

result in a shorter overlap. To test this, we compared two

linear mixed effect (LME) models (Bates, 2005, and see for

a non-technical introduction, Baayen et al, submitted). The

first model, predicting accuracy of the second estimate using

a binomial distribution, contains trial number (to account for

learning or fatigue effects), starting side (to account for

possible effects on left versus right initial presentation),

SOA and first estimated duration, and a random effect for

participants. The second model is identical apart from

having SOA removed, representing an account in which
SOA, and therefore multitasking-penalty, does not influence

performance. A model comparison shows that the first

model with SOA has indeed a significantly better fit to the

data ((1)
2

=5.61,p=0.018), indicating that SOA does have an

effect on proportion of correct responses. The direction of

the estimated effect (ˆ =-.0003, z=-2.34, p=0.019) implies

that longer SOAs are associated with a lower accuracy on

the second estimate, which is consistent with the single

timer account, but in the opposite direction as predicted by a
dual-tasking penalty account.

To test whether the first estimate has an influence on the

second estimate, we again compared two LME models. The

first model contains the second estimated duration as a

function of the fixed effects of trial number, starting side,

SOA and first estimated duration, and a random effect for

subjects. The second model has the first estimated duration

removed, but is otherwise identical. The fit of the second

model is significantly worse ((1)
2

=316,p<0.001), indicating

a significant contribution of the first estimated duration for

the prediction of the second estimated duration. The

estimated effect (ˆ =.284, t(3335)=18.21, p<0.001)

indicates that longer first estimations yield longer second

estimations. This is obviously in line with a single timer

account, as the second estimation is dependent on the first.

However, this could also be explained in the context of

multiple timers as the amount of overlap influences both

first and second estimations. This assumes a negative

contribution of SOA on the second estimation: the shorter

the SOA, the longer the overlap, and therefore the longer the

estimated durations will be.
To assess the contribution of SOA on the second

estimation, we constructed a similar model to the best fitting

model described above, but in which SOA was removed.

The fit of the reduced model is significantly worse

((1)
2

=347, p<0.001), indicating a significant contribution of

SOA in the prediction of the second estimate. However, the

estimated effect of SOA (ˆ =.494, t(3335)=19.12, p<0.001)

indicates that longer SOAs yield longer second estimations

(see Figure 5). Again, this estimated effect is in the opposite

direction as predicted by the multiple-timers account, but is
in line with the single timer with temporal discounting

account.

Summary

As the estimate of the first duration contributes significantly

to the estimated second duration, and the estimated SOA

effects are both significant and in the same direction as

predicted by the single timer account, the conclusion from

this experiment is that it is more probable that humans have

only a single timer. However, this single timer can be used

relatively efficiently to estimate multiple intervals, although

performance of the second estimation is negatively
influenced by the logarithmic scale of the time generating

mechanism.

An effect unexplained by the single timer account is the

lower level of performance on the first estimation.

According to the single timer account, the proportion of

correct first estimations in the two-intervals phase should be

similar to proportion of correct estimations in the training

phase. As discussed above, the observed proportion was

significantly lower during the two intervals phase than

during training. This effect cannot be explained on the basis

of timing alone. However, embedding a timing mechanism

in a general cognitive architecture explains this effect
elegantly, as we will discuss in the next section.

Model

In Taatgen, Van Rijn and Anderson (in press), we have

proposed a time mechanism that is embedded in the ACT-R

general cognitive architecture (Anderson, 2007). We have

shown that some of the phenomena traditionally described

as pure timing phenomena, for example the effects of

attention on cognitive timing, can better be explained as
effects of the cognitive architecture or context on the task.

The system contains a simple time generating system that

consists of a single internal clock that generates

logarithmically scaled pulses. These pulses can be read out

by the cognitive architecture and stored in a declarative

memory trace for later reuse. This approach explains, when

embedded in an architecture that accounts for the retrieval

of stored durations, both the basic findings associated with

timing and more complex attention-demand related

phenomena. Although ACT-R is a fairly complex theory,

only a few components are crucial in understanding how the
model can fit the experimental data presented here.

Time estimation

The temporal module of ACT-R measure time in units that

start at 100ms, but become gradually longer, creating a

logarithmic representation of time, as illustrated in Figure 3

(see Taatgen, van Rijn & Anderson, in press, for details).

This means that 2 seconds corresponds to 17 units or pulses

in the temporal module, but 4 seconds only to 29 pulses

instead of 34. Based on the initial single presentation of the

intervals we assume participants have arrived at a

reasonably stable internal representation of 2 seconds (17
pulses) at the start of the overlapping presentations. When

the start signal for the first interval is given, the timer is

started. After the SOA, the start signal for the second

interval is given, prompting the model to store the value of

the timer at that moment (in the examples 5 pulses for a 0.6

sec SOA and 13 pulses for a 1.5 sec SOA). When the timer

reaches the 17 pulses, the value that corresponds to 2

seconds, the model will make the first response. It then adds

the stored SOA value to 17, and waits until the timer

reaches that value (i.e., either 17 + 5 = 22 or 17 + 13 = 30

pulses) to make the second response. As Figure 3 illustrates,

the logarithmic scale introduces a bias in the second
response that becomes larger with longer SOAs: The bias

for the 0.6 sec SOA trial is 2.73 - 2 - .6 = .13 sec, for the 1.5

sec SOA trial, the bias is 4.06 - 2 - 1.5 = .56 sec.

Figure 3. Illustration of the model for a short (0.6 sec) and a long (1.5 sec) SOA. The top line shows real time on a scale of
seconds, while the lower line shows the subjective time in terms of logarithmically scaled pulses of the temporal module.

1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

Data

N = 827 Bandwidth = 0.07544

D
en

si
ty

Single
First
Second

1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

Model

N = 20000 Bandwidth = 0.0354

D
en

si
ty

Single
First
Second

Figure 4. Distributions of estimations in the single task block, the first estimate in the dual task block and the second

estimate in the dual task block. The vertical lines indicate the region of correct responses (1.75-2.25 sec).

Representation of the time interval

The model maintains a representation of the time interval in

its declarative memory. This representation is based on

instance theory (Logan, 1988), which assumes that each

experience creates an example in memory. Each time the

model produces an interval and receives positive feedback,

it will create an instance in declarative memory for that

interval. If the model receives “too late” as feedback, it will

not store the instance, and will bias its next response by

subtracting one or two pulses (randomly with equal

probability) from the next instance it retrieves The reverse is

true if the model receives “too early” as feedback.

During the single task block, the instances will average

around 17 pulses, which corresponds to 2 seconds.

However, during the dual-task block its response on the

second estimate will often be too late because of the
addition of the perceived SOA, leading to feedback that

prompts the model to shorten its representation of the

interval. This shorting will continue until accuracy on both

intervals is approximately equal and the too earlier

responses for the first estimation cancel out modification

based on the too late second responses. However,

performance will never be completely stable, because the

SOA introduces extra variability in the second estimate that

the model cannot fully compensate for.

Model results

Figure 4 shows the distributions of time estimates for the
first block in which only a single estimate had to be made,

and the first and second response in the second block. It

shows that second responses are generally later than first

responses, which is due to the bias of the logarithmic scale.

It also makes evident that the distribution of the first

response is pushed somewhat to the left, corresponding to

around 16 pulses, compared to 17 pulses in the single task

case to compensate for the second response. This explains

the decrease in accuracy on the first interval. Figure 5 shows

the accuracies for both the model and the data. Consistent

with Figure 4, the model performs slightly better than the

participants, but shows the same overall effects, including
an almost identical accuracy on the first and the second

estimate in the dual-task condition.

Figure 5. Comparison of accuracies for data and model

Figure 6 shows the effect of the SOA on the second

response, and illustrates the effect of the logarithmic scale

as the longer SOAs result in an overestimation of the second

interval’s duration.

●

●
●

●

●

●
●

●

●

●

0.6 0.8 1.0 1.2 1.4

1.
7

1.
8

1.
9

2.
0

2.
1

2.
2

2.
3

2.
4

SOA

E
st

im
at

e

● Model
Data

Figure 6. Effect of SOA on second estimate (model and

empirical data)

Discussion & Conclusion

Do multiple independent time generators drive human

parallel time estimation, or do we strategically use the

output of a single time mechanism for parallel time

estimations? In this paper we presented an experiment that

provides evidence for the latter account. Although all

discussed analyses favor a single timer account, the most

striking result is the positive relation between length of

SOA and the estimated duration of the second interval. As

the multiple-timers account predicts a negative effect, this

positive relation can only be explained by strategically using

the output of a single internal time generator.
However, the lower accuracy of the first estimate in the

dual-timing phase compared to the single-timing phase

cannot be explained by a theoretical analysis of the single-

timer account. According to the single-timer account,

performance of the first estimate in dual timing conditions

should be equal to performance in single timing conditions,

as processing the second estimation takes place after the

first estimation is given. However, the presented

computational model gives an elegant explanation of this

effect. Because the two time intervals are estimated on the

basis of a single main-estimation (resulting in the response
for the first estimate), the feedback given for both

estimations cannot be attributed to two different estimations.

Thus, the model uses the feedback in a more general way,

resulting in a shift towards earlier responses for both second

and first estimations when the second estimation was too

late (and vice versa). Because the logarithmic scale biases

responses towards late responses, both estimations will

shorten, yielding a lower accuracy for the first estimate in

dual-time estimations than during single-time estimation.

An interesting aspect of the model is that it assumes that

some form of temporal arithmetic is possible, at least for

very simple but non-trivial additions. We are currently

setting up a new experiment to test the implications of this

assumption. Important to note is that, although the model

internally represents the time in terms of a number of pulses,

the value of this number is assumed to be meaningless with

respect to inspectability: being able to time a certain interval
correctly does not imply that one can state how many pulses

are associated with that interval.

Concluding, we have, as in Taatgen, Van Rijn, and

Anderson (in press), showed in this paper that adding

temporal processing capacities to ACT-R facilitates more

precise explanations of what is necessary to keep the time.

Acknowledgments

This work was supported by Office of Naval Research grant

N00014-06-1-005.

References

Allan, L. G., & Gibbon, J. (1991). Human bisection at the

geometric mean. Learning and Motivation, 22, 39-58.

Anderson, J. R. (2007). How can the human mind occur in

the physical universe? New York: Oxford university

press.

Block, R. A., & Zakay, D. (1997). Prospective and

retrospective duration judgments: A meta-analytic review.

Psychonomic Bulletin & Review, 42(2), 184-197.

Bates, D. M. (2005). Fitting linear mixed models in R, R

News, 5, 27–30.

Brown, S. W., & West, A. N. (1990). Multiple timing and

the allocation of attention. Acta Psychologica, 75(2), 103-

121.

Buhusi, C. V., & Meck, W. H. (2005). What makes us tick?
Functional and neural mechanisms of interval timing.

Nature Reviews Neuroscience, 6, 755-765.

Gibbon, J. (1977). Scalar expectancy theory and Weber's

Law in animal timing. Psychological Review, 84, 279-

325.

Ivry, R. B. and Richardson, T. C. (2002). Temporal control

and coordination: The multiple timer model. Brain and

Cognition, 48(1):117–132.

Meck, W. H. and Church, R. M. (1984). Simultaneous

temporal processing. Journal of Experimental

Psychology: Animal Behavior Processes, 10:1–29.

Penney, T. B., Gibbon, J., & Meck, W. H. (2000).
Differential effects of auditory and visual signals on clock

speed and temporal memory. Journal of Experimental

Psychology: Human Perception and Performance, 26(6),

1770-1787.

Taatgen, N. A., Rijn, H. v., & Anderson, J. R. (in press). An

Integrated Theory of Prospective Time Interval

Estimation: The Role of Cognition, Attention and

Learning. Psychological Review.

Baayen, R.H., Davidson, D.J., & Bates, D.M. (submitted).

Mixed-effects modeling with crossed random effects for

subjects and items.

A Control Perspective on Imaginal Perspective Taking

Holger Schultheis (schulth@sfbtr8.uni-bremen.de)
SFB/TR 8 Spatial Cognition, Universität Bremen, Enrique-Schmidt-Str. 5, 28359 Bremen, Germany

Abstract

This contribution presents a computational cognitive model of
imaginal perspective taking (IPT). The model is shown to ac-
count for major effects observed in IPT as well as concrete
human data from an IPT experiment. Model development was
based on the observation that control mechanisms play a cen-
tral role in IPT performance. In taking this approach, model
development and the model itself reveal similarities between
tasks which so far have been considered only in isolation, sug-
gesting a common basis for these tasks in terms of computa-
tional (control) mechanisms.

Introduction
Imaginal perspective taking (IPT, see May, 2004) refers to
the ability of humans to judge spatial relations between ob-
jects of a previously seen configuration without having sen-
sory access to the configuration at the time of judgment. Al-
though numerous studies (e.g., Hodgson & Waller, 2006;
Mou, McNamara, Valiquette, & Rump, 2004; Sholl, 2001;
Wang, 2004) have investigated human behavior during IPT,
one important aspect of IPT, namely control, has received
virtually no attention so far. Since, as shown by Schultheis
(2007), control mechanisms can be assumed to be crucial for
IPT, neglecting control seems to be a serious shortcoming.
The aim of this contribution is to close this gap.

By analyzing available empirical data on IPT, we iden-
tified and implemented the control mechanisms involved in
IPT. More precisely, we developed a computational cognitive
model of IPT which is based solely on control mechanisms.
This model is able to account for most of the variance in the
human data for a typical IPT task. As a result, the developed
model not only stresses the relevance of control to the under-
standing of IPT, in particular, and spatial cognition, in gen-
eral, but also constitutes a first computational model for IPT.
Moreover, the analysis yielding the employed control mech-
anisms reveals similarities between the mechanisms underly-
ing (a) IPT and other spatial cognition tasks as well as (b) IPT
and task switching. These similarities are considered a par-
ticular strength of the model, as they ground the model in in-
dependently motivated theoretical principles and at the same
time render our model more parsimonious than any model
explaining IPT in terms of IPT-specific mechanisms.

In the following we will first give a brief description of
IPT, task switching, and the analogies between them (see also
Schultheis, 2007). Subsequently, we will detail the theoreti-
cal rationale and control mechanisms underlying the devel-
oped model. This will be followed by a short exposition of

how the model explains the main empirical effects and an ap-
plication of the model to one particular IPT experiment. Fi-
nally, we will discuss related approaches before concluding
with issues for future work.

Imaginal Perspective Taking & Task Switching
Imaginal Perspective Taking
In a typical IPT experiment, participants have to memorize
a configuration of objects in a certain environment (most of-
ten a room). Then participants are blindfolded and often also
deprived of any auditory input apart from the experimenter’s
instructions. In this state the participants are asked to point to
objects of the learned configuration from (imaginal) perspec-
tives which differ from the perspective defined by their bodily
orientation and position. The to be taken perspective can dif-
fer from the bodily one only in orientation, called (imaginal)
rotation, only in position, called (imaginal) translation, or in
both. For example, in the case of an imaginal rotation the par-
ticipant would be asked to indicate the direction to one object
x as if facing another object y. In imaginal translation the
participant needs to indicate the direction to x as if standing
at y. The object to point to is often termed target. Usually
measured are the time it takes participants to give the point-
ing response and the pointing error, that is, the deviation of
the indicated and the actual direction to the target.

The following main effects on these two measures have
been observed in IPT studies: Pointing from an imaginal per-
spective is more difficult (i.e., takes more time and leads to
larger pointing errors) than pointing from the bodily perspec-
tive (e.g., Farrell & Robertson, 1998). Rotations are more
difficult than translations (e.g., Sholl, 2001). The difficulty
increases with increasing angular disparity between the point-
ing direction from the bodily perspective and the pointing di-
rection from the imaginal perspective (May, 2004). Giving
the participants time to prepare for the imaginal perspective
before presenting the target reduces the difficulty, but point-
ing is still more difficult from the imaginal than from the bod-
ily perspective (e.g., Sohn & Carlson, 2003).

Task Switching
The ability of humans to change the task they are currently
working on has been investigated intensely in the task switch-
ing paradigm (see Monsell, 2003). In this paradigm partici-
pants have to work on a succession of comparatively simple
tasks such as adding or multiplying two digits. The defin-
ing characteristic of task switching studies is that the task
the participants have to work on repeatedly and frequently

changes during the experiment. Furthermore, in most of the
task switching studies the stimuli and responses are bivalent,
that is, the same for the different tasks. For example, in the
experiment by Sohn and Anderson (2001) participants had to
work on pairs of digits and letters with two possible tasks: Ei-
ther judge whether the digit is odd or even or judge whether
the letter is a consonant or vowel. The judgment had to be in-
dicated for both tasks by either pressing the “z” or the “/” key
on a computer keyboard. As in IPT, reaction time and errors
are the main focus of analyses in task switching studies.

Generally, the following effects have been observed in task
switching experiments (see Monsell, 2003, but also, e.g.,
Meiran, 2000; Sohn & Anderson, 2001): First, task execu-
tion is more difficult (i.e., slower and more error prone) just
after a task switch. This decrement is called switch cost. Sec-
ond, switch cost can be reduced if the participants are allowed
to prepare for a change of task(s). Third, preparation for a
switch does not eliminate switch cost completely. The cost
remaining after preparation has been termed residual cost.

Analogies
Several analogies hold between task switching and IPT. These
analogies become apparent when assuming that different per-
spectives correspond to different tasks and the bodily per-
spective corresponds to the previously executed task. Fram-
ing IPT this way reveals that IPT—as task switching—uses
bivalent stimuli, because targets (the objects to point to) and
responses (pointing to the target) are the same for all perspec-
tives. In addition, IPT exhibits a “switch cost” for taking a
perspective different from the bodily one and preparation can
reduce but not completely eliminate this switch cost.

This similarity of IPT to task switching suggests that a con-
siderable part of IPT performance can be assumed to arise
from the working of control mechanisms, since task switch-
ing is generally agreed to depend heavily on control facilities.
Furthermore, the control involved in IPT might bear resem-
blance to the control involved in task switching.

Based on these considerations we developed a computa-
tional model of IPT in terms of control. This model will be
detailed in the subsequent section.

Computational Analysis and Model
IPT as Task Switching
Despite considerable differences regarding the particulars
(computational) models of task switching such as the mod-
els developed by Meiran (2000), Sohn and Anderson (2001),
and Rubinstein, Meyer, and Evans (2001) generally assume
that the observed task switching performance is the result of
the combined effect of two distinct mechanisms. Further-
more, these models all suggest that one of the mechanisms
is responsible for that part of the switch cost which can be
eliminated during preparation, whereas the other mechanism
is responsible for the residual cost. Although both mecha-
nisms have been termed and implemented differently in the
models, the gist of these terms and implementations is the
same across models and associated with stimulus ambiva-
lence and response selection. More precisely, the mechanism
underlying the reducible cost seems to be related to stimu-
lus disambiguation, that is, to determine how the stimulus is
to be interpreted or which part of the stimulus to attend to.

The idea is that a certain way of perceiving / interpreting the
stimulus is associated with each task and the current mode
of perception / interpretation is in accord with the previously
executed task. In case of a task switch this mode has to be
changed to conform to the new task. The mechanism under-
lying the residual cost, on the other hand, seem to be related
to the influence the previously executed task has on the incli-
nation to select certain responses. Thus, task switching can
be viewed as consisting of two components, where the first
is associated with stimulus disambiguation and the second is
associated with response selection.

Based on the analogy of task switching and IPT a similar
two component structure can be assumed to underlie perfor-
mance in IPT. This is not to say that the processes of disam-
biguation and response selection involved in IPT are identi-
cal to those in typical task switching settings. For example,
whereas switch costs in task switching are on the order of
50 - 100 ms, “switching” from the bodily to an imaginal per-
spective might take several seconds. Consequently, the com-
ponents of disambiguation and selection in IPT seem to be
realized differently than in task switching. How these two
components might be conceived of in the scope of IPT and
what the underlying mechanisms are, will be discussed in the
next two sections.
Stimulus Disambiguation: Reference Frame Selection
To be able to point to the target in the IPT task the symbolic
target description given by the experimenter (e.g., “point to
the phone”) has to be re-represented as an egocentric pointing
direction. Since this direction is dependent on the perspective
taken, different perspectives afford different target represen-
tations and, thus, the stimuli employed in IPT are ambiguous.
Moreover, disambiguation is a prerequisite for accurately per-
forming on the IPT task. Without successful disambiguation
the symbolic target description would in most cases be re-
represented incorrectly leading to an incorrect pointing re-
sponse. Consequently, stimulus disambiguation seems to be
a crucial mechanism for successful IPT.

We propose that it is reference frame selection which un-
derlies stimulus disambiguation in IPT. To see this, consider
a typical IPT trial where a person has to point to a target from
an imaginal perspective. The only source of information for
determining this direction is the person’s memory of the ob-
ject configuration, because she has no sensory access to the
configuration during IPT. In accord with a number of studies
(Mou et al., 2004; Sholl, 2001; Waller, Montello, Richard-
son, & Hegarty, 2002), we assume that the enduring mem-
ory representation which is used during IPT consists of a net-
work of nodes (i.e., object representations), where the links
between the nodes represent directions between the objects
represented by the nodes. To make use of such a represen-
tation, a reference frame is needed which defines a reference
direction with respect to which the inter-object relations can
be interpreted and experimental evidence (e.g., Hodgson &
Waller, 2006) suggests that any such memory representation
stores a certain reference direction in addition to the node net-
work. Since the employed reference direction determines all
inter-object relations, selecting a reference frame amounts to
choosing a certain target direction interpretation, that is, by
selecting a reference frame the stimulus can be disambiguated
in IPT. Put in terms of the analogy of task switching and IPT,

the reference frame is the mode of perception / interpreta-
tion which is associated with each task (i.e., each perspec-
tive). Accordingly, in a typical IPT trial the mode has to be
switched / shifted from the reference frame of the bodily per-
spective (the previous task is always the bodily perspective;
see above) to the reference frame of the imaginal perspective.

Viewing stimulus disambiguation as reference frame se-
lection reveals similarities of IPT to other spatial cognition
tasks. In particular, the use of spatial terms such as “above” or
“right” has been shown to involve reference frame selection
as one important step (Carlson, 1999). Based on this strand
of research Schultheis (to appear) has developed a computa-
tional model of reference frame selection. This connection-
ist model consists of a number of units representing different
reference frames or, more precisely, reference frame charac-
teristics such as direction or orientation. Via bottom-up and
top-down input connections these units are activated to a cer-
tain level. Subsequently, all activated units indirectly com-
pete via shunting models until the mutual relation between the
competing unit’s activation reaches a certain threshold. This
threshold is a free parameter of the model and determines how
exclusively the reference frame characteristic represented by
the unit with the highest activation is retained in the output of
the model (see Schultheis, to appear, for model details).

Since IPT seems to rely on reference frame selection, we
employed the just described model as the mechanism under-
lying stimulus disambiguation in IPT. For any IPT trial, stim-
ulus disambiguation by reference frame selection takes place
as follows: The reference frame of the bodily perspective and
the reference frame of the imaginal perspective will activate
certain units in the model. If the imaginal perspective is dif-
ferent from the bodily perspective they will activate different
units which then compete until the criterion is reached. As
an additional factor the reference frame stored with the node
network (see above) will also activate one of the competing
units sometimes facilitating and sometimes hampering the se-
lection process. The number of iterations until competition
terminates is assumed to be proportional to the time partici-
pants need to disambiguate the stimulus.

Response Selection: Response Priming The residual
costs in task switching are generally thought to arise from
priming. In all of the discussed models of task switching
(Meiran, 2000; Rubinstein et al., 2001; Sohn & Anderson,
2001) it is assumed that executing a certain task in one trial
will lead—in some form or the other—to the priming of stim-
ulus response mappings relevant to this task. More precisely,
all of the models assume that stimulus response mappings for
tasks are held in working memory and primed to be more se-
lectable on subsequent trials.

Again drawing on the analogy of task switching and IPT
we propose that the second component of IPT is also arising
from priming effects. However, due to the results of Wang
(2004) it did not seem justified to adopt the priming mech-
anisms proposed in task switching models as they stand for
IPT. Wang (2004) showed that the response effects in IPT
seem to arise from rather low-level motor mechanisms. This
suggests that (a) priming of working memory representations
in the case of IPT is inappropriate and (b) not stimulus re-
sponse mappings but only the motor responses are primed.

Based on these assumptions we developed a new compu-

180°

σ

0°

σ

60°

σ

120°

σ

. . .

. . .

. . .

. . .

. . .

. . .

Figure 1: Array of motor units (four examples shown) with
their tuning curves. The numbers between each curve and
unit signify this unit’s preferred direction in degrees.

tational model. This model better corresponds to the experi-
mental results of Wang (2004), while at the same time keep-
ing with the idea of priming as the main mechanism. Our
model consists of an array of units which are thought to rep-
resent cells in the motor cortex. These units are sensitive to
certain directions, such that (a) each unit is maximally acti-
vated by one particular direction, the preferred direction and
(b) activated to a lesser extent by similar directions. More
precisely, each unit is thought to respond according to a Gaus-
sian tuning curve which is centered at a cell’s preferred direc-
tion. The variance of this tuning curve σ is assumed to be a
free parameter but the same for all units (see Figure 1).

If in the scope of IPT the pointing direction has been de-
termined, this direction will activate the corresponding motor
unit. Once any motor unit is activated to its maximum which
is defined as the density of the Gaussian tuning curve at the
preferred direction, the corresponding pointing response will
be selected and executed. It is further assumed that the time it
takes to activate any motor unit to its maximum (i.e., the time
to select the corresponding pointing response) is proportional
to the relation of a motor unit’s preactivation and maximum
activation. The lower the preactivation of a motor unit, the
longer it will take to select and execute the corresponding re-
sponse. It is by preactivation of the motor units that priming
exerts its influence on the time necessary to perform IPT.

As in task switching, priming is thought to arise from the
previously executed task. Since in IPT the previously exe-
cuted task corresponds to pointing from the bodily perspec-
tive (see above), the pointing directions from the bodily per-
spective should somehow prime the motor units when point-
ing from an imaginal perspective. We propose that such prim-
ing stems from the working of a special representational sys-
tem for space which has been termed perceptual-motor sys-
tem (e.g., Sholl, 2001). This system continuously keeps track
of the directions from a human to different objects in the en-
vironment, that is, on a motor level, the direction to different
objects is continuously available. Thus, if the target in IPT
is presented, this target can activate—on a motor level—the
motor unit corresponding to the direction to this target. How-
ever, this unit will only be partially activated, because it is not
the goal of the participant to point in this bodily defined di-
rection. Furthermore, not only this motor unit, but also motor
units with a similar preferred direction will be partially acti-
vated. More precisely, due to the tuning curves the activation
of a motor unit will be proportional to the similarity of its own
preferred direction and the bodily direction to the target.

To sum up, the two proposed components of our IPT model
interact in the following way: After the to be taken perspec-

tive has been presented, stimulus disambiguation in the form
of reference frame selection takes place. When selection is
finished and the target has been presented (a) the target direc-
tion from the imaginal perspective is determined using the se-
lected frame and the existing memory representation, (b) the
corresponding motor unit will be activated, and (c) response
priming will add to the activation of the relevant motor unit.
Once any motor unit is activated maximally the correspond-
ing pointing response is selected and executed.

To prove that this model constitutes a satisfactory account
of IPT, we will both in the following section explain how
the model accounts for the main IPT effects and in the sec-
tion after next show the model’s ability to simulate human
IPT behavior by applying it to one concrete IPT experiment.
In thus evaluating the model we will concentrate on reaction
times, since these have been the focus of the presented analy-
sis. However, as the section “Challenges” will explicate, the
mechanisms in the model easily allow extending the modeled
domain to the errors made by participants in IPT.

Explained Effects

Difficulty of IPT According to the model, longer response
time for pointing to a target from an imaginal perspective than
for pointing from the bodily perspective has two causes. The
first is stimulus disambiguation. If the target direction has to
be judged from the bodily perspective, the bodily direction
and the imaginal direction coincide and thus will activate the
same unit in the reference frame selection mechanism. If the
two directions do not coincide, they activate different units
and, thus, both the desired direction will be activated less and
an undesired direction will be activated more than in point-
ing from the bodily perspective. As a result, the initial differ-
ence between the unit activations will be less when bodily and
imaginal direction do not coincide and therefore the compe-
tition will take more iterations (i.e., more time) to terminate.
The second cause is response priming. As detailed above,
motor units will be primed by the perceptual-motor system.
This priming will be—due to the tuning curves—be strongest
for that motor unit which has a preferred direction identical
to the direction of the target from the bodily perspective. As a
result it will take more time to activate the response from the
imaginal perspective than from the bodily perspective adding
to the slower response time in this condition.

Difficulty of Rotations One important aspect of imaginal
translations is that the reference direction for the resulting
imaginal perspective is the same as for the bodily perspec-
tive. Accordingly, during stimulus disambiguation the bodily
and imaginal direction activate the same unit in the reference
frame selection mechanism which results in lesser iterations
until competition termination and, thus, imaginal translation
are faster than imaginal rotations.

Difficulty Increases with Disparity This effect is owed
mainly to the response priming mechanism. As already said,
the response direction from the bodily perspective will be
primed most. In particular, due to the tuning curves of the
units in the response selection mechanism, any response unit
will be so much more activated—by virtue of priming—the
closer the unit’s preferred direction is to the target direction
from the bodily response. Thus, with increasing disparity be-

tween the bodily and imaginal target direction the priming ac-
tivation for the imaginal target direction will decrease. Since
lower activations entail more time to fully activate a unit (see
above), response time will increase with increasing disparity.

Difficulty Can Partly be Reduced by Preparation The in-
formation processed during stimulus disambiguation in IPT is
(a) the bodily orientation, (b) the direction stored in memory,
and (c) the imaginal orientation. Since (a) and (b) are avail-
able anyway, stimulus disambiguation can start as soon as the
imaginal orientation is known. Moreover, the availability of
the necessary direction for disambiguation (namely the imag-
inal orientation) does not depend on the availability of the
target. Given advance information on the imaginal perspec-
tive to be taken, identification of the reference direction can
start and proceed prior to target presentation. The effect of re-
sponse priming, on the other hand, can only take effect after
the target is known. Without knowing the target the pointing
direction cannot be computed and, consequently, the motor
units cannot be activated. Thus, difficulty can partly (due to
disambiguation), but not completely (due to response selec-
tion) be reduced by preparation.

Model Application
In further evaluating the model we applied it to the data
from experiment 3 of May (2004). This experiment seemed
to be especially suited, because it is one of the few studies
which systematically varied preparation time as well as an-
gular disparity of pointing responses in both imaginal trans-
lations and imaginal rotations. In this experiment participants
were allowed to learn and memorize an object configuration
for 10 min. After learning they had to point to different tar-
gets from different imaginal perspectives while standing in
the center of the objects. Participants had no sensory access
to the configuration during pointing. The to be taken imaginal
perspectives were either translations or rotations resulting in
an angular disparity of 22.5°, 67.5°, 112.5°, or 157.5°between
the target pointing directions from the bodily and the imaginal
perspective. Furthermore, each IPT trial presented first the to
be taken perspective and then, after a variable SOA of 1, 3,
or 5 sec, the target. This design resulted in 24 different con-
ditions for each of which pointing latency and pointing error
were measured. As already said, we will concentrate on the
latency data in modeling human behavior in this experiment.
Accordingly, in modeling we will assume that both stimulus
disambiguation and response selection will yield correct re-
sults. For stimulus disambiguation this means that in each
trial the imaginal orientation will be selected as the reference
direction, that is, in each trial the unit representing the imagi-
nal orientation will initially be higher activated than any other
of the competing reference direction units.

To model the data from May’s experiment we employed
the reference frame selection mechanism from Schultheis (to
appear) nearly unchanged. In particular, we adopted the same
maximum overall activation of the competing units, that is,
the sum of the activation of all competing units was restricted
to be not above 10. The only thing we changed was the gating
criterion which was set to 10.

Given this setup, the model had three free parameters:
First, the amount of activation initially received by the unit
representing the imaginal reference frame direction. Second,

22.5 67.5 122.5 157.5
1000

2000

3000

4000

5000

6000

7000

22.5 67.5 122.5 157.5 22.5 67.5 122.5 157.5
1000

2000

3000

4000

5000

6000

7000

SOA 1s SOA 3s SOA 5s

Human translation latency

Human rotation latency

Model rotation latency

Model translation latency

Figure 2: Empirical (May, 2004) and model latencies in ms. The x axis shows angular disparity in degree.

the amount of activation initially received by the unit repre-
senting the bodily reference frame direction. Due to the re-
striction of a maximal activation of 10, the initial activation
for the reference frame direction stored with the memory rep-
resentation was automatically determined by estimating the
other two initial activations. Third, the variance of the tuning
curves in the response selection mechanism.

The first two were estimated from the latency data of exper-
iments 1 and 2 of Mou et al. (2004) and the third parameter
was estimated from the to be modeled data of May (2004).
We chose to estimate the first two parameters from a differ-
ent data set, since this constituted a more rigorous test of the
model: With only one parameter to fit 24 data points, a good
model fit lends strong support to the validity of the employed
mechanisms. The reason to utilize the particular data set of
Mou et al. (2004) is that it is one of the few studies which sys-
tematically investigated the differential influence of the bod-
ily reference direction and the reference direction stored in
memory on IPT latencies. The initial imaginal, bodily, and
memory reference frame direction activation was estimated
to be 5.7, 3.182, and 1.118, respectively, resulting in a corre-
lation of r = 0.89 between human and model data for exper-
iments 1 and 2 of Mou et al. (2004). These parameter values
indicate that the influence of the bodily direction is larger than
the influence of the direction stored in memory.

Utilizing these activation values we estimated the variance
of the tuning curves of the motor units from the data of May
(2004). The variance was found to be 1.04. The modeling
results using this variance and the corresponding human data
for all 24 conditions of the experiment are displayed in Fig-
ure 2. The figure shows the reaction times for the different ex-
perimental conditions in milliseconds. Model reaction times
have been determined by a linear regression of the human
data on the raw model data (i.e., iterations resulting from the
stimulus disambiguation mechanism plus the relation of the
preactivation and the maximum activation of the motor unit;
see above). As can be seen from the figure the model data
corresponds quite nicely to the human data resulting in a cor-
relation of r = 0.89. Note again that this fit of 24 data points
was achieved by estimating only one parameter which indi-
cates the appropriateness of the employed mechanisms.

Challenges
Although the model can reasonably account for main behav-
ioral effects found in IPT, there are several aspects of the

model which require further considerations.
For example, modeling has so far concentrated on laten-

cies disregarding the effects IPT has on pointing error. Yet,
the mechanisms employed in the model seem to be suitable
to also account for accuracy data. According to the model
pointing error can arise either from stimulus disambiguation
or response priming. Regarding the former, depending on
the height of the gating criterion, the output of the selec-
tion mechanism need not correspond to one of the direc-
tions which have competed, but to a weighted combination
of these. The lower the criterion the stronger the influence of
all competing directions on the final output will be. In terms
of IPT this means that with a low(er) criterion the selected
direction will be the imaginal direction shifted towards the
bodily direction. Since the pointing direction is based on the
selected reference direction, a shifted reference direction will
lead to an erroneous pointing direction. Regarding response
priming, the pointing response based on the bodily direction
will have activated other motor units representing a similar
response. A response from the imaginal perspective will ac-
tivate another motor unit and with it also units between the
bodily and the imaginal pointing direction. Assuming noisy
activation processes, one of these intermediate motor units
may reach its maximum first and thus an erroneous response
might be given by the participant. Both mechanisms predict
errors to occur in the form of a shift of the imaginal response
to the bodily response which is in accord with the observation
of May (2004) that this kind of error is the most frequent one.

A second aspect is that the response selection mechanism
in its current form, explains selection effects by positive prim-
ing. Thus, bodily based responses can influence IPT per-
formance only by facilitating but not by hampering imaginal
based responses. This seems to run counter to experimental
results indicating that the bodily perspective can both facili-
tate and interfere with the imaginal perspective (Waller et al.,
2002). On the basis of the presented analysis it is not clear
whether the proposed mechanisms are able to account for the
relevant empirical effects. Consequently, one major point of
consideration in the further development of the model will
have to be the clarification of this matter.

Related Work
Other computational accounts related to human perspective
taking have recently been proposed. Hiatt, Trafton, Harrison,

and Schultz (2004), for instance, have developed a system
which allows a robot to disambiguate a spatial utterance by
taking the perspective of a human speaker. Although the task
of the robot is similar to IPT, the developed computational
account does not seem to be a cognitive model in the strong
sense. Instead of trying to most accurately account for human
behavior, the focus has been more on building a technical sys-
tem which is able to conveniently interact with a human. In
contrast, Gunzelmann and colleagues (see, e.g., Gunzelmann,
Anderson, & Douglas, 2004) have developed detailed and ac-
curate computational models of human behavior, but the task
they used (and modeled) differed in important aspects from
IPT. For instance, a map-like view of the object configuration
was available to the participants during the whole task.

As a result, our model differs from these two approaches
in both considering IPT and trying to accurately account for
human behavior and, thus, our model constitutes a first com-
putational model of human cognition in IPT.

Conclusion
In this contribution we presented a computational model of
human cognition and behavior in imaginal perspective tak-
ing. Model design was motivated and governed by a pre-
viously observed analogy of task switching and IPT. Not
only did this analogy indicate the importance of control for
IPT, but also suggested that stimulus disambiguation and re-
sponse selection are two important components in IPT. Both
components have been realized by separate mechanisms in
the model. In particular, the mechanism used for stimulus
disambiguation—namely reference frame selection—was not
developed specifically for modeling IPT, but has been drawn
from research on the use of spatial terms. The resulting model
has been shown to be able to account for main effects ob-
served in IPT as well as concrete human data from an IPT
experiment.

Besides constituting a first computational account of IPT,
the model points out similarities between IPT and task
switching as well as IPT and spatial term use. As a result, one
main contribution of the model is to highlight commonalities
of seemingly different tasks, that is, revealing possible funda-
mental mechanisms governing human cognition, in general,
and spatial cognition, in particular.

Future work will concentrate on extending and refining the
proposed model with respect to, for example, error model-
ing and interference in response priming. Furthermore, we
plan to explore the suitability of the reference frame selection
mechanism for other spatial cognition tasks.

Acknowledgments
In this paper work done in the project R1-[ImageSpace] of the
Transregional Collaborative Research Center SFB/TR 8 Spa-
tial Cognition is presented. Funding by the German Research
Foundation (DFG) is gratefully acknowledged. We also thank
the reviewers for their valuable suggestions.

References
Carlson, L. A. (1999). Selecting a reference frame. Spatial

Cognition and Computation, 1(4), 365 - 379.
Farrell, M. J., & Robertson, I. H. (1998). Mental rotation and

the automatic updating of body-centered spatial rela-

tionships. Journal of Experimental Psychology: Learn-
ing, Memory, and Cognition, 24(1), 227 - 233.

Gunzelmann, G., Anderson, J. R., & Douglas, S. (2004). Ori-
entation tasks with multiple views of space: strategies
and performance. Spatial Cognition and Computation,
4(3).

Hiatt, L., Trafton, J., Harrison, A., & Schultz, A. (2004).
A cognitive model for spatial perspective taking. In
M. Lovett, C. Schunn, C. Lebiere, & P. Munro (Eds.),
Proceedings of the 6th ICCM. Mahwah, NJ: LEA.

Hodgson, E., & Waller, D. (2006). Lack of set size effects in
spatial updating: Evidence for offline updating. Jour-
nal of Experimental Psychology: Learning, Memory,
and Cognition, 32(4), 854 - 866.

May, M. (2004). Imaginal perspective switches in remem-
bered environments: transformation versus interfer-
ence accounts. Cognitive Psychology, 48, 163-206.

Meiran, N. (2000). Modeling cognitive control in task switch-
ing. Psychological Research, 63, 234 - 249.

Monsell, S. (2003). Task switching. TRENDS in Cognitive
Sciences, 7(3), 134 - 140.

Mou, W., McNamara, T. P., Valiquette, C. M., & Rump, B.
(2004). Allocentric and egocentric updating of spatial
memories. Journal of experimental psychology: Learn-
ing, Memory, and Cognition, 30(1), 142 - 157.

Rubinstein, J. S., Meyer, D. E., & Evans, J. E. (2001). Exec-
utive control of cognitive processes in task switching.
Journal of Experimental Psychology: Human Percep-
tion and Performance, 27(4), 763 - 797.

Schultheis, H. (2007). Advancing the understanding of spa-
tial cognition by considering control. In Proceedings of
EuroCogSci’07: The European Cognitive Science Con-
ference (p. 746 - 751). Lawrence Erlbaum Associates.

Schultheis, H. (to appear). A computational model of control
mechanisms in spatial term use. In Proceedings of the
29th annual meeting of the Cognitive Science Society.

Sholl, M. J. (2001). The role of a self-reference system in
spatial navigation. In D. R. Montello (Ed.), Proceed-
ings of COSIT 2001. Berlin: Springer.

Sohn, M.-H., & Anderson, J. R. (2001). Task preparation and
task repetition: Two-component model of task switch-
ing. Journal of Experimental Psychology: General,
130, 764–778.

Sohn, M.-H., & Carlson, R. A. (2003). Viewpoint alignment
and response conflict during spatial judgement. Psy-
chonomic Bulletin & Review, 10(4), 907 - 916.

Waller, D., Montello, D. R., Richardson, A. E., & Hegarty,
M. (2002). Orientation specificity and spatial updat-
ing of memories for layouts. Journal of experimental
psychology: Learning, Memory, and Cognition, 28(6),
1051 - 1063.

Wang, R. F. (2004). Action, verbal response and spatial rea-
soning. Cognition, 94(2), 185 - 192.

Towards Incorporating Visual Imagery into a Cognitive Architecture

Scott D. Lathrop (slathrop@umich.edu)
Computer Science and Engineering, 2260 Hayward Street

Ann Arbor, MI 48109-2121 USA

John E. Laird (laird@umich.edu)
Computer Science and Engineering, 2260 Hayward Street

Ann Arbor, MI 48109-2121 USA

Abstract

This paper presents a synthesis of cognitive architecture and
visual imagery. Visual imagery is a mental process that relies
both on cognitive and perceptual mechanisms and is useful
for tasks requiring visual-feature and visual-spatial reasoning.
Using visual imagery as motivation, we have extended the
Soar cognitive architecture to support the construction,
transformation, generation, and inspection of visual
representations for general problem solving. This paper
presents the high-level architectural design and discusses
initial results from two domains.

Keywords: Cognitive architecture; visual imagery; multi-
representational reasoning.

Introduction

Cognitive architecture research focuses primarily on

abstract, symbolic representations and computations. Non-

symbolic representations are used, but for control, and not

for representing or manipulating task knowledge. There is,

however, significant evidence that visual imagery plays an

important role in many cognitive tasks (Kosslyn, et al.,

2006; Barsalou, 1999). Our work seeks to investigate the

synthesis of and interactions between cognition and mental

imagery by extending the Soar cognitive architecture with

visual imagery. In addition to Soar’s native symbolic

representation, visual imagery in our architecture uses a

depictive representation as well as an intermediate,

quantitative representation for images.

Our major result is a computational implementation of

visual imagery and integration within a cognitive

architecture. Functionally, this provides a computational

advantage and additional capability for visual-feature and

visual-spatial reasoning. Although our design is based on

psychological and biological constraints, at this point, visual

processing algorithms are ad hoc, and do not model the

details of human performance. Our results illustrate the

functional value of visual imagery and the challenges of

creating complete models of such complex processes.

Related Work

Two of the most prominent cognitive architectures, EPIC

(Kieras & Meyer, 1997) and ACT-R (Anderson et al.,

2004), incorporate models of human perceptual and motor

systems. However, rather than specifying and implementing

the low-level details of perception and motor processing,

(e.g. edge detection, joint coordinates), these systems focus

on the timing and resource constraints between perception,

cognition, and motor processing. Moreover, neither system

has a long-term perceptual memory, which is necessary to

gain access to a remembered object’s visual features (i.e.

shape representation). Neither system has any mechanism to

support visual imagery.

Previous efforts to build computational models of

imagery have not included the constraints that arise in

integration with a general cognitive architecture. Kosslyn

composed a detailed mental imagery model and created a

computational implementation to simulate and test his ideas

(1980). Glasgow and her colleagues built a computational

model of imagery for a molecular scene analysis application

(Glasgow & Papadias, 1992). While Glasgow incorporated

psychological constraints in her model, such as the inclusion

of three separate representations (descriptive, spatial, and

visual), their implementation is application specific.

The CaMeRa model of Tabachneck-Schijf’s et al. (1997)

uses multiple representations and simulates the cognitive

and visual perceptual processes of an economics expert

teaching the laws of supply and demand. Their system

includes both visual short-term and long-term memories that

complement verbal memories, but the generality of the

overall architecture is unclear. Visual STM includes a

quantitative (node-link structure) and a depictive (bitmap)

representation that is similar in design, although not in

implementation, to our representations. Their shape

representation is limited to algebraic (i.e. lines and curves)

shapes and their spatial structure only models an object’s

location while ignoring orientation and size.

Barkowsky (in press) proposes that any model of mental

imagery must include the following:

(1) Hybrid representational formats to include

propositional and visual structures involving shape.

(2) Coupling between imagery and visual perception.

(3) Construction of images from pieces of knowledge.

(4) Processing with or without external stimuli.

(5) Multi-directional distributed processing and control.

Our architecture addresses (1) – (3) and our future plans

include incorporating visual imagery processing in the

presence of perceptual stimulus (4). Our control structure

initiates and controls imagery processes in a top-down

manner while perceptual mechanisms process results in a

bottom-up fashion. In Soar, the contents of working

memory determine which memories and processes are

active without any centralized control (5). We also propose

that the architecture must support transformation and

generation of a depictive representation. The following

sections discuss our initial implementation.

Visual Representations

We assume visual imagery uses three distinct visual

representations to include (1) an abstract symbolic

representation, (2) a hybrid symbolic and quantitative

representation, and (3) a depictive representation (Table 1).

Each visual representation becomes more specific and

committal as you move down the hierarchy.

Table 1: Visual Representations

Representation Uses Example
Abstract symbols

General, qualitative

visual-feature and

visual-spatial

reasoning

object (can)

object (box)

color (can, yellow)

color (box, blue)

on (can, box)

Hybrid abstract and

quantitative

symbols

Quantitative visual-

spatial reasoning

can

 height 5

radius 1

location <2,1,2>

box

length 10

width 6

height 4

location <0,0,0>

Depictive symbols Visual-feature

recognition

Quantitative visual-

spatial reasoning

The abstract symbolic visual representation is the neutral,

stable medium useful for general reasoning (Newell, 1990).

Symbols denote an object, some visual properties of that

object, and qualitative spatial relationships between objects.

The meaning of the symbols is dependent on their context

and interpretation rather than how the symbols are spatially

arranged. The symbols are composable using universal and

existential quantification, conjunction, disjunction, negation,

and other predicate symbols.

The hybrid, intermediate representation labels objects

with abstract symbols and denotes each object’s location,

orientation, and size with quantitative, vector-based values.

The computational processes that infer information from

this representation are sentential, algebraic equations.

The intermediate representation does not receive much

attention in the imagery representational debate (Kosslyn, et

al., 2006; Pylyshyn, 2002). However, it is important for the

following reasons. First, neurological evidence shows that

during visual-spatial imagery tasks, the visual cortex, or

depictive representation, is not active (Mellet et al., 2000).

However, the parietal cortex is active signifying a visual

format distinct from the depictive representation.

Second, Marr stresses that bottom-up visual processing

uses incremental, increasingly abstract levels of

representations (Marr, 1982). This rational is also pertinent

to visual imagery but in the “opposite” direction. Visual

imagery cannot generate a depictive representation directly

from qualitative, abstract symbols without first specifying

metric properties, such as location, orientation, and size.

Finally, from a computational perspective, there are some

spatial reasoning tasks where reverting from qualitative

symbolic representations to quantitative information is

necessary for either efficiency or simply to infer new

information (Forbus, Neilsen, & Faltings, 1991).

The depictive representation is useful for detecting object

features (e.g. “does the letter ‘A’ have an enclosed space?”)

and spatial properties where the objects’ topographical

structure is relevant (e.g. “which is wider in the center,

Michigan’s lower peninsula or the state of Ohio?”). Space

implies spatial extent within and between objects in a visual

scene. Each point in the representation can have variable

color and intensity, and the spatial arrangement of the points

resembles the object(s) specific shape. Computationally, the

depiction is a pixel-based data structure and the algorithmic

processes are either algebraic or ordinal algorithms that take

advantage of the topological structure.

Architecture

There are two software components in our architecture,

(1) Soar and (2) Soar Visual Imagery (SVI). Soar provides

the underlying control (via its procedural production

memory and its decision procedure) and state representation

(via its symbolic memories). SVI encompasses both visual

perception and visual imagery mechanisms. Figure 1 shows

the architecture with Soar (not to scale) across the top and

the visual mechanisms inherent to SVI underneath. We will

refer to this figure as we explain the architecture and

elaborate on the specific visual imagery processes not

shown in it. The architecture makes a distinction between

memories (rectangles) and processes (rounded rectangles).

The terminology is either Kosslyn’s et al. (2006) or our

own. We will start by explaining the memories and

processes associated with visual perception working from

the bottom to the top of Figure 1. Then we will discuss

visual imagery from a top-down perspective.

Visual Perception

The Visual Buffer is the SVI short-term memory associated

with the visual cortex. It maintains the depictive

representation (Kosslyn, et al., 2006). A Refresher process

activates the depiction based on information received from

visual perception. Two sets of processes in SVI correspond

to the ventral or “what” pathway and the dorsal or “where”

pathway that extend from the visual cortex (Ungerleider &

Mishkin, 1982). The “What” Inspectors are responsible for

extracting object features, shape, and color from the Visual

Buffer. They store each object’s shape and color in a Visual

long-term memory (LTM), neurologically believed to be in

the region of the inferior temporal lobe. SVI stores the

shapes as a mesh topology in the Euclidean space, R
3
.

SVI

• Depictive

• Pixel-based

Visual Buffer STM

Process Productions

Memory
Symbols

Visual

Symbols

Control
Path

Data
Pathway

Object Map

Listeners

• Qualitative spatial
relationships

Visual LTM

Listeners

• Visual ID
• Explicit object
features

• Object Shape

• Object Color

Visual LTM

“What” Inspectors

“Where” Inspectors

• Abstract and metric symbols

• Vector-based
• Object(s) Location
• Object(s) Orientation
• Object(s) General Size

Object Map STM

Refresher

Visual
Scene

Stimulus-Based

Refresh

“Rendered”

Image

Soar

S1
Working Memory

• Goals

• Current State

EPISODIC
MEMORY

SEMANTIC

MEMORY
Learning

•Chunking
•Reinforcement

Appraisal

Detector

TASK

OPERATORS
IMAGERY

OPERATORS
Construct

Transform

Generate
Inspect

VISUAL

OPERATORS
Attend-Visual-Object
Attend-Visual-Spatial

PRODUCTION

MEMORY

Figure 1: Architecture overview

The “Where” inspectors extract the location, orientation,

and size of the objects in the Visual Buffer and store this

information in the Object Map short-term memory. The

Object Map roughly corresponds with the posterior parietal

cortex and maintains the quantitative visual representation

from Table 1. SVI implements this representation with a

scene-graph data structure.

The VisualLTMListeners and the ObjectMapListeners

consolidate the inspectors’ results and create an abstract

symbolic format for Soar’s working memory. The Visual

LTM Listeners provide an object’s qualitative features

along with a symbol (visual-id) denoting the object’s shape

and color in Visual LTM. Likewise, the Object Map

Listeners create the qualitative spatial relationships between

objects in the Object Map. Visual operators in Soar’s

production memory attend to the listeners input and

associate it with existing knowledge.

Visual Imagery

For illustration, consider a Soar robot setting the table for

dinner. Its current goal is to set one place setting, and in

order to accomplish the goal it has to set each individual

object (napkin, fork, plate, etc). It prefers to set the center

object (i.e. plate) first so it can place the other objects

relative to the center. The robot’s working memory contains

the symbolic representation of the place setting (Figure 2).

Each object’s symbol structure is associated with the

current state in Soar’s working memory via a visual-object

attribute. The place setting structure includes the primitive

visual objects napkin, fork, plate, knife (not shown), and

spoon (not shown) objects. Primitive visual objects have a

visual-id attribute. Composite visual objects (i.e. place

setting) denote an object containing other visual objects.

Composites are augmented with has-a and spatial-

relationship attributes defining how the object is composed.

Spatial relationships indicate an object’s location and

topology in relation to other objects. For example, the fork

is above (location) and connected (topology) to the napkin

and left-of and disconnected from the plate. A viewpoint

attribute specifies the spatial relationship perspective. Note

that primitive objects may be associated with many

composite objects and task knowledge may rearrange the

spatial relationships or even synthesize composite objects to

enable the creation of novel visual images.

state

place-setting

fork

napkin
plate

above

v
is

u
a
l-o

b
je

c
t

ha
s-

a

has-a

spatia
l-

relatio
nship

above

b
e

lo
w

v
is

u
a

l-
id

1

vi
su

al
-o

bje
ct

v
is

u
a
l-

o
b

je
c
t

visual-object

has-a

left-of

s
p

a
ti

a
l-

re
la

ti
o

n
s

h
ip

left

rig
ht

viewpoint
topvi

ew
poin

t

front

v
is

u
a
l-id

12

to
p

o
lo

g
y

connected
disconnected

to
p
o
lo

g
y

vis
ual-i

d

23

Figure 2: Soar working memory visual representation

Although the symbol structure in Figure 2 encapsulates a

lot of information, it does not indicate the place setting’s

center object—either directly or through inference. When

there is a lack of visual-feature or visual-spatial knowledge,

an impasse occurs and Soar creates a special, visual imagery

state. The state’s initial knowledge consists of the symbolic

representation of the object in question and the goal is to

determine the desired information.

As a first step, visual imagery, processing has to re-

encode Soar’s symbolic representation into the intermediate,

quantitative representation. To support this, general-purpose

operators for constructing the metric representation (Figure

1) are encoded in Soar’s production memory. Construction

derives from a commonly demonstrated phenomenon in

behavioral imagery experiments showing the time to

generate a visual image is linearly dependent on the number

of parts in the visual representation (Kosslyn, et al., 2006).

Within SVI, there are functional processes specific to

imagery. The Imager receives the operator’s command and

symbolic information from Soar, interprets it, and passes the

required information to a Constructor process (Figure 3).

The Constructor builds the quantitative representation in the

Object Map by combining each object’s general shape

information from Visual LTM with its qualitative spatial

knowledge from Soar’s working memory. For example, to

build the place setting, visual imagery may first compose

the fork and the plate by locating the fork to the left of the

plate. In a similar fashion, processing adds the other objects

to complete the quantitative representation.

Visual Buffer STM

Visual LTM Object Map

STM

Imager

Visual LTM

Listeners

Refresher

Object Map

Listeners

“What” Inspector “Where” Inspector

Generate

Vis
ual

ID

Specific Shape
Color

LocationOrientation
Size

General Shape

Global Location

Orientation

Size

Constructor

ManipulatorConstruct

Transform

View
point

M
ove object

O
rient object

Resize object

Genera
l S

hape

Shared between

Perception and Imagery

Imagery Only

Construct

Transform
Generate

Process Productions

Memory
Symbols

Visual

Symbols

Control
Path

Data
Pathway

Figure 3: Construction, transformation, generation

The transformation operator (Figure 1) and the

Manipulator process (Figure 3) emerge from another

common behavioral phenomenon, made famous by

Shepard’s and Metzler’s “mental rotation” experiment

(1971). The operator changes the location, orientation, or

size of a specific object or the perspective of the scene.

If the original query refers to an object’s spatial

orientation or relative size then the metric representation is

sufficient. In the case of inferring the place setting’s center

object, this is the case. However, if the robot finishes setting

the plate and is ready to pick up the napkin, it may want to

know the relative difference in width between the plate and

napkin. In this case, a depictive representation with each

objects’ specific shape is required. The generation operator

initiates processing, and the Imager interprets the command

and invokes the Refresher (Figure 3). The Refresher

combines each object’s specific shape and color from Visual

LTM with the Object Map information and generates the

depictive representation in the Visual Buffer.

Visual Buffer STM

Visual LTM Object Map

STM

Imager

Visual LTM

Listeners

Object Map

Listeners

“What” Inspector “Where” Inspector

Inspect
(Object
Features)

Inspect
(Spatial
Relationships)

Shared between
Perception and Imagery

Imagery Only

Inspect

Process Productions

Memory
Symbols

Visual

Symbols

Control
Path

Data
Pathway

Figure 4: Inspection

After the system has constructed, transformed, and, if

necessary, generated the depictive representation, the

conditions are set for the inspection process (Figure 4). The

inspect operator provides the Imager with the query. For

example, “what is the center object of the scene?” or “which

object is wider?” The Imager then activates the “What”

and/or “Where” processes. These processes function as

previously discussed with the exception that in visual

imagery the Imager may direct the “where” inspectors to

focus on the Object Map if the depiction is not required. The

agent may iteratively add more detail to its visual

representation and inspect it to refine its search.

Results

The results illustrate the functional and computational value

of visual imagery in two distinct domains. The first domain

derives from Larkin & Simon’s work demonstrating the

computational advantage of diagrams (1987). In the

problem they investigate (Figure 5), the model must locate

object features, (e.g. vertices, line segments, triangles) and

infer relationships (e.g. angles, congruency) that initial task

knowledge does not specify.

Although we doubt a human could solve the problem

without an external diagram, we chose this task because it

stresses the construction and inspection of a quantitative

representation. The task does not require a depiction as

initial knowledge specifies the main feature (lines) from

which other features can be inferred. As either symbolic or

metric representations are sufficient, we can compare them

and determine computational and functional differences.

The second domain derives from Kosslyn and Thompson

(2007). In this experiment, the subjects hear a letter from the

English alphabet and the experimenters ask them to

visualize it in its uppercase format. Next, the subjects hear a

cue, such as “curve”, “enclosed-space”, or “symmetry” and

indicate whether the letter has the particular feature. For

example, the letter ‘A’ has an enclosed space and vertical

symmetry while ‘U’ has a curve. The Soar model also

“hears” a question, visualizes the letter, searches for the

desired feature, and then “verbally” responds

We chose this visual-feature task because it involves all

imagery processes and representations. Unlike the geometry

domain, symbolic or quantitative representations cannot

solve this task without explicitly encoding every feature.

The task also includes an external environment that

emphasizes the interaction of visual imagery and cognition.

Although our initial goals are functionality driven, we

also make comparisons with human data and discuss the

shortcomings. Two reasons for these shortcomings include

our uncertainty of the types of algorithms humans use to

recognize features, and our architecture’s lack of “image

maintenance” that occurs when the image’s vividness

decays and must be refreshed (Kosslyn et al. 2006).

Geometry Problem

The problem states that there are four lines (A, B, C, D).

Line A is parallel to line B and line C intersects line A. Line

D bisects the line segment formed by the intersection of line

C with lines A and B (Figure 5). The goal is to show that the

two triangles formed are congruent. To prove congruency,

the model must employ a basic geometry rule, such as the

angle-side-angle (ASA) rule. The ASA rule states if two

angles and the included side of a triangle are congruent to

two angles and the included side of another triangle, then

the two triangles are congruent. In Figure 5, the model must

show E1=E2, e1=e2, and c=b.

Figure 5: Geometry Problem

We compared two models. The first uses only symbolic

representations (Soar Only) and has operators to create and

process geometric objects and relationships. For example,

“if two lines intersect, then create a vertex”. The model

creates these features until it can show the triangles are

congruent. The second model (SVI) constructs a metric

representation from the original description. It then inspects

it for the desired features and relationships and uses the

information along with the ASA rule to prove congruency.

The SVI model requires less real and simulated time

(Figure 6). “Soar Only” spent much of its time considering

objects and relationships that were not required to solve the

problem. The SVI model also requires less task knowledge

(Figure 7). The “Soar Only” model requires knowledge

about geometric structures inherent to SVI’s imagery

operations. Functionally, this suggests that SVI decreases

the amount of knowledge required to learn such a task.

Figure 6: Time for each agent.

Simulated time is decision cycles x 50 ms.

The model is not psychologically plausible because of its

unrealistic ability to maintain arbitrary amounts of

information in its visual buffer. We expect humans would

require an external diagram and thus require more time to

solve the problem. However, the task demonstrates

imagery’s computational advantages and added capability.

Figure 7: Initial task knowledge for each agent

Alphabet Experiment

Our evaluation for this experiment focuses on three areas.

First, the requirement for generating and transforming

depictive representations forced us to reconsider the design.

Our previous discussion reflects this evaluation. Second, we

make a subjective comparison between the feature detection

algorithms and note that even though the representation is

depictive, the processing may not. For example, to detect

curves we use a variation of the Hough transform (Mat Jafri

& Deravi 1994). The algorithm maps edge pixels onto a

parameter space and uses a “voting” algorithm to determine

the parameters that indicate a curve. Although the algorithm

has interesting perceptual characteristics in that it is

parallelizable, it uses sentential, algebraic computations. For

detecting enclosed spaces, we employ an algorithm using

pixel rewrites to take advantage of the topological space and

locality of neighboring pixels that is clearly more

“depictive” (Furnas, et al., 2000).

Finally, we compare the model’s response time
1
 (RT)

with human data from Kosslyn’s experiment (2007). Figures

8–9 show the comparison with the letters along the x-axis

sorted from left to right according to human response time.

Both humans and Soar show variability in the time to detect

enclosed spaces
2
, but the average time is almost identical

(Figure 8). In the case of symmetry, however, Soar shows

little variability while humans show a lot (Figure 9).

Again, we make no claim that the algorithms are similar

to how humans recognize these features. Since the

architecture does not incorporate image maintenance, the

time required to recognize symmetry dominates the results.

Our algorithm determines symmetry by transforming the

original depiction around the axis of symmetry and

comparing it with the original orientation. Rather than

performing this operation in a single step, we hypothesize

that humans must continuously rotate and regenerate the

letter. This demonstrates that even if the overall architecture

1 Based on average CPU time over 30 trials and scaled for

comparison with human data.
2 Curves and enclosed spaces show a similar graph with the

exception that the range of response times were spread out more

for both the human (~600ms) and Soar agent (~500ms) data.

Task Knowledge

(Productions)

10

20

30

40

50

60

S V I S O A R O N L Y

A

B

C D

E1

E2

c

e1

e2

b

Time (ms)

0
200
400
600
800

1000
1200
1400
1600
1800

Real Time Simulated Time

SVI SOAR ONLY

is correct (our hypothesis), the devil of modeling human

behavior is in the details of low-level visual processing.

Figure 8: Enclosed space response time comparison

Human 65:,604: σµ , Soar 14:,595: σµ

Figure 9: Symmetry response time comparison

Human 104:,778: σµ Soar 12:,643: σµ

Conclusion

We have demonstrated that it is possible to extend a general

cognitive architecture with a comprehensive model of

imagery that includes using multiple visual representations;

sharing mechanisms with vision; and incorporating

construction, transformation, generation, and inspection. It

also expands architectures by linking perceptual-based

thought and cognition. This union provides new capabilities

and computational efficiency for visual-feature and visual-

spatial reasoning. As we move forward, we desire to expand

the inspection processes and evaluate the architecture in an

environment where perception and imagery interact, spatial

and depictive forms of imagery are necessary, and the

overall task is not to answer a question but involves making

decisions and executing them in a rich environment.

Acknowledgments

The authors would like to thank Stephen Kosslyn and

William Thompson for the human data and collaboration.

References

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,

Lebiere, C., & Qin, Y. (2004). An Integrated Theory of

the Mind. Psychological Review, 111(4), 1036-1060.

Barkowsky, T. (in press). Modeling mental spatial

knowledge processing: An AI perspective. In: F. Mast and

L. Jaenke (Eds.), Spatial processing in navigation,

imagery, and perception. Berlin: Springer.

Barsalou, L. W. (1999). Perceptual symbol systems.

Behavioral and Brain Sciences, 22, 577-660.

Forbus, K. D., Neilsen, P., & Faltings, B. (1991).

Qualitative spatial reasoning: the clock project. Artificial

Intelligence, 51(1-3), 417–471.

Furnas, G., Qu, Y., Shrivastava, S., & Peters, G. (2000). The

Use of Intermediate Graphical Constructions in Problem

Solving with Dynamic, Pixel-Level Diagrams (Vol. 1889).

Glasgow, J., & Papadias, D. (1992). Computational

Imagery. Cognitive Science, 16, 355-394.

Kieras, D. E., & Meyer, D. E. (1997). An Overview of the

EPIC Architecture for Cognition and Performance with

Application to Human-Computer Interaction. Human-

Computer Interaction, 12, 391-483.

Kosslyn, S. M. (1980). Image and Mind. Cambridge:

Harvard University Press.

Kosslyn, S. M., & Thompson, W. L. (2007). Can people

"see" implicit properties as easily in imagery and

perception? (In preparation).Unpublished manuscript.

Kosslyn, S. M., Thompson, W. L., & Ganis, G. (2006). The

Case for Mental Imagery. New York, New York: Oxford

University Press.

Larkin, J. H., & Simon, H. A. (1987). Why a Diagram is

(Sometimes) Worth Ten Thousand Words. Cognitive

Science, 11, 65-99.

Marr, D. (1982). Vision. San Francisco: Freeman.

Mat Jafri, M. Z., & Deravi, F. (1994, 2 November 1994).

Efficient algorithm for the detection of parabolic curves.

Paper presented at the Proceedings of SPIE - Vision

Geometry III, Boston, MA, USA

Mellet, E., Bricogne, S., Tzourio-Mazoyer, N., Ghaem, O.,

Petit, L., Zago, L., et al. (2000). Neural Correlates of

Topographic Mental Exploration: The Impact of Route

versus Survey Perspective Learning. NeuroImage, 12,

588-600.

Newell, A. (1990). Unified Theories of Cognition.

Cambridge, Massachusetts: Harvard University Press.

Pylyshyn, Z. (2002). Mental Imagery: In search of a theory.

Behavioral and Brain Sciences, 25, 157-238.

Shepard, R. N., & Metzler, J. (1971). Mental rotation of

three-dimensional objects. Science, 171, 701-703.

Tabachneck-Schijf, H. J. M., Leonardo, A. M., & Simon, H.

A. (1997). CaMeRa: A computational model of multiple

representations. Cognitive Science, 21(3), 305-350.

Ungerleider, L. G., & Mishkin, M. (1982). Two cortical

visual systems. In D. J. Ingle, G. M.A. & R. J. W.

Mansfield (Eds.), Analysis of visual behavior (pp. 549-

586). Cambridge, MA: MIT Press.

Enclosed Space

400

500

600

700

800

900

1000

N B U O P Q E S K D H Z A R

Letter

Human Soar

Time

(ms)

Symmetry

400

500

600

700

800

900

1000

E G V R M H P T I J F Q W L

Letter

Human Soar

Time

(ms)

Evaluating the Performance of Optimizing Constraint Satisfaction
Techniques for Cognitive Constraint Modeling

Alina Chu (achu@umich.edu)
Department of Computer Science and Engineering; University of Michigan

Ann Arbor, MI 48109

Richard L. Lewis (rickl@umich.edu)
Department of Psychology; University of Michigan

Ann Arbor, MI 48109

Andrew Howes (howesa@manchester.ac.uk)
Manchester Business School; University of Manchester

Manchester, UK.

Abstract

Cognitive Constraint Modeling is an emerging model-
ing framework that allows a modeler to derive predic-
tions of asymptotic performance from (a) a specifica-
tion of architectural constraints; (b) a specification of
a space of possible task strategies; and (c) an explicit
objective (payoff) function. This approach has dis-
tinct advantages over traditional approaches in that it
reduces the degrees of freedom inherent in specifying
the details of particular strategies when explaining be-
havior; instead these specific strategies are selected on
the basis of their maximum payoff given the architec-
tural constraints. However, this approach potentially
suffers from high computational cost and intractability
on some problems because it is grounded in optimiz-
ing constraint-satisfaction techniques. To understand
and address this problem, we have built a cognitive con-
straint problem generator which stochastically generates
large populations of parametrically controlled problem
instances on which we can test CCM performance. Ini-
tial results from our use of this tool have identified at
least one clear property of problems-order strength-that
has a significant and non-linear effect on performance
time. These results, when extended, will pave the way
to efficient constraint modeling.

Introduction
It is a commonplace of psychology that human behav-
ior is adaptive, but research over the last 10-15 years
has revealed the astonishing degree to which strategic
adaptation and variability manifests itself across behav-
ioral timescales-even at the lowest levels of extremely
rapid behavior (e.g., [Meyer and Kieras, 1997]). Cog-
nitive architectures naturally admit of such strategic
variation because they are programmable. Unfortu-
nately, this general theoretical virtue becomes explana-
tory vice in trying to explain specific behaviors, because
the strategies and knowledge supplied to the architec-
ture become degrees of freedom in accounting for data
[Kieras and Meyer, 1999, Newell, 1990]. This leads to
the following question: How can we account for the com-
plex details of adaptive interactive behavior-without ef-
fectively building into the model what we are trying to
explain?

Cognitive Constraint Modeling (CCM) is an emerg-
ing framework for modeling that attempts to address
this issue by allowing modelers to work in terms of for-
mally defined spaces of strategies and formally defined
architectural theories [Howes et al., 2004]. This is an ad-
vantage in that points in the strategy space are then

evaluated in terms of explicit theorist-defined objective
functions (such as “go as fast as possible” or “minimize
working memory load”) rather than being selected be-
cause of data fit.

The approach is realized computationally in a sys-
tem called CORE (Constraint-based Optimality Reason-
ing Engine) [Howes et al., 2004]. Computational mod-
eling in CORE has several distinguishing characteris-
tics, but we focus on two here. First, descriptions of
behavior are derived via constraint satisfaction over ex-
plicitly declared architectural, task, and strategy con-
straints, rather than running a simulation. Second, the
complex details of behavioral control emerge in part
from optimizing behavior with respect to explicit pay-
off functions ascribed to the human. Predictions of
asymptotic performance are generated from architec-
tural theory while minimizing specific assumptions about
the details of the strategies. CORE has been used
to model a range of different domains, including driv-
ing behavior [Brumby and Salvucci, 2006], a call cen-
ter [Howes et al., 2005], interactions with an Automated
Teller Machine task [Lewis et al., 2004], and interrup-
tions during procedural cockpit tasks [Eng et al., 2006].

The computational problem
Generating predictions from CORE can be computation-
ally expensive: each CORE model constitutes a con-
straint satisfaction problem defining a potentially large
search space of possible behaviors. Our practical experi-
ence with CORE suggests that even with relatively short
stretches of behavior (under 20 seconds), it may be pos-
sible to create modeling problems that takes hours or
days of CPU time to compute, as well as problems that
are essentially intractable.

We do not believe this is a problem specific to our
particular implementation of CORE. Rather, the com-
putational complexity of these models is a fundamental
problem that must be addressed for the general class
of modeling methods in which the modeler is effectively
specifying and exploring large spaces of possible strate-
gies rather than specific (and possibly arbitrary) points
in an implicit strategy space. This paper reports our
first steps at understanding and addressing this compu-
tational problem.1

1This is not the first explicit attempt to systematically
and quantitatively analyze the computational performance
of a symbolic cognitive modeling technique; many current

Our approach

Our approach to understanding and addressing this com-
putational problem is to develop a cognitive constraint
model problem generator, which allows us to stochasti-
cally generate large populations of parametrically con-
trolled problem instances on which we can test the
performance of CORE. Initial results from our use of
this tool have identified at least one clear property of
problems—order strength—that has a significant and
non-linear effect on performance time. As we discuss
below, this property has been previously identified in
the literature on constraint satisfaction techniques.

In the remainder of the paper, we first summarize the
basic structure of the computational problem as it arises
in CORE, showing how CORE cognitive models are re-
duced to resource-bounded constraint satisfaction prob-
lems (RCSPs). We then briefly describe a particular
class of algorithms for solving RCSPs and the time com-
plexity of RCSPs. Next, we provide an overview of our
problem generator framework, and then report on our
initial results of experiments with this system. We con-
clude with the first set of general lessons we draw from
these experiments, and suggest practical steps to take to
make constraint modeling more efficient.

From cognitive constraint models to
scheduling problems

CORE takes in a specification of constraints and out-
puts a behavioral prediction. The architectural con-
straints are described in terms of cognitive, percep-
tual, and motor processes which use a set of proces-
sors/resources with set capabilities (following Model
Human Processor [Card et al., 1983] and CPM-GOMS
[John and Gray, 1995]) and high-level task grammars
that define a space of possible task strategies. CORE
transforms the architectural constraints and the task
grammar specification into a constraint satisfaction
problem, described as a set of variables, domains, and
constraints. This formulation allows for the treat-
ment of the models as scheduling problems, in par-
ticular, a Resource-Constrained Scheduling Problem
(RCSP). CORE uses an off-the-shelf constraint solver:
the Constraint Logic Programming over Finite Domains
(CLPFD) Sicstus Prolog solver, to solve these constraint
satisfaction problems. This solver utilizes the stan-
dard Branch and Bound algorithm for optimized solution
search.

Formulation as Resource-Constrained
Scheduling Problem

A RCSP consists of a number of different activities,
where each of the activities has a duration, and a maxi-
mum time domain in which it must be scheduled. Each
activity also has a resource requirement which it uses

production system architectures such as Soar and EPIC
[Meyer and Kieras, 1997] were made viable by early founda-
tional work on the production rule match which led to effi-
cient new algorithms [Forgy et al., 1984, Tambe et al., 1990].

during its processing time. The activities must be sched-
uled within the total time bound (or optimized with re-
spect to time), as well as stay within the total resource
capacity at any given time. A solution schedule is an
assignment of activities such that all specifications de-
scribed are satisfied. There may be more than one so-
lution per problem, depending on the tightness of the
specifications.

A CORE cognitive constraint model can be inter-
preted as an RCSP. The variables consist of the pro-
cesses, the domains of the variables consist of the dura-
tion distributions of the processes, and the constraints
consist of (1) the task constraints denoting the flow of
information required, (2) the capacity of the resources
and the processes’ allowed resource usage, (3) the archi-
tectural constraints such as the resources’ capacities and
amount of processing allowed at any given time, and (4)
the minimization of time (or some other objective func-
tion). The space of solutions consists of the possible sets
of domain values assigned to processes such that all the
constraints are satisfied.

This interpretation is useful because it allows us to
make contact with the large body of research already
in place for RCSPs. In particular, parameters which
characterize RCSPs and measures used to evaluate the
performance of RCSP-solving algorithms have been de-
veloped, tested, and widely used [Kolisch et al., 1995,
Kolisch et al., 1998, Patterson, 1976]. This means that
input task models, the space of solutions (behavior pre-
diction), and the performance of the constraint solver
itself all may be evaluated in terms of these established
RCSP metrics.

Complexity, phrase transitions, and control
parameters
RCSP itself is an NP-complete problem
[Herroelen and De Reyck, 1999]. However, there
are properties of NP-complete scheduling problems
which can be exploited to provide a characterization of
the complexity of the problem space. A particularly
useful one is that many NP-complete problems exhibit
phase transitions: sudden changes in computational
complexity. Phase transitions are products of the
way control parameters, parameters that characterize
the problems to be solved, affect the hardness of the
problem. Hard to solve instances occur around a critical
value of a control parameter, and are responsible for
the phase transition. [Herroelen and De Reyck, 1999].
Therefore one of the goals of the present work is to
search for those control parameters that predict phase
transitions in cognitive constraint models.

For the RCSP, most control parameters fall into
these categories: (1) size of the problem, (2) topo-
logical structure (morphology) of the problem, or (3)
availability of different resource types in the problem
[Herroelen and De Reyck, 1999]. A widely-used exam-
ple of these is order strength, which falls into the topo-
logical structure category. Order strength is intuitively
the strength of the partial ordering, or the density of the
network.

Definition 1 Order strength is the number of prece-
dence relations divided by the theoretical maximum of
such precedence relations: T/U , where U = n(n− 1)/2,
and n is the number of activities.

In terms of the task model RCSPs, activities are
processes, precedence relations are the cascades denot-
ing the flow of information between processes, and the
network is the schedule itself, with the processes as
nodes and the precedence relations as topological con-
straints between them. Order strength has been shown
to successfully characterize phase transitions for many
of the main RCSP-solving algorithms such as Branch-
and-Bound [Herroelen and De Reyck, 1999]. There are
many other RCSP control parameters; below we present
empirical evidence that order strength is significant for
cognitive constraint models.

Cognitive Constraint Problem Generator
(CCPG) Framework

The motivation for the CCPG is to develop a tool which
can be used to systematically test the performance of
CORE on large sets of model instances that we para-
metrically define. This will allow us to identify charac-
teristics of problems which may increase or decrease ef-
ficiency. In general, the CCPG should be able to create,
run, and evaluate scheduling problems of varying com-
plexity with respect to some controlled measure. Here we
present results with respect to the controlled measure of
order strength (refer to Definition 1). The requirements
for this tool include:

1. The ability to generate scheduling problems that have
similar structure to the cognitive modeling problems
to which CORE is intended to be applied.

2. The ability to provide the modeler with enough input
flexibility to control some aspects of the scheduling
problems generated without losing the advantage of
the large variability between types of problems. For
example, one input parameter may be the number of
processes in the generated problem: using this, the
modeler can relatively control the size of the problem,
however there is a huge amount of variability in the
types of problems that can be generated with a certain
number of processes.

3. The ability to guarantee that each generated problem
in fact has a solution.

Given these requirements, we made the design choice
of creating a problem generator rather than using an
off-the-shelf RCSP generator, because existing genera-
tors (e.g., [Kolisch et al., 1998, Schwindt, 1995]) do not
satisfy 1 and do not always satisfy 2 and 3 in tandem.

CCPG structure and implementation
The CCPG is implemented in three main stages: the
first stage generates fully constrained schedules, the sec-
ond stage removes constraints systematically, creating
under-constrained scheduling problems, and the third
stage executes and evaluates the performance of these
problems in CORE. Refer to figure 1.

Figure 1: Stages of the cognitive constraint problem gen-
erator.

Stochastic generation of fully-constrained sched-
ules The first stage receives input parameters from
the modeler and outputs a number of fully-constrained
schedules generated from those input parameters and
some randomization. The two types of input parameters
are the characteristic and shaping parameters. The char-
acteristic parameters (number of processes, number of
resources, etc.) describe the basic structure of the sched-
ules to be generated, characterizing the bounds of the
schedule space to be explored. The shaping parameters
control the general shape of the schedule, approximating
the location of this schedule in the schedule space. The
algorithm grows the schedules in a tree-like implemen-
tation, where the precedence relations between nodes of
the tree correspond to the flow of information between
processes. The scheduling of each of the processes is de-
pendent on probability distributions which are affected
by the shaping parameters. However, these parameter
constraints are not tight enough to limit the number of
schedules possible to generate.

The stochastic method allows for the generation of a
huge range of similarly-structured schedules, supporting
the requirement for variability in 2. To test if the gener-
ator gives sufficient parametric control so that schedules
produced are similar to cognitive problems of interest
(requirement 1), an assessment was carried out using a
regression analysis and common metrics used to describe
directed acyclic graphs. The analysis showed that the
parametric control is significant in shaping the sched-
ule structure and provided guidelines for the choosing
of parameters to manipulate schedule formation. This
analysis also showed that solution schedule variation is
extremely large despite the parametric control (require-
ment 2) and that the space of possible generated solu-
tions is much larger than the current scope of existing
models so absolute verification of a mapping from the
space of possible generated task models to the space of
human task models is not feasible, at least at this time
(requirement 1).
Turning schedules into problems via constraint
removal In this stage of the CCPG, constraints are
removed systematically from the fully constrained sched-
ules to create under-constrained scheduling problems.
This systematic removal guarantees that every problem
generated is solvable (but does not guarantee what the
solution is) satisfying requirement 3, and allows the vary-
ing of complexity to be controlled for evaluation with
respect to the experimenter-chosen controlled measure.
In this implementation, an RCSP control parameter, or-
der strength, is chosen. To systematically vary the or-

der strength, the type of constraints removed must be
ordering (flow of information) constraints (Definition 1
precedence relations). This investigates the strength of
the partial ordering as a property of scheduling problems
which may help characterize the space of solvable task
models for CORE.

An Empirical Investigation of the Effects
of Order Strength

We used the problem generator to empirically investigate
the effects of order strength variation on the performance
of the branch-and-bound algorithm. In what follows, we
first describe the structure of the experiment and the
parameters varied, and then report the results in terms
of execution time and time-out rates as a function of
order strength.

In light of this order-strength specific evaluation, we
have found it useful to describe the results in two stages.
First we establish the low run time model trends, us-
ing a low time-out value meaning the problems which
take more than a certain CPU time value to run will be
stopped and remain unfinished. This is a user-specified
quit mechanism in Sictus Prolog.) Then we address the
question of fitting higher run time models to these low
run time curves, evaluating the ability of the low run
time curves to predict the behavior of higher run-time
models.

Structure of the experiment
We embedded the generator in nested loops of execu-
tion which ran large numbers of models systematically
through CORE under the same machine conditions and
recorded the CPU time per run.

Our models include multiple fully-constrained sched-
ules using the same exact input parameters, and also
multiple fully-constrained schedules using different num-
bers of processes but otherwise unchanged input param-
eters. Each schedule was the starting point for multiple
sequences of constraints removed (the sequences ranging
from no constraints to all constraints removed), each ad-
ditional removal amounting to a separate model. This
allows for time complexity to be analyzed across (but not
limited to) numbers of processes, number of constraints
removed (NCRs), and order strength.

Low run time models
Figure 2 shows the results of the analysis characterizing
the behavior of low run time models: their relationship
between order strength and execution time. The data in
this plot is the result of a range of 5-30 process problems,
each with 10 different fully-constrained schedules with 10
different sequences of constraints removed each. This is
a total of 52,500 models. Each line is a local polynomial
regression fitting of the data points for the models of
one number of processes, and each line is labeled with
that number of processes. The “Average CPU time per
trial” is the average search time the constraint solver
needs to find a solution for that model. The time-out
is 100ms. (The data plotted here is only for the models

0.0 0.2 0.4 0.6 0.8

0
10

20
30

40
50

Order strength

A
ve

ra
ge

 c
pu

tim
e

pe
r

tr
ia

l (
m

s)

567 8 9
101112 13 1415 16

17
18
19

20 21
22

23
24 25

26

27

28

29
30

Figure 2: Time complexity of models of different num-
bers of processes (labeled numbers in the plot) according
to order strength. For low run time models.

that finished running and did not time-out.) The rea-
son for this tight time-out value is the result of a search
through ranges of time-outs which exhibited an interest-
ing processing time duality: their run time either took
hours or was under a minute. With low run time mod-
els it is computationally feasible to run enough models
to find a trend if one exists, and if that trend can pre-
dict the complexity of the high run time models, then
the control measures used are good predictors of the the
task models’ run time complexity.

The trends in Figure 2 curve downward, and more
sharply with increasing numbers of processes. This is
consistent with the expectation that increasing order
strength (increasing strength of the partial ordering of a
problem) will decrease the run time. The stronger the
structure of the problem, the less time it will take to
find a solution because the search space is smaller. With
models of smaller numbers of processes, the search space
is small to begin with, and so the run time is still low
regardless of order strength and the lines are rather low
and flat.

A plausible explanation for the downward turn (near
0 order strength) at the peaks of some of the lines is
an effect of the order strength formulation: as the order
strength approaches 0, the equation T/U ensures that
the ratio of existing precedence relations with respect to
the theoretical maximum of all precedence relations is
getting smaller. For models with large numbers of pro-
cesses, the ratio can approach 0 fairly quickly without
the need for very small numbers of existing precedence
relations because of the unstructured nature of the prob-
lem. The point at 0 can only occur when there are no

existing precedence relations, which is fairly easy (small
run time) to schedule a problem with no constraints.

Higher run time models

●
●

●●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●
●

●
●
●

●

●

●●
●

●
●

●●

●

●

●

●
●●

●
●●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●●
●

●●

●

●
●

●

●

●●

●

●
●

●

●

●

●●

●
●●

●

●

●●
●

●
●●

●

●

●

●

●
●●

●●

●

●

●

●

●

●●
●

●

●
●

●
●●

●

●

●

●●

●

●
●

●
●

●

●

●●

●

●

●

●
●
●

●

●●
●●

●●
●

●
●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●
●

●
●
●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●
●●

●

●●

●
●
●
●●

●

●
●

●

●

●

●
●

●
●●●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●●●
●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●●

●
●●

0.0 0.1 0.2 0.3 0.4 0.5

10
20

30
40

50

order strength

av
er

ag
e

cp
ut

im
e

pe
r

tr
ia

l (
m

s)

timeout = 100 ms

●
●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●●●

●

●

●

●
●

●

●
●

●

●●

●

●

●●
●

●●

●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●●

●●●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●●●
●

●

●

●

●
●

●

●●
●

●
●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●
●
●

●

●
●●

●
●

●
●●

●●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5

10
20

30
40

50
60

order strength

av
er

ag
e

cp
ut

im
e

pe
r

tr
ia

l (
m

s)

timeout = 10 s

●●●●●●●●●● ●●●●

●

●

●●●●●●●●● ●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●● ●●●●

●

●

●●●●●●●●● ●●●●●●●

0.0 0.1 0.2 0.3 0.4 0.5

0
50

00
10

00
0

15
00

0
20

00
0

order strength

av
er

ag
e

cp
ut

im
e

pe
r

tr
ia

l (
m

s)

timeout = 10 min

Figure 3: Time complexity across increasing run time
models with respect to order strength. Raw data is be-
hind the local polynomial regression fitted line. Dotted
lines represent error within 95% confidence interval.

●

●

●

●

●

●

●

●

0 2 4 6 8 10 12 14 16 18 20 22 25

10
20

30
40

50

Number of constraints removed

A
ve

ra
ge

 c
pu

tim
e

pe
r

tr
ia

l (
m

s)

timeout = 100 ms

● ●

●

●

0 2 4 6 8 10 12 14 16 18 20 22 26

10
20

30
40

50
60

Number of constraints removed

A
ve

ra
ge

 c
pu

tim
e

pe
r

tr
ia

l (
m

s)

timeout = 10 s

●● ● ●

●●

●●

●

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0
50

00
10

00
0

15
00

0
20

00
0

Number of constraints removed

A
ve

ra
ge

 c
pu

tim
e

pe
r

tr
ia

l (
m

s)

timeout = 10 min

Figure 4: Time complexity across increasing run time
models with respect to number of constraints removed.
Raw data in boxplot form behind the local polynomial
regression fitted line. Dotted lines represent error within
95% confidence interval.

Figures 3 and 4 are examples of the results comparing
the behavior of the previous low run-time models to two
other sets of higher run time models. The changes across
the systematically varied run times was gradual; these
particular sets were chosen to illustrate the differences
between the higher and lower run time models. (These
examples also come from a range of 5-30 process models,
same as the low run time models). The trends shown by
these examples are representative of the results gathered;
they are shown by example to facilitate viewing of the
data.

Figure 3 shows the relationship between order strength
and execution time across increasing run time models.
The vertical line notates the order strength at which
the maximum execution time of the smoothed fit occurs,
used to compare the hill-shaped trends observed in the
lower run time models with the higher run-time models.
The top of the hills shift between the different time-out
plots, however there is a set range between 0.1 and 0.2
order strength within which the peak of the hill (across
all models) lies.

The processing time duality referring to the sudden
increase in computational complexity of certain models
can be seen here in the 10min time-out plot. The major-
ity of the models have an execution time similar to the

100ms and 10s models, however there are a few models
which have a very sudden increase in complexity. These
models cause the smoothed hill in that plot to be peaked
at that order strength, however, when compared to the
lower time-out plots, the peak is very close to the predic-
tion of the lower run time models. Because these trends
were observed across the total data set, it suggests that
order strength may be able to identify those problem-
atic models that have run time complexity many orders
of magnitude above its similar but low run time neighbor
models.

However, order strength does not explain the reason
for the jump in complexity. We are currently examining
“minimal pairs” of scheduling problems that are identical
in number of processes and resources and differ only in
the removal of a single constraint—but which show rad-
ically different complexities in that one of the problems
takes at least 3 orders of magnitude longer to solve than
the other. Such minimal pairs will help us to identify
perhaps a different set of control parameters underlying
the phase transitions.

These particulars make it worthwhile to compare the
same run time data against the number of constraints re-
moved (NCR) from the fully-constrained schedule. The
difference between NCR and order strength is subtle: the
order strength measures a structural aspect: the density
of the problem regardless of the size, and the partic-
ular constraint removed does not matter to the NCR
measure, however it does to order strength because of
the transitive relations involved. Figure 4 consists of
the same data as Figure 3. The same basic trends can
be recognized (as expected, because of the correlation
between the number of constraints removed and order
strength). However the shift in the peak of the hill cov-
ers a wide range of the NCR metric and does not seem
to be bounded well. This suggests that order strength
might be a better indicator of those highly computation-
ally complex run time models.

Discussion

We have examined the computational nature of task
models used in Cognitive Constraint Modeling. CCM is
an approach to computational modeling which is unique
in that it formulates cognitive models as optimized con-
straint satisfaction problems. Although it may be ar-
gued that all cognitive architectures treat modeling as
a type of constraint satisfaction problem with resource
constraints, it has not been as precisely formulated as it
is here. CCM models may be interpreted as resource-
constrained scheduling problems, allowing us to take ad-
vantage of the complexity and control measures that the
RCSP literature has to offer. We have created a prob-
lem generator framework to allow for time complexity
experimentation with the Branch-and-Bound algorithm
used by CORE—a standard approach to algorithm in-
vestigation in the planning and constraint satisfaction
fields—and we have exploited the advantages of RCSPs
both in the framework and in the choice of analyses. This
has allowed us to take a very close look at the structure
of the problems themselves, and their effect on the com-

putational feasibility of CORE modeling. Our initial use
of this tool has yielded promising results. First, it has
confirmed that order strength is a predictor of problem
complexity for the subclass of RCSPs that are generated
in cognitive constraint modeling. Second, it has created
a large set of minimal pairs of problems whose constraint
removal straddles phase transitions, which should yield
insight into the precise characteristics that give rise to
such transitions.

The practical implications of this work are signifi-
cant: If we can precisely characterize the space of the
computational complexity of CORE models, we can use
the information to make constraint modeling not only
more efficient, but in some cases, possible at all. These
changes to the constraint modeling may include chang-
ing the model specifications by adding or subtracting
constraints in a way that does not compromise the theo-
retical goals of the modeler; use different specialized al-
gorithms on models of high complexity (some algorithms
may be better than others at particular kinds of hard-
ness; e.g.[Patterson, 1976]); and also providing the mod-
eler with characterization of the expected complexity of
models before they are executed.

Acknowledgments
This work was supported by ONR grant N00014-
03-1-0087 and NASA grants NNA05CS65A and
NNA04CK14A.

References
[Brumby and Salvucci, 2006] Brumby, D. P. and

Salvucci, D. D. (2006). Towards a constraint analysis
of human multitasking. Poster presented at the 7th
International Conference on Cognitive Modeling.

[Card et al., 1983] Card, K., S., Moran, P., T., and
Newell, A. (1983). The Psychology of Human-
Computer Interaction. Lawrence Erlbaum, Hillsdale,
NJ.

[Eng et al., 2006] Eng, K., Lewis, R. L., Tollinger, I.,
Chu, A., Howes, A., and Vera, A. (2006). Gener-
ating automated predictions of behavior strategically
adapted to specific performance objectives. In Pro-
ceedings of the ACM Conference on Human Factors
in Computing Systems (CHI), Montreal, Canada.

[Forgy et al., 1984] Forgy, C., Gupta, A., Newell, A.,
and Wedig, R. (1984). Initial assessment of architec-
ture for production systems. In Proceedings of the Na-
tional Conference for Artificial Intelligence (AAAI),
pages 116–120, Austin, TX.

[Herroelen and De Reyck, 1999] Herroelen, W. and
De Reyck, B. (1999). Phase transitions in project
scheduling. Operational Research Society, 50:148–156.

[Howes et al., 2005] Howes, A., Lewis, R. L., Vera,
A. H., and Richardson, J. (2005). Information-
requirements grammar: A theory of the structure
of competence for interaction. In Proceedings of the

27th Annual Meeting of the Cognitive Science Society,
Stresa, Italy.

[Howes et al., 2004] Howes, A., Vera, A. H., Lewis,
R. L., and McCurdy, M. (2004). Cognitive constraint
modeling: A formal approach to supporting reason-
ing about behavior. In Proceedings of the Cognitive
Science Society, Chicago.

[John and Gray, 1995] John, B. E. and Gray, W. D.
(1995). Cpm-goms: an analysis method for tasks with
parallel activities. In Katz, I., Mack, R., and Marks,
L., editors, Proceedings of the Conference on Human
Factors in Computing Systems (CHI), Denver, Col-
orado. ACM Press, New York, NY.

[Kieras and Meyer, 1999] Kieras and Meyer, D. (1999).
The role of cognitive task analysis in the application of
predictive models of human performance. In Schraa-
gen, J. M., Chipman, S. F., and Shalin, V. L., editors,
Cognitive Task Analysis, pages 237–260. Lawrence
Erlbaum Associates, Mahwah, NJ.

[Kolisch et al., 1998] Kolisch, R., Schwindt, C., and
Sprecher, A. (1998). Benchmark instances for project
scheduling problems. In Weglarz, J., editor, Hand-
book on Recent Advance in Project Scheduling. Kluwer,
Norwell, MA.

[Kolisch et al., 1995] Kolisch, R., Sprecher, A., and
Drexl, A. (1995). Characterization and generation of a
general class of resource-constrained project schedul-
ing problems. Management Science, 41:1693–1703.

[Lewis et al., 2004] Lewis, R. L., Vera, A. H., and
Howes, A. (2004). A constraint-based approach to
understanding the composition of skill. In Proceedings
of the International Conference on Cognitive Modeling
(ICCM), Pittsburgh.

[Meyer and Kieras, 1997] Meyer, D. E. and Kieras,
D. E. (1997). A computational theory of executive cog-
nitive processes and multiple-task performance: Part
1. Basic mechanisms. Psychological Review, 104:3–65.

[Newell, 1990] Newell, A. (1990). Unified Theories of
Cognition. Harvard University Press, Cambridge, MA.

[Patterson, 1976] Patterson, J. H. (1976). Project
scheduling: The effects of problem sturcture on heuris-
tic performance. Naval Research Logistics Quarterly,
23:95–123.

[Schwindt, 1995] Schwindt, C. (1995). Progen/max: a
new problem generator for different resource con-
strainted project scheduling problems with minimal
and maximal time lags. Research report wior-449,
Universität Karlsruhe.

[Tambe et al., 1990] Tambe, M., Newell, A., Rosen-
bloom, and S., P. (1990). The problem of expensive
chunks and its solution by restricting expressiveness.
Machine Learning, 5:299–348.

Optimizing Knowledge Component Learning Using a Dynamic Structural Model of
Practice

Philip I Pavlik Jr. (ppavlik@cs.cmu.edu), Human Computer Interaction Institute

Nora Presson (presson@cmu.edu), Psychology Department
Kenneth Koedinger (koedinger@cmu.edu), Human Computer Interaction Institute

Pittsburgh Science of Learning Center
Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213 USA

Abstract

This paper presents a generalized scheme for modeling
learning in simple and more complex tasks, and shows how
such a model can be applied to optimizing conditions of
practice to maximize some desired performance. To enable
this optimal allocation of lesson time, this paper describes
how to quantify the preferences of students using utility
functions that can be maximized. This conventional game
theoretic approach is enabled by specifying a mathematical
model that allows us to compute expected utility of various
student choices to choose the choice with maximal expected
utility. This method is applied to several educational decisions
that can benefit from optimization.
Keywords: Memory; Economics; Practice; Computer-Aided
Instruction.

Introduction
This paper describes a method for applying economic
principles in order to allocate the scarce resource of learning
time toward satisfying the unlimited need for education. To
do this, we describe a model that decomposes learning into
individual knowledge components (KCs) that possess some
degree of independence from other skills (a “knowledge
component” is any proficiency that can be learned). By
assuming this independence, the model accounts for the
unique effects of practice on specific KCs, with the goal of
optimizing the benefit of practice.

We do not argue that the model is a precise representation
of all the processes involved in learning, but rather that it
provides a heuristic tool to track observed strengths of KCs
as a general function of practice, so that improvement over
time and across KCs can be optimized. The model we will
present, like similar models, is effective in capturing
practice effects (Cen, Koedinger, & Junker, 2006). Further,
it is interesting to note that the dynamic practice model
presented here (based on the ACT-R computational model
of declarative memory, Anderson & Lebiere, 1998) might
be substituted with another model of cognition with only
minimal modification to the approach.

Although the model is a simplification of learning
processes in most cases, this simplicity provides an
important advantage in application. It allows closed form
predictions of which learning events (LEs) might be
assigned at what times to maximize learning (a “learning
event” is any discrete interval over which a learned
proficiency increases). Ultimately, it is explaining this
collection of closed form predictions and recommendations

that is the goal of this paper.
To explain these concepts this paper has three parts. The

first section on the dynamic practice model is largely a
review of the ACT-R model of declarative memory. This
section serves to orient the reader on the output functions
(probability and latency of recall) that will be used later.
The second section on structural models details how
compound events can be modeled using the dynamic
practice model. Compound events are important to consider
when responses are not independent and are especially
relevant for certain kinds of optimization situations (i.e.
part-task to whole-task transfer of performance). The final
section shows several ways the model built in the first half
of the paper can be applied to optimizing knowledge
component learning.

Dynamic Practice Model
To understand the quantitative model that will be used to
predict and optimize learning, we will begin with the
equations that predict probability of correct performance
and latency of correct performance as a function of the
activation strength of a KC.

Probability Correct. The first dependent measure of KC
performance is probability of correct response. Equation 1
shows the standard Boltzmann equation (similar to the
Rasch model used in item response theory), a logistic
function that characterizes the threshold of correct
performance (the level of activation at which performance is
correct greater than 50% of the time) and distributional
noise as τ and s respectively. Equation 1 describes a model
of the probability of giving a correct response (p) for a given
KC activation strength value (m) and the parameters
described above.

pm =
1

1 e
τ m

s +
Equation 1

Latency. A second dependent measure used to track KC
performance is latency (labeled q in our model). Various
sources suggest modeling latency with a Weibull
distribution (Anderson & Lebiere, 1998; Logan, 1995).
Such a Weibull distribution can be produced by using
Equation 2 to represent latency as a function of F (which
scales latency magnitude), m (memory strength) and a fixed
cost (which is determined from data and captures the

mailto:ppavlik@cs.cmu.edu
mailto:presson@cmu.edu

minimum time necessary for perceptual and motor costs of
responding). Logistic noise on m determines the shape of
the aggregate Weibull function for a population of response
latencies.

qm = Fe m fixedtimecost + Equation 2

Knowledge Component Strength Function
Given these two output functions, which correspond to two
important ways of measuring KC performance, we can now
elaborate how current m is computed as a function of the
history of a student’s practice of a KC practice item across n
prior LEs. Equation 3 shows this KC strength function. The
history term, the final portion of Equation 3, is essentially
described by three values, t, d and b, for each LE. The
values for t represent the times since each past LE (the ages
of each LE effect). The d values are the power law decay
values for each LE. The b values scales the effect of each
LE depending on the amount of learning for the LE (i.e.
longer duration LEs and successful test LEs result in higher
bs). To model history, the bt-d quantity is summed for each
of the n learning events (LEs). The logarithm serves to scale
the quantity from –∞ to ∞. This power law decay
formulation was first explored by Anderson and Schooler
(1991), who showed that it results in patterns of forgetting
that match the relative need for performance in the
environment. The β parameters, the first portion of Equation
3, capture naturally occurring error when the model is fit to
data from multiple students or multiple KCs. βs is the
parameter that captures consistent error across KCs as a
function of student. βi captures consistent error across
students as a function of KC (i stands for item). Finally βsi
captures the residual error for a specific KC and a specific
student over multiple LEs.

mn = βs βi + βsi + ln ∑
k=1

n
bktk

dk +

Equation 3

bstudy = g()1 e v studyduration
 Equation 4

Equation 4 shows how b can be computed as a function of
the duration of a study LE (where v and g represent a
growth constant and the maximum possible encoding
respectively). This captures the notion that continuous time
spent on a single KC has a diminishing effect on learning
(Metcalfe & Kornell, 2003). Recent work by Pavlik (in
press) has shown how this b scalar can be used to capture
the learning difference between active correct responding
and passive study. In such work, bsuccessfulretrieval is typically
set at a constant, whereas bstudy varies as described in
equation 4. This supposes two canonical forms of the LE:
the “study LE,” which comes from unassessed study over
some fixed period of time of a stimulus representing a KC,
and the “test LE,” which comes from a variable-duration
assessment of learning (test LEs are often followed by study
opportunity and then are called “drill LEs”). Test LEs are
interesting not only because they tend to lead to more
learning than passive study (for correct responses), but also
because they provide information about the current state of
learning that can be used to implement knowledge tracing.

Such knowledge tracing algorithms have changed form over
different applications of the model. In the original version
(Pavlik Jr., 2005), the distribution of residual βsi variance is
used as the initial Bayesian prior for item strength and
numerical integration is used to adjust this value after each
practice by integrating the logistic distribution for
correctness given the response of the student. In the more
recent version, we have found that a more computationally
inexpensive model that allows the simpler bsuccessfulretrieval
parameter to capture the βsi variance works well in practice
(Pavlik Jr. et al., 2007). Further, the latest version also uses
a blatency parameter multiplied by each bsuccessfulretrieval
parameter for each successful test. This blatency parameter is a
natural log transform (with a scalar parameter) of the
difference between qm (the predicted latency) and the
latency data from the student. This creates a knowledge
tracing model that assumes that faster responding means
more learning has occurred.

Equation 5 shows a more recent modification of the ACT-
R equations to capture the spacing effect, the spacing-by-
practice interaction, and the spacing-by-retention interval
interaction (Pavlik Jr. & Anderson, 2005). This change says
that the forgetting rate from any LE depends on the level of
activation at the time of the LE. As modeled in Equation 5,
when spacing between trials gets wider, activation decreases
between presentations; decay is therefore less for each new
presentation, and long-term probability of correct
performance does not decrease as much.

In Equation 5, the decay rate dk is calculated for the kth
presentation of a KC item as a function of the activation mk-1
at the time the presentation occurred (e.g., the decay rate for
the 7th LE (t7) depends on the activation at the time of the
7th LE, which is a function of the time from last exposure of
the prior 6 LEs and their decay rates. It is important to note
that since tks are ages (or differences between the current
time and the time of the past trial), activation and decay
depend on the current time as well as the number of LEs).

dmk 1
= cemk 1 a + Equation 5

Anderson, Fincham, and Douglass (1997) found that
Equation 3 could account for practice and forgetting during
an experiment, but it could not fit retention data over long
intervals. Because of this, they concluded that between
sessions, the presence of intervening events erodes KCs
more slowly than during an experimental session. This
slower forgetting was modeled by scaling time as if it were
slower outside the experiment. Forgetting is therefore
dependent on the “psychological time” between
presentations, rather than the true intersession interval. This
factor is implemented by multiplying the portion of time
that occurs between sessions by h (a scalar parameter for
time) when calculating recall. This is done by subtracting
h*total intersession time from each age (tk) in Equation 11
(Pavlik Jr., 2005; Pavlik Jr. & Anderson, 2005). Because of
this mechanism, time in the model is essentially a measure
of destructive interfering events. The decay rate, therefore,
is a measure of “fragility” of memories to the corrosive
effect of these other events.

This model has the flexibility to capture many varieties of
learning and practice effects. To further understand this
flexibility, consider the issue of more implicit production
rule (procedural) learning in contrast to explicit factual
(declarative) learning. This distinction is supported by
research from widely distinct theoretical perspectives such
as ACT-R and connectionism and is supported by
dissociable neural mechanisms (McClelland, McNaughton,
& O'Reilly, 1995). We might wonder whether the equations
just presented are adequate to capture both knowledge (and
KC) types. Specifically, that work implies that declarative
learning is both faster (reflected by a larger b parameter)
and more easily forgotten (reflected by a larger d parameter)
than procedural learning, and our model can clearly
characterize these differences.

Structural Model
The structural level model assumes that few domains are
made up of entirely independent KCs, as seems to be
implied in the model we just presented. The word
“structural” refers to the fact that, because of this lack of
independence, the modeler must be concerned with the
structure that links the multiple KCs and their association.
In many domains, predictions of the probability of correct
response and latency are derived from the strength of more
than one underlying KC. For example, in studies of Chinese
vocabulary learning, stimuli can be presented in one of four
modes (Hanzi character, pinyin text, sound file, and English
text). This results in 6 possible test LE types, two of which
are English pinyin and Hanzi pinyin drill LEs
[(stimulus) (response)]. In both of these cases, drill
success depends not only on the strength of the link between
the stimulus and response, but also on the ability to recall
and produce the pinyin response. Because of this,
performance for these pairs cannot be independent.

Similarly, in work with a French gender identification
task, words fall into gender categories based on spelling and
semantic cues. For instance, words that end in –age are most
often masculine in French, as in le fromage. Although each
of these words might yield a correct response independent
of the general rule (through recall), it is also obvious that all
rule exemplars share a KC that can be used to respond to
any items in a cue category (and in fact, it is this generalized
responding, rather than exemplar-based recall, that we want
to optimize).

To deal with the fact that multiple KCs are required for
these single skills, we will propose two basic structural
models that account for this, each of which fits some
possible learning tasks: the conjunctive structure and the
disjunctive structure.

Conjunctive Model
In a conjunctive model, all component KCs must be active
to produce a correct response. For instance, in the Chinese
vocabulary work, probability of correct performance for
each trial is captured by the probability of correct recall for
both the response and the link between the stimulus and the

response. Given this model, probability correct depends on
both the strength of the link and the strength of the response
in a conjunctive function: p(link) * p(response), such that
both elements are necessary for a correct response. The
more general form for the conjunction of 2 KCs is shown in
Equation 6. Latency, on the other hand, is handled as the
sum of the perceptual motor costs, the cost for recall of the
link KC, and the cost for recall of the response KC. Not
only does this structural model handle the pinyin response
example above, but it also captures data showing that
responding with a word in the native language should be
easier than the recently learned foreign equivalent (e.g.
Schneider, Healy, & Bourne, 2002).

p()KC1andKC2 = p()KC1 p()KC2 Equation 6

Disjunctive Model
The disjunctive model, in contrast, assumes that a trial can
yield a correct response due to performance of any one of
the two or more independent KCs. Often disjunctive models
apply in a generalization situation where the domain
contains specific KCs that apply for individual stimuli and
general KCs that each apply to a group of stimuli, as in the
French gender case. In this example, we can imagine that
general group KCs control performance for “clusters,” the
members of which can also be learned by rote. Given the
example of a general (rule-based) and specific (rote)
component controlling each performance, probability of
correct skill performance depends on the strength of both
general and specific components in a disjunctive function,
p(general) + p(specific) * (1-p(general)), such that (for
example) a student could classify a novel word on the sole
basis of the general KC. The general form of this model is
shown in Equation 7.

p()KC1orKC2 = p()KC1 p()KC2 ()1 p()KC1 +
Equation 7

Optimizing Learning
The following procedures describe how one can use the
model to compute optimal practice schedules. Usually, we
assume that what is being optimized is gain in some long-
term measure of learning for a KC or multiple KCs.
Although using long-term probability correct as a dependent
measure works when we focus on optimizing some global
aggregate task (like the optimal total number of practices for
an item), we need a different utility function for more
dynamic local scheduling (such as picking an item to
practice next), in order to formalize preferences for the
learning gains from different LE schedules.

Utility Optimizations
We propose to use Equation 8 as the utility function for a
LE (where b controls the weight of the LE, t is the desired
retention interval of the LE, and decay (d) is a function of
the activation (m) at the time of practice). Most importantly,
Equation 8 does not have the all-or-none property of
probability correct (because probability correct is a sigmoid

function, it usually approaches 0 or 1). If we tried to use
long-term probability correct as our measure of local utility,
it would value practice most heavily when it comes near the
transition from mostly incorrect performance to mostly
correct performance across a sequence of test LEs (those
LEs that fall on the intermediate part of the curve). This bias
distorts the fact that we are ultimately more concerned with
the minimum number of practice trials required to reach a
certain long-term retention, not scheduling each practice
trial so that it increases percent correct maximally. These
goals are actually quite different since long-term percent
correct gain from the next practice depends on nearness to
long-term floor or ceiling performance, while utility gain is
not affected by these bounds. Thus, our utility function
maximizes the overall goal by valuing LEs independently of
the order they occurred, considering only their unique
contributions (a function of strength of encoding, recency,
and the decay rate) to the long-term KC strength.

u = bt dm Equation 8
We will use Equation 8 as a cardinal utility function: e.g.,

a .2 increase in strength is half as good as a .4 increase in
strength. One reason why this assumption is reasonable is
because LEs contribute to KC strength in small increments
and these increments are interchangeable, as illustrated in
Equation 3. Using a cardinal utility function allows us to
directly compare different possible spacings and KC
presentation orders, to determine when learning is maximal,
given learning history. Further, we assume that this utility

equation satisfies the von Neumann and Morgenstern game
theoretic axioms of completeness, transitivity, continuity
and independence required for comparing expected utility
lotteries (Von Neumann & Morgenstern, 1944).

Practice Spacing Optimization (PSO). For each KC and
each student, it is useful to decide when it would optimal to
repeat a drill LE of that KC. Therefore, we are trying to
schedule the LEs under conditions of allocative efficiency.
In economics, allocative efficiency is a condition where
costs (time spent learning) are allocated in a way that
maximizes gains (increases in utility). Taking this parallel to
learning theory, we search for the retention interval (for
each KC) at which the expected rate of learning utility gain
is maximal given a new LE. This is expressed in Equation 9,
which calculates the maximum utility gain for a KC as a
function of m (activation of that KC) and t (the target
retention interval needed to compute g in Equation 8). All
the other values are fixed parameters (bs = success LE
weight from Equation 8 if the test LE is successful, bf =
failure LE weight from Equation 8 for the study LE given as
review, -d computed from the current m (needed with t, bf
and bs to compute u values), pm and qm estimated for the test
LE from Equations 1 and 2, and failure costs estimated from
prior data). Because t and m are the only values that vary in
finding the optimum spacing, we can solve for the optimal
level of the one given the other. For example, if we know
the desired retention interval, we can solve for the max of
Equation 9 to solve for the optimal level of activation at

dmk 1
= cemk 1 a +

pm =

1

1 e
τ m

s +

 qm = Fe m fixedtimecost +

mn = βs βi + βsi + ln ∑

k=1

n
bktk

dk +

max
pmn

n

max
pmn

expectedfrequency
n max()PSOTask1

PSOTask2
,

bstudy = g()1 e v studyduration

u = bt d m

max
g()1 e v studyduration

studyduration fixedcost +

max
pmubs

()1 pm ubf
 +

pmqm ()1 pm failurecost +

max()TwPSOw[]pppw qp qw + ,

Figure 1. Organizing diagram of the mathematical relationships in this paper.

which practice should occur.
In practice, Equation 9 tends to suggest (for a drill

procedure) that when failure costs for errors and error
feedback are high, or success gains from correct responding
are much greater than failure gains from feedback study,
long-term gains in utility per second of practice will be
highest when repetitions are scheduled so that test LE
performance is maintained at a high probability. However,
because the decay parameter can be large for an LE after a
short spacing, some spacing is always preferred.

max
pmubs

()1 pm ubf
 +

pmqm ()1 pm failurecost +
Equation 9

earning Event Type Optimization. The above discussion L

assumes a single task (drill) which can be selected for each
item. However, we can also propose other types of LEs and
then compare them with the drill trial. For example, we
could decide whether it was better to give a study LE alone
or to give a drill LE(a test LE followed by a study LE when
the test fails). To do this, Equation 10 shows how we can
compare the learning rates for each trial type to determine
the optimal next trial type for the student. This principle can
be extended to compare any two tasks (e.g., tutored problem
solving vs. untutored problem solving). This is typically
used in combination with dynamic PSO calculations (when
the PSOs in Equation 10 are computed as a function of the
current time) to pick the optimal time for the optimal task.

max()PSOTask1
PSOTask2

, Equation 10

Part- to Whole-Task Transfer Optimization. For this

, we model the effect of
th

optimization, the question is whether to practice only single
KC components of a whole skill (a conjunctive skill
containing at least 2 KCs), only the whole skill or some
mixture of the two types of practice. Imagine, for example,
practicing simple algebra, and consider that a component of
the whole task may be knowing the times tables (the low
level component). In this case, the question is how much
practice should be allocated to times tables practice before
doing algebra practice (the high level component). We
might expect that either spending no time on times tables or
no time on algebra would likely result in poorer algebra
performance than some mixture of these extremes, and that
an optimal mixture would allow for the best possible algebra
performance. Part to whole transfer optimization allows us
to determine this optimal mixture.

To compute this optimal mixture
e low level component LEs on the high level component

learning rate. To do this, we must create an equation
expressing whole task learning as a function of part task
learning. Equation 11 (where subscripts w and p refer to
whole and part task respectively) captures the notion that we
are looking to maximize whole task time (Tw) * learning rate
from an optimally spaced LE, which equals the total
learning (this method assumes that all practice occurs at the
PSO optimal point). Here we specify that PSO for a

conjunctive task is a function of the strength of the whole
(dependent) KC and the probability and latency estimates
for the part task. By doing this, we have created a new
version of the PSO, PSOw, that depends on the strength of
both the part and whole task KCs. At the same time, we are
only concerned with the learning of the whole task, so in
practice, the t (retention interval) and g (utility gain) terms
are not changed from the original PSO. This provides a
mechanism whereby the higher probability and lower
latency for a practiced part task increases the expected
strength of the PSOw.

max(TwPSOw[])pppw qp qw + , Equation 11
Having this mechanism, we can comp eeded

to
ute the time n

 train the part task to maximize its effects on whole task
learning. In this case, it can be noted that totaltime-Tw is
spent on the part task, with a learning rate of PSOp; these
values, therefore, control pp

Practice Length Optimization
nes the optimal duration

 (probability correct) and qp
(latency). This allows us to construct Equation 11, which
represents total learning as a function of time spent on the
whole task, multiplied by the learning rate for the whole
task (which, because of the conjunctive response functions
in the PSOw, is itself a function of time spent on the part
task multiplied by the part task learning rate). Equation 11
can then be solved for Tw where Tw≥0 and Tw≤totaltime.

Practice length optimization determi
of a given LE. PLO relies on the fact that KC study for each
LE has diminishing marginal returns as a function of time as
shown in various studies (Metcalfe & Kornell, 2003; Pavlik
Jr., in press). Equation 12 shows how this optimal study
duration is found when the total LE weight score (from
Equation 4) divided by the time spent studying is
maximized. (Equation 12 assumes some minimum study
duration greater than 0 to account for fixed costs.)

max
g()1 e v studyduration

studyduration fixedcost +
Equa n 12

Practice Quantity Optimization
robability correct for

tio

Practice quantity optimization uses p
long-term practice as a utility measure, then determines how
many optimally spaced repetitions it takes to reach the point
where probability gain per LE is maximal (the practice
quantity optimization point is the pm value when Equation
13 is maximized) for each item being learned of a set of
items.

max
pmn

n
Equation 13

Figure 2 graphs Equati 1 rameter set in
Pa

on 3 for the pa
vlik Jr. (2005, Experiment 4) where it was found that 11

practices would have been optimal for each KC, as the
maximum value of the probability correct/practices curve
occurs at 11 repetitions. It is useful to note that the utility
function should reflect the nature of our preferences for
target knowledge. For example, if the need for one KC is
higher than others, then getting it correct has a higher utility.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 3 5 7 9 11 13 15 17 19 21

Practices

Pr
ob

ab
ili

ty
 C

or
re

ct

Probability
Correct

Probability
Correct/
Practices

Figure 2. Practice quantity optimization.

To imp we can
w

lement this in the model, for instance,
eight the utility function by the expected frequency of the

item we are interested in. This captures the notion that it is
twice as important to know a word when that word is used
twice as frequently. Having weighted the utility functions,
we could then determine a cutoff word frequency below
which we will not be concerned with learning the word (this
fixes the total amount of time we will need to spend
learning the corpus in question).

max
pmn

expectedfrequency
n

Equation 14

Because the weights represent our prefe ways
of

Conclusion
This paper was about a economic” method of

cognitive model,
th

Acknowledgments
This research was ant from Ronald

References
Anderson, J. R., Fincha uglass, S. (1997). The

A atomic

A 1991). Reflections of the

C edinger, K. R., & Junker, B. (2006). Learning

L , the power

M O'Reilly, R. C.

M of

Pa microeconomics of learning:

Pa rstanding and applying the

Pa P. I., & Anderson, J. R. (2005). Practice and

Pa Presson, N., Dozzi, G., Wu, S.-m.,

Sc 002).

V 944). Theory of

rences, other
 weighting the relative values of different distributions of

practice amongst items might further improve the usefulness
of such procedures in implementation. For example, items
could also be weighted based on the consequences for slow
or incorrect performance with the item.

 general “micro
using a computational model of cognition to compute the
efficiency of various decisions that occur during practice.
This work is relevant to education because it shows a new
approach to understanding how to improve education by
considering learning by the student as the measure of profit.
In this new approach, the learning of sets of skills can be
optimized to maximize output given input.

While we tied this method to an ACT-R
ere seems no reason why this method could not be used to

optimize learning using another computational model. The
elegance of the method explained here is that it is theory
neutral (given a particular model) and so results in
predictions that must be true given the limits of the
particular model and the accuracy of the utility function
used to capture preferences. In practice, however, the
potential of this method can be limited in domains where the
complexity of the KC or LEs prevents the clear
specification of a utility function to optimize.

 supported in part by gr
Zdrojkowski for educational research; the Pittsburgh
Science of Learning Center which is funded by the National
Science Foundation award number SBE-0354420, and a

Graduate Training Grant awarded to Carnegie Mellon
University by the Dept. of Education (#R305B040063).

m, J. M., & Do
role of examples and rules in the acquisition of a
cognitive skill. Journal of Experimental Psychology:
Learning, Memory, & Cognition, 23(4), 932-945.
nderson, J. R., & Lebiere, C. (1998). The
components of thought. Mahwah, NJ, US: Lawrence
Erlbaum Associates Publishers.
nderson, J. R., & Schooler, L. J. (
environment in memory. Psychological Science, 2(6),
396-408.
en, H., Ko
factors analysis - A general method for cognitive model
evaluation and improvement. In T.-W. Chan (Ed.),
Lecture Notes in Computer Science Intelligent Tutoring
Systems (Vol. 4053, pp. 164-175): Springer.

ogan, G. D. (1995). The Weibull distribution
law, and the instance theory of automaticity.
Psychological Review, 102(4), 751-756.
cClelland, J. L., McNaughton, B. L., &
(1995). Why there are complementary learning systems in
the hippocampus and neocortex: Insights from the
successes and failures of connectionist models of learning
and memory. Psychological Review, 102(3), 419-437.
etcalfe, J., & Kornell, N. (2003). The dynamics
learning and allocation of study time to a region of
proximal learning. Journal of Experimental Psychology:
General, 132(4), 530-542.
vlik Jr., P. I. (2005). The
Optimizing paired-associate memory. Dissertation
Abstracts International: Section B: The Sciences and
Engineering, 66(10-B), 5704.
vlik Jr., P. I. (in press). Unde
dynamics of test practice and study practice. Instructional
Science.
vlik Jr.,
forgetting effects on vocabulary memory: An activation-
based model of the spacing effect. Cognitive Science,
29(4), 559-586.
vlik Jr., P. I.,
MacWhinney, B., & Koedinger, K. R. (2007). The FaCT
(Fact and Concept Training) System: A new tool linking
cognitive science with educators. In D. S. McNamara & J.
G. Trafton (Eds.). Mahwah, NJ: Lawrence Erlbaum.
hneider, V. I., Healy, A. F., & Bourne, L. E., Jr. (2
What is learned under difficult conditions is hard to
forget: Contextual interference effects in foreign
vocabulary acquisition, retention, and transfer. Journal of
Memory and Language, 46(2), 419-440.
on Neumann, J., & Morgenstern, O. (1
games and economic behavior. Princeton,: Princeton
university press.

��������	�
�������	�
���	��
�	��������	���������		

�	��
�����	�����������	����
���	�
	���	������	�
�����	
	

�������	��
���
�	�
���������
���
� ���������!	
����������	��
�	��������������������	���
���������������������

���	������	��
���������	���������� �
�����	��!�

�

��������	"�	#������	����������������� ������$%�������&��!	
"�#���$�%�������&�
'�����
�
(&��)�&��
�
(��	������������*�+*��"�#���$��,�#	�&!�

�

'������	(�����	��������)����� ���������!	
����������	��
�	��������������������	���
������������������!�

�

�����	�����	������������ �������������!	
%���������"�	��� ��	���-&
��+�.�-������/��
���	��������
����������0�����1	������	��!�

�

�

�)������	

2� �
(������#
����(� 	���
	��� �
#��(�'�
#� �(
�
#���� ���

������!�������1	���
��	��	������&�	�	�&������	����	����'�
#�	�

3��	��
'� 	������&4� #	�� ���
'� �	�	� ��
���� 5���� ���
��!�

6�
5��(��(�����(��
'�5	��5	�����
����
���	��'
�#�

����� ��	�� 	��� #	�� ��� 5���� 7����	���� �
�����!� ����

�
������	���'����1&��
(�������(
�
#����� �
�7��	��� ���

	������&� 1&� ��� #��	�� ��	��� 	��� ��
�����
'� ���
��	�
�!�

�����
������	����
�����
��	���	(#	����	����
����
�����

1	���� 5���� ��� ����	����� ����
'� ��� �
'�5	��� 	��� 	��

�
�'�
���� 5���� ���
��	�
�8��
5�� 	����#���
'� ����

��19������&!����	���
	�������������	���1&�����	�����	��
��'
��

�	���������
(������#
����(!�

*���
$���
�	

��� ����	��
'� ��
'���
�	�� 	��������� �	���(� 	� 3#��	��

��#���
�4��	����
��	(��������
�#���
'�	��
(������

�(
�
#����'
�����	����	��!�: ���
��	���"
�����;�**�<�

�'���� �(
�
#���� 	�� ��� ��
����	�� 	��� '���	#��	��

������	����(�
'� ��#	�� 1�	��
�� 	��� ��'
�#	��� ���

����
�'�������	����(��&��#���	�������	�����	��
���
����(��

����	���
����������
��7��
'��	�������(�!��
������'��	��&��

�
(�������(
�
#���������
��	���
�������	�#�����	�������

=����
'�	������&��	��
��1�������

��5���
���	�&��'����

�
� ���
��	�
�8�� 3��19������&4�� ��������(� ������
����

������
���� '���(��� 7���	��
���� =�
5��(�� #��	��

������	��
��� ��!� ��� #	��� ������(���(� #��
�� '
��

�
#�����(�������&��
'�������	����(����3	������&�	�	�&���4!�

�����	����'�
#�	��
1���	��
��
'����	������&����	�����	��
��	��

�	���	�� 	�� �
���1��� ���� ��� �
�������
'� 	�� 	�	�&���� '
��

��	���(� #
����
'� 	������&�� 	��� ����	��&� �
(������

#
���!�

>���5
�=�'
�����
�����'������	�'�
'�: ���
�8���'�����
�?�

������	����(� '
�� ��	���(� #
���� ��	�� �
���� 7��	��� 	���

������� ���
��	�
�8��1�	��
�!�@
5����5��	=������#�

������	����(� ��� 	� ��	(#	���� ����� 5����� �
������� 	�&�

#	���(�	��(�
�����1&�	�'��	������
�!�: ����������	�

#��
�
�
(&�	���	��
'�5	���

���
������(
�
#�����1�����

�
(������#
����
'�	��
��	�
�����
�������	��	������&!�: �

�������	�� ��� 1&� ��� ��	��
��
'� #
����
'� ��� �	�� �������

5������ ��� (�
1	�� ����
��
'� 	������(�
�� ���(���(�

������(���������(�	�����	����&��#�!��

�
�������	�
�����	
�	���	���	������	

�
���
'� ��� �
(������ ���� #
���� �
#� '�
#� @�#	��

"
#����� ����	���
�� ������!�2�� �	������� 	���-�;�**A<�

����
�����������&��	���&���	��&�	�������1�	��
��
��
��

'� �5
� �����
'� 	1���	���
�!� ��� ��(��� ���� #
����(�

'�	#5
�=��� !(!�,>���� ��������1�	��
�� 	��1	��������

	���
���� ����� 	�� #
���(� 	� #
���
�� ������(� 	� =&!� ��&�

#
���&� ������� ��� ���8��=�
5��(� 	��� ������	��
���

������
#��7��	�	����������������	��3�������4�
��3'�	#�4�

;����=&�� +���<!���� �
5�� ����'�	#5
�=��� !(!�2"�.��

�� B)�"�� �����1� 3	�
#��� �
#�
����4�
'� 1�	��
�� 5����

����� ���((���(�
��� �
(������ �����
'� �
�(��&� �*�

#������
���!� @�� ��� ���8�� =�
5��(� ��� ��������

����� ���	�	���� 3����=�4� 	��� ��
����	�� 3��
�����
��

����4!��

�����	��1��#	�&��
(������#
����
'�����	��������

	�� 1
���
'� ���� ����!� 2�� ��� ��(��� ����� ���� 	���

�	��(�	��.0��� ;+���<� �#��#���� "
�#
������ 	�

����'���#
����(�'�	#5
�=�
'�����	�������!�2������
5��

�����2"�.��5	������1&��	��������
���	���-���;�**+<��
�

�������1�	��
�������(��	����	�(��
��	�#
�
�5	&��
��1&��

�������0	���

&����!�2#	����	�����#��
��;�**�<��
�#
���

���������
'�	�������(���#��	�
�!�

��� #
����(� �	�=� ��� '	�����	��� 1&� ���� #
����(�

'�	#5
�=�� ��	�� ����	���(�&� #1�� (��	�� ������'���

=�
5��(� 	1
��� ��#	�� �
(����
�!� ��� 7������
'� ����

'�	#5
�=�� ����� �	���� ��� C����
��
'� �
5� �
� '�� ��#�

5���� 	� �	������� �
���(�
'� ��� ����'��� �
(������ 	������&�

5����� ��� #
���!� ��� ����'��	��
��
'� ���� 3'�	#�4��

3�������4�� 3����=�4� 	��� 3��
�����
�� ����4�� '
�� ��	���(� 	�

����'���#
��� ��� �����#
�� ��	�� 	� ��#��� ��
(�	##��(�

�	�=!� ��� ��� 	� �	�=�
'�#
����(� ��� 	������&�'�
#� 	� �
(������

�
����
'� ��5!� ��� ���
���� 	�� 7������ 	1
��� ��� 	������&�

����'��	���	��
�	1
����
5����
��	�
��1������	�����
�����

��� ��'
�#	��
�� ���� �
� �
#���� ��!� ����� 7������ ���

	�C�����1&��(
�
#��������
�(���������
'���
�	����	����!�

: �	�� �������� ��� ��� �
� ����
��� ��� ���
�#���
'� �����

7������� '
�#	��$� ��� 	��� �	���	��$� ��� ��� 	� =�
5��(�

�(�����(��

��'
��	������&�	�	�&����	���#
����(!�

�+��������	(�����
�)�	������	��������	

2��	���	���(��5�
�����
#����(��	�(�
���	�����	�����

�������
���
���	����
��
����
1��
���&���'����	�����������

����
��	5	��
'� ����	�(��	���5	�����#!� ��'����(�
����8�

#��	�� ��	�� ��� �
#����(� 5� 	�� 	�5	&�� �
��(� ���
���

��&�	&���'!������'	���
'�(�	����(�
�����
���5�����	���(�

	���19������&��	��1��	=�����
���	���
	��������	��	�������

��9�����
���
�� 	�� 	� ��	(#	���� ��5�
���?� ��� ������
�	��

��	��� ;D������ +�/�<!� >��� ����
�� ��� �
� #	=� �����

	����#���
'� ��� ��19������&� #
�� �	��
�	��� '�
#� ���

1���	��
��
'�1�	��
��	�������	��
��	�� ��� �	��1� ��
����

1&����
��!�

: � ��&�
�� �
������
'� �
(������ ��&��
�
(&� ����� 	��

3#��	��������	��
�4��
��3����	��
��25	����4�;B����&��

+���<!���� �	���� ��#���	�
���&��
���� ���������
��� ���

�
#������
��	��� ���	������	��
��'
�������1��(��
5� ���

�#����
'���� ����	��
��	��3#��	��&4��	=�� ���
�	��
����

1&����
��	�
��!�@
5�����'������
�������#���	��'
��

7��	����(� 1�	��
�� 5����� ������� '�
#� 	� �
����

�	�
���(�� ��� 1�
#�� ���� ��	�� 5��� �
�������(� 	��

	������&� ��� 5����� ��� ��19��� ��� ��&���	��&� ���
���!�@���

�������19�����7������3	��
#�	���4������	���
���	���

�	��1� ��� 	��#���� 	�� 	� �	��� ��	�� 	�� 	� �
��C����
'�

����� 	������&!� ��� ����� �	��� 1�	��
�� �	�� 1� 7��	���� 1&�

3
��	��
�	�� ���#	�4�� 3�#������� =�
5��(4�
�� 	��
#	����

��
�����(�;��������E����''�����+���<!����	��&������	��
��

1�5�� ��''���� �����
'� �
���
�� �	�� 1� ������?� �=������

������	���=�
5��(?�;�	�#������+�/A<��
���#�������������

7��������
���
�!�

'��	�),��������	
�	������	��������	

�����
����1�	�����
������������7��	����(����
��	�
��8�

1�	��
��1&������#��	��	������&���	�� ��� ����'���'����'�
#�

����� 1�	��
�!� ����� �	���� ��� C����
��
'� �
5� �
� �	=�

���8�� ��19������&� 	�� 	��
19����� �	���&�� 5����� �	�� 1�

������'��	��&� ������!�)�&��
�
(����� �	�� 1�� ���������(�

����� ���������� ���1(�����(�
'���&��
�
(&!� � ��� ���������&�

5���	��������#����
'����
��?��

;	<�2���	(#	���� ����#
�
(&� ��
����1� 	�
�����5���

��� �
������ ��	���'
�� 7��	����(� 	������&�#	=� ���� ���

������
'� ����� ��	(� ;: ���(������� +��A<!� ��� 	���
	���

��
���� ����
��� 	� ��
��� �����(�
'� ��� ��	1����&�
'� ���

�
������	���	������	������(
��	��
��
'������#	���(!��

;1<����	���
	�����
����	��
��
�'
�#� �
�	���
����
�����

����#
�
(&� ;)
����� +���<!� 2�� 7��	�	��
�� �	��
�� 1�

��
����
�1��������	��	1�
���������1����	��1���	����	��

�
�(� 	�� ��� �	�� �
�� 1�� '	���'��!� ��� 	���
	��� ��
����

'	�����	�� ��� ��
�����
��
'� 7��	�	��
��� 	��� ����� �
���1��

'	���'��	��
�����	���
����

�!�

;�<� ��� 7��	�	��
��� ��
���� 1� �
�'�
���� 5���� ���

��19����� 	����#��� #	�� 1&� ��� ��19���� ��#����!�

���� 	����#���� ��
���� 1� �	�
�	1�&� ������� 	���

	�	�&$��	��'
�#	���������	�	�;B�����
��E���#
���+��A<!�

�
�	�����������C���#�����5�����
#�'	���������
�

	���&��'���	���#	�����	��7����	�����
�����!�����	�	�

�
������'�
#� 	� ��
����(�
'� ��� 	������&� ��
����1� 	���&�

���=���
������
�����!�

����

�
��	��	'

�	

����� �����
'�#	=��(�����
'��
�������	�	� 	������� ���
��	���� 	�	�
'� 3=�
5��(� ����
��&4� 	�� �'���� 1&�
�	&&	�� ;+���<?� ���
��	��� ��
����
'� ����
����(�
�
����	��&� ��'��� 	��� ����
���&� ��=�
5�� ��'
�#	��
��
��
=�
5��(� '�
#� 	� �	�	1	�!� ���
��� �	��� ��� �	�	� ��� ���
��
����(�
'� ��� 	������&� �
������ 1&� ���
���� 	��� ���
7����� =�
5��(� �
�������
'� #
���� 7��	����(� ���
	������&������#��
'�����
(����
��
'������19��!��
��	&&	���
����� ��
1�#� ���
��
'� #	����(� �
5.���� �	�	� ���
�
����
'
�#�� ��	��#�(���1�#
���
#�	����#
��	1���	����
��#
��
��'��!�2�=�
5��(�����
��&��&��#���
�����	1��	�����
�
������	��&����	����
����
'�	1���	����(�	���������	����(�
�	�	!����=�
5��(����'��	��&�1�����3������	�	�&��8��#���4�
5���� ��� ����	����� ���
'� ��� �&��#!�)�
(������&��5����
���������	���
������=�
5��(�����
5����	���	��$��������
�
'�5	�� ����� ���'
�#�
'�	� ����1&� ���� �#��
�#���
'�
���	1���	���
��	���
'��������	��$	��
��'	�������!�
�
� ����� 	��� @�1�#	�� ;+��F<�� 	�	�&���� ���
���� 	�

��	���'��	��
��
'� �	��#� ��	�� �
���� 1� ��
�&.������� �	�	.
������ ;�
����(� 	� 3(�
����� ��
�&4<��
�� 	� �
#��
#���
1�5�� 1
���� 5����� �� �	���� 3
��
�
(��	�� �
���(4!� � ���
�	���� ��� 5�	�� 5� 	�� ��
�
���(� ���� �
� �'��� �
��.
������ �	�(
���� ����� 	�� �
��7��� ������
��� ��	���
��
�	������
'���	��
������1�5���#���!�

�	'����%(���	-�����	

�������'����&�
'�
����	�	���� ��	���������C����	����!!���&�
��#�
'��	�	� ��� 	��
��	��� �
� 	� ��#.��	#��	��� ��	��� �
� 	�
�	������	�� #
#���
'� ��� 	������&!� �	����
�� 	��� ������
;+��F<��	�� ��� ���1	���
'�5�	�� ��&� �	���� B7��
�	�
�&�
�C����	�� D	�	� 2�	�&���� ;B�D2<� ��� ����� '
�����(� �	��!�
��&� �'��� ��� 	�� 	�� 7��
�	�
�&� ��
���� ��	�� 	�#�� 	��
3-

=��(�	���	�	� �
� ��5�	�� ��� �#�� �
� �	&4!�@��1��� 	���
��#����;�***<���
�
��	�����&�
'�������

�������	����
�
��� 	�	�&����
'� ��#	�� �
#����� ����	���
�!� �	#�&��
�	���	�	� ;�	����
��� ����� E� G	''�� +��F<� �	�� 1�
��(���(���� '
�� ���� �
����(� '	��������
'� ����	��$	��
���
�	�����(�� '������(�� 	1���	����(� 	��� �
#�����(� ��	�������!�
@	5=�;,����	��� �	��
�� E� 	���� +��F<� ��� 	��
� �
���	1��
'
�� ���� '	��������
'� 	1���	���
�� 1	���
�� 	� ����'���
��
(�	##��(� �	�(�	(!� ��� ���� �

��� 	�� ����	��� �
�
��	(� #
����(� 	��� �
�� �
� �
(������ #
����(!� ��� ���
�#	����'
��'	��������5������
��������#
��� ���#	����(�
1�5�� �
5� ���� ����� 	��� ��(��� ���� 7����	����
�
������� 	��� ���� ������(�� ��� #	���(�
'� ����
�
�����!�
: � ��((��� 	�������(� ����� ��� 1&� #
����(� ���

�C����	�� �	�	� 	�� 	� 3��	�4�� 	�� �'���� 1&� -	'�	C��H���
�
'�	�.���
�����)�����	��������;�**�<!� ��
�� ��#��	� ��	��
��� 	� (�	��� 5��� �
��� 	�� '	����
�� ����� 	��� 	���� 	��
��	��
���1�5�� ��#!�2� ��	�� ��� 	��
��	���5����	�3��	��

#
��4� ��	�� �
�������
'�	��
��
�
(&�5��� ��� �#	�����
'�
'	����� ������ 	��� ��	��
��� ��� �'���!� >�� ����� 1	�����
��	��'
�#	��
�� 	���#	����(�
'� ��	��� �	��1�#
���� 	���
��'
�#��1&�5�	����&��	���	�3��	�. 	����&��#4��5�����
���	�6�
5��(. 	����&��#�����	����
���	��!�

'��	�(-'.��'	-
������	'

�	

>����#��#��	��
��
'�	���	�. 	����&��#�'
���
(������
	������&� 	�	�&���� ��� �	#�� 2 ���2"�� ;2�	�&����
'�
 �	��
�� 	��� ����	��
�� '
�� #��	�� ������	��
��
2����#��� 	��� "
(������ 	������&� #
����(<!� ��� ���
�����1�� '�
#� 	� �
#����� ������ �
����
'� ��5� ���
;,
�(
��� ����� E� ����� �**�<!� 2 ���2"�� �����
��
���	�� 1	���� ��	��	���� 	��� �

��� �
� ������� 	���
#	�����	�� ��� ��	��!� ��� ��	��� ��#����� 	�� ��
���
���������D��'
�#	��;��
����D�������
����	#5
�=<��	�
��	��	���'
����
���(�(�	���!������	��#
����	����
���
����� ����D���'
�#	��;��
����D�������
����	#5
�=�
���#	<��	���	��	���'
����
���(�
��
�
(��!������'����
����� '
�� 	1���	����(� ��� ��	��� 	�� 5������ ��� �)2�I-�� 	�
(�	���C��&��	�(�	(�'
���D�!����(�	����	������	��$	��
��
���#	���������0,�'
�#	��;��	�	1��0��
��,�	����<!�������	�
���
��(�	�������	��	���5������	1�������	���
�!��
��� #
��� ��	���(��(� ����� �
������ ����	������&�� �����

��� 5�
�� ��
���� �����
�� ��� �����'��	��
��� ���
������	����(� 	��� ��� �'�����
��
'� �	������
'� �������1&�
����(
�
#���!�: �	����������������1&���
�����(�'	��������
�
�	���&�1�
5��	�����	��'
�#��������	����
�����'����5�
7����	���� �
��� 	��� ����'&� ��'���� ����� '
��
��
�����(� �5� ����	����
'� ���� �
��!� �
� '	��� ���
����'��	��
��
'� ���� ��'���� ����� �C����� ���
�(
�
#���� �
� �	�� 	�1	���� ������	����(�
'� ��� �)2�I-�
�	�((!� @� ��	��� ��#� ��� 	� �#�.(�	����� 5	&�� �!!� ��
����	�����&� ��
����� �=��
���
'� C������ 	��� ���� ��
#	��	��&� �
#����� ��#!� : � 	�� ������ 5
�=��(�
��
�#��
���(� ��� '�����
�	���&�
'� ��	���(� ���� C�����
�
5	����	�'����(�	����	������'	�!�

'��	�
�����	/�
����	����	�(-'.��'	

'��	�+����������	����	

���
��� 7	#���� ����	�	� ��� �
������5���� 	�� ������#����
�	�������(�������(�7���#��	��
���
��	��
����
	�!���(���
+� ��
5�� 	�� 7	#���
'� ��� ���
� ��
����(!� ��� �
�� �'��
�#	(���� ������
�
������
'� ���
1��	��������
�� �&��#��
����
����(���������'�
�����5������
5���'��.�������	������
����	����5������
5���'��.�1
��
#��	��� ��� ����	����5��
	�������
5����(������������
�
������
'����&���	�=�!����
	�����
��� �	�	� ��� �
������ '�
#� ���
��?� ����� �����(�
	�(��� ��	�� ���� ����	��� 	�	���
1��	��� �����
�� '�
#�
��#����� 	��� ,)�� �
����
���(!� ����	��
���
'� ������� 	��
#	�=��1&����7���#�����������	��1&�������(�	�1���
�!�
��19����� �	��	��
�� ���
1�	����'�
#� ��� ������ �����(� 	�
�
��.7���#��� 3��'.�
�'�
��	��
�4� ������5!� ��� ������
���5��������
�5��������(
�
#����	������	�=���
�	�����
����'��� ����	��
��� 1&� ��	���(� ����
���
�� ���	�� ��	��� '
��
	��� ������	?� ��''������� ������	��� �	�(�
���� �����'����
���
���1����&�����������'	���	�����'
�#	��!��

���7���#��	��
���
������	����
'���#.��	#����	�	!�
������
���	�������'
�#�����
������	�J�������1	���
����������	��
=�
5��(�
'� ��� 	������&�� 	���
�� ��� ��	����(
	��!� �����
��
��� �
��������� 	�'
�#�
'�3	������	�
�&� �	�	� ������
�4!�
������	�	� ���	��
��
���1�&���.��
�����5����	�(
����#��
'�
�
���������
��
��
'����
���	��1�	��
�!�
�

�
��(���+?�"
�'�
����(�����
��������	���
�������
!�

'��	�
������	'����	

����
��������	��������'���������
'���	�����2 ���2"�!�
��� ���
1�	���� 1&� �
������(� ��� �
������ �	�	� ���
� 	�
�������
��
'� �
5� ���� ����� ������&� �'���� ��� 	��

��
�
(&!� �
�� ����	���� ��(��� �� ��
5�� �
5� �
�����
'�
�������
'� ��� 	�	�
(��	�� ������ 	�� 7��	���� 	��� #�(��
���
������	�?������
������
�	������#�#��	����	7�#�#���
��'����
���
��������!��
�

�
��(����?�D������$	��
��
'����	�	�
(��	���	�	!�

�

��� ���� 	�� ��� 1
��
#�
'� ��� '�(��� �������� ���
�
������ ��	�!� ��� ������� ������� ��� ����� '�
#�
��''���� �
����!� ��#���	��
�� �7��	�� ��
������ 	��
	��	���� �
� ���� ����� 	�� ���?� ����� ��#.�
��� �����
�
����� ����� �&��� ������	���� ����� ���	��
��� ����	��	��
��
�	��
'� ����� �	��� 	�� ����� �
����� ��!� ����� �
������ ��	��
�C�����	��	���	��
��1&�����(
�
#���� �
��������	�� ����
����� �	�� ���
��� �
� ���� ������'��� �����!���� 	�9���#���

'�����	��
����	�	#��������'
����
�����(�������������
	� ����	��1��� �#�
��	��� ���!�������	���	��
�� ���#	��5����
�������
'�	�'	�����&���
�����1&�2 ���2"��'
����	&��(�
������
� ����&����
��$	��
��5���� ��� ��	��;��(���+<!����
�
��������	����������������	����	�����5����	�����'
��
	��� ���� 	��� ����� ��
������ ��� �
��#��!� 2� �
�
�� �
��
#	=�� ��� 	���� �
� �	�!� ��� ���	����� ��� 	��
#	���	��&�
���
���� ���
�� �
5�� �
�'
��
5� ������
�5��� ��� ��� ��	&��
'
�5	����
�� 1	�=5	���!� ��� '����� ����
'� ��(��� +�
�������� 	� ���((���(� ����
'� ��� �'�� #���
�� 	�	�
'� ���
&���	�=�!�����	����+/F�#��	����	�����	��	�����
'�+*/�
=#K��5����	������(�5���	�(��
'�A!�/L!���� �	��� ����
'�
��� '�(��� ��� 	� �����
��� ��
����(� ���� ��5	����
'� ���
�����(�5���	�(�!���������
����	���
'��L�5	����
���
	'��� ��''���� ���	��� 	��� ���=��1�	��� ��� ��
��� �
� 1� 	�
#	���('��K��'��� �����
��� '
�� ����&��(� �	�� ��	�(��
��
#
�
�5	&�!�������
�����
�������&���
������
��
���
	����#	����7��
����1&�����(
�
#��������	�	����5�������
�
������	��!��

'��	�����&�	'�����	

��� �
������ ��	�� ��� ���� ������� 1&� #
�� 	1���	���
�
��� �
���
���� ��	���	�� ��
5�������(����F�	����!����
���������	&��� ��� ��#�(
��'�
#� �'�� �
� ��(���	��� ���374�
�
����
��
'� ��� ����� ��� (���� 1&� ����� ��#.�
�!� ���
�(
�
#���� ��� '�� �
� �'��� ��� ��	���
'� �
���� �����
�
�
���	��������3&4��
����
�������������	&!�@��	������=�
��
�
����
����������
�����!�����'�(�������	������	&�
#
��� 5��� ��� �
5�� ���� �
��� 	�� ��� �
��� 	�� ���
1
��
#!� ��� #����� ���� �
��� 	�� ��	��� 	�
���� ���
#������
��$
��	��	7��!�: �	���
����������'��
'����������
��� ��	��� 	1
�� ����� 	7��� 	��� 5�	�� �
������ ��� ��(��� ���
��	��� 1�
5� ��!� ���	�(���
������ �
� ��� ��(��� �
�����
�
#����(� 3'�
��5	��4� ;!(!� 3-

=� 	�	�4<�� ���	�(���

������ �
� ��� �'�� �
����� �
#����(� 31	�=5	��4� ;!(!�
3-'�� #���
�� (�	��4<!� ��� ����� 	�� ��� ��	��
���
'�
��'����'�
#��
5�������
����
���(��������
��!�
��� ����� �	���
'� ��� �����	&� ��� ����'
�� ��� ��(���� ����
�
���5�����	���
���
������1&�������'�K��(�������;!(!�
3D����
�4<!� ��� �
�
��� ��� ��� �	�� �����	&� 	�� ���� �
�
�����	������&��
'��	�	�;�!!��1���=�����
�	�(<�����#	=�����
#���� 	���� �
� �	�� ��	�� ��� �����!� : ��� 	������� 	��
��'��������	����	��5�����	���
'�	��
����������	��
��&5����������'����	��������'
���!���������	��#	�=�
������������
��!�

'��	���
�
��	

)	�	�����
������	��
��
'������'��������������(
�
#����
�'���� ��� ��	���
'� ��� �
��� ��� 	��
��
�
(&!�
2 ���2"����
�������#�5����	��	������
����3)�
��(�4�

��
�
(&� ���
�� �
� ��� ��#� �'��� ��� �#	����� 	�������	��

��
������
'� 	��� ��	���
'� �
�!� �����
��
�
(&� ���
7��
���� 1&� ��� �)2�I-� ��'���� �(��� 	��� 1&� ���
�����	&�'�����
��!�
�

�

��(���A?����
��
�
(&������5����)�
��(�!�
�
��(���A���
5��	��7��	���
'�����
����	����
'�����������

��
�
(&!� ��� ">� ��	��� �'���� 	��� ��� "
������ >19����
7�����(��������
��������	�!�>��1�	����
'����&���	�=��
�	�	� ��� 7�	���� �
� ��
5� �
5� ��� 	�	�
'� ������� �	��1�

�(��$�!�@���	(��������
�����
���	����'���������	���
����	��$	��
�� �����(�� �	�� 1� �'���� 	�� 	�&� ����
'� ���
���	���&!��
��� 2������&M2�	�&���� ��	��� �
������ �
������ ��	�� 	��

��'����'�
#�">!��
�� ����	���� �5
� �&���
'� �	�� ��	�(��
�
���� 1� #
���� 	��� �	�� 1� ��
(��$�� '�
#� ����'���
�	������ ��� ��� �	�	?� �	�.��	�(.	������	��� 	��� �	�.
��	�(.��	&��� ��1������ ��� ;@����(�� ,
�(
�� E�
6�#����**�<!�2��������
������	���'����
��	���	(#	����
	��� �
����
����� 1	���� 	�� �	��� 	1
�!� ��&� �
#� '�
#� 	�
��	�.
''�1�5���
��
���	���� ����
���1����&�
'� ��'����(�
��#� '�
#� ��� �	�	� 	���
�� ���
���� �	��� '�
#� ���
�(
�
#���8��C���� '
�� 7��	�	��
�!��
�
��� ��&� �	��1�
�	����� ��� �
��	1
�	��
�� 1�5�� ��� �(
�
#���� 	��� ���
��19�����#��'������(������'.�
�'�
��	��
��������5!�

�+������	
�	�
�����	

��(���F���
5��	��&���	��7	#���
'�	��	�.��	�(.��	&��
���#	!� ��� ����� '�(���� ��� 3��	��.����=��(4� �
��
�
����
�����
����#
#���5���������������	�����	����
��	���� �
�������(� ��	�(��(� �	�� ��� ��� ��'.�
�'�
��	��
��
������5!� ���3 ���
�4� ��� 	� ��(�	��'�
#� ��� 7���#����
��
���������(�����
����'
�����7��(���&��	����	�(��
	������3-	�.��
����(4�������#
#���5�������'��'�
���

5��� ��
���� ��� �	���#	��	��&� ��
���'�
#� ������
!�
2���
�����
���	��	��
#	���	��&���'����'�
#�������
��
�	�	!�
��������=����
'�����	��
���������������#����1&�	�������

��
5����	���������������!�@�#	&����=������'��#���
��
���	�� ��#��� ����� 5��� �� ������ �
�
���	=�� ��
	����	��� 5���� ���=��(� ���� #���
�J� �� �5������ ����
1���=��
��� ��	���� �����(�� 	��� ��
���� ��� ���!� ��� �����
����	��
��� ��� �����
�� �
� ��'
�#� ��� �	�� ��	�(� �	�� 1�
��'����'�
#� ��� �
�9�����
��
'�1
��� ��� 	����	��
�� 	���
��� �'�� #���
�� (�	��� 5������ 	� ���	��� �	��
'� ��#�
;3D����
�4� �
�<!� ����� �
�� �	�� 1� ��'��� 	�� 	�
������
��
'� ��� �	�� ��	�(� ��� ����� ����	��
��� 5� �	��� ���
3D����
�4�5���������7����	����'�	#5
�=�
'�3
��	��
�	��
���#	�4!� ��� ��'���� ��� #	�� 1&� 	� C��&� 7������(?�
3	���	��5��
��
'��&��3�����
�4�����=�����
�(���(��
'�
�&�� 3��'���4�� �
� �	����
'� �
��� #	�����(� ��� �
�����
�?�

�� ���
'� �&�� 3	����	�4��
���� ���
'� �&�� 3-'�� #���
��
(�	��4� 	��� ����� 3��#.��	#�4� ��
������ 	�� �
#������
5������
����
��!�>����'����������C��&��	��1�	������
�
����5�
����	��'
����	������	��	����#���
'����������
��
	���'	���	�	�#!������������#	��++��	����	�(������
����
1� �	�(
��$�� 	�� 3��	&�4� 	��� �� 	�� 3	������	��4!� ���

�����
�����������1'
�����1���=�����������	�.��	�(.
��	&���	����������
��'	��������
�!�
2�
����7	#���
'�	�	�&���� �����
5�����'�(����!���� ���	�

�	������&�5������������	��#�����
���	�(��	��1�������
�
�� �� 	� �	�� 	������(� '�
#� ��� �	��
�� ��� �'�� �	�!� @�
�����	������#	�����1���	1
�������	������	���#
#��!����
'�(�����
5�� ��	�� ��������������
���

=�	�������	��#���
�?�
��5	���

=��(�	���������
#�������	�!�@���	1���$������
���� 	�� 	� ��(����	��� ��	�� ��� �	�� 	�	�!����3D���	���
	�	�4�����	��	���	��������
'�A!�=#K���
#��'�
#����
'�
��� ��#��!� ��
#� ���� �5
� �����
'� ��'
�#	��
�� 5�
�	�� 	��	�&� #	=� ��� ��	(�
���� ��	�� �� 5	�� �������(� �
�

���	=!� ���� �� �

=�� 	�� ���� �'�� #���
�� 	�#
��� 	�� ���
�	#���#�	���5������(����������	�
��
�!�2�������#
#�����
�	5� ��� �	�� �
#��(�
�� ��� �'�� �	�� '�
#� 1����� 	��� ��
	1
��������	����	�(!�@�#	��	��	1����������(�1	�=��
�
��� ��(���� �5������
''����� �����	�
��� 	��������� ���1�	=�
��	�� �
� 	�
��� 1�#���(� ���
� ��� �	�� �� 5	�� ������� �
�

���	=!����	��&�����	���� �

=��(�	(���	������ �'��#���
��
	���	����	���	(��� �
���'
�#���� �	����	�(�5��� ���

�����	���	���	������#!�
��� ��19����� �	��	��
�� '�
#� ��� ������5� �����	���

��	�� �� 5	�� ��&� ��������?� ;�*N�
'� ��� ��	�<�� �������
;��N<�1��������''�����&�5	���
���
���(�?�A*N!�

�

�
��(���F?�)�
�
�&��
'�	�3�	�.��	�(.��	&�4����#	!��

�

�
��(����?�-	����	�(�	��#���5����#���	=�
'�����	��
��	5	����!�

�����7	#�����
5���
5�5��	��7��	���	�#���	=�1&�	��
��
��
'� 3����	��
�� 	5	����4!� ��� 	��
� ��� ��� ��
�
�� 	�
�����
����	���
'� ��� �	��	��
�� �	��
'� ��� �����(� 5���
��	�� �	�� �����	�� ��� ��19����� ��������
'� ��� �����!�
���	��&�� ��� ��
5�� ��	�� #
�� ��	��
�� ��
��� 1'
�� �����
#���	=��5��
����	��
#	���	��&�#	=������	(�
������	�����
������ 5	�� �������(� �
� #	=� 	�� ��
�� '�
#� ���
19�����
�	�	!� 	���
�� ����� ��	(�
����� 	� ������(� 	�����	��� �&��#�
�
����5	�����#!��

�
���$��
�	

2� #��
�
�
(&� 	��� �

�� 5�� ������� �
� ����
��� ���
	������&�	�	�&����	�������
(������#
����(�
'�	��
��	�
�!�
��&� 	�� ������� �
� '
�#	��$� ��� ��
����
'� 7��	����(�
	������&�1&����#��	�� ��	��� 	�����
�����
'� ���
��	�
�!�
��� �

�� �	�� �	���	��$�
�� ��� 7������
'� ��� �(
�
#����
���
�(�� ��'���� ������
��
�
(���� 	��� ����	��$	��
��
�����(�!� ��� �������(� #
���� �
������
'� 7����	����
�
������ �'���� ��� ���
��
�
(&� 	���
'� 	1���	��� ��	���
�����1��(� �	������
'� 1�	��
�� 5���� ���� �
�����!� ���
#
����(���
���� ���� �	�(
���� #�(�'�
#� ����	��
��� ���
�	�	���� 5���� ����� ��������
�� 	��� ��
����� #	��� �
�
�	���	�� ��#�1&���	�������!����	�	�&���� ���#	��'�
#��	�	�
�
������������'����
'�����������	������&!�����
�������
'�	�
���.1&.������
����
'�	1���	���
��������1&�����(
�
#����
��� ����	���
�� 5���� 	� �
'�5	�� �

�!� ��� ��� ��
5�� �
5� �����
	�	�&�����	���������(��	�����	����&��#��'
���	���(�5����
����'�������	��
��!��
���
1�	���� #
���� �
���� 	��
� 1� 7��
���� '
��

��
(�	##��(� ��#��	��
��� ��� �
(������ ��#��	��
��
'�	#5
�=��� 5����� 5
���� �
�'�
��� ��#� �
� ��
����	��
�
����	�����
����#	���
(����
�!��

��0�
���������	

����� ��
9��� 5	�� ����
���� 1&� ��� @�#	����� ��5
�=�
'�
B7������ '����� 1&� ��� B��
�	�� "
##����
�!� : �
	�����	�� ��� 	�����	���
'� !� �	����� '
�� �
'�5	��
�#��#��	��
��	���
'��!�������'
��������'����
##����
��
������	��!�

.���������	

 ������!�E��	��(�	��.0����@!�;+���<!�2�'�	#5
�=�'
��

��������(�������(�=�
5��(!� ������������	
 ������	
 �

���������
������������A;+<��A�.F�!�

D������D!�"!�;+�/�<!����
 ����������	
������!�"	#1���(��

�2?�����)���!�

B����&�� �!� �!� ;+���<!� �
5	��� 	� ��
�&�
'� ����	��
��

	5	����� ��� �&�	#��� �&��#�!� �����
 ��������� A�;+<��

A�.�F!�

B�����
���6!�2!�E���#
���@!�2!�;+��A<!��������	
���	�����

�����	
�������
��
����!�"	#1���(���2?�����)���!�

�	&&	��� %!� ;+���<!� ��
#� D	�	� �����(� �
� 6�
5��(�

D���
��&����D	�	1	�!���
���� �����+�;A<��A�.�F!�

,
�(
��� >!�� ������ 2!� E� ����� �!� ;�**�<!� 2�	�&$��(�

1�	��
�	���	�	�'
���'����(��
(������#
����
'�
��	�
�!�

���	��������
 ���
 �������	�����
 ��
 !��"	����

#��������$
 %����������
 ������������	
 &��'����
 ��

#�������
���
()����
%������
���	���������;��!��//.���<!�

6�	=
5��)
�	��?��BBB�"
#������
���&�)���!�

,����	����!���	��
���)!�E� 	����2!�;+��F<!�2�	�&$��(�	���

����	��$��(��
(�'���?�2��
#���	��
�	��������
'���	1����&!�

�*�
*���������
&��'����!�

@����(�� �!� O!�� ,
�(
��� >!� E� 6�#��� O!� ;�**�<!� ���

C�	���&�
'�1�	��
�	��	�������
�#��	�������	�
��������
�

��'�� ��� ������
�� �
� ��	�(� �	��!� +��
 ������������	

#������
 %��������
 ��
 �����
 �������
 ��
 #�����

����������!������
���: 	����(�
��%�2!�

@��1���� D!� �!� E� ��#����� D!� �!� ;�***<!� B7��	����(�

%�	1����&� ��'
�#	��
�� '�
#�%��� ����'	�� B����!��*�

*��������
%������
,*%-./��A�;F<��A/FPF�+!�

-	'�	C��H��� O!�� �
'�	�� ���
����� -!��)����� Q!� E� ������ 2!�

;�**�<!�2���	�.1	����&��#���	#5
�=�'
��B7������

�	�	(#��� 	��� B�(�����(!� %�����
 ������������	

&��'����
 ��
 ()��������
 ����������
 ���
 (����������

,(�(
0112/!�
���#
�����%6!�

�������!� !�E�@�1�#	���2!��!�;+��F<!�3��	�������
����

���	�����
 ��
 �)������
 ���������'!� -
��
�?� �	(�

)�1���	��
��!�

����=&�� �!� ;+���<!� 2� ��	#5
�=� '
�� ��������(�

6�
5��(!� ���)�&��
�
(&�
'�"
#�����0���
�!�)!�@!�

: ����
�!��5�Q
�=?����,�	5.@���!�

)
�����6!�;+���<!�4��������
!��"	����?�>7'
���%�������&�

)���!�

�	�#������O!�;+�/A<!��=�����������	���=�
5��(J���(�	����

��(��� 	��� �
��� 	���
���� D��������
��� ��� @�#	��

)�'
�#	����
���!��(((
�����������
��
%������$
���

���
*������������+A;A<�����.���!�

��������!�B!��0	���

&��D!���	����2#	�����!�E���#��
���6!�

;�**�<!�)�
�����(�����#
����������	������
�����'	��?�

2�� 7��
�	�
�&� ����&�
'� 	� ��#��� ����'	�� 5����

�#����	��
��� '
�� @��� 	��� @"�!� �(((
 ������������
 ��

�������$
 ���$
 ���
 �����������$
 ����
 ��
 %������
 ���

��������A�;A<�����.�*+!�

�	��������D!�D!��
���B!��!�E�-����2!�;�**+<!��
5	��� 	��

���(�	��� #
���
'� ������ 1�	��
�� ��� 	� �
(������

	���������!� ��������������
 .�������
 .������� +����� �.

+�!�

�	�������� D!� D!� E� -�� �!� O!� ;�**A<!� ��#��� "
(������

�
����(� ��� 	� "
#��7�"
(������ 2���������!������

�������
��
*��������
%������!��5�Q
�=?�2"��)���!�

�	����
���)!� �!� E� ������� "!� 2!� ;+��F<!� B7��
�	�
�&�

�C����	���	�	�	�	�&���?��
���	��
��!������
5*�������

������������������+.A+�!�

�	����
���)!� �!�� ������ �!� D!� E�G	''�� !� �!� ;+��F<!�

@	�����(� �
#��7� �	�.5
��� �	�	� 5���� �5
� �
(������

�(�����(� �

��?�">,B��� 	����	��@2)2!�6�������

.�������
�������$
�����������$
���
*��������������++�.

+�F!�

��������� : !� E� ���''����� �!� �!� ;+���<!� "
���
���� 	���

	��
#	���� ��#	�� ��'
�#	��
�� ��
�����(?� �!� D����
���

�	����	���	�����
�!�������	�����	
.����"��/F�����+.��!�

: ���
���O!��!�E�"
������B!��!�;�**�<!�(��	������
�
�����

&��'?�"�"�)���!�

: ���(�������-!�;+��A<!����	��������	
��������������!��

Comparing Modeling Idioms in ACT-R and Soar

Randolph M. Jones (rjones@soartech.com)
Soar Technology, 44 Burleigh Street

Waterville, ME 04901 USA

Christian Lebiere (cl@cmu.edu)
Psychology Department, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213 USA

Jacob A. Crossman (jcrossman@soartech.com)
Soar Technology, 3600 Green Court Suite 600

Ann Arbor, MI 48105 USA

Abstract

This paper examines some of the constraints on cognition

assumed and imposed by the ACT-R and Soar cognitive

architectures. In particular, we study how these constraints

either encourage or require particular types of “modeling

idioms” in the form of programming patterns that commonly

appear in implemented models. Because of the nature of the

mapping of the architectures to human cognition, each

modeling idiom translates relatively directly into changes in

model behavior data, such as decision timing, memory access,

and error rates. Our analysis notes that both architectures

have sometimes adopted extreme and opposed constraints,

where the human architecture most likely relies on some

mixed or more moderate set of constraints.

Implications of Architectural Constraints on

Cognitive Modeling

Experienced cognitive modelers are well aware that “the

devil is in the details,” particularly when it comes to fine-

grained models of deliberative behavior. Changes in the

particular reasoning path chosen to model a task can

manifest themselves as differences in task timing, type and

rates of errors, and overall strategy differences. Cognitive

architectures such as Soar (Laird, Rosenbloom, & Newell,

1987) and ACT-R (Anderson & Lebiere, 1998) implement

constraining assumptions that encourage and sometimes

require particular types of modeling idioms or patterns that

in turn impact the data the model produces.

This paper compares some of the modeling idioms

(perhaps alternatively described as programming patterns)

that commonly appear in Soar and ACT-R models of

decision making. We have come across many of these

comparisons while developing HLSR, a language for

building models that can compile both to ACT-R and to

Soar (Jones et al., 2006). It is interesting that, although

ACT-R and Soar are in some ways “close cousins”, there

are significant differences in how some types of low-level

reasoning tasks must be modeled, although these differences

are not necessarily obvious without getting into model

details. In many cases, each architecture has adopted

constraints that are diametrically opposed to each other,

where an alternative architecture might encourage a more

moderate or mixed approach.

Constraints in cognitive architectures often manifest

themselves as computational bottlenecks that are inspired by

assumed limitations on human processing. In ACT-R 6.0

(Anderson et al, 2004), there is a “cognitive bottleneck” that

allows only one production rule instantiation to fire at a time

(even if multiple rule instantiations currently match), and

there are information bottlenecks that allow only one chunk

per architectural module to be accessible for production

matching through that module’s buffer. In particular, that

means that only one goal can be active at any time and that

only one chunk can be retrieved from long-term declarative

memory at a time. These limitations imply that complex

logical decisions must be implemented via sequences of

retrievals and actions, which in turn impacts the timing of

retrieval/decision sequences.

In Soar 8.6, multiple rule instantiations can fire at once,

and access to declarative memory is essentially unlimited.

However, Soar imposes a cognitive bottleneck by allowing

only one “operator object” to be selected at a time.

Additionally, all operator selections must occur through

Soar’s preference/decision mechanism. Finally, in order to

maintain logical self-consistency, operator objects can

become automatically unselected if their logical

preconditions become unmatched. This latter effect implies

that individual Soar operators can usually not implement

long sequences of actions. Such sequences must instead be

implemented by series of operators, which can have an

impact on the timing and granularity of decision sequences.

These combinations of imposed constraints and

bottlenecks dictate some of the types of modeling idioms

that programmers typically use when implementing

decision-making processes in each architecture. The

remainder of this paper provides examples contrasting four

of these types of idioms.

Sequences of Decisions and Actions

ACT-R production rules are allowed to execute multiple
actions at a time, but in a limited fashion. They can make
changes to the contents of each architectural buffer (for this
paper’s purposes, we will concern ourselves only with the
goal and retrieval buffers). Consider the following example
rule from a Towers-of-Hanoi model, which makes a change
to the chunk in the goal buffer while simultaneously
initiating a new retrieval to the retrieval buffer.

(p find-next-tower

 =goal>

 isa move-tower

 disk =disk

 peg =peg

 state nil

==>

 !output! "Retrieving disk smaller than ~S" =disk

 +retrieval>

 isa next-smallest-disk

 disk =disk

 =goal>

 state next)

Individual Soar rules can also implement multiple actions
simultaneously. However, Soar rules are allowed to test
complex logical patterns with more flexibility than in ACT-
R, and multiple Soar rule instantiations can fire at the same
time. As a result, a common Soar modeling idiom is to
tease apart individual types of actions into separate rules.
This allows the development of more adaptive code that
does not introduce “artificial” conjunctions of conditions
just because the modeler wants multiple things to happen at
once. For the above example, the Soar idiom would
typically divide into two separate rules, as shown below.
These rules access a “current-retrieval” object that mimics
ACT-R’s retrieval buffer (there is no architectural
requirement for such a buffer in Soar models). The first rule
initiates the retrieval, while the second makes the change to
the goal state. Notice that the first rule can fire even if some
other set of conditions want to change the goal state. The
second rule can fire whenever the appropriate information is
in the retrieval buffer, regardless of which process might
have initiated that retrieval.
sp {find-next-tower*apply*retrieve

 (state <s> ^operator <o> ^current-goal <g>

 ^next-smallest-disk <nsd>)

 (<o> ^name find-next-tower

 ^goal <g> ^disk <disk>)

 (<nsd> ^disk <disk>)

 -(<s> ^current-retrieval <nsd>)

 (<disk> ^name <dname>)

-->

 (write (crlf) |Retrieving disk smaller than |

 <dname>)

 (<s> ^change-value <cv>)

 (<cv> ^id <s> ^att current-retrieval

 ^value <nsd>)}

sp {find-next-tower*apply*change-state

 (state <s> ^operator <o> ^current-goal <g>

 ^next-smallest-disk <nsd>)

 (<o> ^name find-next-tower

 ^goal <g> ^disk <disk>)

 (<nsd> ^disk <disk>)

 (<s> ^current-retrieval <nsd>)

 -(<g> ^state next)

-->

 (write (crlf) |Moving to state "next"|)

 (<s> ^change-value <cv>)

 (<cv> ^id <g> ^att state ^value next)}

In any rule-based system, combinations of conditional
actions must either be implemented by a combinatorial
number of rules covering the space of possible condition
combinations or by a set of rules that reason through the
combination of conditions. One important difference is that
Soar models can sometimes execute such rule combinations
in parallel where ACT-R must execute them in sequence.
Either choice has an impact on the timing of decision
making, as well as the types of errors and adaptivity that the
model might produce.
The standard Soar idiom for implementing multiple

actions can also encounter problems that impact timing,
errors, and adaptivity. The typical approach in Soar would
have a single operator object that has associated with it
multiple rules that implement the conditional logic for
various combinations of actions. However, different
sequences of action may require rule-firing sequences of
different lengths, some of which can cause the operator

object to be deselected automatically (this is in fact the case
in the above example, where there are additional rules that
match against the “change-value” pattern). This can
introduce “race conditions” where one stream of decision
making does not get a chance to complete because another
stream has deselected the operator. Consider the following,
slightly more complicated, ACT-R rule, which implements
three separate actions simultaneously.

(p clear-disk

 =goal>

 isa move-disk

 disk =disk

 peg =peg

 state peg

 =retrieval>

 isa disk-on-peg

 disk =disk

 peg =on

 - peg =peg

==>

 !output! "Subgoaling clear-disk with disk ~S on

peg ~S to peg ~S parent ~S" =disk =on =peg =goal

 +goal>

 isa clear-disk

 disk =disk

 current =on

 peg =peg

 parent =goal

 +retrieval>

 isa next-smallest-disk

 disk =disk

 =goal>

 state =retrieval)
Attempting to implement this with a single Soar operator

would almost certainly lead to race conditions that would
cause the model to break. The standard Soar idiom to
respond to such a situation is to break these simultaneous
conditional actions into individual operators, so they cannot
race with each other. But because Soar only allows one
operator at a time, this imposes sequential processing, where
the initial desire was to implement a set of parallel actions.
Again, a combination of constraints within the architecture
directly leads to meaningful changes in the data that models
will produce.

Sequential vs. Parallel Memory Retrieval

In ACT-R, the combined bottlenecks for individual rule
firing and memory access through a retrieval buffer produce
a common idiom for accessing and processing elements
from long-term declarative memory. Before any memory
object can be accessed, it must first be fetched into the
retrieval buffer. Thus, the idiom is to include one rule (or
more) to initiate the retrieval, and one rule (or more) to
“harvest” the retrieved item, processing it in the desired
way. Below are two example rules, again from a Towers-
of-Hanoi model. These rules process a “clear-disk” goal by
creating a subgoal to move the “next smaller tower” off of
the current disk. In order to accomplish this, the ACT-R
model must first find a peg to move the subgoal tower to.
This is accomplished by searching for a spare peg and
fetching it into the retrieval buffer, where it then becomes
available to provide information for the new subgoal.
(p find-spare-peg

 =goal>

 isa clear-disk

 disk =disk

 current =on

 peg =peg

 state nil

 =retrieval>

 isa next-smallest-disk disk =disk next =next

==>

 !output! "Next smaller disk to ~S is ~S and

retrieving peg other than ~s and ~S" =disk =next

=on =peg

 =goal>

 disk =next

 state other

 +retrieval>

 isa spare-peg

 current =on

 destination =peg)

(p clear-tower

 =goal>

 isa clear-disk

 disk =disk

 current =on

 peg =peg

 state other

 parent =parent

 =retrieval>

 isa spare-peg

 current =on

 destination =peg

 other =other

==>

 !output! "Subgoaling move-tower with disk ~S

peg ~S parent ~S" =disk =peg =parent

 +goal>

 isa move-tower

 disk =disk

 peg =other

 parent =parent)

As in our first example above, a Soar model could be

built similarly by mimicking the retrieval buffer within

Soar’s working memory. However, the more typical idiom

in Soar would take advantage of Soar’s unfettered access to

all elements in declarative memory. In such a Soar model, a

single rule can perform a complex conditional query and use

the information to create the desired subgoal, without

requiring the extra step of going through a retrieval buffer.

sp {clear-disk*propose*create-subgoal*move-tower

 (state <s> ^current-goal <g> ^disk <disk>

 ^next-smallest-disk <nsd>

 ^spare-peg <sp>)

 (<g> ^name clear-disk ^disk <disk>

 ^current <on> ^peg <peg> ^parent <parent>)

 (<nsd> ^disk <disk> ^next <next>)

 (<sp> ^current <on> ^destination <peg>

 ^other <other>)

 (<next> ^name <dname>)

 (<peg> ^name <pname>)

 (<other> ^name <oname>)

-->

 (write (crlf) |Create new subgoal move-tower

disk | <dname> | to peg | <oname> | to replace

clear-disk from peg | <pname>)

 (<s> ^operator <o>)

 (<o> ^name create-subgoal ^goal <ng>)

 (<ng> ^name move-tower ^disk <next> ^peg <other>

 ^parent <parent> ^clear-parent *yes*)}

In general, the lack of a retrieval buffer in Soar allows

Soar models to be written in a more compact way with more

opportunities for the reuse of individual operators and rules.

The primary potential downside is that many Soar models

do not take the memory-retrieval bottleneck seriously, as

ACT-R models must. It is possible to find Soar models that

have literally hundreds of accessible items in their

declarative memory at one time, although this is generally

truer for “applied” Soar systems than it is for serious

cognitive models built in Soar. There are a number of Soar-

based cognitive models that self-impose more declarative-

memory constraints than the architecture itself requires

(e.g., Wray & Chong, 2005; Young & Lewis, 1999). It is

also worth noting that Soar models with large declarative

memories are usually compensating for the fact that they do

not use Soar’s built-in learning mechanism. Models that use

learning usually use the learned rules for declarative access,

rather than relying on huge declarative memories. The

situation is similar in ACT-R, except that ACT-R’s

constraints are more forceful in the sense that it is more

difficult to “cheat” in the ways that you sometimes can

when using Soar.

There are some senses in which loosely limited

declarative memory access may be plausible, but other

senses in which it certainly is not. On the other hand, the

restriction in ACT-R to have a single retrieval buffer that

can hold only a single chunk is probably overly restrictive in

some cases. In the example above, it would seem

reasonable that a model of even a slightly experienced

Towers-of-Hanoi practitioner should just “know” what the

third peg is. However, under the current architectural

constraints, that is only possible by encoding in the

production rules all the combinatorial possibilities of origin

and destination pegs (admittedly a limited number with only

three pegs, but still too large to be considered elegant or

even plausible). It would seem plausible to have a small

number of frequently and/or recently used chunks directly

accessible from some sort of working memory, but that is

currently only possible by having the modeler pack a given

buffer with the content of those chunks, a practice that often

leads to brittle and/or implausible models. Both

assumptions lead to interesting models that are qualitatively

different, but perhaps plausible and implausible in their own

ways.

The main reason for the differing idioms in this case is

that Soar implements its “retrieval process” through rules

and rule conditions that can encode arbitrarily complex

conjunctions of declarative memory elements. Retrieval in

ACT-R is instead a sequential process that takes a set of

cues as input and returns a single set of elements to fill the

retrieval buffer. Both of these approaches to memory access

manifest themselves in modeling idioms that predict

different types of behavior. In this case, it is interesting to

note that each architecture adopts a rather extreme approach

to memory access, where a more accurate model of the

human architecture would probably be somewhere in

between the two. It seems unlikely that human memory is

limited to holding accessible a single chunk at a time (e.g.

Miller, 1956), but equally unlikely that human memory is

capable of unfettered retrieval of arbitrarily complex

conjunctions.

Partial Matching vs. Preferences for Conflict

Resolution

One of the more unique aspects of the Soar architecture

involves its mechanisms for supporting symbolic rule-based

preferences for conflict resolution. In Soar, all conflict

resolution centers around deciding which operator object to

select next, and this is generally accomplished by preference

rules that propose binary comparisons between the various

candidates (O1 is better than O2, O2 is just as good as O3,

etc.). The rule-based preference mechanism is necessary

because there is no architectural conflict resolution

mechanism (other than the architectural component that

makes a selection based on the symbolic preferences).

In ACT-R, conflict resolution centers around two types of

choices: which rule instantiation should fire next and which

chunk should be retrieved from declarative memory into the

retrieval buffer. ACT-R includes architectural mechanisms

to support both of these modes of conflict resolution. Both

mechanisms are similar, being grounded in subsymbolic

concepts (utility and activation, respectively) and including

similar restrictions such as learning constraints. Thus, the

idiom in ACT-R modeling is to create numerically oriented

“preferences” that are assumed to reflect some sort of

learning from prior experience. The Soar idiom is to encode

the preferences as (sometimes complex) sets of logical

ordering constraints (which are also assumed to be learned).

The result is that we see some significant differences

between ACT-R and Soar in conflict-resolution modeling,

depending on the type of model. For purely symbolic

models, ACT-R must include rule conditions that encode

the combinations of constraints that could be represented as

individual preference rules in a Soar model. However,

ACT-R also provides a subsymbolic partial-matching idiom

that is not directly available to Soar modelers. Similarly,

the most recent versions of Soar have introduced the ability

to specify numeric and probabilistic preferences, so there

are some new opportunities to explore non-symbolic

preference idioms in Soar, as well.

Following is a simple example of the relatively compact

representation of preferences that can be encoded into a

Soar model. In this example, the model is to select either an

“eat” operator or a “drink” operator, but it prefers to eat

before drinking.

sp {eat*propose

 (state <s> ^agent <a>)

 (<a> ^hungry yes)

-->

 (<s> ^operator <o> + =)

 (<o> ^name eat ^agent <a>)}

sp {drink*propose

 (state <s> ^agent <a>)

 (<a> ^thirsty yes)

-->

 (<s> ^operator <o> + =)

 (<o> ^name drink ^agent <a>)}

sp {prefer*eat*over*drink

 (state <s> ^operator <o1> + <o2> +)

 (<o1> ^name eat)

 (<o2> ^name drink)

-->

 (<s> ^operator <o1> > <o2>)}

Note that, if Soar did not include its preference-based

conflict-resolution mechanism, a modeler would be forced

to encode the semantics of the various preferences into the

operator proposal rules themselves. For example, in the

above code, we would have to change the drink proposal

rule to the following:

sp {drink*propose

 (state <s> ^agent <a>)

 (<a> ^thirsty yes -^hungry yes)

-->

 (<s> ^operator <o> + =)

 (<o> ^name drink ^agent <a>)}

A potential problem with this approach to conflict

resolution is that it will lead to a combinatorial explosion of

conditions for complex preferences between multiple

potential choices. In a purely symbolic ACT-R model, the

approach would be similar, but with an added constraint.

Because only one item can be in the retrieval buffer at a

time, an ACT-R model must test the different logical

conditions sequentially and either make each test depend on

the results of the previous one(s) or accumulate the results

in the goal (or some other) buffer for some final decision.

In contrast, Soar proposals can each check their

combinations of conditions with less restricted access to

declarative memory. Thus the symbolic ACT-R approach

might look as follows:

(p check-hungry

 =goal>

 isa agent

 name =name

 state nil

==>

 +retrieval>

 isa property

 agent =name

 attribute hungry

 value yes

 =goal>

 state hungry)

(p check-thirsty

 =goal>

 isa agent

 name =name

 state hungry

 =retrieval>

 isa error

==>

 +retrieval>

 isa property

 agent =name

 attribute thirsty

 value yes

 =goal>

 state thirsty)

In the above example, the first rule’s retrieval will

succeed if and only if there is a “hungry” property with a

value of “yes” in declarative memory. If that retrieval fails,

the check-thirsty rule will look for a “thirsty” property with

a value of “yes”. However, ACT-R modelers are not

restricted to doing symbolic conflict resolution. For choices

like this, ACT-R also supports similarity-based partial

matching for retrieval. It is possible to define a “similarity

relationship” between different attribute values, which will

in turn influence how the retrieval process executes. Using

ACT-R’s partial-matching mechanism, we can rëimplement

the above example as follows:
(setsimilarities (hungry thirsty -0.5))

(p choose-action

 =goal>

 isa agent

 name =name

 state nil

==>

 +retrieval>

 isa property

 agent =name

 attribute hungry

 value yes

 =goal>

 state unknown)

In this case, the attribute values “hungry” and “thirsty”

are set to be relatively dissimilar to each other. But the fact

that they are defined with any similarity measure at all

indicates that they are candidates to be substituted for each

other in any partial-matching retrieval. Thus, the choose-

action rule initiates a search for “hungry yes”, and it will

retrieve a perfectly matching chunk if one exists in

declarative memory. But if there is no perfectly matching

chunk, the retrieval process will instead look for the closest

partial match. In this case, a chunk representing “thirsty

yes” would be the next best match. Based on whichever

chunk happens to get retrieved, the program can then choose

to “eat” or “drink”, as appropriate. However, if the set of

options is so complex or heterogeneous that checking the

options cannot be reduced to a single retrieval, then an outer

loop must be explicitly maintained to access the various

options sequentially, where in Soar they could be combined

into a single complex conditional rule. The problem in

ACT-R is that if each option involves checking some

additional condition (such as perceptual or memory

information), then the utility preferences are not helpful

because they would attempt to check the same condition

over and over again. Either an explicit round robin check of

the various conditions has to be set up symbolically in the

production conditions or learning of the utilities can be used

to iterate through the options by having the failure of each

option temporarily depress the utility of the production

selecting that option (Lebiere et al., in press).

Exhaustive Processing and Search

The final pattern we investigate involves performing

exhaustive iterative actions on a set of similar object or

chunk types. For example, imagine that declarative memory

contains a number of message objects, each with a text

attribute. We would like to build a model that iterates

through all of the messages and prints out the text value of

each one. In a Soar program this can be done relatively

simply because an individual operator application rule can

match against multiple objects at a time, and each matching

instantiation will execute simultaneously. For example, the

following Soar rule simultaneously finds all “unhandled”

message objects in declarative memory, prints their

messages, and marks the message objects as “handled”.

sp {handle-messages*apply

 (state <s> ^operator <o> ^message <m>)

 (<o> ^name handle-messages)

 (<m> ^text <t> ^message-handled false)

-->

 (write (crlf) | Message is: | <t>)

 (<m> ^message-handled false - true +)}

In contrast, ACT-R is restricted to matching one object at

a time through the retrieval buffer. In older versions of

ACT-R, this would be accomplished by iterating over a

sequence of retrievals and harvests, tagging each chunk as it

is processed. This approach also requires an additional rule

that detects when the retrieval process has failed to find any

further matching candidates for processing.

(p find-message-to-handle

 =goal>

 isa handle-message

 state nil

==>

 =goal>

 state harvest

 +retrieval>

 isa message

 handled false)

(p handle-message

 =goal>

 isa handle-message

 state harvest

 =retrieval>

 isa message

 text =text

 handled false

==>

 !output! "~S" =text

 =goal>

 state nil

 =retrieval>

 handled true)

(p finish-handle-message

 =goal>

 isa handle-message

 state harvest

 =retrieval>

 isa ERROR

 condition Failure

==>

 !output! "Done handling messages"

 =goal>

 state finished)

However, the most recent version of ACT-R does not

allow non-monotonic changes (such as tagging) to chunks in

the retrieval buffer, so new idioms are developing that rely

on the subsymbolic processing of the retrieval mechanism.

These new idioms encounter additional confounding factors.

A major problem is that the dynamics of the activation

calculus, and in particular the learning of the base level to

reflect frequency and recency of access, conspire against

that iterative process. Recently accessed chunks become

more active while chunks that have not been accessed decay

and become less active, leading to the opposite dynamics of

the iteration desired, namely a winner-take-all tendency to

retrieve the same candidate(s) again and again. One typical

idiom to get around this problem is to alter subsymbolic

processing parameters such as noise, in order to “break out”

of bad retrieval sequences. However, this is often only

partially successful in moving the iteration along.

Another example of iteration comes again from the

Towers of Hanoi. In this problem, it is useful to compute

which disk is currently at the top of a particular peg. In a

Soar model, the encoded logic is along the lines of “find a

disk on the peg for which all other disks on the peg have a

lower position”. Although this gets a bit messy, the logic

can be encoded in the conditions of a single Soar rule. In

contrast, an ACT-R model must implement this logic using

a sequential loop or by clever configuration of the partial-

matching mechanism. Although the sequential iteration can

be implemented in a relatively straightforward fashion, it

again runs into the stumbling block that ACT-R prefers to

retrieve the same disk repeatedly, instead of iterating

through all of the disks on the peg.

Note that it is also possible to implement sequential

iteration using operators in Soar. Soar does not include the

restriction against altering declarative memory items, so the

typical Soar idiom in such situations is to tag each object as

it is processed in sequence. However, depending on the

situation, the alternative idiom in Soar is to use a single rule

to process everything at once. It is certainly a valid

question, however, whether Soar ought to make it so easy to

do this type of computation. It could be argued persuasively

that humans in general cannot perform this type of

exhaustive, instantaneous, massively parallel processing,

and so it is a mistake for Soar to allow and even encourage

this type of solution. On the other hand, there are certainly

some types of massively parallel processing occurring in the

human architecture. So once again, we are faced with two

architectures that embody extreme constraints, where the

truth is probably a combination or compromise.

It should also be noted that there are particular problems

of this type that also require a sequential solution approach

in Soar. For example, although a Soar program can easily

use one rule to operate on a whole set of objects

simultaneously, it currently has no way to count the number

of objects in that set. For the task of counting the number of

elements in a set, both ACT-R and Soar demand

sequentially implemented solutions.

Conclusion

We have examined four classes of modeling idioms that

arise relatively directly from the combination of assumed

constraints on cognitive processing imposed by the ACT-R

and Soar cognitive architectures. We hope that these

examples provide a more detailed feeling to the modeling

community about what some of the differences and

similarities are between the architectures, particularly when

it gets to the nitty-gritty of building detailed models. From

a cognitive modeling perspective, this is not just an exercise

in examining computationally equivalent modeling

approaches. Each of the idioms implies measurable

differences in the type of data the models will produce. We

have also observed that the constraints and bottlenecks

assumed by each architecture tend be rather extreme and

often opposed to each other. We join others in

recommending future work that includes finding more

intermediate constraints on the cognitive architecture, which

should translate to some variation in the common modeling

idioms, and in turn to cognitive models that produce better

matches to human data.

References

Anderson, J., & Lebiere, C. (1998). The Atomic

Components of Thought. Mahwah, NJ: Lawrence

Erlbaum.
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, C., & Qin, Y . (2004). An integrated theory of
the mind. Psychological Review 111, (4). 1036-1060.

Jones, R. M., Crossman, J. A., Lebiere, C., & Best, B. J.
(2006). An abstract language for cognitive modeling.
Proceedings of the Seventh International Conference on
Cognitive Modeling. Trieste, Italy.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar:
An architecture for general intelligence. Artificial
Intelligence 33(1): 1-64.

Lebiere, C., Archer, R., Best, B., & Schunk, D. (in press).
Modeling pilot performance with an integrated task
network and cognitive architecture approach. In Foyle,
D. & Hooey, B. (Eds.) Human Performance Modeling in
Aviation. Mahwah, NJ: Lawrence Erlbaum.

Miller, G. A. (1956). The Magical Number Seven, Plus or
Minus Two: Some Limits on Our Capacity for Processing
Information. Psychological Review, 63, 81-97.

Wray, R., & Chong, R., (2005). Comparing cognitive
models and human behavior representations:
Computational tools for expressing human behavior.
Proceedings of the Infotech@Aerospace 2005
Conference, Arlington, VA. American Institute of
Aeronautics and Astronautics.

Young, R. M., & Lewis, R. L. (1999). The Soar cognitive
architecture and human working memory (1999). In A.
Miyake & P. Shah (Eds.), Models of Working Memory:
Mechanisms of Active Maintenance and Executive
Control, 224-256. Cambridge University Press.

Acknowledgments

This work was supported in part by contract N00014-05-C-

0245 from the Office of Naval Research. Many thanks to

Bob Wray for his helpful comments on an earlier draft.

Dynamic Spatial Reasoning Capability in a Graphical Interface Evaluation Tool

Michael Matessa (mmatessa@alionscience.com)
Rick Archer (rarcher@alionscience.com)
Rebecca Mui (rmui@alionscience.com)

Alion Science and Technology
Micro Analysis & Design Operation

1789 South Braddock Avenue, Suite 400
Pittsburgh, PA 15218 USA

Abstract

This paper describes dynamic and spatial reasoning
enhancements to the Graph-Based Interface Language tool
(GRBIL), which creates ACT-R models by demonstration. A
new ability for users to create monitors enables procedures to
be dynamically triggered. A new integration of ACT-R with a
diagrammatic reasoning theory allows ACT-R to perform
spatial reasoning. Capabilities of the tool are demonstrated in
a robotic control task.

Introduction
Cognitive modeling can add value to interface evaluation,
but it is currently not very practical in terms of amount of
expertise and time. Recent efforts to allow easier
construction of cognitive models have utilized high level
languages (Howes, Lewis, Vera, & Richardson, 2005;
Salvucci & Lee, 2003; St. Amant & Ritter, 2005) and
modeling by demonstration (Archer, Lebiere, & Warwick,
2005; John, Prevas, Salvucci, & Koedinger, 2004).
Modeling by demonstration is an easy way to create a
sequence of procedural steps, but with dynamic interfaces,
an additional method is needed to designate the condition in
which the procedure should be applied. In addition, many
real-world tasks require aspects of spatial reasoning as well
as dynamic interaction. Examples of interfaces with these
features include radar operator interfaces and interfaces for
controlling robotic vehicles. This paper describes dynamic
and spatial reasoning enhancements to the GRaph-Based
Interface Language tool (GRBIL – Archer, Lebiere, &
Warwick, 2005), which creates ACT-R models by
demonstration. A new ability for users to create monitors
enables procedures to be dynamically triggered. A new
integration of ACT-R with a diagrammatic reasoning theory
allows ACT-R to perform spatial reasoning.

ACT-R
The ACT-R cognitive architecture has shown an increasing
ability to account for human visual information processing.
Early ACT-R accounts of visual processing made a
distinction between pre-attentive features available to vision
and objects available after a shift of attention (Anderson,
Matessa, & Lebiere, 1997). More recent work uses brain
imaging as evidence for an Imaginal module where
information can be visualized and manipulated (Anderson et

al., 2004). However, current ACT-R theory is limited in the
visual objects that can be recognized (text, lines, rectangles,
and ovals) and does not provide primitive operators for
getting attribute information such as length, relational
information such as what objects are inside or next to other
objects, inferred information such as projected intersections,
and transformations on objects such as rotation. One
solution to these limitations is to integrate a spatial
reasoning theory into ACT-R. For interface evaluation,
diagrams are a useful level of representation for reasoning.
Larkin and Simon (1987) point out that diagrams
automatically support a large number of perceptual
inferences which are extremely easy for humans but that
“...diagrams are useful only to those who know the
appropriate computational processes for taking advantage of
them.”

DRS
Chandrasekaran et al. (2004) developed the diagrammatic
reasoning theory DRS, which consists of a basic set of
primitive objects, information gathering capabilities called
Perceptual Routines, and creation/modification operations
called Action Routines. A diagrammatic object can be one
of three types: point, curve, and region. Figure 1 shows
examples of object types and how they can be composed
hierarchically. Perceptual Routines can be qualitative (e.g.,
LeftOf, On, InsideOf), quantitative (e.g., Distance, Angle,
Length), or related to object recognition (e.g., ScanPath,
Intersect). Action Routines can create or modify objects
(e.g., Translate, Rotate, PathFinder).

Figure 1: DRS object types

Figure 2: DRS routines in the ACT-R architecture

Chandrasekaran and Kurup (2007) incorporated DRS into
Soar and used its chunking mechanism to learn efficient
abstractions of observed visual material. The abstractions
led to beneficial simplification in the case of memory of a
specific path in a complex environment, and also led to
incorrect but psychologically realistic reasoning in the case
of determining whether Reno is east or west of San Diego
(it is actually west). Lathrop and Laird (2006) incorporated
a diagrammatic reasoning theory motivated by DRS into the
Soar cognitive architecture and found an increase in
functional capability and increase in efficiency of code as
measured by number of decision cycles.

Combining DRS and ACT-R
Matessa and Brockett (2007) describe how the perceptual
capabilities of ACT-R can be enhanced by the addition of
DRS. Figure 2 shows where DRS routine types can
naturally fit in the ACT-R architecture. One unnatural fit
would be for qualitative routines to put all relational
information (e.g., Region4 is above Region5) in the
declarative module, which would cause a combinatorial
explosion of facts. More naturally, qualitative routines can
constrain locations returned by the visual module. For
example, DRS could return the location of some object
InsideOf a particular object. Quantitative routines can
associate information with visual objects returned by the
visual module. For example, DRS could associate the
Length of a line with the returned visual object. Object
recognition routines can return objects that are either
literally in the display or implied by the display. For
example, DRS could infer the projected line from a
specified object to the nearest Intersecting object and return
it to the imaginal module. Action routines can create or
modify objects stored in the imaginal module. For example,
DRS could Rotate an object in the imaginal module 45
degrees clockwise. To demonstrate these concepts, a model
of maze navigation was created where the decision to move
ahead or turn was based on the length of a projected line to
the nearest intersecting wall. Without the integrated DRS,
an ACT-R model would be forced to do maze navigation
using mental arithmetic on coordinates instead of using
more natural representations of intersection and line length.

In order to use DRS-enhanced ACT-R models to evaluate
dynamic interfaces, the code from Matessa and Brockett
(2007) was integrated into the GRBIL evaluation tool.

GRBIL
The goal of developing the GRaph-Based Interface
Language tool (GRBIL) is to allow developers to easily
design and evaluate system interfaces. The system allows
the user to graphically define a system interface,
demonstrate a set of procedures for using the interface, and
automatically generate an ACT-R model of an interface
operator, providing a time-stamped series of events and
potential errors. In addition, the system allows the
incorporation of dynamic models of the external world
using a task network modeling environment named
IMPRINT (IMProved Research INTegration Tool – Archer
& Adkins, 1999). This enables the evaluation of interfaces
that involve continually changing environments. Multiple
IMPRINT tasks can run independently, and with multiple
machines, multiple ACT-R agents can interact with
IMPRINT in a common environment.

 The first step in constructing an interface in GRBIL is to
design the physical layout of the interface. This involves
choosing the windows, subwindows, and interface controls
that comprise the interface. This is done in a similar fashion
to many modern interface layout applications using
WYSIWYG drag and drop functionality. Once a control is
added to a window, attributes such as size and background
image may then be customized further from a menu. The
second step in designing an interface is to provide a
description of what actions each control will be capable of
and what the desired effect of each action will be. This is
done for each control in GRBIL via an “Event Actions”
menu for each control. Using this process of adding
interface windows, placing controls on those interfaces and
then describing the effects of using those controls on the
state of the interface, a GRBIL user can describe the
functionality of an entire user interface.

Production System

Imaginal Module Manual Module

Intentional Module Declarative Module

Visual Module
Location Object

Visual Module
Location ObjectLocation Object

External World

Qualitative
(InsideOf)

Quantitative
(Length)

Object Recognition
(Intersection)

Action Routine
(Rotate)

Location of
feature

Object at
location

Visualize
object not

present

Figure 3: GRBIL monitor used to define a condition of procedure execution

The next step in setting up an interface for evaluation is to
define the procedures that a user of the system might wish
to perform. This is accomplished by demonstrating a series
of actions (e.g., button clicks, object movement). The
recorded series of actions is referred to as a “goal state”
procedure in the GRBIL terminology. Any number of goal
state procedures can be demonstrated and saved for later
execution by an ACT-R model. In the model, action steps
are represented as a list that is retrieved from declarative
memory, and so can be used to predict errors that are
dependent on sequence length and positional confusion (cf.
Anderson & Matessa, 1997; Matessa & Polson, 2006).
Model tracing is used so that potential errors are only noted
in the output while the correct retrievals are actually made
so the model runs correctly.

Once goal state procedures are defined, monitors can be
created that designate the condition in which the procedure
should apply. There are two types of monitors: object
monitors that check the status of an interface object and
spatial monitors that use DRS to check the status of
graphical objects. Figure 3 shows the interface used to
create monitors. A monitor control is either the name of an
interface object, name of a graphical object or names o
multiple graphical-objects. An attribute to monitor is an
attribute of an interface object defined in GRBIL or a DRS
routine for a graphical object. An attribute trigger value
must match the value of an attribute before the given goal
state procedure can be executed. Any number of monitors
can be demonstrated and saved for later execution by an
ACT-R model

At run time, goal state procedures and monitors are
chosen and ordered. An ACT-R model is created that
performs executes the procedures in the given order. The
action steps of a goal state procedure are performed without
interruption. Between goal state procedures, the model
evaluates the next unmatched monitor, using necessary
shifts of attention. If the monitor matches, the goal state
procedure for that monitor is executed.

Output from the model run includes a time-stamped series
of events and possible memory errors (failures to retrieve or
the retrieval of similar but incorrect chunks).

Robotic Interface Test Case
In order to test the capabilities of ACT-R models generated
with GRBIL, an interface for an unmanned vehicle Operator
Control Unit (OCU) was selected (Figure 4). The OCU is
used by operators to control unmanned vehicles in the field.
Operators set up plans for the vehicles which are then
executed independently. Operators are also responsible for
monitoring the status of the vehicles. The interface for the
OCU is quite complex, with several modes of operation and
control menus. In our implementation, ACT-R performed
the actions of operator agents and IMPRINT performed the
actions of unmanned vehicle agents. Multiple IMPRINT
vehicle agents can run independently, and with multiple
machines, multiple ACT-R operator agents can interact with
the IMPRINT vehicle agents in a common environment.
The ACT-R operators are able to monitor specific attribute
values in the environment (such as text describing the status
of a vehicle) and use DRS spatial reasoning to detect more
general conditions such as projected vehicle intersection
(Figure 5). For a particular set of procedures, interacting
models of multiple operators (one setting up and initiating
vehicles, one monitoring) predict improved performance
over a model of a single operator. This is a result of the
ability of the purely monitoring operator to react at the same
time the single operator would be busy with a procedure.

In order to validate the model’s predictions of errors,
latencies, and other performance measures, the project team
has begun to collect performance data from human
operators performing interface tasks such as mission
planning and execution on the actual Robotic OCU.
Fleetwood et al. (2006) report that timing predictions of
tasks not involving spatial reasoning generally match
preliminary data.

Figure 4: GRBIL tool viewing the Operator Control Unit interface

Related Work
Tools that enable modeling by demonstration, such as
CogTool (John et al., 2004), solve some affordability
problems. However, they offer no standard solution for
spatial reasoning or integration with dynamic environments.
As of this writing, visual processing in CogTool is limited
to scripted attention movement to interface objects. The
environment can not be monitored to detect a change.
CogTool simulates the environment with a storyboard of
static frames and transitions between these frames triggered
by user actions, not a dynamic environment. Under some
circumstances, CogTool storyboards could be combined
with dynamic simulations (e.g., driving) with some hand-
coded modifications.

In addition, CogTool currently produces Keystroke-Level
Models (Card, Moran, & Newell, 1983) implemented in
ACT-R, while GRBL produces more direct ACT-R code.
An example of this difference is that CogTool represents
cognitive activity associated with memory retrieval with a
1.2 second mental operator, while GRBIL uses the retrieval
mechanism of ACT-R to determine the timing of retrievals.

Conclusion
The project has so far demonstrated that even a complex
interface such as an OCU for robotic vehicles can be
duplicated by the GRBIL system without writing a line of
code. The creation of this interface requires only drag and
drop placement of controls and a menu-driven description of

functionality. The project has also shown the ability to
automatically generate cognitive models that perform
dynamic spatial reasoning. The creation of these models
requires only the demonstration of procedures and the
creation of monitors with a simple interface.

Future Work
The next step in our research is to validate the enhanced
GRBIL tool by collecting data on OCU tasks involving
spatial reasoning such as projected vehicle intersection. The
DRS theory implemented in ACT-R currently uses the
default ACT-R timing for movement of attention and object
recognition. The validation studies should indicate if further
visual processing time is needed to accomplish the DRS
routines.

Also, since GRBIL models retrieve procedure steps from
memory, it will be possible to use ACT-R's theory of
production compilation to predict the trajectory of learning
from error-prone retrieval to efficiently compressed
performance.

Acknowledgments
We would like to thank the Army Research Laboratory for
their funding of this effort and Bonnie John for her
comments.

Figure 5. Vehicle path intersection detectable by
DRS-enhanced models

References
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,

Lebiere, C., & Qin, Y. (2004). An integrated theory of the
mind. Psychological Review 111, (4). 1036-1060.

Anderson, J. R. & Matessa, M. (1997). A production system
theory of serial memory. Psychological Review, 104 (4),
728-748.

Anderson, J. R., Matessa, M., & Lebiere, C. (1997). ACT-
R: A theory of higher level cognition and its relation to
visual attention. Human Computer Interaction, 12(4),
439-462.

Archer, S. G. & Adkins, R. “IMPRINT User’s Guide”
prepared for US Army Research Laboratory, Human
Research and Engineering Directorate, April 1999.

Archer, R. D., Lebiere, C., Warwick, W. (2005). Design and
Evaluation of Interfaces Using the GRaph-Based Interface
Language (GRBIL) Tool. ANSE Human Systems
Integration Symposium on “Enhancing Combat
Effectiveness Through Warfighter Performance”, June
20-22, 2005, Arlington VA.

Byrne, M. D., (2001). ACT-R/PM and menu selection:
Applying a cognitive architecture to HCI. International
Journal of Human-Computer Studies, 55, 41-84.

Card, S. K., Moran, T. P., & Newell, A. (1983). The
psychology of human-computer interaction. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Chandrasekaran, B., & Kurup, U. (2007). Bimodal
Cognitive Architectures: Learning and Memory in Spatial
Reasoning. ARL Advanced Decision Architectures RMB
Meeting, February 21-23. Westminster, CO.

Chandrasekaran, B., Kurup, Banerjee, Josephson, &
Winkler (2004). An Architecture for Problem Solving
with Diagrams. In Diagrammatic Representation and
Inference, A. Blackwell, K. Marriott and A. Shomojima,
Eds., Lecture Notes in Artificial Intelligence 2980, Berlin:
Springer-Verlag, pp. 151-165.

Fleetwood, M., Lebiere, C., Archer, R., Mui, R., &
Gosakan, M. (2006). Putting the Brain in the Box for
Human-System Interface Evaluation. Proceedings of the
50th Annual Human Factors and Ergonomics Society
Meeting. Santa Monica, CA

Howes, A., Lewis, R. L., Vera, A., & Richardson, J. (2005).
Information-Requirements Grammar: A theory of the
structure of competence for interaction. In Proceedings of
the 27th Annual Meeting of the Cognitive Science
Society, 977-983. Hillsdale, NJ: Lawrence Erlbaum.

John, B. E. & Salvucci, D. D. (2005) Multi-Purpose
Prototypes for Assessing User Interfaces in Pervasive
Computing Systems. IEEE Pervasive Computing 4(4), 27-
34.

John, B., Prevas, K., Salvucci, D., & Koedinger, K. (2004)
Predictive Human Performance Modeling Made Easy.
Proceedings of CHI, 2004 (Vienna, Austria, April 24-29,
2004) ACM, New York.

Larkin, J.H. & Simon, H.A. (1987). Why a diagram is
(sometimes) worth ten thousand words. Cognitive
Science, 11, 65-99.

Lathrop, S., and Laird, J.E. (2006). Incorporating Visual
Imagery into a Cognitive Architecture: An Initial Theory,
Design and Implementation. University of Michigan
Technical Report CCA-TR-2006-01.

Matessa, M. & Brockett, A. (2007). Using a Diagram
Reasoning System with ACT-R. 16th Conference on
Behavior Representation in Modeling and Simulation.

Matessa, M., & Polson, P. (2006). List Models of Procedure
Learning. In Proceedings of the International Conference
on Human-Computer Interaction in Aeronautics (HCI-
Aero), San Francisco, CA.

Salvucci, D.D., & Lee, F. J. (2003). Simple cognitive
modeling in a complex cognitive architecture. In Human
Factors in Computing Systems: CHI 2003 Conference
Proceedings (pp. 265-272). New York: ACM Press.

St. Amant, R., & Ritter, F. E. (2005). Specifying ACT-R
models of user interaction with a GOMS language.
Cognitive Systems Research. 6(1) 71-88.

Learning to Control a Dynamic Task: A System Dynamics Cognitive Model of the
Slope Effect

Cleotilde Gonzalez (coty@cmu.edu) and Varun Dutt (varundutt@cmu.edu)

Dynamic Decision Making Laboratory
Social and Decision Sciences Department

Carnegie Mellon University, 5000 Forbes Avenue
Pittsburgh, PA 15213 USA

Abstract

We developed a system dynamics model for a simple, but
important stock and flows task where the objective was to
control the water level in a tank within an acceptable range of the
goal, over a number of time periods, in the presence of an
unknown environmental inflow and outflow. We also report how
this model accounts for human behavior, using behavioral data
we collected from human subjects in the task. This exercise
helped us understand the strategy and mechanisms our
participants used in the simple stock and flows task and develop
a model on the task. The model provides an integrated
explanation on how the variation in the parameters of the model
affects the performance and learning for the participant’s task.
Finally, we present the model’s validity and predictions derived
by looking into how the human data fits different learning
conditions.

Keywords: Learning; Dynamic decision making; System
dynamics model; Stock; Flows.

Introduction
An understanding of the building blocks of dynamic

systems, such as stocks (accumulation), flows (rates of
incomes and outcomes) and feedback (cause-effect
relationships), is essential for dealing with realistic dynamic
problems. For example, firms must manage their cash flows to
maintain adequate stocks of working capital, and production
must be adjusted as sales vary to maintain sufficient inventory.
Other examples of these dynamic decision making problems
include global warming (Sterman & Sweeney, 2002), factory
production, demands and prices of goods (Forrester, 1961),
and extinction of natural resources (Moxnes, 2003).

At the individual level, each of us also faces similar stock
management challenges: we manage our bank accounts (stock
of funds) to maintain a reasonable balance as our incomes
(inflows) and expenses (outflows) vary, and we struggle to
maintain a healthy weight by managing the inflow and outflow
of calories through diet and exercise.

Accumulation is a pervasive process in everyday life, and
arises at every temporal, spatial and organizational scale
(Cronin, Gonzalez, & Sterman, under review). All stock-flow
problems share the same underlying structure: a resource level
(stock) accumulates its inflows less its outflows over time.

Unfortunately, there is strong and increasing evidence of
poor human understanding of these basic concepts of dynamic
systems. For example, Sweeney and Sterman (2000) presented
MIT graduate students with a paper problem concerning
accumulation of water in a bathtub and asked them to sketch
the path for the quantity of water in the bathtub over time,

given the patterns for inflow and outflow of water. Despite the
apparent simplicity of this task (due to the presence of linearity
in the inflow and outflow), they found that only 36% of the
students answered correctly. More recently, researchers have
found that this misunderstanding of the concepts of flow and
accumulation is more fundamental, a phenomenon that has
been termed stock-flow failure (Cronin & Gonzalez, 2007;
Cronin et al., under review). Poor performance in the
interpretation of very simple stock and flow problems cannot
be attributed to an inability to interpret graphs, contextual
knowledge, motivation, or cognitive capacity (Cronin et al.,
under review). Rather, stock-flow failure is a robust
phenomenon that appears to be difficult to overcome.

In past research the stock-flow failure has been investigated
through the perception and judgment of static graphs
representing flows (Cronin et al., under review; Sterman,
2000). Guided by the tradition of research in dynamic decision
making (DDM), we believe that an understanding of the causes
and cure for the stock-flow failure will arise through the
research on human learning, where individuals can actually
experience the flows, influence the stock with their decisions,
and have an extended opportunity to control the dynamic
system.

With this goal in mind, we constructed a tool, “Dynamic
Stock and Flows” (DSF) (Gonzalez & Dutt, submitted), that
represents the simplest possible dynamic system containing its
most essential elements: a single stock that represents
accumulation (i.e., water) over time; inflows, which increase
the level of the stock; and outflows, which decrease the level of
the stock. We have conducted several human experiments
using DSF, including the investigation of environmental
functions, the effects of feedback delays, and the timing of
decisions, among others.

In this paper we present the results from an initial empirical
study aimed at determining the effects of the slope of an inflow
on dynamic control of DSF (Dutt & Gonzalez, 2007). Then,
we present a system dynamics model that we created to study
the cognitive processes involved in dynamic decision making
with DSF. We validate the model’s results against human
data, and present some interesting predictions that emerged
from this model. The implications and use of system dynamics
modeling of cognitive phenomena are discussed.

The Dynamic Stock and Flows Task
DSF is a generic dynamic control task that we designed to

help understand human dynamic decision making, and more
concretely for this paper to understand the stock-flow failure.

The full capabilities of DSF are described elsewhere (Gonzalez
& Dutt, submitted), and .here we will only give a brief
overview of the DSF capabilities relevant for the empirical
data and modeling reported in this paper.

The goal in DSF is to reach and maintain the level of water
in a tank at a target level over a number of time periods. The
level of water in the tank is the stock that increases with the
inflows and decreases with the outflows. There are two types
of inflows and outflows in this task: those that are exogenous
(outside of the decision maker’s control) and those endogenous
(under the decision maker’s control). The exogenous flows are
called Environmental Inflow (that increases the level of the
stock without the user’s control) and the Environmental
Outflow (that decreases the level of stock without user’s
control). The endogenous flows are User’s Inflow and
Outflow. These amounts are the main decisions made by the
user in each time period that increase (user inflow) or decrease
(user outflow) the level of the stock.

Figure 1 presents the graphical user interface of DSF. At
each time period users see the values of Environment Inflow
and Outflow, values of User Inflow and Outflow, the amount
of water in the tank (stock) and the goal level. At each time
period, users can submit two values (including zero): User
Inflow and User Outflow, and click in the submit button. Users
may also receive a ‘bonus’ performance monetary incentive in
each time period in which they were close enough to the target
level.

Figure 1: A screenshot of the Dynamic Stock and Flows

(DSF) task.

The Slope Effect
In dynamic decision making, it has been observed that people
may detect linear, positive correlations given enough trials
with outcome feedback. However, people have difficulty when
there is random error or non-linearity and negative correlations
(Brehmer, 1980). As part of the stock-flow failure studies we
have also observed that people have difficulty understanding
the effects that increasing or decreasing trends of inflow and
outflow have on controlling a stock (Gonzalez and Vanyukov,
in preparation).

In a laboratory study we investigated how individuals
controlled DSF over 100 time periods of practice when the
environmental inflow increased (positive slope) or decreased

(negative slope) as a function of time period (Dutt & Gonzalez,
submitted).

Participants played DSF for 100 time periods with the
objective of maintaining the tank’s water level at the 4 gallon
goal line (within +/- 0.1 gallons). In experiment 1, we used an
Environment Inflow function that was either increasing: 0.08 *
(timeperiod) + 2 or decreasing: (-7.92/99) * (timeperiod-1) +
10. Environment Outflow was constant and set at 0
gallons/time period during all 100 time periods. Both the
increasing and decreasing functions resulted in an equal
amount of environmental net flow into the tank over the course
of 100 time periods (604 gallons).

Results showed that the stock was higher for the decreasing
function condition (M = 5.909, SE = .205) than the increasing
function condition (M = 4.297, SE = .027) (F(1,31)=12.71,
p<.001). The analyses also indicated that the participants’
inflow, outflow and stock diminished significantly over time in
both conditions (i.e., subjects learned to control the system)
(F(1,31)=9.894, p<.001); and the decrease of the participants’
outflow and stock interacted with the slope of the
Environmental Inflow function (F(1,31)=7.031, p<.001)
(Figure 2 illustrates the interaction on the stock measure).

Figure 2: The stock for increasing and decreasing linear
Environment Inflow curve conditions over 100 time periods.

In experiment 2, we used a non-linear environment inflow
function that was again either increasing: 5*LOG (timeperiod)
or decreasing: 5*LOG (101- timeperiod). Outflow was
constant and set at 0 gallons/time period during all 100 time
periods. Both the increasing and decreasing functions resulted
in an equal amount of environmental net flow into the tank
over the course of 100 time periods (831 gallons).

Results again showed that the user outflows follow the
Environment Inflow functions quite closely. The user inflow
and stock indicate that most variability occurred during the
first half of the trials, where the decreasing (negative slope)
function result in higher inflow and higher stock levels than
the increasing (positive slope) function. No difference between
the increasing and decreasing functions is observed for the last
50 trials of the experiment in the user inflow and stock results.
An analysis of the first 50 trials indicated that the stock was on
average higher in the decreasing (M = 7.938, SE = .419) than
in the increasing condition (M = 4.757, SE = .143) (F(1,30) =
6.49, p<.05). The same analyses for the last 50 trials of the
experiment did not show a difference between the increasing
and decreasing functions for inflow and stock variables. A

significant difference was found only for the user outflow
(F(1,31) = 85.334, p<.001) where the outflow was higher for
the increasing (M = 9.543, SE = .081) than the decreasing (M
=7.067, SE = .195) function. Once again, the decrease of the
user outflow and stock interacted with the slope of the
environmental inflow function; (Figure 3 illustrates the
interaction on the stock measure).

Figure 3: The nature of stock for increasing and decreasing
Environment Inflow in non-linear curve slopes over 100 time
periods.

System Dynamics Model
System dynamics (SD) is a field that was created by Jay W.

Forrester at MIT in the late 1950s and it involves a modeling
approach using computer simulations (see Forrester, 1990 for
an historical view of the field; Lane, 2000 for a discussion on
the modeling approach).

A model in SD involves at its essence the concept of a
feedback loop: the collection of information about the system
state followed by an action that changes the state of the system
(Lane, 2000). These causal links involve delays and non-
linearities as well as processes of accumulation (stocks) and
flows.

SD modeling has largely focused on the representation of
social systems and their evolution over time. In fact, it has
been argued that SD is concerned with aggregate social
phenomena, not with individual meaningful actions (Lane,
2000).. In this paper we use SD modeling to represent and
reproduce the dynamics of individual human behavior found in
DSF. We also construct a cognitive interpretation of the SD
model, something uncommon in the SD field.

A SD model was developed using Vensim®, an open source
modeling software by Ventana Systems Inc. The software has
a flexible GUI that provides easy capability to the modeler to
represent stocks, define the stocks’ inflows and outflows and
define their causal relationships. Although the conventions for
representing stocks and flows followed in Vensim® are well
known and documented in the SD literature (Forrester, 1961;
Sterman, 2000) we discuss only some of the many software
features that we used for our model of learning and the slope
effect. These features are fixed time delay and smoothing.

The function defined in Vensim® as DELAY FIXED (X, T,
I) creates a delay of T time periods in an input X with the
initial value I of the variable used on the left hand side of the

function. In our model we use DELAY FIXED to create a unit
time delay in the environment inflow at each time period. This
is because participants in our DSF task are aware of the
environment inflow value for a time period only at the end of
that time period.

Smoothing is defined in Vensim® as SMOOTH (X, T) and
SMOOTHI (X, T, I) and creates an exponential smoothing of
T time periods in an input X with I as the initial value of the
variable used on the left hand side of the function. If X is a
step function which jumps to a new value X’ at a time instance
t, then the SMOOTH of X will start from X and approach the
value X’ over a long range of time periods. The greater the
value of T the more time SMOOTH of X takes to approach X’.
This smoothing effect of time averages to represent
expectations is similar to blending parameters used in learning
models of dynamic decision making under the ACT-R
cognitive modeling approach (Gonzalez, Lerch, & Lebiere,
2003). In our SD model, we used a smoothing effect to account
for the gradual correction of a discrepancy made by
participants.

A System Dynamics Model of the Slope Effect in
DSF

To help develop this model, we used our observations from
verbal protocols collected from four participants (Dutt &
Gonzalez, 2007). We also used human data analyses of inflow
and outflow decisions and their resulting stock; the averages of
individuals’ decisions for each of the conditions; and
comparisons of the participants’ inflow and outflow decisions
to the stock and environmental flow values.

Based on these observations and empirical data analyses, we
developed the SD model shown in Figure 4. The system
essentially consists of 2 inputs (User Inflow and
Environmental Inflow) that increase the stock and 2 outputs
(User Outflow and Environmental Outflow) that decrease the
stock.

The behavior is represented by causal loops described in the
model. The Environmental Inflow and Outflow are perceived
by the participants. The perception may be different from the
reality, as determined by the Environment perception (EP)
parameter. Then, the perceived environment netflow is used to
forecast the future flow under a Forecast Horizon (FH). This
forecast together with the perceived current discrepancy
between the stock and the goal are used to determine the
netflow correction. This correction is to account for the
increase in discrepancy over the perceived time for correction
(PTC) smoothed over the memory of discrepancy (MD). Then,
according to the determined user netflow correction the user
inflow and outflow are entered by the user. Over the course of
practice, Users modify the weight they put to inflows and
outflows and in general, the empirical data demonstrated that
individuals end up realizing that they only need to enter the
User Outflow to control for the Environmental Inflow (W=1).

The user net flow correction variable in our model (Figure 4)
serves as the main decision function for user inflows and
outflows and consists of two parts, discrepancy and forecast of
flow. The user net flow correction is given by the procedure: If
the discrepancy is beyond an acceptable threshold (.1 above or
below the goal), then, attempt to correct for such discrepancy
little by little, by smoothing the discrepancy over the perceived

time for correction (PTC), and according to the memory of
discrepancy (MD). Then, add to this smoothed discrepancy
value, the value of the forecasted flow.

Discrepancy is the difference between the goal and stock.
The forecast of flow is defined as per the formula: SMOOTH
(Perceived Environment Net flow, "Forecast Horizon (FH)")
where the Perceived Environment Net flow is a fixed unit
delay function of environment inflows and outflows (Vensim®
formula: DELAY FIXED ("Environment's Perception
(EP)"*(Env Inflow – Env Ouflow), 1, 0).

Hence, the discrepancy over PTC is smoothed by MD and
only adds to user net flow correction if the discrepancy is
above or below the acceptable range of stock in the tank, else
its affect to user net flow correction is zero. The perceived
environment net flow is smoothed by parameter FH to makeup
the forecast of flow. The environment inflow and outflow act
on the stock each time period, with a subject becoming aware
of actual values only at the end of that time period. This
requirement is realized in our model by using a fixed unit
delay as shown in the formula of perceived environment net
flow. Participants’ accuracy to perceive the environment’s
inflow and outflow affect is represented by the multiplier EP
also present in the delay formula.

As experiment 1 consisted of a linear environment function
and experiment 2 consisted of a non-linear environment
function we simulated our Vensim® model twice over a course
of 100 time periods, once for getting model data for fit to
experiment 1’s subject data and a second time for getting
model data for fit to experiment 2’s subject data. During the
course of each of the two simulation runs, we varied the values
of FH, PTC, MD and W with an increment of 0.05 each.
Although each of these parameters could take infinitely many
values, their chosen values were inspired from results on
experiments 1 and 2 and the availability of human data from
both experiments.

Stock

+

Discrepancy

Goal

User Inflow

Env Inflow Env Ouflow

User Outflow

Perceived Environment
Net flow

+

Forecast of flow

-

+

Forecast
Horizon(FH)

+

User Net flow
Correction

+

+

-+

Perceived Time for
Correction(PTC) +

Memory of
Discrepancy(MD)

+

User correction weight to
Inflow and Outflow(W)

- +

Environment's
Perception (EP)

+

Figure 4: Stock and Flows Model of DSF task.

Fit of Model and Human Data
Based on the results from both experiments, we expected

that the parameters of the model, the environment perception
(EP), the forecast horizon (FH), the perceived time for
correction (PTC), the memory for discrepancy (MD), and the
correction for inflow-outflow (W), would be different for the
positive and the negative slope conditions.

We went through a process of parameter tuning and
sensitivity analysis and were guided by our results and
expectations, while measuring the fit of the model’s data to the
humans’ mean and median values over the course of 100 trials,
using the r and RMSD statistics (Schunn & Wallach, 2001).
The resulting parameter values and data fit statistics for our
data from experiments 1 and 2 are summarized in Table 1. The
same model depicted in Figure 4 was used to fit the data of the
four different data groups from experiments 1 and 2. The value
of the parameters summarized in Table 1 help provide a
coherent explanation for the different human behavior found
between the positive and negative slopes.

Table 1: The value of model parameters and the resulting fit
to human data (measured against both, the median and the

mean) for each of the 4 groups in the 2 experiments (Linear
positive and negative; Non-linear positive and negative) for the

stock as dependent variable.

Some general observations from results shown in Table 1

are: PTC and FH parameter values are higher in the negative
than in the positive functions; the model fits the linear
functions better than the non-linear functions; and the model
data fit the median of the human data better than the mean.

Figure 5: Graphs and parameter values for model’s fit to stock.

Figure 5 is a graphical example of the fitting of stock data
for the linear and non-linear, positive and negative slopes’
functions as a result of our analysis and parameter tuning.

Greater FH value means that participants takes more time to
forecast the environment inflow value, and this extra time
causes the stock to increase due to the environment inflow,
which drives the stock away in each time period. Similarly,
greater PTC value means that participants take more time to
perceive the discrepancy happening in the tank and hence also
take more time to correct the discrepancy; this extra time
causes the stock to rise again due to environment inflow into
the stock with each elapsing time period. To meet the higher
stocks, participants order higher user inflows and outflows,
causing user inflow and user outflow values to rise as well.
When we fit our model to the negative-sloped environment
inflow cases, we see that increasing FH and PTC generates a
good fit for the human data. This increase in FH and PTC in
our model causes the stock to rise higher (due to the
environment inflow action and slower corrective action),
causing the discrepancy to increase further and hence, the user
net flow correction to increase further. The user net flow
correction is further increased by the forecast for net flow,
which now happens over a larger time period range (due to FH
increase, where there are increased environment inflows over
this larger time range). The increase in user net flow correction
as described above causes higher user inflow and user outflow
in our models, where the user inflow and user outflow are
derived from the user net flow correction and weighted by the
user correction weight to inflows and outflows (W). The fact
that the model’s data fits the median of human data more
closely than the mean is a reflection of the deterministic nature
of SD models in general that fail to account for the variability
of human performance, as they are deterministic models.

Model Predictions
From the results on linear and non-linear environmental
curves, we find that a negative slope in the environment inflow
produces higher stock, user inflow and user outflow as well as
higher variability in stock, user inflow and user outflow,
particularly in the first 50 time periods (this is also the time
when subjects are learning to control the stock in DSF).

If the parameters that we have proposed in our model and
their fit to human data can have a cognitive interpretation as

we presented in the previous section, then there are some
interesting questions we could answer by looking into model
fitting more deeply.

Specifically, we are interested in determining how human
data from each of the collected groups: Linear Positive (L+),
Linear Negative (L-), Non-linear Positive (NL +), and Non-
linear Negative (NL -) would fit to the model’s data from the
other groups. For example, we test how human data in L+ fits
to the model’s data from L-, NL+, and NL- groups by looking
at the difference between the r values (measures of fit) between
equivalent groups from the model’s data and the comparison
group.

For this fit exercise, we found the mean and median of our
human data for both experiments 1 and 2 under different
conditions, L+, L-, NL+ and NL-. We already have our fits and
model parameters calculated as a result of parameter tuning
and sensitivity analysis to the mean and median of human data
under L+, L-, NL+ and NL- conditions as mentioned in Table
1. We took the model parameters under the NL- condition and
fit the model data due to these parameters to the mean of
human data under the L- condition. Similarly we took the
model parameters under L- condition and fit the model data
due to these parameters to the mean of human data under the
NL- condition. We did a similar exercise for L+ to NL+ and
NL+ to L+. This process helps us to foresee the mapping of
our model’s cognitive parameters to different experimental
conditions as measured by model fits, i.e. how different values
of cognitive parameters EP, FH, PTC, MD and W perform
under different experimental conditions. This mapping
exercise can help us predict how the model experiencing a
linear inflow would behave when put into a non-linear inflow
and vice-versa. For example, from a managerial perspective a
firm may suddenly face non-linear changes in demand after
operating under a constant (linear) demand (Paich & Sterman,
1993). In addition, the knowledge gained from this cross fitting
exercise helps us understand the nature of underlying task
situations involved, task complexity as it would possibly be
experienced by the decision makers.

The results from fitting model’s parameters on linear
environment inflow to non-linear environment inflow and
vice-versa are tabulated in Table 2. The r values given in
Tables 1 and 2 provide results for the mean stock in DSF.

The results show that r(NL- to L-) > r(L-), r(L- to NL-) <
r(NL-) and r(NL- to L-) > r(L- to NL-). Also from Tables 1
and 2, similar results hold for the positive slope environment
inflow cases for both the linear and non-linear curve types.
This means r(NL+ to L+) > r(L+), r(L+ to NL+) < NL+ and
r(NL+ to L+ > L+ to NL+.

Table 2: Values of correlation coefficients for model

predictions on linear and non-linear positive and negative
sloped environment inflow for stock mean.

These cross fit results indicate the r value diminishes from

linear to non-linear curves but increases from non-linear to
linear inflows. This is, the non-linear conditions are more
difficult to fit than the linear condition.

Similar results were reported on the human data collected
from both experiments 1 and 2 earlier, where subjects’
performance was poorer in the non-linear environment inflow
DSF task when compared to performance in the linear
environment inflow DSF task. These similarities between the
nature of DSF model and the DSF human data also further
support the choice of the model’s parameters.

Conclusions
Stock-flow failure is a phenomenon representing the poor
interpretation of very simple problems involving accumulation
over time by flows (Cronin & Gonzalez, 2007). In this paper
we investigated one possible explanation for the stock-flow
failure and that is the increased difficulty for controlling
systems with decreasing more so than increasing inflows. We
investigated this simple failure in a Dynamic Stock and Flows
(DSF) task. We found that participants yielded greater quantity
of stock, inflows and outflows and more variability in them for
negative slope (decreasing) environment inflow conditions
when compared with the quantity and the variability in stock
inflows and outflows for the positive slope (increasing)
environment inflow conditions.

We explain these results through a system dynamics model
that helps derive differences in human behavior due to slopes
of environment inflow. The constructed model and its fit
revealed minimize of a number of human cognitive parameters
in the dynamic task which makes us think that similar
cognitive parameters would constitute many such simple
dynamic stocks and flows tasks which are important in our day
to day lives (our bank accounts to our weight gain and loss
processes to name a few) where the understanding of such
parameters would be helpful in overcoming the difficulties that
most of us face while encountering them.

Acknowledgments
This research was partially supported by the National Science
Foundation (Human and Social Dynamics: Decision, Risk, and
Uncertainty, Award number: 0624228) and by the Army
Research Laboratory (DAAD19-01-2-0009) awards to
Cleotilde Gonzalez.

References
Brehmer, B. (1980). In one word: Not from experience. Acta

Psychologica, 45, 223-241.

Cronin, M., & Gonzalez, C. (in press). Understanding the
building blocks of system dynamics. System
Dynamics Review.

Cronin, M., Gonzalez, C., & Sterman, J. D. (under review).
Why don't well-educated adults understand
accumulation? A challenge to researchers, educators
and citizens.

Dutt, V., & Gonzalez, C. (2007). Slope of inflow impacts
dynamic decision making.

Forrester, J. W. (1961). Industrial dynamics. Waltham, MA:
Pegasus Communications.

Forrester, J. W. (1990). The Beginning of System Dynamics.
Boston, MA: The Sloan School of Management, MIT.

Gonzalez, C., & Dutt, V. (submitted). A generic dynamic
control system for management education.

Gonzalez, C., Lerch, J. F., & Lebiere, C. (2003). Instance-
based learning in dynamic decision making. Cognitive
Science, 27(4), 591-635.

Lane, D. C. (2000). Should system dynamics be described as a
'hard' or 'deterministic' systems approach? Systems
Research and Behavioral Science, 17, 3-22.

Moxnes, E. (2003). Misperceptions of basic dynamics: The
case of renewable resource management. System
Dynamics Review, 20, 139-162.

Paich, M., & Sterman, J. D. (1993). Boom, bust and failures to
learn in experimental markets. Management Science,
39(12), 1439-1458.

Schunn, C. D., & Wallach, D. (2001). Evaluating goodness-of-
fit in comparison of models to data. University of
Pittsburgh.

Sterman, J. D. (2000). Learning in and about complex systems.
Reflections: The SoL Journal, 1(3), 24-51.

Sterman, J. D., & Sweeney, L. B. (2002). Cloudy skies:
Assessing public understanding of global warming.
System Dynamics Review, 18(2), 207-240.

Sweeney, L. B., & Sterman, J. D. (2000). Bathtub dynamics:
initial results of a systems thinking inventory. System
Dynamics Review, 16(4), 249-286.

Instance-Based Decision Making Model of Repeated Binary Choice

Christian Lebiere (cl@cmu.edu)
Psychology Department

Carnegie Mellon University, 5000 Forbes Avenue
Pittsburgh, PA 15213 USA

Cleotilde Gonzalez (coty@cmu.edu) and Michael Martin (mkmartin@andrew.cmu.edu)

Dynamic Decision Making Laboratory,
Social and Decision Sciences Department

Carnegie Mellon University, 5000 Forbes Avenue
Pittsburgh, PA 15213 USA

Abstract
We describe an instance-based model of decision-making for
repeated binary choice. The model provides an accurate
account of existing data of aggregate choice probabilities and
individual differences, as well as newly collected data on
learning and choice interdependency. In particular, the model
provides a general emergent account of the risk aversion
effect that does not require any metacognitive assumptions.
Advantages of the model include its simplicity, its
compatibility with previous models of choice and dynamic
control, and the strong constraints it inherits from the
underlying cognitive architecture.

Keywords: Learning; dynamic decision making; RELACS;
memory; cognitive architectures; ACT-R.

Introduction
Erev and Barron (2005) have discussed the tradeoffs of

adaptation and maximization in repeated choice tasks. A
main demonstration from their studies is that extended
practice with a binary choice problem with immediate
feedback does not always lead to payoff maximization.

The deviations from maximization may be due to
different effects. One of them, the payoff variability effect,
refers to a tendency to increase exploration in a noisy
environment (Erev & Barron, 2005). That is, when payoff
variability is associated with an alternative of higher
expected value compared to the other alternative, choice
behavior moves toward random choice. This payoff
variability effect has been found in one-shot decisions
(Busemeyer & Townsend, 1993) but it is more robust in
repeated choice (Erev & Barron, 2005).

Erev and Barron (2005) proposed a model of
Reinforcement Learning Among Cognitive Strategies
(RELACS) to account for the payoff variability effect and
other deviations from maximization. RELACS assumes that
a decision maker follows one of three cognitive strategies in
each choice, and that the probability of using a strategy is
determined by previous experiences with the strategy.

The fast best reply strategy involves selecting the
alternative with the highest recent payoff. The case-based
reasoning strategy involves moving from a random
selection of alternatives initially to a two-stage process in
which a belief is first determined and then verified as not

being associated with large losses. The slow best reply
strategy involves choosing to explore the two alternatives
initially and moving gradually toward preferring the
alternative more likely to maximize earnings. According to
RELACS, the three strategies are reinforced with their
frequency of use and are updated according to the observed
payoffs.

In their analyses and comparisons to other models, Erev
and Barron determine that the slow best reply strategy is the
one that best captures the payoff variability effect. They also
found that the assumption of learning among the different
strategies is not important because a random selection
among strategies fits the data as well as RELACS does.

In our past research we have proposed a framework and
computational model that characterize decision makers’
preferences and utilities in terms of action-outcome links.
This theory called Instance-Based Learning Theory (IBLT)
(Gonzalez, Lerch & Lebiere, 2003), implemented in ACT-R
(Anderson & Lebiere, 1998; Anderson et al, 2004), proposes
learning (i.e., increasing maximization) occurs through a
progressive accumulation of decision instances. Instances
are discrete units of knowledge (action-outcome links)
which are constructed, upgraded, and reused through
experiential learning in a decision making situation. Better
decision policies emerge gradually as decision makers move
from using explicit rules of action to implicit recognition of
familiar patterns (cf. Dienes & Fahey, 1995), similar to the
gradual process proposed in Logan’s (1988) instance theory
of automaticity. Many decision making tasks have
successfully been implemented in ACT-R using this
process, including dynamic control tasks (Wallach &
Lebiere, 2003), supply chain management (Gonzalez &
Lebiere, 2005; Martin, Gonzalez & Lebiere, 2004),
backgammon (Sanner et al, 2000) and simple 2x2 games
like the Prisoner’s Dilemma (Lebiere, Wallach & West,
2000).

Our main contention in this paper is that the experiential
accumulation, activation, retrieval and generalization of
action-outcome decision instances is a general decision
making strategy applicable to multiple decision making
tasks, including the simple repeated choice effects posed by
Erev and Barron (2005). Accordingly we describe an
instance-based decision making model that captures the

learning effects and the tradeoffs of adaptation and
maximization reported by Erev and Baron (2005). Our
instance-based decision making model works in ways
similar to the slow best reply strategy proposed by Erev and
Barron (2005). The results from our ACT-R model support
Erev and Barron’s arguments that the slow best reply
strategy is the one that best captures the payoff variability
effect and that learning among different cognitive strategies
is unnecessary. Thus, deviations from maximization in
repeated binary choice problems can be reproduced without
pre-defining a set of cognitive strategies and positing
reinforcement learning as a mechanism for selecting among
them.

In what follows, we discuss the example problems we
have taken from Erev and Barron (2005), and discuss how
we replicated their behavioral results. Next, we discuss our
instance-based decision making ACT-R model and the
results from our model as compared to RELACS results.
Finally, we discuss some predictions of our model and
possibilities for unification with models of other tasks.

The Payoff Variability Effect
We replicated, with human participants, the payoff

variability effect using the following three key problems
from Erev and Barron (2005):

Problem 1. H 11 points with certainty
 L 10 points with certainty

Problem 2. H 11 points with certainty
 L 19 points with probability 0.5
 1 otherwise

Problem 3. H 21 points with probability 0.5
 1 otherwise
 L 10 points with certainty

All three problems required participants to choose between
a high payoff alternative H (with an expected value of 11
points) and a low payoff alternative L (with an expected
value of 10 points). The problems differed only on the
variance but not the mean of the two payoff distributions.

We randomly assigned 60 participants to one of the three
problems. The undergraduate and graduate students at
Carnegie Mellon University were paid a flat fee for
performing the repeated choice task for 400 trials.

We followed almost identical instructions as in Erev and
Barron’s experiments: individuals did not receive any
information about the payoff structure. They were told their
task was to select one of the alternatives by clicking on one
of two unmarked and masked buttons. They were provided
with the payoff value of the button they clicked on.
Individuals were not informed of the trial number. Payoffs
were drawn from the distribution associated with the
selected button.

There are two differences between our methods and Erev
and Barron’s: (1) we did not use a performance-based

incentive structure and (2) we ran 400 rather than 200 trials
to better explore learning effects.

Figure 1 shows the proportion of maximization (Pmax)
(H) choices during the 400 trials. The average proportions
of maximization are very similar to those reported in the
original experiments: average Pmax for the second 100-
problem block (a.k.a. Pmax2) was 0.82, 0.61 and 0.50 for
Problem 1, 2, and 3 respectively (compared to .90, .71, .57
in Erev and Barron’s data).

(11) or (10)

(11) or (19,.5;1)

(21,.5;1) or (10)

Problem

Dot/Lines show Means

0 100 200 300 400

Trial

0.00

0.25

0.50

0.75

1.00

P
ro

p
o

rt
io

n
 o

f
M

a
x
im

iz
a
ti

o
n

Figure 1: Proportion of maximization over practice

The learning curves shown in Figure 1 demonstrate that,

as expected, an increase in payoff variability impairs
maximization. In contrast to data reported by Erev and
Barron (2005) the Problem 3 learning curve, where the
alternative with the maximum payoff is risky, shows a
decrease in the proportion of maximization over time.

As suggested by Erev and Barron, the difference between
problems 1 and 3 demonstrates the risk aversion effect and
the difference between problems 1 and 2 the risk seeking
effect. We investigated the risk aversion or certainty effect
(Kahneman & Tversky, 1979) in this repeated choice task
by collecting data in the following problem:

Problem 4. Certain 11 points with certainty
 Risky 21 points with probability 0.5

1 otherwise

Problem 4 presents participants with a tie, i.e. alternatives

have the same expected value, but one is risky and the other
is certain. Using the same methods as in the first 3
problems, we collected data from 20 participants. We will
report detailed findings on that condition in the model
comparison section.

One of the challenges for Erev and Barron’s RELACS
model is that it consistently underpredicts individual
differences. A particular problem in RELACS seems to be
the management of memory, as it does not capture the
interdependency of past experiences.

Memory management and learning is a strength in ACT-R
and a particular strength of our instance-based decision-
making models as there are strong constraints on the effect
that particular past instances would have on a future choice
(Gonzalez & Quesada, 2004). As we will demonstrate, our
ACT-R based models of instance-based decision making
predict observed individual differences quite accurately.

ACT-R instance-based decision making model
One advantage of instance-based learning models is that
they reduce degrees of freedom in modeling. The modeler
does not have to select and implement strategies, or decide
upon arbitrary criteria on which a decision is made. Instead,
the model represents the information immediately available
to the subject in the most direct form possible, and uses that
information directly to make its decisions.

Each decision-making instance in the repeated choice
paradigm is composed of two elements: the choice being
made and the payoff immediately received as a result.
Those two elements of a decision-making instance are
consciously available to the subject and thus will be
represented together in declarative form.

The basic unit of declarative representation in ACT-R is
the chunk. A chunk is a typed structure composed of a
number of named fields, also called slots. Each slot usually
contains another chunk (although it can also be empty or
contain special values). Our model contains only a single
chunk type, choice, with only two slots: decision, which
holds the decision made by the model, and payoff, which
holds the payoff awarded after the decision. For example, a
chunk encoding the experience that pressing the left button
resulted in a payoff of 10 would have the following form:

Decision1
 isa decision
 choice Left
 payoff 10

That chunk type serves both as the only type of goal for

the model, and as the repository of the problem-solving
experience in long-term declarative memory. The learning
of that symbolic information is thus automatically
accomplished by the architecture as it stores past goals into
long-term memory.

The experimental paradigm covered by Erev and Barron
(2005) includes three feedback conditions. In the first one
called minimal information, payoff feedback is given only
for the choice being made, and encoded as described above.
In the second condition, called complete feedback, payoff is
given for the choice made as before, but the payoff that
would have resulted if the other choice had been made is
also given. In that case, the model generates two chunks,
one for each potential choice and its feedback. In the third
condition, called probability learning, no numerical payoff
feedback is given directly but instead the payoff is translated
into a relative probability of correct choice, which is then
relayed to the subject as a correct/incorrect binary feedback.

In the model, that binary feedback is simply encoded as a
0/1 payoff and the same modeling approach can then apply.

How does the model use this information about choices
and payoffs? The basic decision-making procedure is the
same as that used in the model prisoner’s dilemma and other
2x2 games (Lebiere, Wallach & West, 2000). The model
evaluates each option by retrieving its expected payoff from
memory, selects the one with the highest value, then
registers the feedback as described above. This procedure is
implemented in half-a-dozen generic production rules.

As in some past instance-based models (e.g. the Paper
Rocks Scissors model of West & Lebiere, 2001), the
possible combinations of symbolic information are so few
(less than a handful in the payoff functions studied here)
that the key knowledge of the task does not reside at the
symbolic level but instead in its statistical properties.
Specifically, the key information is the frequency (and
recency) of each combination of decision and payoff. While
subjects (and the model) could potentially keep track of
those frequencies explicitly, there is no evidence that they
do so. Instead, the architecture automatically learns such
information in the activation values of the various chunks.
Specifically, the base-level activation Ai of chunk i is
determined by the following Bayesian learning formula:

!

Ai = ln tj
"d

j=1

n

Base Level Learning

Each tj is the lag of time since the jth occurrence of chunk

i. The architectural parameter d is the decay rate of each
occurrence, which is set to 0.5 as is (almost) always the case
in ACT-R models. The power law of practice emerges from
the log-summation over all references whereas the power
law of forgetting results from the decay of each reference.
Just as for chunks, this learning of the statistical properties
of the symbolic knowledge is accomplished automatically
by the architecture. Activation determines the probability of
retrieving each qualifying chunk according to the following
equation:

!

Pi =
e
Ai
t

e
A j

t

j

"
 Boltzmann Equation

This equation, also known as the softmax equation,

defines retrieval as a noisy process where the probability of
retrieving a given chunk is proportional to the ratio of its
activation and a retrieval noise level t. The noise level
determines the degree of stochasticity of the retrieval
process and similar to the decay rate parameter it is left at its
default value of 0.25.

However, the retrieval process described above has one
problem. If it only retrieves one chunk associated with a
given choice, it will usually not be sensitive to the
magnitude of the payoff values. If one alternative has a

certain payoff of 11, it will not matter whether the other has
equally likely payoffs of 1 and 19 (averaging 10) or 1 and
199 (averaging 100). It will choose each about half the time
in both cases, which is clearly not right. What we want is a
retrieval procedure that takes into account both the
frequency (and recency) of each payoff as reflected in its
activation and the magnitude of the payoff itself. To that
effect, Lebiere (1999) introduced a variation of the retrieval
process called blending that has since been used in many
instance-based models (e.g. Gonzalez et al., 2003; Wallach
& Lebiere, 2003). The key equation controlling blended
retrieval is the following:

!

V = min P
i
" 1# Sim V ,V

i()()
i

$
2

 Blending Equation

The equation states that the value V returned by retrieval

is the one that best satisfies the constraints offered by all
matching chunks i weighted by their probability of retrieval
Pi as computed in the Boltzmann equation above.
Satisfying chunk constraints is defined in terms of
minimizing the dissimilarity (i.e. maximizing the similarity)
between the consensus answer V and the actual answer Vi
contained in chunk i. This process is applicable to all
domains, discrete and continuous, as long as a similarity
metric is defined over those values. As such it can be seen
as an implementation of the generalized Bayesian
framework of Tenenbaum & Griffiths (2001) or an
approximation of the generalization capabilities of
connectionist architectures based on distributed
representations (e.g. O’Reilly & Munakata, 2000). In
practice, we define linear similarity values over payoffs,
which result in the retrieval process averaging their values
weighted by activation.

A final point concerns the initialization of the model. If
the model started with no expectations of the payoffs, it
would start by deciding randomly, but then as soon as one
payoff had been experienced for each choice, it would
happily take the best indefinitely. To trigger exploration at
the start, we initialized the model with a single chunk for
each decision encoding high initial expectations (payoff of
1000). That initial value will quickly get overwhelmed by
actual experience as it decays and is never reinforced, but it
results in an initial period of exploration that corresponds
well to human subjects without the need to arbitrarily define
a specific strategy to that effect.

Results and Comparison
Our model fits the data quite well using Erev and

Barron’s (2005) primary measure of performance, namely
the probability of maximization in the second block of 100
problems (Pmax2).. That measure for problems 1, 2 and 3
is 0.91, 0.65 and 0.53 respectively for our model, as
compared to 0.90, 0.71 and 0.57 for Erev and Barron’s data
and 0.82, 0.61 and 0.50 for our data. The variation between
data and model is substantially smaller than the variations

between data sets, suggesting the substantial role played by
individual differences.

To examine individual differences, we have plotted in
Figure 2 the distribution of the probability of maximization
for each 100-trial block for individual subjects (and model
runs) within each of five intervals: 0-20%, 20-40%, 40-
60%, 60-80% and 80-100%. For reasons of space, we have
selected problems 2 (Figure 2a) and 4 (Figure 2b) as the
most interesting for display. Focusing for now on problem
2, one can see that the distribution of probabilities ranges
across the highest 4 categories, a range well-reproduced by
our model. One could argue that it is too well reproduced,
with the highest category over-represented compared to the
data. However, in Erev & Barron’s data (which only report
distribution figures for the second block), the two highest
categories (60-80% and 80-100%) dominate with many
fewer subjects in the 40-60% category than for our data.
This would seem to explain the discrepancy between the
values of Pmax2 observed by Erev and Barron and us (0.71
vs. 0.61). In this respect, our model fits comfortably
between the two data sets, but it is again a reminder to be
careful when comparing to aggregate data across subjects.

0.00

0.25

0.50

0.75

1.00

P
ro

p
o

rt
io

n

human (11) or (19,.5;1) 1 model (11) or (19,.5;1) 1

human (11) or (19,.5;1) 2 model (11) or (19,.5;1) 2

human (11) or (19,.5;1) 3 model (11) or (19,.5;1) 3

human (11) or (19,.5;1) 4 model (11) or (19,.5;1) 4

0.00

0.25

0.50

0.75

1.00

P
ro

p
o

rt
io

n

0 .00

0.25

0.50

0.75

1.00

P
ro

p
o

rt
io

n

1 2 3 4 5

quartile

0.00

0.25

0.50

0.75

1.00

P
ro

p
o

rt
io

n

1 2 3 4 5

quartile

0.00

0.25

0.50

0.75

1.00

P
ro

p
o

rt
io

n

human (11) or (21,.5;1) 1 model (11) or (21,.5;1) 1

human (11) or (21,.5;1) 2 model (11) or (21,.5;1) 2

human (11) or (21,.5;1) 3 model (11) or (21,.5;1) 3

human (11) or (21,.5;1) 4 model (11) or (21,.5;1) 4

0.00

0.25

0.50

0.75

1.00

P
ro

p
o

rt
io

n

0 .00

0.25

0.50

0.75

1.00

P
ro

p
o

rt
io

n

1 2 3 4 5

quartile

0.00

0.25

0.50

0.75

1.00

P
ro

p
o

rt
io

n

1 2 3 4 5

quartile

2a 2b

Figure 2: Individual differences for problems 2 (left) and
problem 4 (right). Within each panel human data (left) and
model data (right) distribution of maximization probability

are shown, aggregated in 20% increments.

We now consider how deviations from maximization
emerge from our model and in particular the source of the
payoff variability effect. For problem 1, with deterministic
payoffs, maximization is simply a matter of quickly
overcoming the high initial expectations through the
exploration phase. Alternative H consistently returns the
highest payoff. Thus blending consistently produces a
higher expected value for alternative H. For problem 2,
with variable payoffs for alternative L, blending combines

the distinct payoffs of 1 and 19 for alternative L to produce
random fluctuations in expected value. Although blending
will tend to average the two payoffs of alternative L to 10 if
they are of equal activation, the noise of the activation
process and the random distribution of L payoffs will tend
to make activations unequal, pushing the average on either
side of 10, and sometimes higher than 11, which leads to
lapses in maximization. The same happens with Problem 3,
except that alternative H averaging 11 is now the one with
the noisy distribution, and the model does reproduce the
tendency to select it less frequently than it does in Problem
2, indicating risk aversion. This brings us to problem 4, the
risk aversion problem, where this symmetry argument
would suggest that both options would be chosen equally
often on average. However, on average both subjects and
model tend to prefer the certain option, roughly 55% of the
time. This risk aversion effect (and the difference in Pmax2
between Problems 2 and 3) arises from a subtle interaction
in the dynamics of the task illustrated in Figure 3.

Figure 3: Emergence of risk aversion effect

The blue dashed line represents the (constant) expected

value of the certain alternative while the red line represents
the expected value of the risky alternative. On average, the
expected values of the two alternatives are equal and they
indeed start that way. Each star of a given color (red or
blue) indicates an experienced payoff for the associated
choice. After the start, the risky alternative provides some
lucky payoffs (e.g. 21), which raises its expected value and
leads to its selection more often. Luck even outs quickly
however as a series of poor payoffs (e.g., 1) lowers its
expected value to less than 11, which in turn leads to
selection of the certain alternative most of the time. The
key insight is that this bias toward certain payoffs leaves the
risky alternative fewer opportunities to bring its average
back to the level of the certain alternative, meaning that this
interval where the certain alternative is selected most of the
time is longer than the previous interval when the risky
alternative was selected most often. This asymmetry is the
source of the risk aversion effect in our model and its
preference for certainty.

One prediction of this explanation arises from its origin in
the base-level learning equation that reflects the occurrence
of events into the activation of decision chunks and then

into the expected outcomes of the respective choices. As
experience accumulates, the impact of recent events in
activation fluctuations will be gradually overcome by the
increasingly long history. One would therefore expect risk
aversion to disappear with practice, a prediction confirmed
by Figure 4, which plots the probability of choosing the
certain alternative with practice (in terms of blocks of 10
trials). In the initial exploration period, both model and
subjects choose the certain alternative about 50% of the
time. By around trial 50 the certain alternative is chosen
over 60% of the time as the payoffs statistics are quickly
learned, but the bias to select certain payoffs then gradually
declines back to 50% as the increasingly long history
overcomes short-term fluctuations. Figure 2b (right)
illustrates this learning process across blocks of 100 trials as
a quickly learned propensity to choose the certain
alternative gradually reverts to the mean.

human

model

Dot/Lines show Means

5 10 15 20 25 30 35 40

Block2

0.00

0.25

0.50

0.75

1.00

P
m
a
x

Figure 4: Time course of risk aversion effect

As we mentioned previously, one strong aspect of our

model over RELACS is that it makes constrained
predictions about the probability of making a given decision
as a function of the recent history of choices and payoff
outcomes. To study those probabilities, we used a
methodology called model-tracing (Anderson et al, 1995) to
force the model to make the same decisions as each human
subject, thereby giving them the same context in which to
make each decision. We can then directly compare each
decision for model and subjects, as reported in Table 1.
Columns 2 and 3 report the Pmax values for each subject
and the model tracing its decisions. Columns 4 and 5 report
the minimum and maximum probability of matching
decisions given those base probabilities. Column 6 report
the average prediction probability of agreement assuming
that decisions are randomly distributed given those base
probabilities while column 7 reports the actual probability
of agreement. For all subjects but S8, the actual probability
is higher than the predicted probability, establishing that the
model is capturing some of the short-term factors used by
the subjects in their decisions.

Table 1: Model tracing by subject

ID Subj Model Min Max Pred Actual
S9 0.585 0.365 0.050 0.780 0.477 0.575
S8 0.458 0.258 0.285 0.800 0.521 0.505
S7 0.660 0.323 0.017 0.662 0.443 0.458
S6 0.338 0.237 0.425 0.900 0.585 0.605
S5 0.470 0.228 0.302 0.758 0.516 0.537
S4 0.517 0.250 0.233 0.733 0.491 0.603
S3 0.448 0.263 0.290 0.815 0.525 0.560
S2 0.672 0.310 0.018 0.637 0.434 0.482
S20 0.422 0.260 0.318 0.838 0.537 0.588
S1 0.615 0.335 0.050 0.720 0.462 0.490
S19 0.182 0.195 0.623 0.987 0.694 0.698
S18 0.585 0.352 0.063 0.768 0.475 0.482
S17 0.703 0.307 0.010 0.605 0.422 0.525
S16 0.207 0.210 0.583 0.998 0.670 0.728
S15 0.632 0.263 0.105 0.630 0.437 0.445
S14 0.080 0.105 0.815 0.975 0.832 0.870
S13 0.455 0.263 0.282 0.807 0.521 0.552
S12 0.708 0.355 0.062 0.647 0.440 0.502
S11 0.738 0.420 0.157 0.682 0.462 0.497
S10 0.412 0.247 0.340 0.835 0.544 0.575

Conclusion
Our goal in this modeling effort is to reach for breadth as

well as depth from a constrained computational basis in a
cognitive architecture in general and a theory of memory in
particular. We primarily illustrated depth in this paper by
showing how our model can account for aggregate choice
and individual differences as well as new data on learning
and short-term choice interdependency. In the future, we
aim to emphasize breadth by unifying this model with
existing models of other choice and control paradigms as
well as extend its applicability to related paradigms.

Acknowledgments
This research was partially supported by the National
Science Foundation (Human and Social Dynamics:
Decision, Risk, and Uncertainty, Award number: 0624228)
and by the Army Research Laboratory (DAAD19-01-2-
0009) awards to Cleotilde Gonzalez, and by DARPA award
FA8650-05-C-7254 to Christian Lebiere.

References
Anderson, J. R., & Lebiere, C. (1998). The Atomic

Components of Thought. Mahwah, NJ: Erlbaum.
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,

Lebiere, C., & Qin, Y . (2004). An integrated theory of
the mind. Psychological Review 111, (4). 1036-1060.

Anderson, J. R., Corbett, A. T., Koedinger, K., & Pelletier,
R. (1995). Cognitive tutors: Lessons learned. The Journal
of Learning Sciences, 4, 167-207.

Busemeyer, J. R., & Townsend, J. T. (1993). Decision field
theory: A dynamic-cognitive approach to decision making

in an uncertain environment. Psychological Review,
106(3), 432-459.

Dienes, Z., & Fahey, R. (1995). Role of specific instances in
controlling a dynamic system. Journal of Experimental
Psychology: Learning, Memory and Cognition, 21(4),
848-862.

Erev, I., & Barron, G. (2005). On adaptation, maximization,
and reinforcement learning among cognitive strategies.
Psychological Review, 112(4), 912-931.

Gonzalez, C., & Lebiere, C. (2005). Instance-based
cognitive models of decision making. In D. Zizzo & A.
Courakis (Eds.), Transfer of knowledge in economic
decision-making: Macmillan (Palgrave Macmillan).

Gonzalez, C., Lerch, J. F., & Lebiere, C. (2003). Instance-
based learning in dynamic decision making. Cognitive
Science, 27(4), 591-635.

Gonzalez, C., & Quesada, J. (2003). Learning in dynamic
decision making: The recognition process. Computational
and Mathematical Organization Theory, 9(4), 287-304.

Kahneman, D., & Tversky, A. (1979). Prospect theory: An
analysis of decision under risk. Econometrica, 47(2), 263-
291.

Lebiere, C. (1999). A blending process for aggregate
retrievals. In Proceedings of the 6th ACT-R Workshop.
George Mason University, Fairfax, Va.

Lebiere, C., Wallach, D., & West, R. L. (2000). A memory-
based account of the prisoner’s dilemma and other 2x2
games. In Proceedings of International Conference on
Cognitive Modeling, pp. 185-193. NL: Universal Press.

Logan, G. D. (1988). Toward an instance theory of
automatization. Psychological Review, 95(4), 492-527.

Martin, M. K., Gonzalez, C., & Lebiere, C. (2004). Learning
to make decisions in dynamic environments: ACT-R
plays the beer game. In Proceedings of the Sixth
International Conference on Cognitive Modeling,
Pittsburgh, PA

O’Reilly, R. C., & Munakata, Y. (2000). Computational
Explorations in Cognitive Neuroscience. Cambridge,
MA: MIT Press.

Sanner, S., Anderson, J. R., Lebiere, C., & Lovett, M. C.
(2000). Achieving efficient and cognitively plausible
learning in Backgammon. Proceedings of The
Seventeenth International Conference on Machine
Learning. San Francisco: Morgan Kaufmann.

Tenenbaum, J. B., & Griffiths, T. L. (2001). Generalization,
similarity and Bayesian inference. Behavioral and Brain
Sciences (24), 629-640.

Wallach, D. & Lebiere, C. (2003). Conscious and
unconscious knowledge: Mapping to the symbolic and
subsymbolic levels of a hybrid architecture. In Jimenez,
L. (Ed.) Attention and Implicit Learning. Amsterdam,
Netherlands: John Benjamins Publishing Company.

West, R. L., & Lebiere, C. (2001). Simple games as
dynamic, coupled systems: Randomness and other
emergent properties. Journal of Cognitive Systems
Research, 1(4), 221-239.

Modeling Control Strategies in the N-Back Task

Ion Juvina (ijuvina@cmu.edu) & Niels A. Taatgen (taatgen@cmu.edu)
Department of Psychology, Carnegie Mellon University, 5000 Forbes Avenue

Pittsburgh, PA 15213 USA

Abstract

Two studies aiming to investigate the use of cognitive control
strategies in the N-Back task are presented. The first study
identified a behavioral effect that seemed indicative of
participants’ proneness toward using high- versus low-control
strategies. Two ACT-R models of N-Back implementing the
two hypothesized strategies were developed. Model
simulations were used to identify the proneness toward using
high- versus low-control strategies by the individual
participants in the second study. An independent measure of
control – Stroop interference – was used to validate the
predictions of the two models.

Introduction and Background
Cognitive control processes are often postulated to account
for behavioral effects that cannot be explained based solely
on relatively better-understood cognitive processes such as
perception, language or memory. Some tasks are believed to
require more cognitive control than others (Garavan, Ross,
Li, & Stein, 2000). This paper aims to demonstrate that
there are also differences among individuals with regard to
whether or not certain cognitive control processes are
employed in a particular task.

The N-Back task requires judging whether a new item is
identical to the nth-item back in a sequentially presented list
of items (McElree, 2001). For example, in the sequence <
M3 A2 R1 A0 > of the 2-back task, the current item (A0) is
identical to the 2nd-item back (A2). The task requires
keeping available the most recent n items to be compared
with the incoming item. Although at each particular step
only the nth-item can be a target, items with indexes
between 0 and n must be remembered because they may be
targets in the following steps (Awh et al., 1996). For
concision, the set of the most recent n items will be referred
to as the rehearsal window.

The involvement of executive control processes in N-
Back is justified by the necessity to interleave different
subtasks: processing incoming information, maintaining
activation of recently processed and potentially relevant
information (rehearsal), and discarding recently processed
but irrelevant (potentially interfering) information. Evidence
that these subtasks are concurrently executed comes from
fMRI studies showing activation in Broca’s area (BA44)
indicating articulatory rehearsal, Posterior parietal area
(BA40) indicating short-term storage, and Dorso-Lateral
Prefrontal Cortex (BA9/46) indicating excitatory or
inhibitory modulation of activation in other areas (Cohen et
al., 1997; Miller & Cohen, 2001; Owen, McMillan, Laird, &
Bullmore, 2005).

One of the functions of the cognitive system is to keep
active the information that is relevant to the task at hand.
Usually, the most frequently and recently processed
information is most likely to be relevant to the current
processing (Anderson, 1989). In this case, the relevant
information is kept active simply because it has residual
activation from recent processing. The residual activation
that an item bears for a while after its use is beneficial when
the item is reused, and the probability that an item will be
reused gradually decreases with time. However, in the N-
Back task (as well as in other tasks of this type), the switch
from relevant to irrelevant is instantaneous, instead of being
gradual. When an item reaches the index n+1 it becomes
totally irrelevant. In this case, its residual activation is not
only useless but it may cause interference. An active control
mechanism is needed to temporarily increase or decrease
activation of a particular item depending on whether or not
this item is relevant for the current state of the task.

First Study
The goal of this study was to investigate behavioral effects
and individual differences in performing the N-Back task as
basis for building cognitive models of this task.

Participants
Forty-one volunteers from the Carnegie Mellon University’s
community participated in this study (average age 26; 23
women and 18 men). They received a fixed amount of
monetary compensation for their participation.

Design
This study used a within-subjects design with three
conditions: 2-, 3-, and 4-back, administrated in this fixed
order.

Materials
The N-Back task was administrated with the aid of
dedicated software. Stimuli were capital letters appearing on
the computer’s screen one after another at a rate of 2.5
seconds per stimulus. Each participant received
approximately 10 targets and 5 foils per condition.
Reactions from participants were taken with the aid of a
standard keyboard, and written feedback was presented on
the screen.

Procedure
The administration of the N-Back task was based on a
continuous recognition paradigm, that is, there was one
stream of stimuli per condition and judgments were made

after each item was presented. Based on these judgments, an
item could be classified as: target (positive test probe) when
it was identical with the nth-item back; foil or lure (negative
test probe) when it was identical with the item presented at
position n-1 or n+1 back; distractor (non-test probe) when it
was not identical with a recently presented item.
Occurrences of targets and foils in the stream of stimuli
were not interleaved with one another; they were separated
by a variable (random) number of distractors. Thus, the
moment of occurrence for a target or a foil was
unpredictable for the participants.

Participants were instructed to hit the key “M” on the
keyboard when the current stimulus was identified as a
target and the key “Z” when the current stimulus was
identified as a foil or distractor. For the latter case, a non-
reaction was also considered a valid option. Feedback was
offered only for correct and erroneous reactions; feedback
was not offered in case of non-reactions. A performance
score increasing and decreasing in value with correct and
incorrect reactions to targets, respectively, was continuously
displayed on the screen.

Results
Table 1 presents the rate of correct reactions to targets and
foils by condition. In general, correctness decreases with n;
this effect is consistent across participants and in accord
with previous studies (McElree, 2001).

Table 1: The rate of correct answers by condition.

 N2 N3 N4
Targets 0.72 0.55 0.46
Foils 0.84 0.57 0.59

Unexpectedly, the correlation between correctness on
targets and correctness on foils was negative (r39=-0.53,
p=0.0004). Participants tended to score either high on
targets and low on foils or vice-versa. This is an indication
that some of the participants manifested what we called a
“react-to-repetition” effect: they were tempted to react to a
repeated item regardless whether they knew or not that it
was a target or a foil. Since the number of targets was higher
than the number of foils such a strategy would pay off
overall. Other participants, who scored low on targets,
scored high on foils because non-reaction to foils counted as
correct answer. In both cases the correctness score was
artificially increased.

An indication of possible use of different strategies was
the so-called serial position effect. The serial position of an
item is its distance from the last target or foil in the stream
of stimuli. For example, the current target (T0) in the
following stream of targets (T) and distractors (D)
<T1,D,T1,D,D,D,T0,D,T0> appears on the fourth position
after the previous target (T1), so its serial position is 4. Some
participants decreased their performance with serial position
(see Fig. 1), and this may be an indication of using a high-
control strategy.

Figure 1: The serial position effect.

The two groups in figure 1 were formed by visual inspection
of data of individual participants. The group showing the
serial position effect (“decrease”) is composed of 17
participants while the group not showing this effect (“no-
decrease”) contains 24 participants. The apparent increase in
performance with serial position for the “no-decrease”
group is most probably caused by the artificial increase in
correctness due to either reaction-to-repetition or non-
reaction, as described above.

Discussion
This study allowed us to gain some initial insight into how
participants approached the N-Back task. The unexpected
negative correlation between correctness on targets and
correctness on foils made us aware of the importance of
distinguishing between judgments of familiarity and
judgments of recency in the N-Back task (McElree, 2001). A
judgment of familiarity refers to recognizing whether or not
an item has been recently presented. A judgment of recency
involves deciding whether the recently presented item
appeared in a particular position (e.g., n-back). The latter
type of judgments helps in differentiating targets from foils
and is more likely to require cognitive control processes
(Smith & Jonides, 1999).

When participants relied solely on correct judgments of
familiarity and reacted to any repetition, their correctness on
targets was artificially increased (since there were more
targets than foils in the stream of stimuli) at the expense of
decreased correctness on foils. When a repeated item was
not recognized as familiar (i.e., recently presented), a non-
reaction caused low correctness on targets and artificially
high correctness on foils (because non-reaction to foils
counted as correct answer). These two effects combined
caused the negative correlation between targets and foils.
Relying solely on judgments of familiarity could be a
deliberate strategy or just a consequence of failed judgments
of recency.

With regard to judgments of recency, participants seemed
to employ two different strategies:

- One group of participants manifested the serial position
effect – decrease in performance with serial position.
This effect can be explained only by assuming that
participants used some sort of rehearsal and this
processes was vulnerable to distraction. Participants
tried to actively maintain the rehearsal window and
discard past items falling outside of it. The more
distractors were to be discarded from the rehearsal
window (i.e., the higher the serial position), the lower
the accuracy of recency judgments.

- Another group of participants does not show any
behavioral trace that could indicate the use of a
rehearsal process. It is unclear on what these
participants base their judgments of recency. A possible
explanation is the “time tag” account of Yntema and
Trask (1963). They suggested that one component of
the memory trace of a past event is a tag that in some
way directly indicates when the event occurred.

In conclusion, this exploratory study showed us that N-
Back is a task prone to strategizing. The negative correlation
between correctness on targets and correctness on foils was
an artifact caused by the relative frequencies of targets and
foils in the stream of stimuli and the way responses were
collected (non-reactions to foils counted as correct
responses). The serial position effect allowed us to
hypothesize that some of the participants used a high-
control strategy based on rehearsal, while other participants
used a low-control strategy based on time estimation.

ACT-R Models of N-Back
Based on the insight gained in the first study, two ACT-R
models of N-Back were developed corresponding to the two
aforementioned strategies participants were assumed to
employ for making judgments of recency. A high-control
model implements a rehearsal mechanism with the aid of the
articulatory loop (Baddeley, 2000) and a low-control model
implements the “time tag” account (Yntema & Trask, 1963).
These two models differ from each other only with regard to
the control strategy they implement; for the rest, they are
identical in the sense that they have the same architectural
parameters.

High-control Model
The main assumption of this model is that participants
maintain a rehearsal window of size n, and actively suppress
items that are dropped from this window. One way to
implement a rehearsal window is by making use of the
phonological loop. Phonological rehearsal is supported by
our own behavioral observation (sometimes participants
would vocalize aloud), reported empirical effects showing
decrease in performance when phonological rehearsal is
suppressed (Baddeley, 2000), and brain imaging findings
showing activation of Broca’s area during performance on
the N-Back task (Awh et al., 1996).

The model attends to incoming stimuli and judges their
familiarity, that is, compares them with past items retrieved
from declarative memory. Due to ACT-R’s memory decay
mechanism, only a few of the most recent items can be
retrieved, and the chance of an item to be retrieved increases

with its recency. This is the main reason for the observed
decrease in performance with n (see Table 1 and Figure 2).

As processing progresses through the stream of stimuli,
the model develops and maintains the rehearsal window.
When a new stimulus is visually perceived, it is also sub-
vocalized, thus its sound is made available to the auditory
module. However, the auditory module cannot attend to it
immediately because it is busy with attending past and
rehearsed items; it just adds it to a cue of items to be
attended to later as the auditory module becomes available.
In the interval between two stimuli (2.5s), the model tries to
sub-vocalize the most recent n items. They are taken from
the cue of the auditory module (the phonological store).

When the current item has been found to be a repetition of
a recent one (a judgment of familiarity), it is also matched
against the content of the aural buffer to allow a judgment of
recency: if its content is the same as the content of the item
in the aural buffer it is judged as target, otherwise it is
judged as foil. A judgment of recency is as accurate as the
phonological loop is.

The proper functioning of the phonological loop depends
on reliably maintaining its size and content. This amounts to
discarding an item from the loop whenever a new one is
added and preventing discarded items from reentering the
loop. Discarded items can reenter the loop via retrieval. An
inhibitory control process is necessary to ensure that
discarded items do not reenter the rehearsal window. A
temporary storage buffer (ACT-R’s imaginal buffer) holds
the discarded items and spreads negative activation (i.e.,
suppression) to their corresponding elements in declarative
memory. This way the model ensures that discarded items
are not retrieved and cannot reenter the rehearsal window.
However, the amount of available suppression is limited and
it is evenly spread among all discarded items. Thus, the
more items are to be suppressed, the less effective
suppression is. This is how the model shows the serial
position effect. Evidence for linear increase in activation of
cortical areas involved in rehearsal with working memory
load has recently been reported (Zarahn, Rakitin, Abela,
Flynn, & Stern, 2005).

Low-control Model
The main assumption of this model is that participants are
not rehearsing. They make judgments of recency based on
learned time estimations. This assumption is inspired by the
“time tag” account (Yntema & Trask, 1963) and is
supported by our results from the first study showing that
some participants do not manifest the serial position effect.

The low-control model makes judgments of familiarity in
the same way as the high-control model. The key difference
is in making judgments of recency. When an item is
encoded it is attached with a time tag specifying the moment
of its encoding. The temporal module of ACT-R is used for
assigning time tags and making time estimations (Taatgen,
Anderson, Dickison, & van Rijn, 2005). The default
parameters of this module were used. When a recent item
that is identical to the current item is retrieved, the model
determines the time lag between the two presentations and
tries to determine whether this time lag is equal to the target
duration – the one needed for making correct judgments of

recency. The model does not know in advance what the
target duration is and has to learn it from its own
experience. As a result of this learning process, any correct
estimation of how long ago the nth-item back has been
presented can serve as target duration. Thus, the model tries
to retrieve the target duration and, if a correct estimation of
it cannot be retrieved, the model reacts to a repeated item as
it were a target. This reaction causes the system to produce
feedback and the model uses this feedback to tag its recent
estimation as correct or wrong. If this estimation happens to
be correct it will be retrieved next time when the same time
lag is found between a current item and a recent one. The
more correct estimations are accumulated in memory the
higher the chance that the model will make correct
judgments of recency. Due to the intrinsic noise of the
temporal module, time estimations are never perfect.

The essential characteristic of this process is that it does
not depend on the serial position at which a target (or foil) is
presented.

Models Fit
Figure 2 shows how the two models fit the data from the
first study. The two models were allowed to under-fit the
data, as justified by the observation that the correctness
score was artificially inflated, as explained in the sections
describing the first study. The N4 condition was dropped
because it had a low correctness score (see Table 1) and also
a very high vulnerability to be affected by the artifact
described above, as shown by the highest magnitude of the
negative correlation between targets and foils in this
condition (r38=-0.49, p=0.002).

Figure 2: Data from the first study (solid lines) and model

simulations (dashed lines). Thick lines indicate high control
and thin lines indicate low control. Vertical bars indicate

standard error of the means.

The two models show the same decrease in performance

with n as shown in the data. The value of the retrieval
threshold parameter of ACT-R was set to -0.35 (default 0.0)
to fit the observed difference in the data.

The two models make qualitatively different predictions
with regard to the serial position effect (Fig. 3). The high-
control model predicts that maintaining a rehearsal window
allows high performance at low serial positions but
performance decreases at higher serial positions, as it
becomes harder and harder to maintain the rehearsal
window in the face of distraction.

The low-control model predicts that there is no reason for
performance to vary with serial position because no
rehearsal process is employed in making judgments of
recency. The level of performance is given by the accuracy
of time estimations, which in turn depends on the noise in
the ACT-R’s temporal module and the opportunities the
model has to learn correct time estimations.

Second Study
This study was intended to correct the artifact found in the
first study and check the hypothesis about involvement of
different control strategies in N-Back. The number of foils
was made equal with the number of targets and participants
were asked to explicitly reject foils, that is, non-reaction to
foils did not count as correct answer. These changes were
expected to bring about a more valid measure of
performance in the N-Back task.

It was hypothesized that participants showing the serial
position effect are prone to using a high-control strategy not
only in the N-Back task but also in another control-
demanding task (Stroop). It was also hypothesized that
manipulating the presentation rate of stimuli (inter-stimuli
interval – ISI) would trigger behavioral effects that would
help us distinguishing between various control strategies.

Participants
Fifty-two volunteers from the Carnegie Mellon University’s
community participated in this study (average age 24; 16
women and 36 men). They received a fixed amount of
monetary compensation for their participation.

Design
A within-subjects design has been employed with the N-
Back task and the Stroop task presented one after another in
this order. Only the N2 and N3 conditions from the N-Back
task were retained. The N4 condition was left out based on
results of the first study showing very low performance in
this condition (see Table 1). The N-Back task was
administrated with two presentation rates (ISI): 2.5s and
1.5s. For this manipulation, order was counterbalanced: half
of the participants received the fast ISI (1.5s) first and the
other half received the slow ISI (2.5s) first. The Stroop task
(MacLeod, 1991) had the three standard conditions –
incongruent, congruent and neutral – randomly interleaved
with one another and with an equal number of trials in each
condition.

Materials
The same materials as in the first study were used for the N-
Back task. Small modifications in the software were made
to balance the numbers of targets and foils, collect reactions

for both targets and foils, and implement the speed
manipulation. A computerized version of the standard
Stroop task was implemented.

Procedure
Administration of the N-Back task followed the same
procedure as in the first study, except participants received
additional instructions regarding how foils must be rejected.
Participants were informed that a successful rejection of a
foil is rewarded with one point and a correct identification
of a target is rewarded with two points. Participants were
not informed about the change in speed (ISI) that would
occur during the experiment.

For the Stroop task participants received a short screen-
based tutorial to ensure proper understanding of the task.

Results
As a result of the changes in the administration of N-Back,
correctness rates were decreased overall and in particular for
foils (see Table 2 and compare with Table 1), as compared
with the first study.

Table 2: The rate of correct answers by condition.

 N2 N3
Targets 0.67 0.52
Foils 0.45 0.29

The correlation between correctness on targets and
correctness on foils has become positive (r51=0.43,
p=0.001). Thus, the ability to identify targets and reject foils
was better indicated by the correctness score in the second
study as compared with the first study.

With regard to the serial position effect the two
aforementioned models produced qualitatively different
predictions (see Fig. 3). These models were used to identify
each participant’s proneness toward using high- vs. low-
control strategies. Each participant’s data were compared
with the two predictions. If the data of one participant fit the
prediction of the high-control model better than the
prediction of the low-control model, that participant would
be classified in the high-control group, and vice-versa.
The root-mean-square-deviation measure was used for
fitting the data of individual participants to the two model
predictions. Figure 3 shows the two model predictions and
the data of the two groups of participants formed based on
how well individual participants fit these predictions (only
serial positions 2, 3, and 4 had enough data for a reliable
analysis). The high-control group was composed of 23
participants and the low-control group was composed of 29
participants. It turned out that the high-control group had
also higher overall performance than the low-control group.

To verify that the two groups of participants formed based
on the two different model predictions are indeed different
from a cognitive control perspective, an independent
measure of cognitive control was considered. Stroop
interference is one of the most frequently mentioned
measures of cognitive control (Miyake et al., 2000). It is
computed as the difference in reaction time between

incongruent and neutral trials. A one-way analysis of
variance with Stroop interference as a dependent variable
and the grouping variable distinguishing between high- and
low-control participants as a factor was conducted and
showed a significant effect in the expected direction
(F1,50=5.36, p=0.02, mean(HC)=111ms, mean(LC)=179ms).
The Stroop interference manifested by high-control
participants (HC) was lower in magnitude with an average
of 68ms than the Stroop interference of low-control
participants (LC).

Figure 3: Model predictions (dashed lines) and their

corresponding groups of participants (solid lines). Thick
lines indicate high control whereas thin lines indicate low
control. Vertical bars indicate standard error of the means.

It was not clear whether and to what extent performance

at N-Back varied with speed. The effect of the speed change
was confounded by a strong learning effect (see Table 3).
Most participants who started with the fast condition
(ISI=1.5s) had lower performance in this condition and most
participants who started with the slow condition (ISI=2.5s)
had lower performance in this condition.

Table 3: Confounding between speed and learning effects.

 Start fast Start slow
Lower performance
in the slow condition 2 16

Lower performance
in the fast condition 24 9

Discussion
The interpretation that scores in the first study were biased
and artificially inflated by the way the task was
administrated proved correct. The changes operated to the
task for the second study corrected this problem. As a
consequence, the correctness score for both targets and foils
now accurately indicates judgments of familiarity and
recency.

Participants‘ proneness toward using high- versus low-
control strategies was determined by the aid of the two
corresponding model predictions. Participants were assigned
to two different groups based on how well their behavioral
data fit the simulations of the two models. Participants that
were identified as prone toward using a high-control
strategy showed lower Stroop interference than participants
identified as being prone toward using a low-control
strategy.
 The speed manipulation was confounded by a strong
learning effect. Both effects deserve further investigation.
Arguably, speed must have a negative influence on the high-
control strategy and either none or a positive influence on
the low-control strategy. It would be interesting to
investigate how learning relates to using these strategies and
whether and when participants switch strategies.

General Discussion and Conclusion
The first study found behavioral traces (serial position
effect) indicating the use of a high-control strategy in some
of the participants and not in others. This effect was
unequivocally interpreted as indicating the use of a rehearsal
process vulnerable to distraction. Participants showing this
effect were assumed to use the phonological loop to
maintain active a rehearsal window of size n and inhibitory
control to discard items falling outside of this window.
Participants not showing this effect were assumed to use
time estimations for their judgments of recency. Two ACT-
R models were developed based on these assumptions.

Model predictions were used to categorize participants in
the second study as prone to using high- or low-control
strategies. High-control participants were shown to manifest
lower Stroop interference than low-control participants. This
result validates the assumption that the serial position effect
is an indicator of using a high-control strategy. It can be
argued that some of the specific modeling mechanisms used
in these models are not unique. For example, a rehearsal
process does not necessarily require the phonological loop
(Logie, Venneri, Della Sala, Redpath, & Marshall, 2003)
and rehearsal-independent judgments of recency can be
implemented without assuming a time estimation
mechanism (McElree, 2001). However, a distractor-
suppression mechanism seems necessary to account for the
serial position effect. To the best of our knowledge, no other
modeling account has been proposed so far for this effect.

 In conclusion, this paper argued that there are substantial
individual differences with regard to whether or not certain
cognitive control mechanisms are employed in particular
tasks. It can be asserted that not only some tasks require
more control than others but also some individuals are prone
to using more control than others.

Acknowledgments
This work was supported by Office of Naval Research grant
N00014-06-1-005. Thanks to Daniel Dickison and Jelmer
Borst for their comments on a draft of this paper.

References

Anderson, J. R. (1989). Human Memory: An Adaptive

Perspective. Psychological Review, 96, 703-719.
Awh, E., Jonides, J., Smith, E. E., Schumacher, E. H.,

Koeppe, R. A., & Katz, S. (1996). Dissociation of storage
and rehearsal in verbal working memory: Evidence from
positron emission tomography Psychological Science, 7,
25-31.

Baddeley, A. D. (2000). The episodic buffer: a new
component of working memory? Trends in Cognitive
Sciences, 4, 417-423.

Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L.
E., Noll, D. C., Jonides, J., et al. (1997). Temporal
dynamics of brain activation during a working memory
task Nature, 386, 604-608.

Garavan, H., Ross, T. J., Li, S.-J., & Stein, E. A. (2000). A
Parametric Manipulation of Central Executive
Functioning. Cerebral Cortex, 10, 585-592.

Logie, R. H., Venneri, A., Della Sala, S., Redpath, T. W., &
Marshall, I. (2003). Brain activation and the phonological
loop: The impact of rehearsal. Brain and Cognition, 53,
293-296.

MacLeod, C. M. (1991). Half a Century of Research on the
Stroop Effect: An Integrative Review Psychological
Bulletin, 109(2), 163-203.

McElree, B. (2001). Working memory and focal attention.
Journal of Experimental Psychology: Learning, Memory
& Cognition, 27, 817-835.

Miller, E. K., & Cohen, J. D. (2001). An integrative theory
of prefrontal cortex function. Annu. Rev. Neurosci., 24,
167–202.

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H.,
Howerter, A., & Wager, T. D. (2000). The unity and
diversity of executive functions and their contributions to
complex "frontal lobe" tasks: A latent variable analysis.
Cognitive Psychology, 41, 49-100.

Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore,
E. (2005). N-Back Working Memory Paradigm: A Meta-
Analysis of Normative Functional Neuroimaging Studies
Human Brain Mapping, 25, 46-59.

Smith, E. E., & Jonides, J. (1999). Storage and Executive
Processes in the Frontal Lobes Science, 283, 1657-1661.

Taatgen, N. A., Anderson, J. R., Dickison, D., & van Rijn,
H. (2005). Time Interval Estimation: Internal Clock or
Attentional Mechanism? Paper presented at the CogSci05
- The 27th Annual Conference of the Cognitive Science
Society, Mahwah, NJ.

Yntema, D. B., & Trask, F. P. (1963). Recall as a search
process. Journal of Verbal Learning and Verbal
Behavior, 2, 65-74.

Zarahn, E., Rakitin, B., Abela, D., Flynn, J., & Stern, Y.
(2005). Positive Evidence against Human Hippocampal
Involvement in Working Memory Maintenance of
Familiar Stimuli. Cerebral Cortex, 15, 303-316.

ACT-R Models of Cognitive Control in the Abstract Decision Making Task

Daniel Dickison (danieldickison@cmu.edu)
Niels A. Taatgen (taatgen@cmu.edu)

Department of Psychology, Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15201

Abstract
This paper discusses a method of modeling individual
differences in cognitive control by developing models that
differ in control structure. Such a strategy for modeling
behavior is necessitated when tasks are complex and
individual differences in performance vary on many measures
of performance. For these tasks, merely adjusting a parameter
to fit various groups of subjects may be impractical or
impossible. Two such models for the Abstract Decision
Making task are implemented in ACT-R to fit the
performance of high and low-control subjects in the first
experiment. These models are then used to accurately predict
performance on a second experiment that involves novel
“games” unrepresented in the prior experiment.

Keywords: Individual differences; cognitive control; ACT-R

Introduction
Computational models of cognition are often developed to
fit the average performance on a task by a population.
While this method suffices when describing phenomena that
are observed widely, it purposefully ignores individual
differences. One way to model individual differences is to
propose some parameter – such as working memory
capacity – that varies among individuals and observe how
changes in that parameter affect the model’s performance
(Daily, Lovett & Reder, 2001; Taatgen, 2002; Rehling,
Demiral, Lebiere, Lovett, & Reder, 2003; Chuderski,
Stettner & Orzechowski, 2006).

However, when tasks are more complex, manipulating
isolated parameters to fit individual differences becomes
more challenging. For these types of tasks, it is possible to
assume that individuals adopt different control structures
that manifest themselves as different problem solving
strategies. The different degrees of cognitive control can be
characterized as the amount of top-down control that an
individual exerts when completing a task, as opposed to
behavior being primarily driven by bottom-up processes
(Taatgen, 2007). This paper explores the development of
distinct models using the ACT-R architecture (Anderson,
2007) that differ in control structure to describe individual
performance on the Abstract Decision Making (ADM) task
(Joslyn & Hunt, 1998).

Abstract Decision Making Task
ADM is a task developed by Joslyn and Hunt (1998)
designed to predict individuals’ performance on various
real-world tasks that require decision making under time
pressure. The task was used in a battery of tests designed to
show individual differences in cognitive control.

ADM involves 5-minute long “games” that require
subjects to classify objects into 1 of 4 bins according to their
attributes. Both objects and bins have 3 attributes: size,
color and shape. Only objects that match a particular bin’s
attributes are allowed in the bin. While objects always have
3 concrete attributes (e.g. small, red, circle), bins may
specify any subset of the attributes (e.g. all circles). The
number of attributes that a bin omits (i.e. the number of
those that are wildcards) will be referred to as its generality.
Thus, an “all circles” bin has a generality of 2 because it
does not specify size or color. The generality of a game is
defined as the greatest generality of its 4 bins.

Each game consists of 4 different bins that subjects study
for as long as they want prior to starting the game. Because
reviewing bins during the game is a slow and hence costly
action, it is in the subject’s interest to memorize the
attributes of the bins. During the game, an object becomes
available every 15 seconds with a pop-up notification that
the subject must dismiss before continuing. None of the
attributes of objects are immediately visible even when they
become available. To reveal one attribute of an available
object, the subject must query it by typing in the appropriate
commands. To assign an object to a bin, the subject must
type in a different set of commands. The subject receives
points if an assignment is correct and loses points if it is
incorrect. The magnitude of reward or penalty is inversely
proportional to the generality of the bin – that is, more
specific bins award more points.

Because there is a time limit and objects are presented
quicker than most subjects can classify them, there is a time
pressure urging subjects to act as quickly as possible. To
analyze performance on the ADM task, we specified several
measures that could be computed per subject for each game.
The most obvious is the score measure, which is identical to
the cumulative points that the subject earns for assigning
objects to bins. For analysis, we normalized scores to a
proportion of total possible points in a given game. Because
penalties are assessed for incorrect assignments, negative
scores are possible. A major problem with the score
measure is that various factors play into determining the
final score – including accuracy, speed, and whether
subjects assigned objects to the more lucrative specific bins.
To help tease those factors apart, idealness was defined as
the proportion of correct assignments that were ideal. For
any given object, there can be more than 1 bin to which it
can be assigned, with 1 bin being the most specific and
lucrative. Idealness is the proportion of correct assignments
where the subject chose the best bin. Finally, queries was

defined as the average number of attribute queries a subject
made of an object before attempting to assign it for the first
time. This can range from 0 meaning the subject never
queried any attributes – quite a suboptimal strategy – to 3
meaning the subject always queried every attribute. Values
greater than 3 are also possible if the subject queried an
attribute more than once.

Experiments
Two experiments were conducted. The first allowed the
generation of models. The same models were used to
predict subject performance in the second experiment, the
results of which were used to validate the models.

Experiment 1
The task consisted of 2 practice games and 4 real games.
Practice games used just 3 bins and had 20 seconds between
object presentations. The 4 real games consisted of 2 games
each of generality 0 and generality 1. Forty-one people
from the Carnegie Mellon University community
participated as part of a larger experiment studying
individual differences. Models were developed to fit the
pattern of data observed in experiment 1.

Experiment 2
The task consisted of just 1 practice game followed by 4 real
games. The real games increased in generality from 0 in
game 2 to 3 in game 5. Fifty-three subjects participated in
experiment 2.

Models
Two ACT-R models were developed to describe subject
performance in the ADM task – one for a high-control
strategy and one for a low-control strategy. Because it is
unclear which aspects of the task give rise to particular
subject performances, an attempt was made to model the
task as closely as possible to the actual experiment. The
model, like subjects, must type in certain commands in
response to text prompts to query and assign objects. This
is accomplished via ACT-R’s perceptual and motor
modules, which simulate the amount of time required to
process visual stimuli and perform key presses. The amount
of time required for the models to process textual prompts
was adjusted so that the models classified roughly the same
number of objects per game as did subjects. This was a
simplification to reflect the amount of time people need to
parse a prompt, because the models were able to deduce the
current state of the textual interface as soon as the visual
stimuli was encoded. One further simplification made in
modeling the task was that the new object pop-up
notifications were omitted for the model runs.

In both models, the objects are processed in order as they
become available. Neither model moves on to a subsequent
object until the current object has been successfully
assigned to a bin. Each bin is stored in declarative memory.
A representation of the current object is kept in the imaginal

buffer, which is ACT-R’s mechanism for temporarily
storing the current problem state. The imaginal buffer
representation includes slots for the object attributes that get
filled in as they are queried. The imaginal buffer was
configured to spread activation to items in declarative
memory, so that when deciding which bin to assign an
object to, bins that had matching attributes to those of the
imaginal buffer representation were more likely to be
retrieved than other bins.

The differences between the low-control and high-control
models are outlined below.

Low Control Model
This model (Figure 1) makes use of the bottom-up process
of expected utility available as a module in ACT-R
(Anderson, 2007) to decide at each step whether to query
more object attributes or to attempt an assignment. Two
exceptions are when no attributes of an object are known,
then it will always query, and, conversely, when all
attributes are known, it will not query any more. The
“query” production rule’s utility is held constant while the
“retrieve bin” production rule will gain or lose utility based
on past successes and failures. When an assignment is
correct, a positive reward is propagated backwards through
the production rules that had fired leading up to the
assignment. As a result, the “retrieve bin” production rule
gains utility relative to the “query” rule, thus, in the future
the model is more likely to ask fewer questions before
assigning. On the other hand, when an incorrect assignment
is made, a negative reward (i.e. a penalty) is propagated to
the “retrieve bin” rule, leading to more queries before
assignment.

When a bin is retrieved, it is checked against the currently
known attributes of the object in question. If there is a
mismatch, the model reverts to the state where it may
attempt another retrieval or query for another attribute.
Otherwise, if it is a match or if it might be a match, it will
attempt to assign.

This model makes incorrect assignments when the
retrieved bin specifies attributes that have not yet been
revealed from the object. For example, after only having
determined that a given object is red, the model may retrieve
a bin that will take red circles. Even though the red object
may not be a circle, the low control model will still try to
assign the object to this bin, possibly resulting in an error.
This leads to a corresponding negative reward, thus slightly
biasing the model towards querying more in the future.

Figure 1: Low control model flow diagram.

Figure 2: High control model flow diagram.

High Control Model
The high control model (Figure 2) follows a more
disciplined strategy by exerting additional top-down control.
Instead of relying on the expected utility of querying versus
assigning, the model attempts to maximize correctness and
points gained by evaluating one bin at a time to see if it will
take a given object. It also tries to minimize queries by
assigning to a potentially matching bin if no other
candidates can be retrieved. Specifically, it will always
query first, then, after each query, it will attempt to retrieve
a matching bin. If a matching bin is found, it tries to
retrieve a better match – if one is found, it assigns the object
to the better bin, and if one is not found, it assigns to the
original match it had found earlier. If, after the original

retrieval, a maybe matching bin is retrieved, it attempts to
retrieve other bins. If no other matches are found, then it
will assign to the first “maybe” bin it had retrieved, on the
assumption that the object must fit the only possible bin.

An example will help illustrate the model’s logic and how
it minimizes the number of queries while maintaining
accuracy. Suppose there are just 2 bins, one for small red
circles (called A) and another for any small red shape
(called B). When the model starts processing an object, it
may query the object’s shape. Suppose this object is a
triangle. The model now tries to retrieve a bin, and retrieves
the bin B. The model recognizes that the triangle may fit in
this bin, but the color and size could possibly mismatch.
The model now moves to the “retrieve others” state and
attempts to retrieve other bins. It retrieves bin A, and sees
that the triangle is a mismatch for this circles-only bin and
discards it. It then fails to retrieve any other bins because
there are no other bins for this game. It then concludes that
the first bin – bin B – must be the correct bin, and assigns
the triangle to the small red shapes bin. Thus, after just 1
query the model was able to correctly classify the object.

This model only makes errors when it fails to retrieve
matching bins after first having found a possible candidate.
This is, during the “retrieve others” state, it fails to retrieve a
“maybe” bin even when one exists in its declarative
memory. This outcome results from the fact that bin
retrievals are subject to activation decay and noise.

Results and Model Fits
In order to fit the models to subjects, subjects were divided
into a high-control group and a low-control group based on
certain idealness and queries criteria. Each model was then
developed to fit a group of subjects in experiment 1. Apart
from the control structures of the models, their speed of
processing textual prompts was adjusted so that they
classified roughly the same number of objects that subjects
classified during each game. Finally, predictions were made
for experiment 2 using the exact same models, and their
outputs were compared to data observed in experiment 2.

Control Grouping
The criteria for splitting subjects into groups was based on
the idealness and queries measures for the games which had
generalities of 0 and 1 – that is, games involving no
wildcards in bin attributes, and games additionally involving
bins with 1 wildcard, respectively. Because in games with
generality 0 each object can only be assigned to 1 bin, the
idealness measure is necessarily 1.0 for all subjects. With
the addition of generality 1 bins, each object can be assigned
to either 1 bin (the most specific bin), or to 2 bins. If a
subject always assigns to the best bin, idealness will still be
1.0. If, on the other hand, the subject assigns to the more
general, less lucrative bin(s), idealness will decrease. Figure
3, shows the distribution of subjects’ idealness measures for
experiment 1, generality 1, while Figure 4 shows the same
measure for the varying game generalities. A somewhat
bimodal distribution is evident at generality 1, with many

subjects getting a perfect 1.0 and a cluster of subjects
getting a lower value around 0.7 through 0.9. The
bimodality is further exemplified in games of increasing
generality. These distributions suggest that two distinct
strategies were used by subjects, rather than subjects
varying on one continuous dimension. We deemed subjects
who had idealness greater than 0.9 in the generality 1 games
to be potentially high-control, and others as low-control.

Figure 3: Distribution of experiment 1 subjects’ idealness
measure for games of generality 1 as a density plot. The

dashed line shows the cutoff for high-control classification
on the idealness measure.

In addition to the idealness criterion, a criterion based on

the number of queries was used for control group
classification. The motivation for adding another criterion
is that using the idealness criterion alone, subjects would be
classified as high-control if they simply attempted to assign
objects to the most lucrative bins first, and, failing that, try
the more general bins. This strategy maximizes idealness
while minimizing the number of queries to the detriment of
overall score. In order to filter out such strategy takers from
high control classification, we required subjects to show an
increase in queries when playing generality 1 games as

compared to when playing generality 0 games. Because of
the configuration of bins, more queries are required to find
the ideal bin when there are wildcards involved.

In experiment 1, 27 subjects out of 41 were classified as
high control on the idealness criterion, with 25 of those also
matching the queries criterion for high control. For
experiment 2, these numbers were 24 out of 53 for the
idealness criterion and 18 of those matching the queries
criterion also.

Model Comparison
Having grouped subjects thus, the outputs produced by

the models were compared to the observed data. Figure 5
shows the overall score, number of queries, and proportion
ideal for each game generality in experiment 1. The two
practice games are excluded from analysis, and the 2 games
of each generality are collapsed.

Of note is that, regarding idealness, the low control model
reflects the degree to which subjects decrease idealness in
generality 1 games, while the high control model maintains
a near-perfect mark. Furthermore, the high control model
increases the number of queries as it moves to the more
general games as do subjects. This is noteworthy because
the high control model is designed to minimize the number
of queries, but it is sensitive to the fact that more queries are
necessary for high performance, a feat made possible by its
complex control structure.

The group classifications are good predictors of overall
score in experiment 1, producing a main effect of group on
score, F(1, 160) = 52.6, p < 0.01, in addition to a main
effect of game generality on score, F(1, 160) = 20.4, p <
0.01.

Figure 6 shows the same measures plotted for experiment
2. Note that in this experiment, there was 1 game each of
the 4 levels of generality, and there was only 1 practice
game as opposed to 2. That may explain the lower overall
performance of subjects in this experiment compared to
experiment 1.

Figure 4: Distributions of experiment 2 subjects’ idealness measure for games of varying generality.

Figure 5: Experiment 1 data (solid lines) and model fits
(dashed lines) for high control (open shapes) and low

control (crosses). Error bars, shown only for subject data,
represent standard error.

Figure 6: Experiment 2 data and model fits.

For these data, models were not explicitly designed to fit the
data but instead were extrapolated from those designed for
experiment 1. The fits for game generality 2 and 3, which
were nonexistent in experiment 1, show that the models
predict subject behavior in the right directions. The most
notable deviation is the exaggeration of differences in the
number of queries between the high and low control models.
The high control subjects maintain the number of queries at

around 2.0, while the model maintains it slightly higher. On
the other hand, low control subjects show a gradual decline
in the number of queries. The interaction of subject group
and game generality on the number of queries was
significant, F(1, 203) = 4.27, p < 0.05. The models also
successfully predict the differences in the proportion of
assignments that are ideal in the more general games, with
the low control subjects and model showing a significant
drop while the high control subjects and model show a
much smaller drop. Again, the interaction of group and
game generality on idealness was significant, F(1, 202) =
6.21, p < 0.05.

Discussion
This paper explored a method of analyzing individual
differences in cognitive control by developing models that
differ in control structure. When tasks are more complex,
simple parameter fitting may become impossible or
impractical to explain the myriad differences in behavior
that individuals show. For such tasks, it can be useful to
assume that different people employ different control
strategies and develop separate models to represent those
control structures. A high control strategy means that it is
less influenced by the environment and exerts more top-
down cognitive control. In the ADM models, the low
control model behaved according to past outcomes of
various actions, while the high control model followed a
strategic course of action to maximize performance. That is
not to say, however, that individuals do not also vary
according to parameters like working memory. In fact,
fitting the working memory parameter to individual subjects
in addition to selecting different control structures would
probably have resulted in more accurate fits.

The possibility remains that a single model could account
for the data by varying a parameter, such as a model of
speed-accuracy tradeoff varying on retrieval latency.
However, the fact that the data show bimodal distributions
of an outcome variable suggests discreet strategic
differences between subjects. It may be the case that
something akin to a speed-accuracy tradeoff leads subjects
to adopt different control strategies.

It is also noteworthy that the model predictions presented
here for experiment 2 were indeed predictions; that is, no
parameters were adjusted nor any other modifications made

to generate output for experiment 2. This is an important
aspect of modeling to ensure that models are not overly
specific to a given experimental situation. In other words,
validating model outputs on novel experimental conditions
helps avoid overfitting of data. Such validation supports the
view that certain aspects of a model are applicable beyond
the specifics of the experiment.

Acknowledgments
This work was supported by Office of Naval Research grant
N00014-06-1-005.

References
Anderson, J. R. (2007). How can the human mind occur in

the physical universe? New York, NY: Oxford University
Press.

Chuderski, A., Stettner, Z., & Orzechowski, J. (2006).
Modeling individual differences in working memory
search task. Proceedings of the Seventh International
Conference on Cognitive Modeling (pp. 74-79). Trieste,
Italy.

Daily, L. Z., Lovett, M. C., Reder, L. M. (2001) Modeling
individual differences in working memory performance: a
source activation account. Cognitive Science, 25, 315-
353.

Joslyn, S. & Hunt, E. (1998). Evaluating individual
differences in response to time-pressure situations.
Journal of Experimental Psychology: Applied, 4(1), 16-
43.

Rehling, J., Demiral, B., Lebiere, C., Lovett, M., & Reder,
L. M. (2003). Modeling individual difference factors in a
complex task environment. In F. Detje, D. Doerner, & H.
Schaub (Eds.), In Proceedings of the Fifth International
Conference on Cognitive Modeling (pp. 287-288).
Bamberg, Germany: Universitats-Verlag Bamberg.

Taatgen, N. A. (2002). A model of individual differences in
skill acquisition in the Kanfer-Ackerman Air Traffic
Control Task. Cognitive Systems Research, 3(1), 103-112.

Taatgen, N. A. (2007). The minimal control principle. In
Gray W. (Ed.), Integrated Models of Cognitive Systems.
New York: Oxford University Press.

The Importance of Action History
in Decision Making and Reinforcement Learning

Yongjia Wang (yongjiaw@umich.edu)
University of Michigan, 2260 Hayward Street

Ann Arbor, MI 48109-2121

John E. Laird (laird@umich.edu)
University of Michigan, 2260 Hayward Street

Ann Arbor, MI 48109-2121

Abstract

We investigate the hypothesis that historical information
plays an important role in learning action selection via
reinforcement learning. In particular, we consider the value of
the history of prior actions in the classic T maze of Tolman
and Honzik (Tolman & Honzik 1930). We show that
including a sequence of actions in the state makes it possible
to learn the task using reinforcement learning. Moreover we
show that learning over sequences of length 0 ~ 4 is necessary
to model rat behavior. This behavior is modeled in Soar-RL
and compared to an earlier model created in ACT-R.

Introduction
In many tasks, immediate sensory data is insufficient for

decision making. Enriching the state with information about
previous actions or previous situations can disambiguate
between situations that would otherwise appear identical,
which makes it possible not only to make correct decisions
but also to learn the correct decision. Moreover, knowledge
of the past can replace the need for unrealistic sensors, such
as knowing the exact location in a maze.

Using historical information as part of the state
representation poses some challenges. For the tasks we
describe here, we use a simplified version of history – a
sequence of prior actions. This leaves open the length of
sequence, and how to model the relation between similar
sequences to achieve proper level of generalization and
specialization during learning. We demonstrate how these
issues can be addressed in Soar-RL (Nason, & Laird, 2005)
by proposing a simple model on an animal based
experiment. We analyze the task and compare results to a
recent ACT-R model (Fu & Anderson 2006).

The T Maze Task
The task we will explore is the T maze task of Tolman and
Honzik (Tolman & Hoznik 1930) in which a rat is put at the
start location and it is rewarded if it gets to the end location.
As shown in Figure 1, the T maze contains 14 numbered
blinds (dead-ends), each corresponds to a binary choice
point (the task is designed to prohibit the rats from going
back at T-junctions). Whenever the rat turns into a dead-
end, that is considered an error. In such a maze, there are
few if any salient features. Rats are able to maintain a sense
of direction, so that would provide the ability to create for
different classes of T’s. The only other salient features

appear to be a history of the rat’s behavior – that is the
sequence of turns it made before coming to a T at which it
must make a decision.

Figure 1. T maze used in Tolman and Honzik (1930)

To cast this as a problem conducive to reinforcement
learning, we use the same conventions as a recent ACT-R
model on this task (Fu & Anderson 2006). Moving into
dead-ends and turning back results in immediate negative
reward, while reaching the final goal results in positive
reward. Figure 2 shows a picture of the actual environment,
where the maze is embedded in a grid world and the subject
moves one unit at a time. Dark boxes represent penalties,
and the light box represents the final reward.

Figure 2. T-maze model

Qualitative Analysis of Task Constraints
Given the dearth of features in the environment, the only
external features available to the rat are its prior moves.
Thus, we assume the representation of the state includes a
sequence of previous moves. The moves could be encoded
relative to the current heading: left, right, forward,
backward; however, as pointed out in (Fu & Anderson
2006), the rats have strong directional bias, and thus we
assume they have knowledge of absolute direction and have
available the absolute directions of their movement To
describe the model, we use north, east, south and west as
labels for these directions. For example, at choice point 6,
the state includes the sequence of [east, north, west, …]
ordered left-to-right by recency, so that the first item in the
sequence is the current direction.

Figure 3 shows the relationships among the choice points
associated with each numbered dead-end based on the
sequence representation described earlier. Choice points that
are grouped together have the same previous input sequence
and face with the same set of choices. Within the same
group, points are further divided based on what is the
correct choice. Decision points, for which moving north (2,
4, 6) or moving west (3, 11) are correct, are colored in light
number with dark background; other points are colored in
dark number with light background. Points in the same
group but with different color are competing points in that
learning to reduce the error for one type of points will
simultaneously increase the error for the other type of
points. Interference is most intense for the most general
level (Seq 0), and disappears at the most specific level (Seq
4), where the correct decision can be learned for each choice
point. The tree structure in Figure 3 therefore captures all
such constraints in the task model.

Figure 3. Relations among choice points

Our hypothesis is that choice points with similar state
representations (in this case the sequence of prior moves)
will appear similar to the rat and it will learn to make the
same decisions in those states. Choice points with different
correct directions but similar state representations will
interfere with each other during learning. According to
Figure 3, if the agent makes decision based on Seq 0, for
example, it will tend to move south more than north and east
more than west at each choice point where those options are
available, since south and east correspond to the correct
choice for the majority of the choice points within each
group (4 south vs. 3 north and 5 east vs. 2 west). At Seq 4
(the most specific level), all choice points are completely
discriminated and the correct decision can be made at each
choice point.

Our assumption is that sequences of prior actions are
maintained and available for decision making. Figure 3
provides the information necessary to determine what
impact each sequence can have on learning. Relying solely
on sequences of length 0, a rat should tend to make more
errors at points 2, 4, 6, 3, and 11. Relying solely on
sequences of length 1, point 4 should involve less error than
point 2 and 6, since point 4 is discriminated from majority
of conflicting points (especially the strongest point 14) but
only interfere with point 12. Point 4 will be correctly
learned at the next specificity level, while point 2 and 6 are
still confused with point 8. Point 3 will involve more errors
than point 11 since it is not discriminated from point 7 until
sequence length of 4.

One important property of most approaches to learning
these discriminations is that learning is quicker for more
general levels because they are exposed to more examples.
For example, there are 4 different rules (different
combinations of states and legal actions) at the level of Seq
0, each of them will receive a quarter of the total training
instances, while at the most specific level of Seq 4, there are
28 different rules, each of them only receives less than 4%
of total training instances. This suggest there is an
advantage to including selection knowledge based on all
levels of the sequences so that some rough knowledge can
come into play early, but more and more specific knowledge
is learned over time. No deliberate mechanism is required to
achieve this effect.

These conclusions are largely consistent with the
experimental data from the T-maze task shown in Figure 4.

Figure 4. Percentage error in Honznik (1930)

Soar Reinforcement Learning Model
As mentioned above, our hypothesis is that the model

must consider the spectrum of specificity levels of the state
representations and that these will influence learning and
behavior. In Soar, this effect can be readily modeled
because Soar allows knowledge for selection of an action to
be encoded in multiple rules that fire together in parallel,
each providing its own prediction of the expected utility of
the operator. The expected utilities for the same operator are
combined, producing a single, joint expected probability.
Thus, when making a decision, rules match and fire for each
of the levels, for each of the possible actions. Thus, we can
capture all of the levels of specificity in Figure 3. Once a
decision is made, all the rules that contributed to the
selected action update their expected utility values.

The effect is that general rules will have the most
influence for decisions at novel situations where specific
rule hasn’t been learned yet. In these situations, the expected
values created by the specific rules will be relatively weak
with values still close to the initial value of 0. As learning
progresses, more and more of the specific rules will have
sufficient examples so that their learning stabilizes and their
values, combined with corresponding general rules, reflect
the expected utility of those situations.

Soar-RL
Soar reinforcement learning implements the general

temporal-difference learning. The learned policy is
represented as a Q value function as in standard Q learning.
A Q value reflects the utility of taking a particular action in
a particular state. In Soar-RL, a Q value is associated with
each state-action pair represented as a Soar RL production
rule. The update function in the case of multiple rules firing
is as the following. A temporal difference is computed
based on the sum of Q values for all rules that match the
current condition, and is evenly distributed to update each
rule. Since more general reinforcement learning rules fire
more often, and a specific rule will always fire with the

same general rule (there is a strict hierarchy in this task), the
result is that the general rule quickly learns generalized Q
value with relatively fewer trainings, while specific rules
will fine tune the total Q value for specific situations and
stabilize after receiving more training examples. Without
general rules, the model has to learn the specific rules in
novel situations without the useful initial bias that can be
provided by general rules. Without specific rules, the correct
behavior cannot be earned.

 The probability of making a particular choice is
calculated based on the Boltzmann distribution (equation 1).
In the binary choice case of this task model, it can be
rewritten as equation 2, therefore the probability of making
the wrong choice Pwrong is a monotonic function of the Q
value difference quantity Q(s, awrong) – Q(s, acorrect). Here the
Q value represented as a function of a state-action pair,
where awrong stands for the wrong action and acorrect stands for
the correct action.

∑
=

i

eTemperatur
asQ

eTemperatur
asQ

i i

i

e

eP),(

),(

 Equation 1

eTemperatur
asQasQ

eTemperatur
asQasQ

e

eP),(),(

),(),(

1 21

21

1
−

−

+
= Equation 2

Figure 5 plots the Q value difference = Q(s, awrong) – Q(s,

acorrect) at each choice point for reinforcement learning rules
with different specificity level (from Seq 0 to Seq 4). The Q
values are learned separately and each is an average from 10
independent simulations for 17 trials. These Q value
difference curves show the convergences trends for rules at
different specificity level. The plot qualitatively illustrates
how rules at each specificity level will affect the relative
error rate shown in Figure 4. The initial error rate
distribution should be similar to the curve Seq 0, but as
more and more specific decisions are learned it eventually
converges to the curve of Seq 4, the most specific level, as
explained in the analysis presented in the previous section.
The plot can be viewed approximately as a contour of Q
value difference updating dynamics, since when all levels of
rules are used in Soar, the total Q value difference will
gradually converge following the path which is consistent
with our empirical results (data not shown). One specific
interpretation from Figure 5 is that initial error for point 4 is
relatively higher than point 3, but it learns faster and results
in lower total error rate. Qualitatively, the average Q value
difference across all specificity levels, which is shown as a
bold curve in Figure 5 approximates the relative total error
rates for each dead-end. This can be confirmed by
comparing with Figure 4.

Figure 5. Effects of reinforcement learning rules with

state representation at different specificity levels

Figure 5 only shows the qualitatively analysis based on
separate simulations of each individual level. It is more
informative to examine the combined Q value difference of
all rules during learning which is shown in Figure 6 & 7.

The numbers in Figure 6 & 7 refer to trials, with 20 trial
intervals. For example, the curve with 1 represents the Q
value difference after trial 1, 3 represents after 21 trials.
There are totally 81 trials shown in the plot to demonstrate
the Q value dynamics, although the actual rat experiment
only takes 17 trials. Figure 6 shows learning with only the
most general rules and the most specific rules. Figure 7
shows learning with all levels of rules. One of the main
differences between Figures 6 and 7 is that point 3 is
learned relatively slowly when using all levels of rules. The
dynamics of learning is consistent with Figure 5 and the
above analysis.

Figure 6. Change of combined Q value difference during

learning, using levels 0 and 4.

Figure 7. Change of combined Q value difference during

learning, using levels 0 through 4.

Results
Figure 8 compares observed data with prediction using all

4 levels of rules. The parameters are penalty for turning
back -20, reward for reaching the goal +100, learning rate
0.1, linear discount of 10, on-policy learning with
Boltzmann exploration temperature 3. We experimented
with both standard exponential discount and linear discount.
Figure 5-7 are generated using standard exponential
discount, as that is the standard in the RL field and default
in Soar. However, we discovered that a linear discount
produces a better empirical match to the data, and that is
what is used for the Soar results in this section. The
parameter that has the most impact on matching the
empirical data is the learning rate. The results are not very
sensitive to the other parameters.

Figure 8. Soar model prediction including level 0-4

(a)

(b)

Figure 9. (a) Prediction using ACT-R model.
(b) Prediction using Soar model with equivalent rules.

Comparison with ACT-R
An ACT-R model (Fu & Anderson 2006) was developed

to model the Tolman and Honzik (1930) experiment, relying
on ACT-R’s native reinforcement learning component. In
ACT-R, there are weights associated with rules. Learning
adjusts those weights, which are used in selection. Each rule
corresponds to one action and there is no explicit
combination of values or joint updating of rules that are for
the same action. The ACT-R model uses two sets of rules: a
set of twenty-eight specific rules, two for each choice point;

and a set of four general rules, one for each absolute
direction. The specific rule set is equivalent to the level of
seq. 4 (the model does not use sequences, assuming a rat
knows its position in the maze), and the general rule set is
equivalent to seq. 0 in Figure 3.

Figure 9 (a) shows the ACT-R prediction with only the
most general rules and most specific rules, which is
equivalent to using only Seq 0 and Seq 4 in the Soar model.
Figure 9 (b) shows the prediction using Soar 0, 4 model,
which is similar to the ACT-R model especially for blind 3.

Table 1 compares the correlations of the ACT-R model
and Soar model. The Soar 0, 4 model predicts the ACT-R
model very well (correlation 0.94), while Soar 0~4 model
predicts the experimental data better (correlation 0.92) than
the other models. The differences between the correlation
coefficients are statistically significant. For statistical
significance of difference between 0.90 and 0.92, the p
value is < 0.005 based on our simulation data. This (weakly)
suggests that the rats learn to make decisions using a history
of prior decisions.

Table 1. Correlation Matrix comparing all models

 Observed Soar0~4 Soar 0,4 ACT-R
Observed - 0.92 0.90 0.86
Soar 0~4 - - - 0.82
Soar 0,4 - - - 0.94
ACT-R - - - -

Taking a closer look at the results, Soar 0~4 matches the

blinds closer to the beginning much better while the Soar
0,4 model matches better for those closer to the end. Table 2
compares the correlation with partial experimental data. One
hypothesis could be that for the choice points close to the
end, the general rules are sufficient to produce good results,
so that there is less need to use the lower level rules, which
take longer to learn correctly. While for choice points at the
beginning, the general rules alone produce bad results, and
the more specific rules are necessary to produce good
results. This hypothesis suggests that the rules at different
levels are not learned and/or used uniformly for all choice
points.

Table 2. Correlation with partial observed data

 Soar0~4 Soar 0,4 ACT-R

Blinds 1~6 0.98 0.82 0.71
Blinds 10~14 0.86 0.98 0.87

Table 3 compares the two levels of difference between the

ACT-R model and our Soar model. The most important
difference is our model’s learning over multiple sequences
of past actions (the model level difference). It is reasonable
to assume that representing that information in the state and
increasing the number of rules in ACT-R would improve the

ACT-R model’s match to the observed data, especially for
the early choice points.

Table 3. Comparison between the models

 Model Level Architectural Level

Soar Use action history Parallel rule firing
ACT-R No action history Single rule firing

A detailed comparison between reinforcement learning in
ACT-R and Soar has already been made by Nason (Nason
& Laird 2004). However, this task model highlights an
important difference between the two approaches. In Soar,
for a single decision, multiple reinforcement learning rules
are allowed to contribute to the decision making and then
are updated by learning. In ACT-R, although multiple rules
contribute to making a decision through competition, only
one is picked and updated. Soar speeds learning with
multiple reinforcement learning rules in terms of requiring
fewer external actions, although the asymptotic behavior of
the two approaches should be similar. This architectural
level difference is secondary for the results presented here –
it is the action history representation (model level
difference) that makes the qualitatively different predictions
in our hypothesis. However, it may be worthwhile to
explore the importance of this architectural level difference
in other applications.

An additional difference between the models is in the
reward discount functions used in Soar and ACT-R. The
default option in Soar is to multiply future expected reward
with a discount factor γ (0 < γ <1) in the step-wise update
function, which results in exponential decay of rewards. As
mentioned earlier, we experimented with linear discount
(constant discount between steps) which generates slightly
better results because exponential decay increases the
differential adjustment of values near the final choice points
relative to the early choice points (as evident in Figures 6 &
7). The ACT-R model uses a hyperbolic discount function,
which is closer in its impact to an exponential than a linear
discount. The different discount functions have more
impacts on the later choice points in the result curves; they
do not significantly change the relative error rates for earlier
choice points (such as point 3 vs. point 4).

Discussions
The major contributions of this paper are to examine the

contribution of sequences of action histories, to decision-
making and learning. The second major contribution was to
evaluate the approach to representation and updating of
expected values in Soar-RL and discovering that they
provide an accurate model of learning dynamics by having
overlapping rules at different specificity levels.
Functionally, learning progresses from generalize to
specific. The ACT-R model provided a useful benchmark
for comparison.

We can also ask where our model falls short. Our model
does not make a good prediction at blind 12. This could be

due to experimental data noise, but it’s more likely that
there is more structure in the task that is not captured by our
model. One possibility can be that instead of always using
absolute directions, the rats may actually use combinations
of absolute and relative directions, such as turning left and
right as the state encoding strategy.

References

Fu, Wai-Tat & Anderson, J. R (2006). From Recurrent

Choice to Skill Learning: A Reinforcement-Learning
Model. Journal of Experimental Psychology: General,
135(2) 184-206.

Nason, S. & Laird, J. E., (2005) Soar-RL: Integrating
Reinforcement Learning with Soar, Cognitive Systems, 6(1)
51-59.

Nuxoll A. & Laird J.E. (2004). A Cognitive Model of
Episodic Memory Integrated with a General Cognitive
Architecture, International Conference on Cognitive
Modeling.

Tolman E. C. & Honzik, C. H. (1930). Degrees of hunger,
reward and non-reward, and maze learning in rats,
University of California Publications in Psychology, 4(16),
241-256.

Attentional Blink: An Internal Traffic Jam?

Niels A. Taatgen (taatgen@cmu.edu)

Ion Juvina (ijuvina@cmu.edu)
Department of Psychology, Carnegie Mellon University

5000 Forbes Av., Pittsburgh PA 15213

Seth Herd (sethherd@grey.colorado.edu)
Department of Psychology, University of Colorado

Boulder CO 80309

David Jilk (djilk@jilk.com)
eCortex, Inc., Boulder CO

Sander Martens (s.martens@med.umcg.nl)
NeuroImaging Center, University Medical Center Groningen

Antonius Deusinglaan 2, 9713 AW, Groningen, Netherlands

Abstract

In cognitive models, cognitive control can be measured in
terms of the number of control states that are used to do the
task. In most cases more control leads to better performance.
Attentional Blink is an example in which the opposite is true:
more control leads to poorer performance. A hybrid ACT-
R/Leabra model is used to model both high- and low-control
participants using two and one control states, respectively.

Keywords: Cognitive Control, Multi-tasking, ACT-R, Leabra

Introduction

The term cognitive control is used to refer to cognitive

processes that help us focus on our goals and plans, and

prevent external stimuli and events from interfering with

them. Most of the time a higher level of control improves

performance on tasks. However, too much control can make

behavior brittle and less flexible. It is therefore likely that

cognition strives for a level of control that is just enough for

proper performance (the minimal control principle, Taatgen,

2005, 2007). In this paper we will discuss a task that

demonstrates that too much control can hurt performance.

The task is a Rapid Serial Visual Presentation (RSVP) task

(Raymond, Shapiro, & Arnell, 1992).

In RSVP tasks, participants are presented with rapid

streams of visual stimuli. Each of these streams contains 0,

1 or 2 targets that the participants have to identify. In the

version that we will discuss in this paper, streams consist of

20 characters that are presented at a rate of 100ms/character.

The targets are letters, while distracters are digits. The

streams of interest are the ones with two targets. In these

streams the time between the two targets is of importance,

usually referred to by the lag. A lag of 1 means the two

targets appear in sequence, and are 100 ms apart in time

(given our presentation rate), lag 2 means that there is one

distracter in between the targets, etc. Example sequences

are:

Lag 1: 49204039GF3434329237

Lag 3: 0230349023Y94D324294

Lag 9: 9430R32305129K235209

The phenomenon of interest is that on lags 2-5, but

mainly on lag 2 and 3, accuracy one the second target is

much lower than on the first target. On other lags, including

lag 1, the accuracies are the same. This phenomenon is

referred to as Attentional Blink. The interesting aspect from

the viewpoint of cognitive control is that there are

indications that less control improves performance. Certain

experimental manipulations can decrease the amount of

blink people exhibit, for example if the stimuli are presented

in a star field (Arend, Johnston & Shapiro, 2006), when

music is played in the background (Olivers & Nieuwenhuis,

2005), or when participants receive instructions to focus less

on the task (Olivers & Nieuwenhuis, 2006). In addition,

there are strong individual differences in attention blink:

some individuals do not exhibit attention blink at all

(Martens, Munneke, Smid & Johnson, 2006).

Nieuwenhuis, Gilzenrat, Holmes and Cohen (2005) have

modeled the attentional blink using a neural network. Their

model consists of three layers, input, decision and detection,

and a cell representing the Locus Coeruleus (LC), which is

connected to the decision and detection layers. The LC

provides extra activation to these layers, making them more

sensitive to targets. Once the decision layer has decided that

an input is a target, it is stored in the detected layer, but it

also sends a signal to the LC. The result of the signal to the

LC is that its contribution to activating the decision layer

temporarily diminishes, decreasing the detection rate of

targets that appear within 200-300 ms. This decrease is

relatively slow, so it has no effect on the lag 1 trials.

Although the Nieuwenhuis et al. model is successful in

predicting the outcome of several new experiments, the

impact of control is outside the scope of that model. An

additional finding in RSVP experiments is that in lag 1

trials, the order in which the targets are reported is often

reversed, while this almost never happens in any of the other

lags (Hommel & Akyürek, 2005).

Both phenomena, reduced control leads to less blink, and

the reversed report of lag 1 targets, are outside the scope of

the Nieuwenhuis et al. model, because it neither

incorporates higher-level aspects of control nor the fine-

level details of perception. In this paper we will present a

model that encompasses both. To incorporate both the fine

details of perception and the higher-level control aspects, we

used the hybrid model that combines the Leabra neural

network architecture (O’Reilly & Munakata, 2000) and the

ACT-R architecture (Anderson, 2007). More specifically,

visual perception is handled by a Leabra model, which

passes on the information to the visual input buffer of ACT-

R. ACT-R takes care of the classification of the symbol, and

storing it, if it is a target.

Experiment

Method

Forty-one volunteers from the Carnegie Mellon student

population participated in this experiment, which was part

of a larger experiment on individual differences in cognitive

control. The larger experiment included three other tasks

that we selected to assess levels of cognitive control: the N-

Back memory task (McElree, 2001), the abstract decision

making task (ADM task, Joslyn & Hunt, 1998), and a dual-

tasking task (DTT task, Taatgen, van Rijn & Anderson, in

press). In the N-Back task, participants were shown

sequences of letters, and they had to detect repetitions of

letters and judge how many letters back that repetition was.

In the ADM task, participants had to ask questions about

properties of objects, and sort the objects into bins once they

had obtained enough information. In the DTT task,

participants had to do two visual tasks and a time estimation

task in parallel. Four participants had to be excluded from

the dataset due to a problem in the experimental software.

The stimuli consisted of sequences of 20 characters.

Distracters were digits from 2 to 9, and targets were C, D, F,

G, H, I, J, K, L, M, N, P, R, T, V, W and X. No consecutive

characters were identical, and if there were two targets, they

were different from each other. Targets were never in the

first four positions in the sequence, nor in the last four.

The experiment consisted of 6 practice trials, and 4 blocks

of 37 experimental trials. Each block of experimental trials

consisted of 5 zero-target trials, 5 one-target trials, and 27

two-target trials. The two-target trials consisted of 3 trials of

each 9 different lag lengths (1 through 9).

Each trial was preceded by a 500 ms fixation point, after

which symbols in the sequence were presented one at a time

for 100 ms each. At the end of the sequence, participants

were asked to type all the targets (if any) they had seen, and

press enter. The next trial started immediately after the

participant had pressed enter.

Results

Figure 1 shows the correctness on the second target by lag.

There is a clear blink effect in lags 2-4, consistent with

many earlier findings. On 16% of the Lag 1 trials, both

targets were reported correctly, but in the wrong order.

●

●

●

●

●

● ●
●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

P
ro

po
rt

io
n

T
2

co
rr

ec
t

1 2 3 4 5 6 7 8 9

Figure 1: Blink by Lag. Bars are standard errors.

In order to assess individual differences, we calculated

the AB magnitude (based on Martens et al., 2006) according

to the following equation:

(
T1lag2 T2lag2 | T1lag2

T1lag2
+
T1lag3 T2lag3 | T1lag3

T1lag3
) /2

In this equation, T1 means proportion correct

identification of the first target (given the indicated lag), and

T2|T1 means correct identification of the second target

given a correct identification of the first target. An AB

magnitude of 0 or less means there is no blink at all, while

higher values imply more blink. We correlated the AB

magnitude with outcomes of the other tasks that are

associated with control. For the DTT task, the outcome most

associated with control is how often participants make a

response on the time estimation task, the one of three tasks

that is not cued by visual input. Low levels of response are

an indication of low-level control. The response rate on the

DTT task and the AB magnitude correlated with r=0.46

(p=0.005), indicated that more control in the DTT task

implied a higher blink magnitude. Similarly, the score on

the N-Back task and the AB magnitude had a correlation of

r=0.42 (p=0.009). The correlation with the ADM task was

only weak: r=0.29 (p=0.08). All of these correlations

suggest that a higher level of control correlates with a higher

AB magnitude.

For the purposes of identifying non-blinkers in the

dataset, we classified participants with a AB magnitude of

0.2 or lower as non-blinker, and participants with 0.2 or

higher as blinker (consistent with Martens et al., in press),

amounting to 8 non-blinkers and 29 blinkers.

Figure 2: Visual input module

Model

Overview

Cognitive models allow a more precise characterization of

what “more control” means. To keep outside events from

completely controlling behavior, we maintain internal goals.

The current goal can be in a certain state to keep track of

progress of that goal. Any action or progress on the goal can

change the state, or keep it as it is. Taken together, states

and possible actions create a state space. The more states

there are in the state space, the more it is associated with a

higher level of control (Taatgen, 2007).

We designed two possible control structures for a model

of attentional blink, one with two states, which models the

blinkers, and one with one state, which models the non-

blinkers. The first, blinker, model assumes two control

states. One state is used to signify the model is searching for

a target in the input stream. Once a target has been found,

the model switches to a second state that is used to

consolidate the target in memory. When the target is

consolidated, the state switches back to the first state. When

the model is in the consolidation state, it no longer fully

processes the input stream. When the model switches back

to the search state it has too much to do at the same time,

creating an internal “traffic jam” that causes the model to

sometimes miss targets in the 200-500ms range. The

second, non-blinker, model uses only a single state. In other

words, there is no state to protect the consolidation process,

but it also misses targets less often.

Vision

The visual input is projected on the input layer of a Leabra

(O’Reilly & Munakata, 2000) neural network of the ventral

visual stream (Figure 2). This model processes the input,

and arrives at a classification in the output layer, in which it

has a single cell for each of the possible symbols in the

input. Because of the speed in the visual presentation, the

network is not always able to fully settle, and there is often

still residual activation of the previous symbol. Figure 3

shows an example of how activation in the output layer

changes over time based on the “2829P” sequence. The

consequence of the rising and falling of activations is that if

the visual input is sampled at a particular moment, it is

possible two output cells are active, in which case it is

impossible to determine in which order the two have been

presented. This explains why in lag 1 the two targets are

often reported in the wrong order.

Central Cognition and Control

The ACT-R architecture is structured as a set of interacting

modules. Modules communicate through buffers, but

otherwise operate asynchronously. Each module can only

work on one thing at a time, but because all the modules

work in parallel, the cognitive system as a whole can work

on several tasks at the same time. At this level of

abstraction, cognitive control is a matter of optimally

engaging all modules in doing the task or tasks.

● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ● ●

●

● ●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

● ● ● ● ● ●

●

●
●

●

●

●

●

●
●

●
●

●
●

●
● ● ●

●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

40 60 80 100 120 140 160

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cycle

A
ct

iv
at

io
n

● 2
3
5
7
8
9
P

Figure 3: Example of visual module output for the “2829P” sequence. Vertical lines indicate where a new stimulus is

presented, e.g. at cycle 40 the symbol “2” is presented. Each cycle corresponds to 5ms real time.

Display 2

Visual

Production

A 3 8 B 8

“2”
is not

a target

Declarative Retrieve
“A”

Store
target “A”

Imaginal Store “A”

Retrieve
Potential
Target

Retrieve
“3”

Potential
Target

“A”

Potential
Target

“3”

2 A 3 8 B 8

100 ms

Figure 4: Time diagram of a Lag 3 presentation: blinker model.

Display 2

Visual

Production

A 3 8 B 8

“2”
is not

a target

Declarative Retrieve
“A”

Store
target “A”

Imaginal Store “A”

Retrieve
Potential
Target

Retrieve
“3”

Potential
Target

“A”

Potential
Target

“3”

2 A 3 8 B 8

100 ms

Potential
Targets
“B” & “8”

Discard
“3”

Retrieve
Potential
Target

Retrieve
“B”

“8”
is not

a target

Store
target “B”

Figure 5: Time diagram of a Lag 3 presentation: non-blinker model.

In the attentional blink tasks, several modules have to

operate in parallel. The visual module has to scan the

incoming stream of characters. These characters have to

then go through a decision process, which determines

whether a character is a target, which involves the

procedural and declarative modules. Once a target is found,

it has to be consolidated in ACT-R’s imaginal buffer, a

place to temporarily store problem-related information.

Figure 4 shows a diagram of how the model operates in

the case of a Lag 3 sequence. Each row in the diagram

represents one of ACT-R’s modules, with the exception of

the top line, which shows the state of the display. Boxes in

each row show activity in a module at a particular time, and

the width of the box indicates the duration. The visual

module follows the input, and outputs activations

corresponding to the classification of the input. This input

triggers production rules that try to determine whether the

character is a target. The assumption of the model is that

some characters can be recognized as non-targets straight

away (with a probability of 60%). Other characters have to

be classified by a declarative memory retrieval. In the

example, the first “2” is immediately recognized as non-

target. The second character (“A”) is a target. Targets are

always retrieved from memory to verify that they are

targets. During this retrieval, the next character (“3”) is

identified as a potential target. However, the memory

retrieval that can verify this has to be postponed until the

retrieval of the “A” finishes. However, once the retrieval of

“A” finishes, the model decides “A” is indeed a target, and

stores it in the imaginal buffer. In this version of the model,

once a target has been found the production rule that

initiates storing the target changes the control state to

consolidate, blocking further processing of the input. Only

when the imaginal buffer is done storing the target can the

target detection process resume. As a consequence, the “8”

and the “B” will not be considered as targets, leading to a

blink trial in this particular example. Also note that the “3”

that directly followed the first target is considered a

potential target by the model, although delayed, which

means that if this had been a Lag 1 trial and the “3” would

have been a target, both targets would have been detected.

The non-blinker model

Although the model described above changes state to

protect its memory consolidation, this is an unnecessary

exertion of control. If the model does not change state when

a target has been detected, detection of the second target can

proceed while the first target is consolidated. Figure 5

shows an example trace of that variation of the model. Once

the target “A” has been detected and transferred to the

imaginal buffer, the next candidate, “3” is requested from

declarative memory. The next production rule samples this

visual input again, now detecting two potential targets (“B”

and “3”), because both output cells of the neural network are

active.

Reversal of target on Lag 1

Figure 6 demonstrates how reversals can occur. Delayed by

the possibility that “2” is a target, the model samples the

visual buffer at a moment when both the “A” and “B” cells

are active. Having no means to determine the order of the

two, the model decides to retrieve the “B” first.

Display 2

Visual

Production

A B 8

Declarative Retrieve
“B”

Imaginal

Potential
Targets
“A” & “B”

2 A B

100 ms

Potential
Target

“2”

Retrieve
“2”

“2” is not
a target

Figure 6: Example of a reversal of targets

Parameters

The model has a number of parameters that influence its

outcome. The main parameter that was used to fit the model

was the probability that a character could be recognized as a

foil straight away (60%). Other parameters that will

probably influence the outcome when changed are the

latency factor that determines how long declarative

retrievals take (set so that they take about 50ms), and the

time to store an item in the imaginal buffer (left at the

default of 200ms). In addition, the Leabra model has several

parameters, but those were left untouched for the purpose of

fitting the data.

Model Results

To assess the model we divided the dataset in blinkers and

non-blinkers according to the criteria discussed earlier.

Figure 7 shows the model/data comparison for the blinker

group (r=0.97, MSE=0.03), and Figure 8 for the non-blinker

group (r=0, MSE=0.04). The blinker model has a good

correlation between model and data and a low MSE. The

non-blinker model has no correlation with the data because

there is no meaningful variability in the data to model.

However, the MSE is comparable to that of the blinker

model, confirming that there is a decent fit.

Figure 9 shows the proportion of trials in which the two

targets were reported in the wrong order for both groups

together (there was no difference between blinkers and non-

blinkers).

●

●

●

●

●

●
●

●
●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

P
ro

po
rt

io
n

T
2

co
rr

ec
t

1 2 3 4 5 6 7 8 9

● Data
Model

Figure 7: T2 correctness for blinkers (n=29), model/data

comparison.

●

●

●

●

●

●

● ●
●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

P
ro

po
rt

io
n

T
2

co
rr

ec
t

1 2 3 4 5 6 7 8 9

● Data
Model

Figure 8: T2 correctness for non-blinkers (n=8),

model/data comparison.

Discussion

The central question that we tried to address in this paper is

how cognitive control can be made more concrete in terms

of a cognitive model. Our hypothesis is that more control is

associated with more possible control states. More control

states gives more top-down control of the task’s execution,

but at the cost of flexibility. The experiment as a whole

showed that the amount of blink in the RSVP task correlated

with control aspects of other tasks, which is consistent with

findings by Arend et al. (2007) and Olivers and

Nieuwenhuis (2006) that attentional blink is related to

control factors.

●

●
● ● ● ● ● ● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

P
ro

po
rt

io
n

T
1/

T
2

re
ve

rs
al

s

1 2 3 4 5 6 7 8 9

● Data
Model

Figure 9: Proportion in which targets are reported in the

wrong order, model/data comparison

The RSVP model, with two control states for high control

and one control state for low control, managed to fit the data

very well. Further support for the model can be found in

ERP data. Martens et al. (2006) collected ERP data for both

blinkers and non-blinkers. They found that the P300, which

we associate with imaginal buffer activity, is present only if

a target is detected. Moreover, it is later for blinkers than for

non-blinkers. This is the case for both T1 and T2, but the

effect on T2 is much larger. Our model currently only

predicts a difference on T2. The T1 difference may be due

to a different factor all together, and may be related to the

proportion in which distracters can be dismissed without

memory retrieval.

This model is also a demonstration of how a symbolic

architecture, ACT-R, and a neural network architecture,

Leabra, can work together. The perceptual part of the model

was clearly outside the current capabilities of ACT-R, while

the control aspects were outside of Leabra’s scope.

Acknowledgments

This work was supported by Office of Naval Research grant

N00014-06-1-005 and N00014-05-1-0880, and

Biologically-Inspired Cognitive Architecture, DARPA.

References

Anderson, J. R. (2007). How can the human mind occur in

the physical universe? New York: Oxford university

press.

Arend, I., Johnston, S., & Shapiro, K. (2006). Task-

irrelevant visual motion and flicker attenuate the

attentional blink. Psychonomic Bulletin & Review, 13(3),

600-607.

Hommel, B., & Akyürek, E. G. (2005). Lag-1 sparing in the

attentional blink: benefits and costs of integrating two

events into a single episode. Quarterly Journal of

Experimental Psychology, 58A, 1415-1433.

 Joslyn, S., & Hunt, E. (1998). Evaluating individual

differences in response to time-pressure situations.

Journal of Experimental Psychology: Applied, 4(1), 16-

43.

Martens, S., Munneke, J., Smid, H. & Johnson, A. (2006).

Quick minds don’t blink: electrophysiological correlates

of individual differences in attentional selection. Journal

of Cognitive Neuroscience, 18(9), 1423-1438.

McElree, B. (2001). Working Memory and Focal Attention.

Journal of Experimental Psychology: Learning, Memory

and Cognition, 27(3), 817-835.

Nieuwenhuis, S., Gilzenrat, M. S., Holmes, B. D., & Cohen,

J. D. (2005). The role of the locus coeruleus in mediating

the attentional blink: a neurocomputational theory.

Journal of Experimental Psychology: General, 134(3),

291-307.

Olivers, C. N. L., & Nieuwenhuis, S. (2005). The Beneficial

Effect of Concurrent Task-Irrelevant Mental Activity on

Temporal Attention. Psychological Science, 16(4), 265-

269.

Olivers, C. N. L., & Nieuwenhuis, S. (2006). The beneficial

effects of additional task load, positive affect, and

instruction on attentional blink. Journal of Experimental

Psychology: Human Perception and Performance, 32(2),

364-379.

O'Reilly, R. C., & Munakata, Y. (2000). Computational

Explorations in Cognitive Neuroscience Cambridge, MA:

MIT Press.

Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992).

Temporary suppression of visual processing in a RSVP

task: An attentional blink? Journal of Experimental

Psychology: Human Perception and Performance, 18,

849-860.

Taatgen, N. A. (2005). Modeling parallelization and

flexibility improvements in skill acquisition: from dual

tasks to complex dynamic skills. Cognitive Science, 29(3),

421-455.

Taatgen, N. A. (2007). The minimal control principle. In W.

Gray (Ed.), Integrated models of cognitive systems.

Oxford: Oxford University Press.

Taatgen, N. A., Rijn, H. v., & Anderson, J. R. (in press). An

Integrated Theory of Prospective Time Interval

Estimation: The Role of Cognition, Attention and

Learning. Psychological Review.

Category Development and Reorganization Using a
Bidirectional Associative Memory-inspired Architecture

Gyslain Giguère (giguere.gyslain@courrier.uqam.ca)

UQÀM, Département de psychologie, A/S LEINA,
C.P. 8888, Succ. CV, Montréal, Qc, H3C 3P8

Sylvain Chartier (chartier.sylvain@gmail.com)

Université d’Ottawa, Département de psychologie,
550 Cumberland, Ottawa, Ont, K1N 6N5

Robert Proulx (proulx.robert@uqam.ca)

UQÀM, Département de psychologie, A/S LEINA,
C.P. 8888, Succ. CV, Montréal, Qc, H3C 3P8

Jean-Marc Lina (jean-marc.lina@etsmtl.ca)

École de Technologie Supérieure, Département de génie électrique
C.P. 8888, Succ. CV, Montréal, Qc, H3C 3P8

Abstract

This paper shows that the recently proposed Feature-
Extracting Bidirectional Associative Memory (FEBAM) can
create and reorganize item clusters (or categories). This
model, contrary to most other cluster-creating architectures, is
based on projection methods and follows associative model
principles (e.g. distribution of information, pattern completion
and noise tolerance). Using a bidirectional associative
memory (BAM)-inspired architecture, the resulting model is
tested by simulating iterative cluster development and
reorganization of artificial stimuli and alphanumeric patterns.
In contrast to classic clustering techniques, the model is able
to reproduce predetermined categories by iteratively
reevaluating cluster membership, and allows given category
members to move from a category to another. Because
FEBAM has been shown to possess many more interesting
properties, it is argued that the model possesses more
cognitive explanative power than other comparable models
and algorithms.

Introduction

Categories
In everyday life, humans are constantly exposed to
situations in which they must group perceptual patterns
(such as visual objects) into categories, in order to act upon
the identity and properties of the encountered stimuli. To
achieve this task properly, a cognitive system must adapt to
many different environments which necessitate a broad
range of behaviors according to context. Cognitive scientists
have historically argued over the fact that the human
cognitive system either uses generic abstractions (such as
prototypes) or very specific perceptual stimulations (such as
complete exemplars) to achieve category learning and
further classification. Seemingly, the use of one of these
representations is likely to be closely linked to specific
environmental demands and system goals (Murphy, 2002).

Clustering in Neural Nets
More generally speaking, category formation, in a
perceptual framework, is often seen as a “clustering” of
similar patterns in common categories, a process akin to
classic clustering techniques, which involve partitioning
stimulus spaces in a number of finite categories (“clusters”).

In artificial neural networks, clustering is a well-
developed technique used mainly in competitive models
(Kohonen, 1989; Grossberg, 1988). In these models, each
output unit represents a specific cluster of items. When
taking a decision, the association between an exemplar and
its determined cluster unit in the output layer is
strengthened. In “hard competitive” networks (Grossberg,
1988), exemplars may only be associated with one cluster
(i.e. only one output unit at a time can be activated).

An example of hard competitive network is the Adaptive
Resonance Theory (ART: Carpenter & Grossberg, 1987;
Grossberg, 1988). ART networks are able to deal effectively
with the exemplars-prototype scheme, while being able to
answer the stability-plasticity dilemma. These unsupervised
competitive models achieve the desired behavior by using a
novelty detector (through “vigilance”); various degrees of
generalization can be achieved with this procedure. If the
value of the vigilance parameter is low, broad categories are
developed; if it is high, narrow categories are developed,
with the network ultimately performing exemplar learning.

In “soft computing” (Kohonen, 1989), exemplars may be
associated with many clusters at differing degrees. This
provides a more distributed classification; for instance, an
exemplar may be geometrically positioned between two
clusters, and possess various degrees of membership.

PCA networks (Diamantaras & Kung, 1993) can also be
used to achieve clustering; in this case, each category is
defined by a linear sum of extracted orthogonal
components. Nonlinear PCA networks (Karhunen, Pajunen
& Oja, 1998) are not restrained by this orthogonal

requirement; hence, correlated components can be found
(Hyvarinen & Oja, 2000). In all cases, once an item has
been linked to a specific cluster, there is no mechanism
allowing this item’s category membership to be modified.
Each model’s internal structure is based on a specific metric
that is constant over the training period.

Model Overview
In this paper, we show that the FEBAM model can be used
to form clusters using various exemplar sets. First, it is
shown that prototypes can be stored in the network’s
memory, regardless of the number of units. In this situation,
exemplars form transient memories that can be used for
identification, while prototypes constitute attractors that can
be used for categorization. Second, when using a unit
recruiting procedure, the model can ultimately develop
exemplar-based attractors. In FEBAM, it is the number of
units that specifies category broadness (in comparison to
novelty detection in ART models). If, for instance,
additional units are recruited and trained during learning,
then the model is able to develop a greater amount of
narrower categories. Ultimately, the network can perform
“exemplar clustering”.

Model Description

Architecture
FEBAM’s architecture is based on a BAM architecture
(Kosko, 1988) proposed by Hassoun (1989) and Chartier &
Boukadoum (2006a). It consists in two Hopfield-like neural
networks interconnected in head-to-toe fashion.

Figure 1: FEBAM network architecture.

When connected, these networks allow a recurrent flow

of information to be processed bidirectionally. As shown in
Figure 1, the W layer returns information to the V layer and
vice versa. As in a standard BAM, both layers serve as a
teacher for the other layer and the connections are explicitly
depicted in the model1. To enable a BAM to perform

1 In opposition, the architecture of multi-layer Perceptrons strictly
illustrates a series of input-output relationships, without ever

clustering, one set of those explicit connections must be
removed. Thus, in contrast with the standard BAM
architecture, the “initial output” y(0) is not obtained
externally, but is instead acquired by iterating once through
the network, as depicted in Figure 2.

Figure 2: Output iterative process used for learning
updates.

In the context of item cluster creation, the W layer will be

used to determine the maximal number of clusters created
by the network; the more units in that layer, the more
possible clusters. The exact relationship between these
quantities is the following: the theoretical maximal number
of categories developed by the network is equal to 2n, where
n is the number of units in the network.

Output Function
FEBAM’s output function is expressed by the following
equations:

3

1, If () 1
 , ..., , (1) 1, If () 1

(1) () () (),

i

i i

i i

t
i N t t

t t Elseδ δ

>
∀ + = − < −
 + −

Wx
y Wx

Wx Wx
 (1)

and

3

1, If () 1
 , ..., , (1) 1, If () 1

(1) () () (),

i

i i

i i

t
i M t t

t t Elseδ δ

>
∀ + = − < −
 + −

Vy
x Vy

Vy Vy
 (2)

where N and M are the number of units in each layer, i is the
index of the respective vector element, y(t+1) and x(t+1)
represent the network outputs at time t + 1, and δ is a
general output parameter. Like in any nonlinear dynamic
system, to guarantee that a given output converges to a fixed
point such as x*(t) or y*(t), the slope of the outputs
function’s derivative must be positive and smaller than one
(Chartier & Proulx, 2005; Kaplan & Glass, 1995):

2(1) 0 (1) 3 (()) 1
()

d t t
d t

δ δ+
= < + − <

y Wx
Wx

 (3)

2(1) 0 (1) 3 (()) 1
()

d t t
d t

δ δ+
= < + − <

x Vy
Vy

 (4)

specifying the origin of the teacher’s information. This is less
desirable in a neuropsychological perspective.

Wx(0) y(0)

V

W

x(1)

y(1)

This condition is satisfied when 0 < δ < 0.5 for bipolar
stimuli2. Figure 3 illustrates the shape of the output function
when δ = 0.4. This output function possesses the advantage
of exhibiting continuous-valued (gray-level) attractor
behavior. Such properties contrast with networks using a
standard nonlinear output function, which can only exhibit
bipolar attractor behavior (e.g. Kosko, 1988).

Figure 3: Output function for δ = 0.4.

Learning Function
Learning is based on time-difference Hebbian association
(Chartier & Proulx, 2005; Kosko, 1990; Oja, 1989; Sutton,
1988), and is formally expressed by the following
equations:

T(1) () ((0) ())((0) ())k k t tη+ = + − +W W y y x x (5)

and
T(1) () ((0) ())((0) ())k k t tη+ = + − +V V x x y y (6)

where η represents a learning parameter; T is the usual
transpose operator, y(0) and x(0), the initial patterns at t = 0,
y(t) and x(t), the state vectors after t iterations through the
network, and k the learning trial. The learning rule is thus
very simple, and can be shown to constitute a generalization
of hebbian/anti-hebbian covariation in its autoassociative
memory version (Chartier & Boukadoum, 2006a). For
weight convergence to occur, η must be set according to the
following condition (Chartier & Proulx, 2005; Chartier, &
Boukadoum, M., 2006b):

1
2

1 ,
2(1 2) [,]Max N M

η δ
δ

< ≠
−

 (4)

General Procedure
To obtain the various vectors needed for weight updates,
stimuli iteration is performed as depicted in Figure 2. First,
an initial stimulus (x(0)) is introduced to the W layer,
yielding an initial output (y(0)). This output represents the
input’s classification into a distributed cluster. Second,
using this initial output, the information is sent back to the
input layer using the V layer’s connections; this results in
another output, x(1). Third, this novel output is then used to

2 Generalization to real-valued stimuli can be found in Chartier &
Boukadoum (2006a).

obtain the final classification output (y(1)) by using the W
connections once again.

As stated by Equations 5 and 6, weights can only
converge when “internal feedback” is identical to the initial
inputs (that is, y(1) = y(0) and x(1) = x(0)) (in other words,
when the network resonates). The function therefore
correlates directly with network outputs, instead of
activations. As a result, the learning rule is dynamically
linked to the network’s output (unlike most BAMs).

Simulations

Simulation 1
A first simulation was conducted in order to demonstrate the
network’s ability to cluster exemplars into categories. For
this simulation, artificial pixel-based stimuli were created.
Stimuli examples are shown in Figure 4.

Figure 4: Examples of a prototype (left image) with three
associated exemplars.

Methodology Eight category prototypes were produced by
generating bipolar-valued vectors, for which the value of
each vector position (or “feature”) followed a random
discrete uniform distribution. The presence of a feature
(black pixel) was represented by a value of +1, and the
absence of a feature (white pixel) by a value of -1. Each
prototype vector comprised 100 features. Correlations
between category prototypes are shown in Table 1.

Table 1: Correlations between category
prototypes for Simulation 13.

 P2 P3 P4 P5 P6 P7 P8

P1 -0.04 0.04 -0.02 0.12 0.14 -0.04 -0.16
P2 -0.04 0.06 0.08 0.30 -0.08 0.12
P3 0.02 -0.12 0.22 0.00 -0.16
P4 0.02 0.20 0.02 -0.10
P5 -0.02 0.04 0.08
P6 0.02 0.02
P7 -0.04

Ten exemplars were generated using each prototype, for a

total of 80 items. Each exemplar was created by randomly
“flipping” the value of between one to six features. Average
within-category correlations are presented in Table 2.

3 Px represents the Category x prototype. In this Table, as well as
all following Tables, Pearson’s r scores are reported.

Table 2: Average within-category
correlations for Simulation 14

C1 C2 C3 C4 C5 C6 C7 C8

0.86 0.88 0.89 0.89 0.88 0.86 0.84 0.85

Learning followed the following procedure:
0. Random weight initializations;
1. Random selection of a given exemplar;
2. Weight updates according to Equations 5 & 6;
3. Repetition of 1 and 2 for 600 learning trials.

To assess the network’s behavior, several simulations

were performed using different numbers of units for the W
layer.

Figure 5: Number of clusters developed by the network as a
function of the number of recall iterations. Each line
represents a different number of units present in the W layer
of the network.

Results Looking at Figure 5, one finds that for adequate
clustering, the network needs at least n2log units. Here,
because there were eight predetermined categories, the
network thus needed a theoretical minimum of three units
(38log2 =). However, if there are much less units than
exemplars, the network is likely to develop a greater number
of categories than necessary. In this example, it was the case
when 4, 8 or 16 units were used. If the number of units was
sufficient, the number of categories developed by the
network then matched the number of desired categories. In
this example, when 32, 64 or 128 units were used, the
network correctly developed eight categories.

In addition, when using 32 units or more, Figure 5
indicates that as the number of iterations increases, the
network switches from a specific identification to a
categorization process. For the first few iterations (~10 or
less), there are almost as many clusters as there are
exemplars. When achieving more iterations (~30 or more),
the number of clusters is reduced so that it becomes similar
to the number of prototypes (or categories). Consequently, if
the number of units is great enough, FEBAM can be used to
identify specific exemplars even though its memory has

4 Cx represents Category x.

extracted the corresponding prototypes, depending on the
time allowed (i.e. number of iterations performed) before an
output is required.

Simulation 2
The purpose of the second simulation was to study the
number of categories developed by FEBAM as a function of
the number of output units. In this simulation, not all units
were initially available. A unit recruiting mechanism was
introduced to allow the network to slowly converge towards
a number of categories equal to the number of exemplars. A
new unit was recruited by the model after a certain amount
of learning trials had been achieved.

Methodology Four prototypes were generated using the
method detailed for Simulation 1. Correlations between
category prototypes are shown in Table 3.

Table 3: Correlations between category

prototypes for Simulation 25.

 P2 P3 P4
P1 0.02 0.08 0.08
P2 -0.02 0.02
P3 0.12

Ten exemplars were generated using each prototype, for a

total of 40 items. Each exemplar was created by randomly
flipping the value of between two to ten features. Average
within-category correlations are presented in Table 4.

Table 4: Average within-category

correlations for Simulation 26

C1 C2 C3 C4
0.76 0.77 0.78 0.77

The simulation was conducted, starting with two initial

units in the W layer. The number of units in the V layer
remained constant at 100. After each phase of 600 learning
trials, another unit was added to the W layer. This was
repeated until there were 64 units. After each learning
phase, a recall test was performed to estimate the number of
categories developed by the network. At test, each given
stimulus was iterated 200 times in the network before the
final stabilized output was given. This was done to establish
the nature of the network’s attractors after each step.

Learning followed the following procedure:
0. Random weight initializations;
1a. Random selection of exemplars for learning,

according to Equations 5 and 6;
1b. Repetition of 1a for 600 learning trials;
2. Addition of a new output unit;
3. Repetition of 1 and 2 until the number of output

units is equal to 64.

5 Px represents the Category x prototype.
6 Cx represents Category x.

Figure 6: Simulation 2. Number of categories developed by
the network as a function of the number of units iteratively
added.

Results Figure 6 indicates that as more units are added to
the network, more categories are developed. Hence, the
network’s architecture does “take advantage” of the
recruiting mechanism properly, by separating the stimuli in
more and more specific ways, iteratively going from
groupings around a generic abstraction to single exemplars.
Hence, this simulation shows that FEBAM can act as both
an exemplar and a prototype memory, depending on the
number of units that have been dynamically recruited.

This is clearly visible in Figure 7, which displays a
tendency towards creating one-exemplar clusters as the
number of possible clusters increases. Figure 7 also shows
that while the unit recruiting mechanisms allows for some
cluster reorganization (for example, some items associate
with different cluster members when adding units), the
exemplars always closely follow the predetermined
categorical segmentation, that is they tend to cluster with
items generated by the same prototype.

Simulation 3
Simulation 2 was replicated, but this time using stimuli with
no predetermined categorical (or cluster) membership. Pixel
representations of letters of the alphabet were chosen
because they represent a wide range of intercorrelations.

Figure 8: Set of patterns used for training.

Methodology The patterns used for the simulations are
shown in Figure 8. Each pattern consisted of a 7 x 7 pixel
matrix representing a letter of the alphabet. Once again,
white and black pixels were respectively assigned
corresponding values of -1 and +1. Correlations between the
patterns varied from 0.02 to 0.84.

The simulation procedure was identical to that of
Simulation 2, except for the number of stimuli involved (26
instead of 40).

Figure 9: Simulation 3. Number of categories developed by
the network as a function of the number of units iteratively
added.

Results As in Simulation 2, Figure 9 indicates that the
network takes advantage of the recruiting mechanism; as
more units are added to the network, more categories are
developed. However, as Figure 10 shows, a member from a
given category is not tied to a specific type of categorical
clustering. In fact, given exemplars can aggregate into a
given cluster, and later on leave their present cluster to join
another one, or form a new cluster with other exemplars.
This contrasts markedly from classic clustering techniques.

Figure 7. Clusters developed by the network as a function of the number of units. Some exemplars cluster with different
items as the number of units increases. As can be seen, as soon as the number of units (two) allows for the formation of four
clusters, each formed cluster exhibits its predetermined belonging exemplars.

Figure 10. Clusters developed by the network as a function of the number of units. Once again, cluster reorganization can be
detected as the number of possible clusters increases.

Discussion
In this paper, it has been shown that FEBAM, which is
based on an associative learning architecture, is able to
create increasingly precise clusters by recruiting
additional units, and reorganize these clusters during
training. Results from the first simulation have shown that
the developed memory can be used to perform
identification as well as categorization. This property is
made possible by the dynamic memory recall process. In
this case, specific exemplars are “transient” memories,
while prototypes are attractors. However, simulations 2
and 3 show that by using a unit recruiting process,
exemplars can also become attractors. In previous studies,
FEBAM has been shown to achieve perceptual feature
extraction and learning in noisy environments (Giguère,
Chartier, Proulx & Lina, in press), as well as nonlinear
principal component extraction and blind source
extraction (Chartier, Giguère, Renaud, Lina & Proulx, in
press). Moreover, FEBAM, being a special case of BAM,
can also be used to simulate other applications such as
categorization (Chartier & Proulx, 2005), classification
(Chartier & Boukadoum, 2006a), many-to-one association
and multi-step pattern recognition (Chartier &
Boukadoum, 2006b). FEBAM is therefore believed to
constitute a serious candidate for larger-scale cognitive
modeling of human perceptual and categorical processes.

Further studies should investigate the frequency effects
of both exemplars and categories. Based on results
expressed by Figure 5, further studies should also
investigate the categorization and classification processes
as a given input (or exemplar) iterates through the
network. FEBAM could ultimately link, through a
dynamic memory system, both exemplar and prototype
approaches. In its present form, the model is able to
cluster together information if between-category
variability is greater than within-category variability.
Various variability clustering techniques adding an
external teacher or reinforcement should therefore also be
explored.

References
Carpenter, G. A. and Grossberg, S. (1987). A massively

parallel architecture for a self-organizing neural pattern
recognition machine. Computer Vision, Graphics, and
Image Processing. 37, 54-115.

Chartier, S., Boukadoum, M. (2006a). A bidirectional
heteroassociative memory for binary and grey-level

patterns. IEEE Transactions on Neural Networks, 17,
385-396.

Chartier, S., Boukadoum, M. (2006b). A sequential
dynamic heteroassociative memory for multistep
pattern recognition and one-to-many association. IEEE
Transactions on Neural Networks, 17, 59-68.

Chartier, S., Giguère, G., Renaud, P., Lina, J.M., Proulx,
R. (2007, in press). FEBAM : a feature-extracting
bidirectional associative memory. Proceedings of the
20th International Joint Conference on Neural
Networks.

Chartier, S., Proulx, R. (2005). NDRAM: nonlinear
dynamic recurrent associative memory for learning
bipolar and nonbipolar correlated patterns. IEEE
Transactions on Neural Networks, 16, 1393-1400.

Diamantaras, K.I., Kung, S.Y. (1996). Principal
Component Neural Networks. New York: Wiley.

Giguère, G., Chartier, S., Proulx, R., Lina, J.M. (2007, in
press). Creating perceptual features using a BAM-
inspired architecture. Proceedings of the 29th Annual
Conference of the Cognitive Science Society.

Grossberg, S. (1988). Nonlinear Neural Networks:
Principles, Mechanisms, and Architectures. Neural
Networks, 1, 17-61.

Hassoun, M.H. (1989). Dynamic heteroassociative neural
memories. Neural Networks, 2, 275-287.

Hyvarinen, A., Oja, E. (2000). Independent component
analysis: algorithms and applications, Neural Networks,
13, 411-430.

Kaplan, D., & Glass, L. (1995). Understanding nonlinear
dynamics (1st ed.). New-York: Springer-Verlag.

Karhunen, J., Pajunen, P., Oja, E. (1998). The nonlinear
PCA criterion in blind source separation: Relations with
other approaches. Neurocomputing, 22, 5-20.

Kohonen, T. (1989). Self-Organization and Associative
Memory (3rd ed.). Berlin: Springer-Verlag.

Kosko, B. (1988). Bidirectional associative memories.
IEEE Transactions on Systems, Man and Cybernetics,
18, 49-60.

Kosko, B. (1990). Unsupervised learning in noise. IEEE
Transactions on Neural Networks, 1(1), 44-57.

Murphy, G.L. (2002). The Big Book of Concepts.
Cambridge, MA: MIT Press.

Oja, E. (1989). Neural networks, principal components,
and subspaces. International Journal of Neural
Systems, 1, 61-68.

Sutton, R.S. (1988). Learning to predict by the methods of
temporal difference. Machine Learning, 3, 9-44.

The Emergence of Semantic Topography
in a Neurally-Inspired Computational Model

Lee I. Newman (leenewm@umich.edu)

Thad A. Polk (tpolk@umich.edu)
Department of Psychology, 530 Church Street

Ann Arbor, MI 48109 USA

Abstract

Representations in sensory cortices are organized
topographically: auditory cortex is organized tonotopically,
somatosensory cortex is organized somatotopically, and
visual cortex is organized retinotopically. Substantial
progress has been made in understanding how topography
develops at a neurocomputational level, particularly in the
early and middle stages of processing in the visual system.
We extend this work to investigate how higher-level semantic
representations could develop based on topographic input
from sensory maps in the ventral visual pathway. The
receptive fields of cells in these maps correspond to the loci
of activity within a cortical topography rather than explicitly
coded sensory features. Using this model, we show that
meaningful semantic representations at increasing levels of
abstraction naturally emerge as a result of exposure to a set of
visual stimuli. For example, when presented with a set of
simple visual features (color, texture, size, and shape) the
model develops semantic representations that distinguish
basic level categories (e.g., dogs, tables, cars), superordinate
categories (e.g., animals, furniture, vehicles), and living
versus nonliving things. This work therefore offers a
computationally explicit hypothesis about how semantic
representations could emerge in the brain. Our results suggest
the possibility that high-order concept representations may be
encoded topographically much the same way as low-order
sensory representations, and that these representations may be
learned based on the same principles of neural computation
known to be operating in sensory cortex.

Introduction
Topography is an important principle of neural organization
and is present in all sensory cortices of the brain (Kandel,
Schwartz, & Jessell, 2000). Topography represents a
mapping from sensory space (e.g., location in the visual
field, wavelength of light) to cortical space (e.g., location in
extrastriate visual cortex). In such a mapping, nearby
neurons in cortical space have similar receptive fields (they
respond to nearby parts of sensory space) and are therefore
selective for similar sensory features. Put simply, sensory
similarity is reflected in cortical proximity.

 Topographic representations have been particularly well-
studied in the early processing stages in the ventral visual
pathway of the primate brain. This pathway proceeds
through a hierarchy of stages beginning with striate cortex
(V1) and proceeding through extrastriate cortices (V2, V4)
to inferotemporal cortex (IT). In the early stages of
processing, receptive fields are small and neurons are highly

selective for primitive sensory features (e.g., specific retinal
locations, orientation of bars of light, and colors). As
processing progresses receptive fields become increasingly
large and neurons become selective for more abstract and
complex features (e.g., specific configurations of features,
and simple objects).

Physiological studies have established that topographies
are present in the early and middle stages of the ventral
pathway (V1, V2, V4) and the structure of these
topographies has been well-described in the literature
(Fujita, Tanaka, Ito, & Cheng, 1992; Hadjikhani, Liu, Dale,
Cavanagh, & Tootell, 1998; Livingstone & Hubel, 1984;
Shipp & Zeki, 1989, 2002a, 2002b; Tanaka, 1996; Tootell,
Silverman, Hamilton, Devalois, & Switkes, 1988; Tootell,
Switkes, Silverman, & Hamilton, 1988; Vanessen &
Gallant, 1994). The primary organization is retinotopic,
with neighboring neurons coding for sensory information
located at nearby positions in the visual field. Embedded
within this retinotopy are secondary topographies such as
orientation columns and color blobs whose neurons are
selective for particular object orientations and colors,
respectively. Physiological findings also suggest that a
more complex object-based topography may exist in IT
cortex, but neither the structure nor learning mechanisms
underlying this putative topography are fully understood
(Fujita et al., 1992; Sigala & Logothetis, 2002; Tanaka,
2000).

At a computational level, significant progress has been
made in understanding how sensory topographies develop in
the early and middle stages of the ventral pathway.
Biologically plausible models based on self-organizing
learning algorithms have simulated topographic
development computationally and have been able to
successfully reproduce physiological data (Barrow, Bray, &
Budd, 1996; Carreira-Perpinan, Lister, & Goodhill, 2005;
Goodhill, 1993; Goodhill & Willshaw, 1994; Olson &
Grossberg, 1998; Sirosh & Miikkulainen, 1997; Sit &
Miikkulainen, 2006). All these models are based on two
well-established neural mechanisms, competition and
Hebbian learning, that operate throughout neocortex.

In this work we consider what role, if any, these self-
organizing mechanisms might play in the learning of higher-
order semantics. Specifically, we use a computational
model to investigate the type of representation that develops
in a later stage cortical map that (i) receives topographically
organized sensory inputs, and (ii) self-organizes based on

the same mechanisms of neural computation known to
operate in the earlier processing stages of the ventral
pathway. We find that after exposing the model to a set of
visual stimuli, the topography reflects multiple levels of
semantic categories more than low-level visual similarities.

An early investigation of the role of topographic structure
in semantics was conducted by Ritter & Kohonen (1989). In
this work, the authors showed that a SOM could produce a
topography of logical word roles (e.g., subject nouns, object
nouns, verbs) based on the statistical structure of word
context. Applied work in content retrieval (Laaksonen,
Koskela, & Oja, 2002; Laaksonen & Viitaniemi, October,
2006) have successfully used SOMs to organize images
based on visual similarity. Our model differs from prior
work in that it focused on the visual modality, has a
hierarchical structure more closely tied to known
hierarchical structure of cortex, and has the objective of
understanding psychological phenomena associated with
semantics.

Self Organizing Maps
Self-organizing maps (SOMs) are a computational
abstraction of cortical representation and processing
(Kohonen, 1982, 1990). SOMs correspond to a locally
connected population of neurons in a contiguous area of
cortical tissue. As shown in Figure 1, the basic unit of
representation within a SOM is the cell. Cells within a
SOM are indexed based on their spatial location and each is
modeled as a k-length weight vector specifying the preferred
k-length input for the cell (i.e., the input that causes the cell
to fire maximally). When presented with an input pattern,
cells within a SOM compete to represent this pattern. The
response of each cell is based on the similarity between its
weight vector and the input pattern. The winning cell is the
cell most similar to the input.

Figure 1: Self organizing map.

SOM learning is accomplished by modifying the weight

vector of the winning cell so that it is more similar to the
input, therefore making this cell more likely to win again
with future presentations. Critically, the weight vectors of
cells in close spatial proximity to the winning cells are also
updated. As a result, with experience the response of a
SOM tends to become spatially organized, learning a

mapping from the statistical regularities discovered in its k-
dimensional input space to a set of topographically
organized neighborhoods within the SOM.

Mathematically, if x(t) is a vector representing the input
to a SOM at time t and wi(t) represents the weight vector of
cell i at time t, then the winning cell c is given by

ArgMinc {║ x(t) – wc(t) ║}, (1)

where the ║·║ operator denotes vector distance. We use
Euclidean distance for all distance computations in our
model. The weight vector for each cell i is updated
according to the following SOM learning equation

wi(t+1) = wi(t) + α(t) hc,i(t){ x(t) – wc(t) }, (2)

where α(t) is a time-dependent learning rate, and hc,i(t) is a
kernel function that is centered on the winning cell c and
that computes the magnitude of the update to cell i based on
its spatial proximity to the winning cell. In our model we
use the the Gaussian kernel function

2

, (,) (,)2

1() exp{ i c }
λ(t)c i x y x yh t = − − , (3)

where λ(t) is a time-dependent parameter that determines
the width of the kernel, and i(x,y) and c(x,y) denote the map
coordinates of cells i and c, respectively. We compute α(t)
and λ(t) as exponentially decreasing functions of time, with
time denoting discrete presentations of training inputs.

While SOMs are not detailed biophysical models of
cortex, the core assumptions embodied in this class of
models can be mapped directly to their biophysical
correlates: The weight vectors of SOM cells correspond
biologically to the concept of receptive fields; winning cells
are analogous to the peak location of activity within a
cortical area, governed by the net result of the competitive
interplay between local excitatory and inhibitory activity
driven by an input; and the spatially-localized learning
algorithm is a computational abstraction of Hebbian
learning that occurs between neurons participating in a
bump of cortical activity and the active afferent neurons
providing their input. SOMs therefore provide a
computationally efficient and biophysically plausible
method for modeling the development of spatially
structured representations in cortex.

Methods

Model Architecture
As shown in Figure 2, our model is a two-level hierarchy

of SOMs. The first level consists of a set of four 10x10
sensory maps each corresponding to a particular visual
feature: color, size, shape, and surface appearance. Each
sensory map receives inputs in the form of real-valued
sensory vectors, for example the color map receives three-
vectors representing the hue, saturation and brightness of
the stimuli. These maps are then exposed to a set of visual
stimuli and are allowed to self-organize according to the
SOM learning equations given by (1), (2) and (3).

The sensory maps capture the type of abstract featural
representations found in the later stages of the ventral visual
pathway when retinotopy is no longer present. With
retinotopy no longer available as a basis of representation,
subsequent cortical areas must somehow make sense of a
more abstract sensory topography. It is important to note
that the sensory maps in our model are not intended to
explicitly instantiate the computations performed from early
to late stage visual cortex (for one example of such a model,
see Riesenhuber & Poggio, 1999; Serre, Oliva, & Poggio,
2007), but rather they serve as plausible summaries of how
concrete visual information provided by a stimulus is
ultimately encoded in abstract representations in the later
stages of visual cortex.

Figure 2: Architecture of the model.

The second level in the model consists of a single 10x10

association map that receives convergent inputs from the
lower-level sensory maps. Computationally, the input to
these maps is a concatenation of the spatial locations of
activity in each of the sensory maps. The implication of this
method of coding is that the receptive fields of cells in the
association map correspond to cortical coordinates rather
than explicitly encoded sensory-based features. We believe
this is a subtle, but important aspect of the model. In the
early stages of visual processing, the basis of neural
organization is either driven by hardwired anatomical
connections (as in the case of retinotopy) or by topography
organized around concrete, low-level sensory-based features
(as with orientation columns). In the later stages of visual
processing, no such representational “boostrapping” is
available. These later-stage cortical areas must somehow
make sense of more abstract and complex representations
based on the spatial location of activity in upstream maps.
The association map in our model faces the same challenge:
to learn meaningful representations based on spatially
encoded inputs from the sensory maps.

Simulation Procedures
Stimuli The model was repeatedly presented with a set of
96 visual stimuli consisting of 8 classes of objects (bicycles,

bushes, cars, cats, dogs, chairs, tables, and trees) and 12
variants within each class. The variants captured
characteristic within-class featural differences, for example
trees of varying color and size. Each stimulus was coded as
a [0,1] normalized 10-vector based on its color (hue,
saturation, brightness), size (x, y, and z dimension in a
typical viewing angle), shape (roundness, complexity) and
surface appearance (smoothness, textural uniformity). The
vector values were estimated based on images collected
from Google™ Images (http://images.google.com).

Model Learning Weight vectors of all cells in the SOMs
were initialized to random values in the range [0.1, 0.9].
Learning then proceeded in two phases. First, each of the
sensory SOMs were presented with the relevant vector
component of the training stimuli (e.g., the color map was
presented with hue, saturation and brightness values) and
the weight vectors were updated according to equations (1),
(2) and (3). In each of 500 learning iterations, the
presentation order of the stimuli was randomized to
minimize order effects. After training, the stimuli were
presented to each of the sensory maps, and the map
coordinates of the winning cells for each input were
computed for each of the four maps. The four pairs of
coordinates for each stimulus were then concatenated and
the resulting vectors were then used for the second phase of
learning. In this phase, the association map were trained
using an identical procedure, with the exception that the
input patterns presented to the association map were the
concatenated outputs from the trained sensory maps.

Results
Figure 3 shows an example of the representation that is
learned by one of the lower-level sensory maps, in this case,
the map that was trained using size information for each
stimulus1. The winning cell for each stimulus is labeled in
the figure based on its object class. Inspection of this map
reveals that there is no clear object-based topography, as
only two of the object classes (cats and bikes) are co-located
in the same region of the map. Instead, the map captures an
abstract size-based topography in which larger objects are
represented in the upper region of the map (smaller objects
in the lower region), and taller objects are represented
towards the left side of the map (wider objects towards the
right). Similar results were found in each of the other
sensory maps: an abstract sensory-based topography
emerged, but stimuli from the same object class were not
co-located in the map.

Figure 4 shows the response2 of each cell in the size map

when presented with one of the tree stimuli. As is evident,
the map response to the stimulus is spatially localized to a
neighborhood of activity surrounding the winning cell.

1 Many of the variants within each object class share the same

values and therefore not all 96 stimuli are visible due to overlap.
2 Cell responses were computed based on the Euclidian distance

between the stimulus and the cell’s weight vector. Smaller
distances imply greater similarity and larger cell responses.

http://images.google.com

Figure 3: Sensory size map after learning.

Figure 4: Response of the size map to a tree stimulus.

The structure of the association map after learning is

shown in Figure 5. The winning cell for each stimulus is
labeled in the figure based on object class. In contrast to the
sensory maps which learned abstract sensory-based
topographies, a clear object-based semantic topography
emerged in the association map after learning. For example,
a neighborhood of cells responsive to tables emerged in the
lower left region of the map, and a set of cells most
responsive to trees are spatially co-located in the upper right
region. For some object classes, the neighborhoods overlap,
as in the case of dogs and cats, and trees and bushes,
indicating that the map was unable to distinguish these
classes of stimuli based on available visual information.
Nevertheless, for all object classes the map learned to
represent the class in a spatially co-located region of cells.

Further inspection of the learned association map in
Figure 5 reveals a semantic topography that captures
superordinate categorical distinctions among the object
classes. For example, in the lower-left region of the map
there is a neighborhood of cells responsive to chairs and
tables (furniture), and similarly there are distinct regions of
cells whose receptive fields prefer trees and bushes (plants),
bikes and cars (vehicles), and dogs and cats (animals).
Furthermore, the topography encoded in the map also
learned the semantic distinction between living and non-
living stimuli. Cells representing dogs, cats, trees, and
bushes (living things) are co-located in the upper region of
the map and tables, chairs, cars, and bikes (non-living
things) are co-located in neighborhood of cells in the lower
region of the map.

Figure 5: Association map after learning.

The responses of the association map to two sets of

similar stimuli are shown in Figure 6. Each class of
stimulus shown in the figure (table, chair, tree, and bush)
produces a graded, locally organized response around the
winning cell. Furthermore, the responses of the map to
similar classes of stimuli (table and chair, tree and bush)
share a similar subset of active cells, demonstrating the
existence of topography in the form of neighborhoods of
cells responsive to stimuli at multiple levels of abstraction
(object class and superordinate category).

Although these results confirm the hypothesis that high-
level semantic topography can be driven by the same
principles of neural computation found in the lower levels
of the visual pathway, we raise two concerns. First, it is
possible that these results are an artifact of the learning
procedure due to the random initialization of the maps
and/or the random ordering in which the stimuli were
presented. To address this concern, we simulated the model
over a large number of random seeds and confirmed that the

structure of the learned topography in the association map
was consistent across all simulations. Although the specific
location of the category clusters varied, the clusters
themselves reliably emerged as did the superordinate
organization (plants, animals, furniture, and vehicles) and
the living versus non-living distinction.

Figure 6: Association map responses.

A second concern is that the semantic organization shown

in Figure 5 is an artifact of the way that the stimuli were
coded. It is possible that the 96 stimulus vectors were
trivially separable at multiple levels of abstraction, and
therefore the resultant topography was in some sense
predetermined. To address this concern, we performed a
hierarchical clustering3 of the training stimuli, producing the
tree shown in Figure 7. As is evident, hierarchical
clustering does not produce the same meaningful categorical
clusters of stimuli produced in our model: At the level of
object classes, only bicycles are distinguished from the
other classes (i.e., they share a common branch within the
hierarchy); at the level of superordinate category, only
plants and animals are independently clustered; and at the
highest level, the clustering categorically generates two
heterogeneous groups: plants-bicycles and cars-tables-
chairs-animals.

3 The clusters were computed using the hierarchical clustering

algorithm in Mathematica® using a Euclidian distance function.

Figure 7: Clustering tree of the training stimuli.

Discussion
The aim of this work was a plausibility proof of the
hypothesis that the principles of self-organization and
cortical topography at work in lower-level visual processing
may also drive the learning and structure of higher-order
semantics. We developed an explicit computational model
in which a self-organizing map receives inputs from a
hierarchy of topographic sensory maps and we found that
meaningful semantic representations at increasing levels of
abstraction naturally emerge as a result of exposure to a set
of sensory stimuli. Specifically, when presented with a set
of simple visual features (color, size, texture, shape) the
higher-level map develops a topography of semantic
representations that distinguishes basic level categories
(bicycles, bushes, cars, cats, dogs, chairs, tables, and trees),
superordinate categories (plants, animals, furniture,
vehicles), and living versus nonliving things.

This work therefore offers a computationally explicit
hypothesis about how semantic representations could
emerge in the association cortex of the brain. Our results
may also be relevant to the ongoing debate about whether
conceptual knowledge is primarily organized anatomically
by modality as posited by the sensory-functional hypothesis
(Farah & McClelland, 1991; Warrington & McCarthy,
1983; Warrington & Shallice, 1984), or by category
(Caramazza & Mahon, 2003). The results of our
simulations suggest fundamental mechanisms of neural
computation could lead to the emergence of topographically
organized semantic representations without the need to posit
that these representations are innate.

References
Barrow, H. G., Bray, A. J., & Budd, J. M. L. (1996). A self-

organizing model of ''color blob'' formation. Neural
Computation, 8(7), 1427-1448.

Caramazza, A., & Mahon, B. Z. (2003). The organization of
conceptual knowledge: The evidence from category-
specific semantic deficits. Trends in Cognitive Sciences,
7(8), 354-361.

Carreira-Perpinan, M. A., Lister, R. J., & Goodhill, G. J.
(2005). A computational model for the development of
multiple maps in primary visual cortex. Cerebral Cortex,
15(8), 1222-1233.

Farah, M. J., & McClelland, J. L. (1991). A computational
model of semantic memory impairment - modality
specificity and emergent category specificity. Journal of
Experimental Psychology-General, 120(4), 339-357.

Fujita, I., Tanaka, K., Ito, M., & Cheng, K. (1992). Columns
for visual features of objects in monkey inferotemporal
cortex. Nature, 360(6402), 343-346.

Goodhill, G. J. (1993). Topography and ocular dominance -
a model exploring positive correlations. Biological
Cybernetics, 69(2), 109-118.

Goodhill, G. J., & Willshaw, D. J. (1994). Elastic net model
of ocular dominance - overall stripe pattern and
monocular deprivation. Neural Computation, 6(4), 615-
621.

Hadjikhani, N., Liu, A. K., Dale, A. M., Cavanagh, P., &
Tootell, R. B. H. (1998). Retinotopy and color
sensitivity in human visual cortical area v8. Nature
neuroscience, 1(3), 235-241.

Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000).
Principles of neural science. New York: McGraw-Hill,
Health Professions Division.

Kohonen, T. (1982). Self-organized formation of
topologically correct feature maps. Biological
Cybernetics, 43(1), 59-69.

Kohonen, T. (1990). The self-organizing map. Proceedings
of the IEEE, 78(9), 1464-1480.

Laaksonen, J., Koskela, M., & Oja, E. (2002). Picsom - self-
organizing image retrieval with mpeg-7 content
descriptors. Ieee Transactions on Neural Networks,
13(4), 841-853.

Laaksonen, J., & Viitaniemi, V. (October, 2006).
Emergence of ontological relations from visual data
with self-organizing maps. Paper presented at the 9th
Scandinavian Conference on Artificial Intelligence,
Espoo, Finaland.

Livingstone, M. S., & Hubel, D. H. (1984). Anatomy and
physiology of a color system in the primate visual-
cortex. Journal of Neuroscience, 4(1), 309-356.

Olson, S. J., & Grossberg, S. (1998). A neural network
model for the development of simple and complex cell
receptive fields within cortical maps of orientation and
ocular dominance. Neural Networks, 11(2), 189-208.

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models
of object recognition in cortex. Nature Neuroscience,
2(11), 1019-1025.

Ritter, H., & Kohonen, T. (1989). Self-organizing semantic
maps. Biological Cybernetics, 61(4), 241-254.

Serre, T., Oliva, A., & Poggio, T. (2007). A feedforward
architecture accounts for rapid categorization.
Proceedings of the National Academy of Sciences of the
United States of America, 104(15), 6424-6429.

Shipp, S., & Zeki, S. (1989). The organization of
connections between areas v5 and v1 in macaque
monkey visual-cortex. European Journal of
Neuroscience, 1(4), 309-332.

Shipp, S., & Zeki, S. (2002a). The functional organization
of area v2, i: Specialization across stripes and layers.
Visual neuroscience, 19(2), 187-210.

Shipp, S., & Zeki, S. (2002b). The functional organization
of area v2, ii: The impact of stripes on visual
topography. Visual neuroscience, 19(2), 211-231.

Sigala, N., & Logothetis, N. K. (2002). Visual
categorization shapes feature selectivity in the primate
temporal cortex. Nature, 415(6869), 318-320.

Sirosh, J., & Miikkulainen, R. (1997). Topographic
receptive fields and patterned lateral interaction in a self-
organizing model of the primary visual cortex. Neural
Computation, 9(3), 577-594.

Sit, Y. F., & Miikkulainen, R. (2006). Self-organization of
hierarchical visual maps with feedback connections.
Neurocomputing, 69(10-12), 1309-1312.

Tanaka, K. (1996). Representation of visual features of
objects in the inferotemporal cortex. Neural Networks,
9(8), 1459-1475.

Tanaka, K. (2000). Mechanisms of visual object recognition
studied in monkeys. Spatial vision, 13(2-3), 147-163.

Tootell, R. B. H., Silverman, M. S., Hamilton, S. L.,
Devalois, R. L., & Switkes, E. (1988). Functional-
anatomy of macaque striate cortex .3. Color. Journal of
Neuroscience, 8(5), 1569-1593.

Tootell, R. B. H., Switkes, E., Silverman, M. S., &
Hamilton, S. L. (1988). Functional-anatomy of macaque
striate cortex .2. Retinotopic organization. Journal of
Neuroscience, 8(5), 1531-1568.

Vanessen, D. C., & Gallant, J. L. (1994). Review: Neural
mechanisms of form and motion processing in the
primate visual-system. Neuron, 13(1), 1-10.

Warrington, E. K., & McCarthy, R. (1983). Category
specific access dysphasia. Brain, 106(DEC), 859-878.

Warrington, E. K., & Shallice, T. (1984). Category specific
semantic impairments. Brain, 107(SEP), 829-854.

Simulating the Noun-Verb Asymmetry in the Productivity of Children’s Speech

Daniel Freudenthal (D.Freudenthal@Liv.Ac.Uk)
Julian M. Pine (Julian.Pine@Liv.Ac.Uk)
School of Psychology, University of Liverpool

Fernand Gobet (Fernand.Gobet@Brunel.Ac.Uk)
School of Social Sciences, Brunel University

Abstract
Several authors propose that children may acquire syntactic
categories on the basis of co-occurrence statistics of words in
the input. This paper assesses the relative merits of two such
accounts by assessing the type and amount of productive
language that results from computing co-occurrence statistics
over conjoint and independent preceding and following
contexts. This is achieved through the implementation of
these methods in MOSAIC, a computational model of syntax
acquisition that produces utterances that can be directly
compared to child speech, and has a developmental
component (i.e. produces increasingly long utterances). It is
shown that the computation of co-occurrence statistics over
conjoint contexts or frames results in a pattern of productive
speech that more closely resembles that displayed by
language learning children. The simulation of the
developmental patterning of children’s productive speech
furthermore suggests two refinements to this basic
mechanism: inclusion of utterance boundaries, and the
weighting of frames for their lexical content.

Introduction
Children acquiring their native language are faced with a
task of considerable complexity. They need to acquire a
system described by syntactic rules as well as the syntactic
categories over which these rules are defined. This problem
has been referred to as the ‘bootstrapping problem’. Several
solutions to the bootstrapping problem have been suggested.
The distributional approach makes use of the fact that words
that belong to the same word class tend to be preceded and
followed by similar words. Thus, nouns tend to be preceded
by determiners and adjectives, and followed by verbs.
Similarly, verbs are preceded by (pro)nouns and followed
by determiners and (pro)nouns. A system that tracks the
overlap in the lexical items that precede and follow
individual words may therefore be able to cluster these
words into syntactic classes. These word classes could then
potentially be used to infer phrasal categories such as noun
phrase and verb phrase (see e.g. Finch & Chater, 1994).

The success of this second stage of the learning
mechanism depends crucially on the quality of the syntactic
classes that were derived in the first stage. For this reason,
several researchers have explored different mechanisms for
computing co-occurrence statistics and the effects these
have on the quality of the derived classes. Finch & Chater
(1994) analysed a 40,000,000 word corpus of USENET
newsgroup data and used the rank order correlation between
the (independent) sets of two word phrases that preceded

and followed target words to inform a hierarchical cluster
analysis that derives word classes. Redington, Chater &
Finch (1998) perform a similar analysis on a corpus of
several million words of child directed speech obtained
from the CHILDES data base. They compared the
performance over contexts of length one and two and found
that the quality of results was very similar.

Mintz (2003) uses a slightly different approach. Mintz
introduces the concept of a frame; two jointly occurring
words with one word intervening. Computing co-occurrence
statistics over conjoined pairs rather than independent sets
of preceding and following words has the desirable property
that it is more constraining and is therefore likely to lead to
grammatical categories that are of higher quality. Mintz
restricts his analysis to frames that have a high frequency in
the input, and finds that the items that co-occur in these
frames have a high likelihood of belonging to the same
word class. Mintz does not perform a cluster analysis but
does suggest that more comprehensive classes can be
obtained using a relatively simple unification procedure
based on overlap in the words contained in the classes.

 The approach taken by Mintz, Redington et al. and Finch
& Chater clearly shows there is a considerable amount of
information in the distributional characteristics of the input
that could potentially be used by a child acquiring language.
Freudenthal et al. (2005a), however, argue that these
approaches suffer from an inherent difficulty as they fail to
consider how derived categories can actually be used in the
production of (novel) utterances. Freudenthal et al. report
work on MOSAIC, a computational model of language
acquisition that produces actual utterances as output and
implements a mechanism for the production of novel
utterances that is very similar to that implemented by
Redington et al. MOSAIC links together words that are
followed and preceded by similar words and substitutes
these words when producing output from the model. The
fact that MOSAIC produces actual output results in
potential classification errors quickly becoming apparent.
Freudenthal et al. also argue that such classification errors
may not always be apparent using the standard evaluation
measures of accuracy and completeness as these depend on
researcher’s intuitions regarding an item’s grammatical
class. Inspection of the (representative) verb classes
reported by Mintz (2003), for example, shows that these
include past tense, present tense and progressive verb forms,
imperative and non-imperative verb forms, and transitive

and intransitive verbs. Substituting such items in production
will quickly lead to errors that may not be apparent when
using a metric that simply classes all items as verbs.

A further advantage of producing actual utterances is that
it allows for a comparison between the output of one’s
language learning model and the characteristics of actual
child speech. Asymmetries in children’s tendency to
generalize across words from different syntactic categories
can then be used to inform the implementation of
mechanisms that compute co-occurrence statistics. One
important asymmetry that has been identified in the recent
developmental literature is that children tend to be more
conservative in their substitution of verbs than in their
substitution of nouns. For example, several experimental
studies have shown that children will readily substitute
novel nouns in familiar verbal contexts, but tend to restrict
their use of novel verbs to contexts in which they have heard
them used in the input (see e.g. Akhtar & Tomasello, 1997;
Tomasello, 2000). Moreover, Fisher (2002) points out that
this pattern of generalization is precisely what one would
expect given the nature of the system that the child is
acquiring since restrictions on the argument structures in
which different verbs can occur mean that generalizations
across verbs tend to be ‘riskier’ than generalizations across
nouns.

When taken together, these considerations place strong
constraints on the development of mechanisms for
extracting syntactic categories since they suggest the need
for a mechanism that generalizes more readily across nouns
than across verbs. They also suggest that simulating this
asymmetry will not only increase the child-likeness of the
model’s output, but also reduce the probability of generating
ungrammatical utterances.

Further constraints on the feasibility of mechanisms for
the extraction of syntactic categories become apparent when
considering the fact that such mechanisms are likely to be
used by children acquiring a language. The most notable
way in which child speech differs from adult speech is that
it is considerably shorter. Children initially produce
utterances that are only one or two words long. The mean
length of their utterances (MLU) slowly increases as they
grow older. This restriction on the length of children’s
speech suggests that the length of the phrases that children
represent is considerably shorter than the length of the
phrases they hear. This considerably reduces the number
and type of contexts that could potentially feed into a
system that computes co-occurrence statistics. Failure to
consider this developmental component may therefore lead
to researchers considering mechanisms that utilize
information that is not necessarily available to a child.

The aim of this paper is to assess the relative virtues of
using conjoined or independent sets of preceding and
following items for the extraction of syntactic categories.
This is done in the context of MOSAIC, an implemented
model of language acquisition that has a developmental
component. Specific attention will be given to how well the
different mechanisms approximate the noun-verb

asymmetry apparent in children’s productive speech, as well
as the constraints that result from simulating children’s
increasing utterance length.

The remainder of this paper is organized as follows. First,
we briefly describe MOSAIC, the model that is used as a
test bed for mechanisms for the extraction of syntactic
categories. Next, MOSAIC’s current mechanism for linking
distributionally similar items is described. Finally, a number
of substitution mechanisms are implemented and the output
evaluated in terms of quantity and plausibility.

MOSAIC
MOSAIC (Model of Syntax Acquisition in Children) is a
computational model that has mostly been applied to the
cross-linguistic simulation of the development of finiteness
marking in children acquiring their native language
(Freudenthal, Pine and Gobet 2006). MOSAIC learns off
realistic, child directed input and learns to produce
progressively longer utterances that can be directly
compared to child speech. The basis of MOSAIC is an n-ary
discrimination net that is used to incrementally store
(fragments of) the utterances that MOSAIC has seen as
input. Learning in MOSAIC is anchored at the beginning
and end of the utterances to which it is exposed. That is,
MOSAIC only learns a phrase when everything preceding
or following that phrase in the utterance has already been
encoded in the network. MOSAIC produces two types of
utterances: utterance-final phrases and concatenations of
utterance-initial and utterance-final phrases: utterances with
missing sentence-internal elements. MOSAIC’s mechanism
for producing incomplete phrases has been shown to
provide a good fit to the Optional Infinitive phenomenon
across four languages: English, Dutch, German and French
(Freudenthal et al, 2005b). Fig. 1 shows a sample MOSAIC
network.

Figure 1: A partial MOSAIC network. The sentence-initial
phrase he wants, and the sentence-final phrase go home
have been associated, allowing the model to produce the
utterance He wants go home. The model is also capable of
producing the phrases go home and go away.

MOSAIC is capable of producing output with an increasing
MLU. This is because learning is generally slow. Input is
fed though MOSAIC and output is generated after every
presentation of the input. The amount and length of phrases
encoded in a MOSAIC network increases with every
exposure to the input. Thus, developmental change can be

simulated by analyzing increasingly mature models and
matching the MLU of the respective models with that of
children at different developmental stages.

Productivity in MOSAIC
MOSAIC’s mechanism for producing novel utterances is
very similar to that described by Redington, Chater &
Finch. For all nodes in the network, the preceding and
following context (when encoded in the model) is stored.
These contexts take the form of two independent lists of
words that preceded and followed the target item. Thus,
MOSAIC does not implement the notion of a frame, but
assesses the preceding and following context independently.
MOSAIC then considers the overlap between the contexts
for pairs of words. If, for two words, the overlap in the
words in both the preceding and following context exceeds a
predetermined threshold, they are considered equivalent,
and are connected through a generative link. Two words that
are connected through a generative link can be substituted
for each other in production. Thus, if the model has encoded
the phrase the red ball and the words red and blue share
sufficient overlap, the model is capable of producing the
novel phrase the blue ball. MOSAIC is capable of
substituting several words in an utterance. Thus, MOSAIC
would be able to produce the phrase a blue ball if the words
a and the also share a generative link.

The proportion of novel utterances in MOSAIC’s output
varies as a function of the mean length of the output.
Typically, productivity increases from around 5% novel
utterances at an MLU of 2 to around 50% productivity at an
MLU of around 4. MOSAIC thus does not produce many
novel utterances in the early stages of development.
Productivity in MOSAIC also tends to revolve around verbs
rather than nouns. Thus, MOSAIC tends to link together
verbs more frequently than nouns. This runs counter to the
notion that children are more conservative in substituting
verbs than nouns. It also increases the risk of MOSAIC
generating a high proportion of utterances that are
ungrammatical, as verb-verb substitutions are more likely to
be ungrammatical than noun-noun substitutions.

Implementing Frames in MOSAIC
Mintz performed an analysis of a number of corpora of

child directed speech, and analyzed the contents of the 50
most frequent frames in each corpus. Items that co-occurred
in one of these frames were considered equivalent. While
this approach shows the potential value of using frames, it
needs to be developed into a more dynamic and probabilistic
mechanism in order to be suited for a model that encodes
and produces progressively longer utterances.

We implemented the mechanism in a similar way to
MOSAIC’s current generativity mechanism: two items are
considered equivalent if there is sufficient overlap in the
frames they occur in. An example may serve to illustrate
how the dynamics of the frames and independent contexts
may differ. Suppose the model has encoded the phrases ‘A
man eats’, and ‘The man drinks’. The preceding

independent context for the word ‘man’ is now (A, The)
while the following context is (eats, drinks). The frame
context for ‘man’ is ((A - drinks), (The - eats)). If the model
now encodes the phrases ‘A woman eats’ and ‘The woman
drinks’, the independent preceding context would be (A,
The), and the independent following context would be (eats,
drinks) while the frame context would be ((A - eats), (The -
drinks)). The overlap for the independent contexts would
thus be 100%. The overlap in frames however, is 0%.

While, in the above example, the notion of a frame is
clearly more constraining, it should be noted that the list of
independent contexts may actually grow more quickly than
the list of frames. This is because the model only needs to
encode a two-word phrase to add an item to the independent
preceding or following context. Thus, if the model encodes
the (incomplete) phrase ‘rich man’, the word ‘rich’ is added
to the independent preceding context, thus lowering the
preceding overlap without affecting the context in terms of
frames, as no following context has been encoded. Thus, the
dynamics of the overlap between two items will be different
for frames and independent contexts. As these dynamics are
also affected by the frequency and variety of the contexts in
which items occur, they may well affect verbs and nouns
differently.

A final note concerns the status of sentence boundaries.
Mintz defines a frame as two conjoint lexical items (words)
with one word intervening. Thus, frames that contain
sentence boundaries are excluded. While on the face of it
frames including sentence boundaries are less restrictive
than lexical frames it should be noted that they can actually
be quite informative with respect to a word’s grammatical
class. Thus, the frames ‘THE - END’ and ‘A - END’ are
very frequent and contain a large number of nouns. For the
present simulations both lexical frames and frames with
sentence boundaries were encoded in the model. Separate
analyses were run utilizing all frames or lexical frames only
to investigate the impact of including frames containing
sentence boundaries.

The simulations
The simulations reported here were run using the corpora of
child directed Speech for two English children (Anne and
Becky). The corpora, which contain approximately 33,000
and 25,000 utterances respectively were fed through
MOSAIC several times and output of increasing length was
generated after every exposure to the input. The version of
MOSAIC used for these simulation tracks both the frames
and the independent preceding and following contexts for
the words it encodes. Separate analyses were run using
substitution of individual words on the basis of either the
frames or the independent contexts.

Results
Simulations with MOSAIC’s standard generativity
mechanism were run first. Words were substituted when the
overlap in terms of independent preceding and following
contexts exceeded a threshold of 25%. Output was

generated at three different MLU points and analysed in
terms of the percentage novel items and number of noun-
noun and verb-verb substitutions.

As can be seen in Table 1 the model only starts to produce
substantial amounts of novel utterances in the later stages of
development. It is also apparent that, except during the
earliest stage, the model is more productive around verbs
than around nouns.

Table 1: Descriptive statistics for MOSAIC’s output using
substitution on the basis of independent contexts.

Child MLU Proportion
novel

Noun-subs Verb-subs

Anne 2.08 .05 83 11
3.16 .27 1873 2755
4.71 .50 12026 18897

Becky 1.93 .02 20 9
2.95 .22 1144 1223
4.25 .49 4558 13984

Next, the same analysis (at 25% overlap) was performed
using the frame-based generativity mechanism. In this first
analysis of frame-based substitution only lexical frames
were used (thus, frames containing sentence boundaries
were ignored). Table 2 gives the results of this analysis.

Table 2: Descriptive statistics for MOSAIC’s output using
frame-based substitution.

Child MLU Proportion
novel

Noun-subs Verb-subs

Anne 2.08 .05 15 0
3.11 .29 6547 130
4.05 .29 13111 740

Becky 1.93 .01 24 0
2.86 .18 1102 324
3.58 .19 3273 307

As can be seen in table 2 the restriction to frames results
in MOSAIC showing a clear bias towards noun-noun
substitutions. It is also apparent that, for the last
developmental stage, the models are considerably less
generative. In order to investigate if this decreased
generativity accounts for the noun bias, we also ran the
frame-based simulations with an overlap percentage of 20.
This increased the generativity in the final developmental
stage to .47 for Anne’s model and .34 for Becky’s model.
Noun substitutions still outnumbered verb substitutions by
about 15 to 1 for Anne, and 5 to 1 for Becky’s model. Thus,
the frame-based generativity mechanism is genuinely more
productive around nouns.

Inspection of the number and types of links that are
created by the models provides some insight into why the
frame based generativity mechanism is more productive
around nouns than verbs. Anne’s model in the second
developmental stage has encoded 649 verbs and 733 nouns.
The frame based mechanism has created 308 noun-noun
links and 18 verb-verb links. The mechanism that links

items on the basis of independent preceding and following
context creates 124 noun-noun links and 80 verb-verb links.
The frame-based generativity mechanism thus creates more
noun-noun links, and fewer verb-verb links. Inspection of
the verbs that get linked also reveals that the frame based
mechanism does not simply link fewer verbs: it links
different verbs, in particular verbs with a lower average
frequency. The average frequency in the input corpus for
verbs linked on the basis of frames is 8.89. For the
independent contexts mechanism the equivalent number is
35.54. The frame-based mechanism thus appears more
likely to link low-frequency items than the independent
contexts mechanism. A bias towards linking low-frequency
items will naturally favour the linking of nouns over verbs,
as nouns are, on average, less frequent than verbs.

Some of the reasons why a frame-based mechanism is
biased towards linking low-frequency items become
apparent when inspecting the frames and independent
contexts that the model has encoded for particular words.
For the verb ‘put’ the model has encoded 23 preceding and
24 following contexts. These independent contexts combine
to give a total of 57 frames. For the verb ‘see’ 10 preceding
and 20 following contexts and 41 frames have been
encoded. The overlap in independent contexts is 33%, yet
the overlap in terms of frames is a mere 2%. For the nouns
‘table’ and ‘door’, 4 and 8 preceding and 6 and 4 following
contexts have been encoded, which give rise to 4 and 5
frames respectively. The overlap in these frames is 29%, the
overlap in independent contexts is 17%. It thus appears to be
the case that, for frequent items, many (varied) contexts are
encoded, which can potentially combine to give many
different frames. Infrequent items occur in a small number
of potentially more typical contexts, which do not combine
to give a large number of frames. This results in the overlap
in terms of frames being higher than for independent
contexts for infrequent items. For frequent items, the
overlap in terms of frames tends to be lower than for
independent contexts.

In order to establish if this pattern holds more generally,
we divided the words encoded in MOSAIC into a low,
medium and high frequency group1, and calculated the
average number of preceding and following contexts as well
as frames. As can be seen in Table 3, the ratio of the number
of frames over the (average of) the independent contexts
increases linearly with frequency: approximately 1, 1.5 and
2. While this increase is not surprising in itself (as the
maximum number of frames for any word is the product of
the number of preceding and following contexts), it does
explain why a frame-based mechanism favours the linking
of infrequent items. While, intuitively, frames are more
constraining than independent contexts, they appear to be
especially constraining for frequent items that appear in

1 Frequency was measured as the number of times the node

encoding a word was traversed when processing the input. Low,
medium and high frequency words were defined as having a
frequency count between 20 and 500, between 500 and 1000, and
over 1000 respectively.

many contexts. While the high-low frequency distinction
does not cut across verbs and nouns, verbs (in particular,
regular present tense verbs) are, on average, more frequent,
and occur in more frames. In fact, the average frequency of
the main verbs2 encoded in MOSAIC is twice that of the
nouns encoded in MOSAIC. Verbs occur, on average, in 5.3
frames, compared to 3.69 for nouns. The frames in which
verbs occur appear to be more varied as well. The total
number of verb frames encoded in Anne’s model is 1,966,
which comprises 1,229 unique frames. The total number of
noun frames is 2,679, which comprises 864 unique frames.
Thus, on average, every unique verb frame occurs 1.6 times.
Every unique noun frame occurs 3.1 times. The decreased
generativity around verbs for a frame-based substitution
mechanism therefore appears to be (at least partially) caused
by verbs occurring in more and more varied frames
compared to independent contexts.

Table 3: Average number of preceding, following contexts
and frames for words of low, medium and high frequency.

Freq. Number
of words

Preceding
contexts

Following
contexts

frames

Low 2299 2.32 2.09 2.35
Medium 217 8.10 6.35 10.1

High 374 22.80 28.67 50.06

Introducing utterance-boundaries
While the frame-based generativity mechanism is

successful in simulating the noun-verb asymmetry, it is also
apparent that the model is still not very generative
(particularly in the early stages). Several reasons can be put
forward for why this is the case. First, the overlap threshold
of 25% may be too high. Additional simulations with an
overlap parameter of 10% showed that generativity is
increased, but only for the later stages. Thus, even at 10%
overlap Becky’s early model produces 1% novel utterances
while Anne’s model produces 7% novel utterances. The
reason why the early models remain less generative is that
they actually encode relatively few frames. This is because a
(lexical) frame is actually relatively long: 3 words.
Particularly in the earlier developmental phases, MOSAIC
encodes relatively short utterances. It is therefore unlikely
that many phrases of three words are encoded. As a result,
few frames are available. One possible way to increase the
number of frames used for the decision to link two items is
to include the frames that contain sentence boundaries.
Frames that include sentence boundaries are quite frequent
and are a potentially useful source of information.

The high frequency of frames that contain sentence
boundaries is illustrated by an analysis of the frames
encoded in Anne’s model in the earliest developmental
phase. This model has encoded a total of 4,293 words. For
these words a total number of 23,244 frames have been
encoded. The number of frames that contain only lexical
items (i.e. no sentence boundaries) is only 500. Thus, lexical

2 Excluding progressives and (regular) past tense.

frames make up approximately 2% of the frames encoded in
the model’s early stages. For Becky’s early model lexical
frames make up approximately 3% of all the frames. Given
the high frequency of frames that contain sentence
boundaries, it appears unlikely that children would not be
sensitive to such frames. Indeed, when analyzing the frames
that occur in the child directed speech for Anne and Becky,
it becomes apparent that the 50 most frequent frames all
contain a sentence boundary. What’s more, the 2 most
frequent frames (‘The - END’, ‘A - END’) are highly
informative frames that each contain around 40 nouns.

Initial analyses with substitution based on all frames were
aimed at establishing a suitable value for the overlap
parameter. It became apparent that even at relatively high
levels of overlap the model quickly became very generative
and no longer showed a linear increase in the proportion of
novel utterances. Instead, the model had relatively high
levels of generativity at early stages of development. These
values peaked at intermediate levels of development to
subsequently decrease. This is not a characteristic of child
speech, as children tend to become more productive with
increasing MLU. It also became apparent that generativity
around verbs became almost non-existent. Analysis of the
developmental changes to the frames encoded in the model
revealed that, over development, a larger proportion of the
frames becomes lexical. Since lexical frames are more
constraining than frames that contain a sentence boundary, it
becomes less likely that two words have occurred in that
particular frame. For instance, two nouns are more likely to
share the frame ‘THE - END’ than the frame ‘THE -
KICKS’. Thus, the overlap between two items tends to
decrease as the number of lexical frames that these items
have occurred in increases. This effect is more pronounced
for verbs, as they tend to occur in more varied (lexical)
contexts. The increase in lexical frames over the three
developmental stages that were simulated is quite
considerable. For both models the proportion of lexical
frames is around 3% at the first MLU point, 15% at the
second MLU point and 32% at the last MLU point.

In order to control for this increasing ‘informativeness’ of
the frames (and obtain a more linear development of the
model’s ability to generate novel utterances), it was decided
to weight the lexical content of frames when calculating the
overlap. In the previous simulations the overlap between
two words was calculated as the number of overlapping
frames divided by the union of the frames that either word
has occurred in. For the weighted calculations, a lexical
frame contributed 4 to the numerator, while a non-lexical
frame contributed 1.

Table 4 gives the results of an analysis of MOSAIC’s
output when including sentence-boundaries in frames. For
these simulations the overlap threshold was set to 50% as
the new definition of a frame is less restrictive than before.
As can be seen in Table 4, the model now shows reasonable
levels of generativity even at early stages of development.
The model also shows a clear asymmetry between noun and
verb substitutions. This asymmetry becomes less

pronounced during the later stages of development as the
relative generativity around verbs increases.

Table 4: Descriptive statistics for MOSAIC’s output using
frame-based substitution with utterance boundaries.

Child MLU Proportion
novel

Noun-subs Verb-subs

Anne 2.01 .41 2232 14
3.38 .48 15993 762
4.07 .58 36000 3807

Becky 2.11 .26 609 5
3.26 .45 5082 678
4.12 .55 12799 3435

Conclusions
This paper set out to establish the relative merits of using
frames or independent contexts as the basis for a
substitution mechanism in the simulation of child speech.
Particular emphasis was placed on the model’s ability to
simulate the verb-noun asymmetry that is apparent in child
speech whilst incorporating the constraints that derive from
simulating children’s increasing average utterance length.
The analyses reported here show that a generativity
mechanism that uses independent contexts is biased towards
substituting high frequency items, while a mechanism based
on frames favours the substitution of lower frequency items
that feature in less varied contexts. Since nouns tend to fit
the latter category, and verbs fit the former category the
frame based mechanism provides a better fit to the noun-
verb asymmetry. It was furthermore shown that, while a
frame-based generativity mechanism provides a better fit,
lexical frames do not occur in meaningful numbers in a
model that has only encoded short utterances. This results in
low levels of generativity in early stages of development.

The inclusion of utterance boundaries in frames
drastically increases the number of frames that are available
to the model whilst at the same time including some frames
that are potentially very informative for the formation of a
noun class. The inclusion of utterance boundaries therefore
results in increased generativity around nouns, particularly
during the early stages of development. This increased
generativity comes at a price however, as it decreases the
generativity around verbs when a simple overlap threshold
is used. One possible solution to this is to weight the overlap
for the lexical content of frames. This results in a model
which shows relatively high levels of generativity
throughout development without compromising generativity
around verbs.

On a more general level, the analyses reported in this
paper show that the simulation of child data through the
production of actual utterances and the inclusion of a
developmental component highlights the fact that relatively
subtle differences in the implementation of a generativity
mechanism can have rather profound effects on the type of
generativity that a model displays. Thus, while intuitively
frames are more constraining than independent contexts, the
analyses reported here show that they are particularly

constraining for frequent items that appear in varied
contexts. The use of frames therefore decreases generativity
around verbs, while increasing generativity around nouns.
Such effects may have quite profound implications for a
model’s ability to simulate the child data. They are,
however, likely to remain hidden in approaches that simply
assess the quality of derived grammatical classes without
producing actual utterances.

The inclusion of a developmental component furthermore
highlights the fact that, while frame-based substitution does
a better job of capturing the noun-verb asymmetry, there are
only a small number of lexical frames available to a system
that encodes and produces short utterances. Lexical frames
may therefore be of limited utility to children in early stages
of development. Such effects are likely to remain hidden in
approaches that track statistics across all of the input, and
may result in overestimating the importance of lexical
frames at the expense of far more frequent frames that
include utterance boundaries.

Acknowledgements
This research was funded by the Economic and Social
Research Council under grant number RES000230211.

References
Akhtar, N., & Tomasello, M. (1997). Young children’s

productivity with word order and verb morphology.
Developmental Psychology, 33, 952-965.

Finch, S. & Chater, N. (1994). Distributional bootstrapping:
From word class to proto-sentence. In A. Ram and K.
Eiselt (Eds.). Proceedings of the 16th Annual Conference
of the Cognitive Science Society (pp. 301-306). Hillsdale,
NJ: Erlbaum.

Fisher, C. (2002). The role of abstract syntactic knowledge
in language acquisition: a reply to Tomasello (2000).
Cognition, 82, 259-278.

Freudenthal, D., Pine, J.M. & Gobet, F. (2006). Modelling
the development of children’s use of optional infinitives
in English and Dutch using MOSAIC. Cognitive Science,
30, 277-310.

Freudenthal, D., Pine, J.M. & Gobet, F. (2005a). On the
resolution of ambiguities in the extraction of syntactic
categories through chunking. Cognitive Systems
Research, 6, 17-25.

Freudenthal, D. Pine, J.M. & Gobet, F. (2005b). Simulating
the cross-linguistic development of Optional Infinitive
errors in MOSAIC In B.G. Bara, L. Barsalou & M.
Bucciarelli (Eds.), Proceedings of the 27th Annual
Conference of the Cognitive Science Society. Mahwah NJ:
LEA.

Mintz, T. (2003). Frequent frames as a cue for grammatical
categories in child directed speech. Cognition, 90, 91-117.

Redington, M., Chater, N. & Finch, S. (1998). Distributional
information: A powerful cue for acquiring syntactic
categories. Cognitive Science, 22, 425-469.

Tomasello, M. (2000). Do young children have adult
syntactic competence? Cognition, 74, 209-253.

Structural Transfer of Cognitive Skills

Dongkyu Choi (dongkyuc@stanford.edu)
Tolga Könik (konik@stanford.edu)
Negin Nejati (negin@stanford.edu)

Chunki Park (chunki.park@stanford.edu)
Pat Langley (langley@csli.stanford.edu)

Computational Learning Laboratory
Center for the Study of Language and Information

Stanford University, Stanford, CA 94305 USA

Abstract

This paper investigates a computational approach to
transfer: the ability to use previously learned knowledge
on related but distinct tasks. We study transfer in the
context of an agent architecture, Icarus, and we claim
that many forms of transfer follow automatically from
its use of structured concepts and skills. We show that
Icarus can acquire structured representations from do-
main experience, and subsequently transfer that knowl-
edge into new tasks. We present results from multiple
experiments in the Urban Combat Testbed, a simulated,
real-time, three-dimensional environment with realistic
dynamics.

Introduction

Many computational learning methods require far more
training instances than humans to achieve reasonable
performance in a domain. A key reason is that humans
often reuse knowledge gained in early settings to aid
learning in ones they encounter later. This phenomenon
is known as transfer in cognitive psychology, where it
has received far more attention than in AI and machine
learning. Much of this research has focused on transfer
of complex skills for tasks that involve action over time
(e.g., Kieras & Bovair, 1986; Singley & Anderson, 1988).
In this view, transfer primarily involves the reuse of cog-
nitive structures, where the amount of shared structure
has proved to be a good predictor for the degree of trans-
fer in humans.

This paper reports on a computational approach to
transfer that takes a similar perspective. We focus on the
acquisition of cognitive skills from experience and on how
transfer improves behavior on distinct but related tasks.
We share with many psychologists the idea that transfer
is mainly a structural phenomenon, rather than a conse-
quence of statistical summaries or value functions. This
suggests that transfer is linked closely to how an agent
represents knowledge in memory, how its performance
methods use these structures, and how its learning ele-
ments acquire this knowledge.

Theoretical commitments to representation, perfor-
mance, and learning are often associated with the no-
tion of a cognitive architecture (Newell, 1990). Thus, it
seemed natural for us to study transfer in the context
of Icarus (Langley & Choi, 2006), an architecture that
takes positions on each of these issues. We will main-
tain that Icarus’ commitment to relational, hierarchi-
cal, and composable knowledge structures, and to mech-

anisms for using and acquiring them, provide it with
basic support for effective transfer. Moreover, we make
the more radical claim that the architecture needs no ad-
ditional mechanisms to exhibit many forms of transfer.
We hold that most transfer requires no special processes
beyond those already needed for other purposes.

We elaborate on these ideas in the sections that follow.
First we present a virtual gaming environment that il-
lustrates the benefits of reusing learned knowledge struc-
tures. After this, we review Icarus’ assumptions about
representation, performance, and learning, along with
the ways in which they support transfer. Next we eval-
uate our claims through results of specific studies with
simulated physical agents. We conclude by reviewing
related efforts on structural transfer and stating our pri-
orities for future research on this topic.

An Example Domain
In this paper, we examine transfer between source and
target problems within a single domain. We have chosen
to phrase these problems in the Urban Combat Testbed1

(UCT), a virtual 3-D environment that simulates an ur-
ban landscape, with real-time behavior and realistic dy-
namics. UCT contains one intelligent agent (controlled
by Icarus) and, at the moment, no adversaries. Our
transfer tasks focus on navigation in the presence of
physical and conceptual obstacles.

Figure 1 illustrates one such transfer task. The source
problem calls on the agent to find a goal and surmount
obstacles encountered en route (here, to duck under and
climb over obstacles it has never seen). The target prob-
lem offers the agent the opportunity to reuse its knowl-
edge about obstacles in a different order, assuming it is
acquired and represented in a modular form. In addi-
tion, the agent can reuse learned knowledge about the
map. The agent exhibits (positive) transfer if it improves
its behavior in the target as a result of its exposure to
the source, and zero or negative transfer if it does not.

We supply the Icarus agent with minimal background
to support transfer. On initialization, it has never en-
countered the specific objects or operators in the domain,
and it has no prior knowledge of the map. However, it
is initialized with useful concepts, such as a category for
obstacles in general, a relation for blocked paths, plus
categories for region centers and gateways (the UCT en-
vironment is divided into convex regions with passable

1
http://gameairesearch.uta.edu/UrbanCombatTestbed.html

http://gameairesearch.uta.edu/UrbanCombatTestbed.html

Figure 1: A transfer task in Urban Combat Testbed.

and non-passable boundaries). The agent understands
the high-level goal (e.g., to find an item), and it pos-
sesses subgoals that organize search behavior. For ex-
ample, it knows to overcome an obstacle in order to get
a clear view of the destination, and to contain explo-
ration within the region of the goal, once seen.

UCT is a challenging domain for both human and arti-
ficial agents. It is partially observable because the agent
can only perceive nearby objects and regions, it involves
uncertain action (e.g., the agent can attempt to jump
over a wall but fall backwards into a ditch), and it is
real time (imposing a strong constraint on agent decision
making). This complexity demands a level of robustness
in the mechanisms that produce transfer.

Transfer in Icarus

Icarus achieves transfer using a hierarchical and rela-
tional representation, which encodes knowledge in a gen-
eral and composable way, a goal-driven and reactive exe-
cution mechanism, which allows flexible execution of the
learned knowledge structures, and a relational learning
mechanism, which acquires general knowledge from ob-
served solutions as well as background knowledge. We
will discuss each of these elements and describe in turn
how they contribute to transfer.

Representation of Concepts and Skills

The Icarus architecture makes several commitments in
its representation of knowledge. First, it supports two
different types of knowledge; concepts and skills. Con-
cepts describe state, while skills are methods an agent
can execute in the world under certain conditions. Both
have a hierarchical structure, meaning that Icarus can
employ multiple layers of abstraction in describing the
current state and the procedures for manipulating that
state, respectively.

As shown in Table 1, concepts in Icarus resemble
traditional Horn clauses in first-order logic with nega-
tions. Primitive concepts like in-region provide state de-
scriptions at the lowest level of abstraction using sym-
bolic and numeric information directly extracted from

Table 1: Example Icarus concepts.

(in-region ?self ?region)
:percepts (self ?self region ?region)

(climbable-gateway ?gateway ?object)
:percepts (gateway ?gateway) (object ?object)
:relations ((totally-blocked-gateway ?gateway

?object)
(feature-of-object ?object

CLIMBABLE))

Table 2: Primitive and non-primitive Icarus skills.

(clear ?gateway)
:percepts ((gateway ?gateway

dist1 ?dist1 angle1 ?angle1
dist2 ?dist2 angle2 ?angle2))

:start ((close-enough-to-jump-type ?gateway))
:actions ((*jump-cmd (maximum ?dist1 ?dist2))

(mid-direction ?angle1 ?angle2))

(crossable-region ?regionB)
:percepts ((self ?self) (region ?regionB))
:start ((connected-region ?regionB ?gateway))
:subgoals ((clear ?gateway))

(in-region-able ?me ?regionA ?regionB)
:percepts ((self ?me)

(region ?regionA)
(region ?regionB))

:start ((in-region ?me ?regionA))
:subgoals ((crossable-region ?regionB))

(in-region me region3004)
:subgoals ((in-region-able me region3003

region3004)
(in-region me region3004))

objects the agent perceives. Higher-level concepts, such
as stopped-in-region and climbable-gateway have their ba-
sis in other concepts as well as primitive facts. The con-
cept hierarchy provides relational, modular descriptions
of the current state. It can also be used to represent a
desired state, so concepts can express subgoals.

Taken together, Icarus skills for a given domain are a
specialized form of hierarchical task networks (Nau et al.,
1999). A skill’s head indexes it by the goals it achieves,
and since goals are naturally represented by desired con-
cept instances, skills are tied in to the concept hierarchy.
Some achieve low-level concepts, while others address
broad objectives. Table 2 shows some examples of skills
in Icarus. While primitive skills give simple methods
using basic actions executable in the world, higher-level,
non-primitive skills describe complex methods with mul-
tiple ordered subgoals. Since non-primitive skills specify
subgoals, not the details of how these goals are achieved,
an Icarus agent can select the most relevant method for
the given subgoal depending on the current situation.

Icarus’ relational and hierarchically composable rep-
resentation of skills is crucial to its ability to transfer
knowledge. In particular, the relational representation
increases generality of the encoded skills, since they can
apply in circumstances that are only qualitatively similar

Long−term
Conceptual Memory

Categorization
and Inference Perception

EnvironmentSkill Retrieval

Skill ExecutionLong−term
Skill Memory

Motor Buffer

Goal Memory

Perceptual Buffer

Belief Memory

Skill Learning

Figure 2: A schematic of memories and processes in the
Icarus architecture.

to the situations where the skills are acquired.
Moreover, a hierarchically composable representation

lets skills apply in new circumstances, even if they are
partially incorrect, inaccurate, or inapplicable. In these
cases, the undesired subskills will be either relearned
from new experience or dynamically replaced during ex-
ecution with other subskills. For example, Icarus can
use a learned alternative that achieves the same goal,
instead of an inapplicable subskill. We discuss how the
architecture uses and learns hierarchically composable
skills in the following sections.

Execution of Hierarchical Skills

The Icarus architecture operates in cognitive cycles,
spanning conceptual inference, skill selection, and phys-
ical execution (Figure 2). Icarus derives its beliefs via
a bottom-up matching process, initiated by objects that
arrive in the agent’s percepts. After it infers low-level
concept instances based on these objects, inference for
higher-level concepts follows to build a hierarchically or-
ganized belief structure for the time step. In contrast,
Icarus performs skill selection in a top-down manner,
starting with the current goal. On each cycle, it finds
a path from this goal through the skill hierarchy; each
skill along this path is applicable given the current be-
liefs, with the terminal node being a primitive skill that
Icarus executes in the environment. This differs from
traditional production systems, which require multiple
cycles and use of working memory to traverse levels of
an implicit goal hierarchy.

Since the architecture repeats this procedure on each
cycle, Icarus agents can react to their surroundings
while pursuing goal-driven behaviors. Also, they can
use new knowledge structures immediately, incorporat-
ing them for processing on the next execution cycle.
Given a choice between two skills, Icarus will prefer
the one more recently learned, so agents can start with
some knowledge but behave more intelligently as they
acquire experience. The spatial search in UCT is a good
example of this feature. Initially, the agent uses basic
exploration strategy to search the environment. As it
explores and discovers the geography of its world, it be-
gins to employ the new map knowledge to guide further
search towards the goal.

Icarus’ execution mechanism facilitates transfer by
flexibly employing previously learned skills in three ways.
First, it transfers learned skills to new problems by dy-
namically selecting and interleaving learned skills based
on observed situations and achieved goals. Second, it

combines skills learned from qualitatively different expe-
riences when a novel situation has elements from these
previous experiences. Finally, even if Icarus does not
have sufficient knowledge to directly solve a problem, it
can transfer partially applicable skills from previous so-
lutions and patch the knowledge gap by falling back on
its default search skills.

Icarus can achieve qualitatively different types of
transfer by reusing high-level or low-level skills. For ex-
ample, if a source and a target problem share abstract
goals, it solves the target faster by transferring high-
level skills. This occurs in UCT when the agent has
learned how to clear a set of obstacles that block a goal.
The agent uses the strategy acquired in the source (i.e.,
to approach the closest blocking object and overcome
it) to tackle a different set of obstacles in the target,
although the details depend upon the type of the ob-
stacles and their relative configuration. On the other
hand, Icarus also transfers low-level skills by compos-
ing them in novel ways to solve the target problem. For
example, if Icarus learns to overcome a climbable wall
in the source, it transfers that skill when it encounters a
climbable wall in service of an unfamiliar route planning
task, where the high-level goal might differ from that in
the source problem.

One important requirement in transfer is to use pre-
viously acquired skills that are not completely correct
or always applicable. This commonly occurs because
conditions in the environment differ between source and
target problems. For example, suppose the agent learns
skills for navigating to the goal location in a UCT source
problem. It partially executes those skills in the target,
then abandons them in favor of exploration when it en-
counters a non-surmountable obstacle blocking the path.
The agent reenters the skills when exploration brings it
to some later step along its original path. This type of
transfer results from Icarus’ reactive execution module,
which uses only the relevant skills in the current envi-
ronment.

Learning Hierarchical Skills

Icarus acquires structured skills via an analytical learn-
ing mechanism that it invokes whenever the agent
achieves a top-level goal. This mechanism inputs the
goal plus a solution trace that achieves it, described as a
sequence of observed states and selected actions. Icarus

generates an explanation of how the goal was achieved
by interpreting this solution traces in the context of con-
ceptual knowledge and action models. It does so by re-
cursively examining goals, either decomposing them into
subgoals using conceptual knowledge or explaining them
in terms of the effects of primitive skills. The archi-
tecture converts the resulting explanation structure into
hierarchical skills and add them to its skill memory. We
have described this process elsewhere (Nejati et al., 2006)
in more detail.

One distinctive property of this method is that it
learns the structure of a skill hierarchy as well as the
goals and conditions associated with each skill. This
method is related to previous work on explanation-based

learning (Mitchell et al., 1986), but differs in that it does
not compile away the explanation structure, but rather
uses it to determine the structure of the skill hierarchy.

This learning mechanism facilitates transfer by asso-
ciating a hierarchy of learned skills with the goals they
achieve. As a result, the component skills can be used
independent of the top-level goal that motivated their
construction. For example, an Icarus agent tasked to
enter a building may find a solution where it jumps over
a fence and then enters the building, viewed as sequence
of primitive skills. The analytical learner creates a new
skill to climb over a fence, as well as a higher-level skill
that uses it along with primitives to reach the goal from
the start location. The system associates the low-level
skill (for fence climbing) with the goal for reaching a
parameterized location, and it considers the component
whenever a fence blocks a local goal.

The learning system also facilitates transfer by using
relational background knowledge. It acquires skills that
reference the agent’s conceptual vocabulary, which pro-
vides flexibility in retrieving the skills. For example, an
Icarus agent in UCT may acquire a skill for reaching a
goal it recognizes as collectively blocked (a built-in con-
cept that matches when multiple objects impede a path).
As long as the concept is true in a situation, the agent
can apply the resulting skill regardless of the actual con-
figuration of obstacles.

Evaluating Icarus’ Account of Transfer

The basic claim in this paper is that Icarus’ assump-
tions about representation, performance, and learning
support transfer without need for any additional mecha-
nisms. Moreover, both learning and transfer should oc-
cur at roughly the levels observed in humans, although
we will not compare the architecture’s behavior directly
to the results of psychological studies here. We have
already explained the ways in which Icarus should pro-
duce such transfer, but this is different from demonstrat-
ing such effects.

To this end, we designed and ran a controlled exper-
iment in the Urban Combat testbed. Our dependent
variable was the time taken to solve a target problem
that involved achieving a physical goal in the domain,
and we studied the effects of two independent factors.
One concerned whether the agent had experience solving
five source problems (the transfer condition) or had no
such experience (the nontransfer condition). The other
involved the relationship between the source and target
problems, which we discuss at more length below.

Source-Target Relationships

Analysis suggested a number of relationships between
source and target problems that should support transfer
of learned knowledge, six of which we focus on here. We
consider two of these forms in detail and then briefly
summarize the other four.

One source-target relationship, abstracting, involves
sharing hierarchical solution structure, as the UCT sce-
narios in Figure 3 illustrates. Here the source and target
problems involve the same start and goal locations, but

Figure 3: Two source-target pairs for abstracting.

the target requires solving a different subproblem to en-
ter the chosen building. The problems can take advan-
tage of the same route knowledge for navigating from
start to goal, as well as the high-level solution structure
composed of an initial route segment, an entry task, and
a final approach. Other source-target pairs of this type
require the agent to break into a building via different
means or clear unfamiliar obstacles from its path. Prob-
lem pairs share the start and goal locations but exercise
largely distinct sections of the UCT map.

We expect Icarus to transfer the overall decomposi-
tion of a source problem’s solution into the correspond-
ing target. This capability also lets the agent reuse route
information between non-corresponding sources and tar-
gets, as well as between target problems, to the extent
it explores overlapping terrain while solving tasks. How-
ever, the system cannot share solutions for new subprob-
lems introduced into target tasks, since they do not re-
occur. Those component solutions (e.g., using ammuni-
tion to enter the building vs. a key) must be discovered
in each target task, so they act to increase solution time
and decrease performance.

Another type of relationship between source and tar-
get problems, restructuring, illustrated in Figure 1, re-
quires the agent to use solutions to subproblems in dif-
ferent orders. Successful transfer lets the agent solve the
target problem more rapidly because it has learned how
to duck under a wall and climb over a wall in the source
problem, independently of when those subtasks arise in
the target. Other source-target pairs of this type – sur-
rounding the start and end states with jumpable vs. un-
climbable walls, boxes vs. pits, button operated vs. push
doors, and water vs. electrical hazards – follow the same
pattern.

We also examined four additional relationships be-
tween source and target problems:

• reuse partial solutions from a common start state in
source and target problems, despite differing goals (ex-
trapolating);

• repeatedly reuse solutions to subproblems from the
source problem when working on the target problem
(extending);

• dynamically compose solutions to problems from
source problems to solve a more complex target prob-
lem (composing); and

• reuse the skills learned on the source task to solve a
target problem, but apply different operators to novel
objects that occur in the target (generalizing).

Our experiment examined Icarus’ ability to transfer
learned skills from source to target problems that in-
volved each of these six relationships. We felt that, if
transfer occurred, it would provide evidence for the gen-
erality of the architecture’s mechanisms.

Experimental Design and Results
Our experimental method involves presenting the
Icarus agent with a collection of source-target problem
pairs. Each pair provides a known opportunity for trans-
fer, while the set (called a scenario) supports some cross
talk: a single source problem can enable transfer into
multiple targets and the set of source problems supports
transfer into any target.

As noted above, we ran the agent in both a transfer
condition, in which it first solved a set of five source
problems and then solved five target tasks, and a non-
transfer condition, in which it solved only the five tar-
get problems. We ran the agent on six different sets of
source-target pairs that reflected the relationships dis-
cussed above. We randomly varied the presentation or-
der of the target problems to guard against effects of
training order.

Figure 4 summarizes the results of the experiment by
plotting the problem solution time for the nontransfer
condition against the time for the transfer condition.
Each x and y value represents the average score over
20 runs of the Icarus agent, with different icons depict-
ing distinct forms of source-target relationship. Entries
above the diagonal line indicate that positive transfer
occurred, while entries below the line reflect negative
transfer. The figure shows that Icarus generally ex-
hibits positive transfer for most problems in each type
of relationship. Moreover, this transfer occurs after ex-
perience with only five source problems, meaning that
the rate of learning is roughly comparable to that ob-
served in humans.

The key point is that Icarus produces this transfer
without any mechanisms above those required to draw
inferences, execute skills that are indexed by goals, and
acquire those skills from problem solutions. It does
not require any additional processes to explain transfer
across a variety of different source-target relationships.
Our experimental study generally supports this claim
about the emergent nature of transfer effects within the
Icarus architecture.

Related Research
Researchers in psychology have shown considerable in-
terest in transfer, but their research has emphasized ex-

-300

-280

-260

-240

-220

-200

-180

-160

-150-200-250-300

tr
an

sf
er

 c
as

e

non-transfer case

 Extrapolating
 Restructuring
 Extending
 Composing
 Abstracting
 Generalizing

Figure 4: Solution times in seconds for transfer case plot-
ted against those for non-transfer cases. Note that the
axes are inverted so that higher scores indicate better
performance.

perimental studies. There have been a few computa-
tional models of this phenomenon, Kieras and Bovair
(1986) and Singley and Anderson (1988) being two ex-
amples. Their models provided very accurate predic-
tions for the degree of transfer in terms of the number
of shared knowledge elements, but these were not cou-
pled with learning mechanisms that could acquire the
knowledge.

In contrast, there have been several efforts on transfer
in the machine learning literature. For example, Swarup
and Ray (2006) discuss transfer in the context of neu-
ral networks, and Thrun (1996) considers the case in
which an agent experiences many variations of a gen-
eral task. However, these systems showed much slower
learning than observed in humans, and made little con-
tact with the psychological literature.

The approach we have described in this paper aims
to model reuse of knowledge structure in the context
of a cognitive architecture that incorporates psycholog-
ically plausible representations and mechanisms. There
have been some previous results in the same spirit. For
example, Langley (1985) investigated methods for learn-
ing search-control heuristics through discrimination of
production rules, and Laird et al. (1986) demonstrated
learning and transfer of macro-operators through chunk-
ing in Soar. More recently, Hinrichs and Forbus (2007)
have discussed the transfer of planning and strategic
knowledge among subproblems in a turn-based strategy
game.

Directions for Future Work

Although our results to date have been encouraging,
there clearly remains room for improving Icarus’ ability
to transfer its learned knowledge. One avenue involves
supporting more flexible execution of skills. Currently,
the system executes skills in the environment as soon
as they are applicable, but since skills acquired in one

setting can propose undesirable actions in another, they
may lead to negative transfer. We are planning to add a
module for lookahead search, constrained by the skill hi-
erarchy, that would guard against this problem and thus
improve transfer.

We are also investigating a method for making both
inference and execution more flexible. This involves re-
placing Icarus’ current deductive inference module with
one that relies on Markov logic (Richardson & Domin-
gos, 2006), which combines first-order logical and prob-
abilistic reasoning. This approach uses weights to soften
the otherwise hard rules of a first-order knowledge base.
Possible worlds that violate rules become more or less
probable depending on evidence and the magnitude of
weights. The result is an inference mechanism that is
robust to error and uncertainty. This will let Icarus

transfer its skills more flexibly, in that it can select skills
even when start conditions are likely but not deductively
implied, as can happen in partially observable settings.

In this paper, we focused on forms of transfer that
Icarus can handle using its existing architectural mech-
anisms. But one implicit assumption of this approach is
that the agent can use the same relational predicates to
describe the source and target problems. This approach
will not succeed in situations where the source and target
problems have similar structure but have been encoded
with different symbols. We aim to address this challenge
by developing analytic methods that infer mappings be-
tween the representations used in the source and the
target problem.

Concluding Remarks

Although structural transfer is an important phe-
nomenon in human learning, there are few computa-
tional models that combine learning with transfer. In
this paper, we described an agent architecture that can
transfer skills learned in one setting to distinct but re-
lated tasks. We showed that the framework demon-
strates this capability for a number of different relations
between source and target problems, and we reported
experimental results on a challenging testbed.

One of our key claims was that Icarus can achieve
transfer without requiring any mechanisms beyond those
needed to represent, execute, and learn skills. Our ex-
periments with UCT supported this claim and suggested
that many types of transfer arise naturally from methods
that can acquire relational, hierarchical structures. We
analyzed Icarus’ ability to transfer and explained how
its architectural commitments support this process. In
the future, we hope to model additional forms of transfer
that involve more complex relations between source and
target problems.

Acknowledgments

The authors would like to thank Larry Holder and
Michael Youngblood for the development and support
for the Urban Combat Testbed, and John Laird and
Nicholas Gorski for insightful discussions on cognitive
architectures and agent development. Also, we would
like to thank Dan Shapiro and Tom Fawcett for their

contributions to scenario development and project eval-
uations, and Cynthia Matuszek and Blake Shepard for
their work on domain refinement. This paper reports re-
search sponsored by DARPA under agreement FA8750-
05-2-0283. The U. S. Government may reproduce and
distribute reprints for Governmental purposes notwith-
standing any copyrights. The authors’ views and con-
clusions should not be interpreted as representing offi-
cial policies or endorsements, expressed or implied, of
DARPA or the Government.

References

Hinrichs, T. R., & Forbus, K. D. (2007). Analogical
learning in a turn-based strategy game. Proceedings of
the Twentieth International Joint Conference on Ar-
tificial Intelligence. Hyderabad, India.

Kieras, D. E., & Bovair, S. (1986). The acquisition of
procedures from text: A production-system analysis
of transfer of training. Journal of Memory and Lan-
guage, 25, 507–524.

Laird, J., Rosenbloom, P. & Newell, A. (1986). Chunk-
ing in SOAR: The anatomy of a general learning mech-
anism. Machine Learning, 1, 11–46.

Langley P. (1985). Learning to search: From weak meth-
ods to domain-specific heuristics. Cognitive Science,
9, 217–260.

Langley, P., & Choi, D. (2006). Learning recursive con-
trol programs from problem solving. Journal of Ma-
chine Learning Research, 7, 493–518.

Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T.
(1986). Explanation-based generalization: A unifying
view. Machine Learning, 1, 47–80.

Nau, D., Cao, Y., Lotem, A., & Muñoz-Avila, H. (1999).
SHOP: Simple hierarchical ordered planner. Proceed-
ings of the Sixteenth International Joint Conference
on Artificial Intelligence (pp. 968–973). Stockholm:
Morgan Kaufmann.

Nejati, N., Langley, P., & Könik, T. (2006). Learning
hierarchical task networks by observation. Proceed-
ings of the Twenty-third International Conference on
Machine Learning (pp. 665–672). New York: ACM
Press.

Newell, A. (1990). Unified theories of cognition. Cam-
bridge, MA: Harvard University Press.

Richardson, M., & Domingos, P. (2006). Markov logic
networks. Machine Learning, 62, 107–136.

Singley, M. K., & Anderson, J. R. (1987). A keystroke
analysis of learning and transfer in text editing.
Human-Computer Interaction, 3, 223–274.

Swarup, S., & Ray, S. (2006). Cross-domain knowledge
transfer using structured representations. Proceedings
of the Twenty-First National Conference on Artificial
Intelligence. Boston, MA: AAAI Press.

Thrun, S. (1996). Explanation-based neural network
learning: A lifelong learning approach. Boston, MA:
Kluwer Academic Publishers.

Dialing while Driving? A Bounded Rational Analysis of
Concurrent Multi-task Behavior

Duncan P. Brumby (Brumby@cs.drexel.edu)
Dario D. Salvucci (Salvucci@cs.drexel.edu)

Department of Computer Science, Drexel University
Philadelphia, PA 19104 USA

Andrew Howes (HowesA@manchester.ac.uk)
Manchester Business School, University of Manchester,

Manchester, M15 6PB UK

Abstract
When people conduct multiple tasks in tandem, such as
dialing a cell phone while driving a car, they often interleave
the two tasks, for instance by returning attention to the
primary driving task after entering bursts of three of four
digits at a time. In order to explain why people tend to
interleave these tasks at this particular interval, a control
model of steering behavior is described that focuses on
understanding how environmental and psychological
constraints interact to determine driver performance. We use
this model to predict the amount of time that people are
prepared to stray from the driving task while engaging in a
secondary in-car task and, by consequence, the degree of task
interleaving. In particular, a modeling experiment was
conducted to determine the consequences of systematically
varying the time interval between consecutive steering
updates for driving performance. The results of this analysis
were then used to demonstrate why returning attention to
driving after entering bursts of three of four digits at a time is
a particularly efficient strategy: It does not allow driving
performance to become too egregious, while at the same time
keeping the additional time costs that are incurred as a result
of interleaving tasks minimal.

Introduction
While you are driving in your car it is not too difficult to
sometimes direct your attention away from the road in order
to engage in a secondary task, such as dialing a number on a
cell phone. In this complex real-world multitasking
scenario, people tend to interleave the two tasks by
returning attention to driving after entering bursts of three of
four digits at a time (e.g., Salvucci, 2005). One potential
explanation for why people choose to interleave these tasks
at this particular interval is that the representational
structure of the telephone number (e.g., for a 7-digit
telephone number this might follow a xxx-xxxx structure)
provides a series of natural break points at which to return
attention to driving. Although this account has intuitive
appeal, it is not entirely obvious that people necessarily
have to return attention to steering control after dialing three
or four digits. Why not more or less digits at a time?
Alternatively, if someone were engaged in some other
secondary in-car task that, for instance, demanded longer
interaction episodes than dialing (e.g., scrolling through a
long list of media content on an Apple iPod), would they
still make glances back to the road with the same regularity?

In this paper, we present a bounded rational analysis
(Howes, Vera, & Lewis, 2007) of concurrent multi-task

behavior, in order to better understand how long people
should be prepared to look away from the road when
engaging in a secondary dialing task while driving. In this
analysis we focus on understanding how functional-level
features of the task environment (Gray, Neth, & Schoelles, in
press) and the constraints imposed by the cognitive
architecture (Anderson et al., 2004) interact to make some
multitasking behaviors more preferable than others. For
instance, it seems rather obvious that deprived of regular
attention, driving performance will rapidly fall below
criterion, with potentially disastrous consequences. At the
same time though the benefits of frequently interleaving play
against the costs of switching between tasks (e.g., Allport,
Styles, & Hsieh, 1994). In particular, switching between tasks
often carries costs associated with the physical realignment of
the body relative to external resources and the mental
recovery of state information associated with each task. Given
this trade-off between the potential costs and benefits of
frequently interleaving, how do people decide when to switch
back and forth between tasks?

One possible factor that might determine when task
interleaving is desirable is the shape of the payoff function for
the primary task (Payne, Duggan, & Neth, in press; Son &
Sethi, 2006). Payne et al. conducted a series of experiments
designed to investigate how people allocate time between two
Scrabble tasks. Each task required participants to generate as
many words as possible from a fixed set of letters in a given
amount of time. Importantly, the tasks differed in the number
of words that could be readily generated from their respective
letter sets. This meant that the tasks had different payoff
functions because the rate at which a participant could find a
novel word from a particular set of letters differed between
the two tasks. This difference between tasks’ payoff functions
were not known in advance of the study to the participants,
and Payne at al. were interested in how participants would
allocate their time between the two tasks. As one might
expect, Payne et al. found that participants eventually learned
to allocate more time to the more productive task (i.e. the task
with the greater payoff function) but most still chose to switch
between tasks rather frequently. Payne et al. also found that
participant’s “giving-up time” (i.e., the time between finding
the most recent word and the decision to switch tasks) was
longer in the less productive task. Taken together these two
effects appear to work against each other (i.e., longer visits to
the easier task, but shorter giving-up times for this task), but
Payne et al. demonstrate that a stochastic model, based on

Green’s (1984) assessment rule of optimal foraging theory,
account for these data.

Son and Sethi (2006) present a formal analysis that shows
that optimal time allocation between tasks is dependent on
characteristics of the environment. Son and Sethi give the
example of a learning environment where a learner’s time
must be allocated between multiple tasks (e.g., consider a
student studying for a set of final exams). Son and Sethi
demonstrate how time pressure as well as the nature of a
task’s learning curve can lead to different allocations of time
between tasks. Moreover, the work of both Payne et al. and
Son and Sethi is of interest here because it points to the
potential role of a task’s payoff function in determining
precisely when people are likely to switch from one task to
another.

In this paper, we present a bounded rational analysis
(Howes, Vera, & Lewis, 2007) of possible strategic variability
in how people might dial a cell phone while driving.
Extending earlier work (Brumby, Howes, & Salvucci, 2007;
Brumby, Salvucci, Mankowski, & Howes, 2007), a control
model of steering behavior is described that focuses on
understanding how environmental constraints (e.g.,
perturbation of the vehicle's heading over time) and
psychological constraints (e.g., people’s sensitivity to the
lateral position of the vehicle in relation to the center of the
lane) interact to determine driver performance. A modeling
experiment is conducted to determine the consequences of
systematically increasing the time interval between
consecutive steering updates for the average lateral deviation
of the vehicle from the lane center over time. We show that
the particular rate that people tend to make glances back to
the road while engaging in a dialing task can be understood in
the context of the rate of decline in driver performance over
time and the costs of switching back and forth between tasks.

Model of Steering Control
A control model of steering behavior is developed that gives
predictions of changes in a simulated vehicle’s lateral
deviation (i.e., distance from the lane center) over time. The
model focuses on understanding how environmental and
psychological constraints interact to determine driver
performance. The model simulates a vehicle moving at a
constant velocity down a straight road. The model performs
a series of discrete steering updates that alter the heading (or
lateral velocity) of the vehicle dependent on its lateral
position in the lane at the time that the steering update is
performed. The approach taken is similar to control
theoretic accounts of lane keeping (e.g., model 1 in Hildreth
et al. 2000), which assume that adjustments to the heading
of a vehicle are motivated by the goal of minimizing
perceptual input quantities that represent the lateral position
and heading of the vehicle.

In order to parameterize the model, driver performance data
from two experiments that investigated the effect of cell
phone use on driving (Salvucci, 2001; Salvucci & Macuga,
2002) were analyzed to formally characterize how drivers
typically adjusted the heading of the vehicle given its lateral

position in the roadway. An underlying assumption of this
analysis was that adjustments to the heading of the vehicle
were motivated by the driver attempting to maintain a central
lane position over time. In particular, the experimental
software logged, at a rate of once every 30 ms, the normalized
steering wheel angle of the simulated car and its divergence
from the center of the lane (in meters). This steering data was
then segmented into a series of steering episodes, which were
defined as periods in which the angle of the steering wheel
did not alter over time. For each of these steering episodes, a
tuple was defined that represented the duration of the episode
(time), the change in the lateral position of the vehicle
(distance), and the average lateral velocity of the vehicle
(where lateral velocity = distance / time). Data from all
steering episodes across participants from the two studies
were pooled, and the lateral velocities of all steering episodes
that had a common starting lateral deviation (i.e., originated
from the same lateral position in the roadway) were averaged.
We report an analysis of these average data.

Figure 1 shows a scatter plot of the relationship between
the lateral deviation of the vehicle at the start of a steering
episode and its average lateral velocity throughout the
episode. It can be seen in the figure that as the car strayed
closer to the lane boundary, drivers tended to react by making
sharper corrective steering movements, which in turn,
increased the lateral velocity of the vehicle, returning it to a
central lane position more rapidly. Furthermore, it can be seen
that for many steering episodes lateral velocity was negative;
indicating that the car was heading farther away from the
center of the lane.

Regression analysis was conducted to estimate a best fitting
curve to predict the average lateral velocity of a steering
episode given the lateral deviation (LD) of the vehicle at the
start of an episode. It was found that a quadratic function1,

Velocity = 0.2617 x LD2 + 0.0233 x LD - 0.022 (1)
provided a high degree of correspondence with the human
data (r2 = 0.61), F (1,80) = 62.61, p< .001. This quadratic
model of steering control predicts that as lateral deviation
from the lane center increases, there is an increase in the
lateral velocity of the vehicle, brought about at discrete
steering updates, in order to return the vehicle to a central
lane position more rapidly.

Furthermore, the intercept of the curve given by the model
(shown in Figure 1) gives some suggestion of the driver’s
threshold for judging the vehicles deviation from the lane
center. In particular, when the car is near the lane center (i.e.,
lateral deviation < 0.30 m), predicted lateral velocity is close
to zero. This means that the position of the car in the roadway
remains more or less constant over time. This implies that the
driver was possibly satisfied with the vehicle’s position in the
roadway if the lateral deviation of the vehicle was less than
0.3 m from the lane center.

Although the quadratic model gave a high degree of
correspondence with the data, there was also considerable
variability with respect to the observed lateral velocities given
a particular lateral deviation at the start of an episode. In
particular, the standard deviation of the data from the mean

1 Because of non-positive lateral velocities exponential or power functions could not be applied.

was 0.10 m/s. This suggests that people’s adjustments to the
heading of the vehicle were stochastic. In order to develop a
stochastic model of steering control, random values were
sampled from a Gaussian distribution and added to the value
of the updated lateral velocity. Based on an estimate of the
average standard deviation observed in the human data, the
Gaussian distribution had a mean of 0.00 m/s and standard
deviation of 0.10 m/s.

An important functional-level feature of the driving
environment is that if left unattended, the heading of the
vehicle will also be influenced by external factors, such as
bumps in the road, wind, the camber of the road, etc. In order
to simulate this feature of the driving environment, the
heading of the vehicle was perturbed every 50 ms by a
random value sampled from a Gaussian noise distribution.
Following estimates from a previous model in the literature
(Hildreth et al., 2000), the Gaussian noise distribution had a
mean 0.00 m/s and standard deviation 0.10 m/s.

In summary, the model provides a computationally efficient
formalism for predicting how drivers typically adjust the
heading (or lateral velocity) of a vehicle given its lateral
position in the roadway. The model focuses on how
functional-level features of the task environment (e.g.,
perturbation of the vehicle's heading over time) and
psychological constraints (e.g., people’s sensitivity to the
lateral position of the vehicle in relation to the center of the
lane) interact to determine driver performance. Moreover, it is
worth pointing out at this stage that the model does not make
any theoretical commitment to the duration of a typical
steering update; the model is solely dependent on parameters
derived from an analysis of steering performance data and
assumptions about the environment. In the next section the
model is used to understand how driving performance might
decline with increasing periods of driver inattention.

Figure 1: Relationship between lateral deviation at the start
of a steering episode and lateral velocity.

Modeling Experiment
We conducted a modeling experiment that symmetrically
varied the time interval between steering updates in order to
make quantitative predictions of the consequences for lateral
deviation over a period of simulated driving. Specifically,
we explored steering strategies that updated lateral velocity
at an interval of between 50 ms and 6,000 ms, exploring
performance at increasing increments of 50 ms. That is, we

evaluated 120 different steering strategies that differed in
terms of the duration of time between each steering update
over a period of simulated driving. Each steering strategy
was run for 1,000 trials, and performance averaged. The
vehicle’s lateral deviation at the start of each trial was 0.33
m from the lane center. This initial lateral deviation reflects
the average value at the beginning of each trial in the
empirical data (taken from Salvucci, 2001). Furthermore,
each steering strategy was evaluated over both a single
steering episode (single-event) and also over a longer
measurement interval of 60-seconds simulated driving
(long-term). For each steering strategy we report the lateral
deviation — the root-mean-square error (RMSE) of the
vehicle’s lateral distance from lane center — over both a
single-event and the long-term measurement interval.

Results: The effect of interval between steering
updates on lateral deviation
In order to illustrate how the movement of the vehicle is
affected by the interval between steering updates, Figure 2
shows a data plot representing changes in lateral deviation
over time for different illustrative strategies. Performance is
for a single trial. Data points represent periods where the
lateral velocity of the vehicle was altered owing to a
steering update. Changes in the heading of the vehicle
between steering updates are due to environmental noise.

Figure 2 offers a comparison between the performance of
steering strategies that conducted relatively frequent updates
to the lateral velocity of the vehicle (once every 50 ms) to
strategies that updated lateral velocity less frequently (once
every 600 ms). It is clear from the figure that there was very
little difference in performance between these two strategies;
in both cases the vehicle maintained a more or less straight
heading (i.e., lateral velocity ≈ 0 m/s) and as a result kept to a
consistent lateral position in the lane over time. In contrast, as
the interval between consecutive steering updates increased
even further (to once every 1800 ms), the vehicle tended to
drift more erratically about the lane. This was partial because
without frequent steering updates, the heading of the vehicle
was perturbed by environmental noise. In order to
compensate for this general increase in lateral deviation, the
model tended to set a heading when a steering update was
eventually performed that gave a large lateral velocity. As can
be seen in the figure, these aggressive changes in heading
lead the vehicle to move rather erratically about the lane.

We next focus on quantifying the rate at which lateral
deviation increases with increasing time between updates of
steering control. Figure 3 shows the performance of each
strategy over a single steering update (single-event) and also
over a longer measurement interval of 60-seconds simulated
driving (long-term). The x-axis in the figure represents the
interval between steering updates and the y-axis represents
mean lateral deviation over 1,000 trials. It is clear that as the
time between steering updates increases, lateral deviation
generally increases, except, that is, across relatively short
intervals between steering updates (< 1 sec). At these shorter
intervals, the duration of time in between steering updates did
not affect lateral deviation.

It is also apparent from Figure 3 that the way in which
lateral deviation increased with increasing time between

Figure 2: Data plot representing movement of the car in
relation to the center of lane for illustrative steering strategies.
Data points represent steering updates. Connecting lines
represent movement of the car in between steering updates.

Figure 3: Data plot showing the relationship between the
duration of time between each steering update and lateral

deviation. Each steering strategy was run over both a single
steering event and also a longer 60-second period.

consecutive steering updates was dependent on the total
period of simulated driving (i.e., single-event vs. long-term
measurement interval). In particular, the rate of decline in
steering performance was less when there was only a single
steering update than when a strategy was maintained for a
longer period of time. This is because when there is only a
single steering update event, the vehicle travels at a fairly
constant lateral velocity; therefore the distance traveled
from the lane center will be dependent on the time until the
next steering update. However, when a strategy is
maintained for a longer period of time (i.e., 60 sec), the
average deviation can grow quite large because, in some
sense, the problems start building on each other. That is, as
we described earlier, the car not only drifts farther from the
lane center with increasing time away from driving, but as a
consequence, it is also placed into sharper corrective
headings to compensate for being farther from lane center.
This interaction between increased lateral velocity and
longer intervals between steering updates makes the car
move erratically about the lane.

Regression analysis was conducted to estimate the best-
fitting curve to account for the relationship between the
interval between steering updates and lateral deviation. For
performance based on a single-event, it was that an
exponential function fit the data very well (r2 = 0.98),
F (1,118) = 5828, p< .001, where

Lateral Deviation = 0.27550.2177 x Update Interval (2)
The exponent in this function increased, however, when the

strategy was maintained for a longer period of simulated
driving, giving

Lateral Deviation = 0.28070.3453 x Update Interval (3)
(r2 = 0.99), F(1,118) = 35747, p< .001. This meant that the
rate of decline in steering performance increased more
dramatically with increasing interval between steering
updates. In the next section we derive predictions for driving
performance under dual-task conditions by considering
possible strategic variability in how people might dial a cell
phone while driving.

Predicting Multi-task Performance
We model data from an earlier study that investigated in-car
multitasking (Salvucci, 2001). In Salvucci’s experiment
participants were required to dial 7-digit numbers on a
cellular phone that was positioned on a hands-free device
while driving. It was assumed that one “power-on” key-
press preceded the 7-digit number and that one “send” key-
press followed it — giving 9 key-presses in all. Salvucci
reports average baseline (or single-task) dial-time for the
participant’s to enter the 9-keypresses of 5.21 seconds (S.D.
= 1.09 sec). We use this empirical estimate of dial-time to
calibrate the model.

We assume that in normal conditions drivers typically
adjust the heading of the vehicle once every 150 ms. This 150
ms estimate is consistent with assumptions adopted in
previous computational cognitive models in the literature
(e.g., Salvucci, 2005). Moreover, at this baseline interval
between steering updates, lateral deviation predictions given
by the model (M = 0.33 m, S.D. = 0.02 m, see Fig. 3) are
comparable with reported baseline lateral deviation in
Salvucci’s (2001) experiment (M = 0.35 m, S.D. = 0.08 m).

We assume that engaging in a secondary task while driving
disrupts the normal pattern of checking and adjusting the
heading of the vehicle. In particular, we assume that steering
updates cannot occur while the driver’s attention is directed
towards a secondary in-car task, such as when they are
entering keypresses for the dialing task. This assumption is
based on the idea that peripheral resources, such as the eyes,
will limit the degree of parallel processing between tasks.
Moreover there are numerous demonstrations in the literature
of central interference affecting driver performance in dual-
task conditions (e.g., Brumby, Salvucci, & Howes, submitted;
Levy, Pashler, & Boer, 2006).

Furthermore, we assume that switching between tasks
carries a cost overhead (or switch cost), which reflects the
time required to move visual attention between the outside of
the car (i.e., to focus on the road) and the inside of the car
(i.e., to focus on the phone). Instead of developing a detailed
model of the perceptual/motor processes involved, we use a
simple timing estimate of 185 ms to move visual attention

between the phone and the road, or vice versa. This timing
estimate was taken from the ACT-R cognitive architecture
(Anderson et al., 2004).

Given the above set of assumptions and also the estimates
of single-task performance, we derive predictions for lateral
deviation and task time in dual-task conditions. Brumby,
Howes, and Salvucci (2007) have previously demonstrated
that there are at least 28 = 256 possible strategy variants for
completing the dial task with more or less interleaving of
steering control. Here, we attempt to abstract over this
strategy space by conducting an analysis that varies the
number of equal length episodes into which the dial task
could be divided and explore the consequences for the
interval between steering updates. It should be made clear
that this level of analysis abstracts over the actual units of the
dial task (i.e., entering more or less digits per episode) and
instead focuses on dividing single-task dial time in to more or
less equal chunks of time; thus, abstractly representing points
in the strategy space of more or less interleaving.

Figure 4 presents a scatter plot of total time to complete the
dial task and RMSE lateral deviation for strategies that
systemically vary in the degree of task interleaving. In
particular, at each point in the space we divide baseline dial-
time (5.21 sec) by N, where N varies between 1 (no-interleave
strategy) and 9 (maximum-interleave strategy). Given an
estimate of the amount of time between steering updates that
a particular strategy affords, Equations 2 and 3 are used to
derive predictions of lateral deviation. For instance, if we
consider adopting a no-interleave strategy, which completes
the dial task without once returning attention to the primary
task of driving, then the interval between steering updates
would be 5.73 seconds (i.e., 5.21 + 0.185 x 2 + 0.15). It is
clear from Figure 3 that updating steering control at this
interval would likely have catastrophic consequences for the
driving task, with the car being likely to cross over the lane
boundary.

In contrast, if the dial task were conducted with steering
updates occurring after each and every individual digit was
entered, what we shall refer to as a maximum-interleave
strategy, then the interval between steering updates would be
only 1.09 seconds (i.e., 5.21 / 9 + 0.185 x 2 + 0.15). It can be
seen in Figure 3 that updating steering control at this interval
would not likely lead to an egregious lateral deviation.
However, this strategy would incur 4.70 seconds of additional
time costs because of frequently switching between tasks and
updating steering control (i.e., 9 x (0.185 x 2 + 0.15)).

Figure 4 represents the speed/accuracy trade-off that clearly
exists between dialing quickly and driving safely: The upper-
left portion of the plot represents faster but less safe
performance resulting from less interleaving, while the
bottom-right portion represents slower but safer performance
resulting from more interleaving. There are diminishing
returns for interleaving, however. Such that, while
interleaving tasks more often generally leads to safer
performance there is a point in the space where further
interleaving gives only small improvements in safety.

We compare these model-based predictions shown in
Figure 4 with previous empirical data. In particular, Salvucci
(2001) reports dual-task performance of 7 sec (SD = 1.77 sec)
for the dialing task and RMSE lateral deviation of 0.49 m

(SD = 0.10 m) for the driving task. These human data are also
presented in Figure 4.

It is interesting that the human data lie close to the “turning
point” where lateral deviation starts to increase dramatically
within the modeled strategy space. This suggests that any less
interleaving between tasks would likely result in a dramatic
increase in lateral deviation, but also that more interleaving
between tasks would not likely result in a significant
reduction in lateral deviation given the additional time costs.

The model-based predictions demonstrate that adopting a
strategy that returns attention to driving after entering three
digits at a time is particularly efficient. This strategy does not
allow driving performance to become too egregious because
the interval between steering updates increases to only 2.26
seconds (i.e., 5.21 / 3 + 0.185 x 2 + 0.15). But at the same
time the strategy keeps the additional time costs incurred as a
result of interleaving tasks down to only 1.56 seconds (i.e., 3
x (0.185 x 2 + 0.15)).

Finally, notice that predictions for lateral deviation in
Figure 4 were derived using the exponential loss function
derived from running the model over a single-event (Eq. 2)
and also over a long-term measurement interval (Eq. 3). It is
interesting that for the most part the single-event model and
the long-term model gave fairly consistent predictions for
strategies that interleaved tasks more often. However, the
model predictions differed fairly significantly for strategies
that completed the dial task in only one or two bursts (i.e.,
the no-interleave strategy). The reason for this discrepancy is
that when a particular strategy was maintained for a longer
time (i.e., 60 sec), the average deviation could grow quite
large at longer intervals between updates.

Figure 4: Data plot of dial time and average lateral deviation
across strategies of varying task interleaving.

General Discussion
The question addressed at the start of this paper was why
people return attention to steering control after dialing every
three or four digits of a telephone number. To address this
question, a control model of steering was developed from an
analysis of driver performance data. The model made
minimal commitments to human cognitive architecture and
minimal assumptions about the constraints imposed by the
environment. The model was used to predict the average
rate at which the lateral deviation of the vehicle from the
lane center increases with increasing time between updates

of steering control. This bounded rational analysis suggests
that the rate of decline in driving performance with time
away from steering control might determine the amount of
time that people are prepared to give up to focus on a
secondary task while driving and, by consequence, the
degree of task interleaving. We demonstrate that returning
attention to driving after entering bursts of three digits at a
time is a particularly efficient strategy for completing the
dial task while driving because it does not allow driving
performance to become too egregious, while at the same
time it keeps the time costs incurred from switching
between tasks minimal. Moreover, we show that any less
task interleaving would result in a dramatic increase in
lateral deviation, with possibly unacceptable consequences
for safety, and that any more interleaving would incur
additional time costs while not affording a significant
improvement for driver safety.

An open empirical question that is posed by the analysis
presented here is that if the rate of decline in driving
performance with time away from task were different, then
people might interleave task differently. For instance, imagine
if driving performance were to decline much more gradually
with time away from task (i.e., when driving at a slower
speed), then there would be little value in interleaving tasks:
People may as well complete the dial task in a single
contiguous burst in order to avoid incurring the costs of
switching between tasks. Whereas, if driving performance
were to decline at a much more rapid rate (i.e., when driving
at a faster speed), then people might be prepared to give up
less time per visit to the secondary task and consequently
interleave more frequently. That is, driving speed should have
an effect on both dial time and lateral deviation in dual-task
conditions (see Brumby, Salvucci, & Howes, submitted, for
an initial investigation into this question). Moreover, there is
evidence that drivers tend to slow down on their own accord
when engaging in a secondary dialing task (Salvucci, 2001;
Salvucci & Macuga, 2002). This slowing behavior might
reflect active attempts to reduce the consequences of directing
attention away from the road for driving performance.

We might also consider applying the analysis presented
here to some other secondary in-car task that demands a
series of longer interaction episodes than a simple dialing task
(e.g., selecting media content on an Apple iPod). The analysis
presented here clearly suggests that lateral deviation should
increase as the amount of time spent on the secondary task
increases. An interesting question there emerges from
considering a longer task, where the vehicle is more likely to
drift from the lane center, is whether people give up more
time to steering control (i.e., by conducting a series of
steering updates in succession). The approach taken here for
running the model over a long-term measurement interval
was to assume that only a single corrective steering update is
performed, regardless of how far from the lane center the
vehicle has became. This seems like a rather implausible
assumption, however. An alternative assumption is that
people only resume the secondary task return when the
vehicle has been to returned to a stable lateral position in the
roadway (as in Salvucci’s, 2005, 2001, driver models).
Further work is required to explore techniques for
enumerating over various durations of time given up to

steering control for each of the possible multitasking
strategies discussed here (see Brumby, Salvucci, Mankowski,
& Howes, 2007, for some more recent progress on this issue).

Acknowledgments
This research was supported by National Science Foundation
grant #IIS-0426674. We would like to thank three anonymous
reviewers for providing comments for improving this paper.

References
Allport, A., Styles, E.A., & Hsieh, S. (1994). Shifting intentional set:

Exploring the dynamic control of tasks. In C. Umilta, & M.
Moscovitch (Eds.), Attention and performance XV (pp. 421-452).
Cambridge, MA: MIT Press.

Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C.,
& Qin, Y. (2004). An integrated theory of mind. Psychological
Review, 111, 1036-1060.

Brumby, D.P., Salvucci, D.D., & Howes, A. (submitted). An
empirical investigation into dual-task trade-offs while driving and
dialing. Paper submitted to the British HCI Group Annual
Conference. Lancaster University, UK.

Brumby, D.P., Howes, A., & Salvucci, D.D. (2007). A cognitive
constraint model of dual-task trade-offs in a highly dynamic
driving task. To appear in Human Factors in Computing Systems:
CHI 2007 Conference Proceedings. New York, NY: ACM Press.

Brumby, D.P., Salvucci, D.D., Mankowski, W., & Howes, A. (2007).
A cognitive constraint model of the effects of portable music-
player use on driver performance. To appear in the Proceedings of
the Human Factors and Ergonomics Society 51st Annual Meeting.
Santa Monica, CA: Human Factors and Ergonomics Society.

Gray, W.D., Neth, H., & Schoelles, M.J. (in press). The functional
task environment. In A. Kramer, A. Kirlik, & D. Wiegman (Eds.),
Applied Attention. New York, NY: Oxford University Press.

Green, R. F. (1984). Stopping rules for optimal foragers. American
Naturalist, 123, 30-43.

Hildreth, E.C., Beusmans, J.M.H., Boer, E.R., & Royden, C.S.
(2000). From vision to action: experiments and models of steering
control during driving. Journal of Experimental Psychology:
Human Perception and Performance, 26, 1106–1132.

Howes, A., Vera, A., & Lewis, R.L. (2007). Bounding rational
analysis: Constraints on asymptotic performance. In W.D. Gray
(Ed.) Integrated Models of Cognitive Systems (pp. 403–413). New
York, NY: Oxford University Press.

Levy, J., Pashler, H., & Boer, E. (2006). Central interference in
driving: Is there any stopping the psychological refractory period?
Psychological Science, 17, 228-235.

Payne, S.J., Duggan, G.B., & Neth, H. (in press). Discretionary task
interleaving: Heuristics for time allocation in cognitive foraging.
Journal of Experimental Psychology: General.

Salvucci, D.D. (2001). Predicting the effects of in-car interface use
on driver performance: An integrated model approach.
International Journal of Human-Computer Studies, 55, 85-107.

Salvucci, D.D. (2005). A multitasking general executive for
compound continuous tasks. Cognitive Science, 29, 457-492.

Salvucci, D.D., & Macuga, K.L. (2002). Predicting the effects of
cellular-phone dialing on driver performance. Cognitive Systems
Research, 3, 95-102.

Son, L.K., & Sethi, R. (2006). Metacognitive Control and Optimal
Learning. Cognitive Science, 30, 759 -774.

From 1000ms to 650ms:
Why Interleaving, Soft Constraints, and Milliseconds Matter

Bella Z. Veksler (zafrib@rpi.edu)
Wayne D. Gray (grayw@rpi.edu)

Michael J. Schoelles (schoem@rpi.edu)
Rensselaer Polytechnic Institute

110 8th St., Troy, NY 12180

Abstract

Evaluating and modeling human performance on even simple
tasks requires a great deal of attention to millisecond-level
cognitive and perceptual-motor operations. Modeling human
performance in a task often requires that special care be taken
to understand how these millisecond level operations are
interleaved and how they evolve during the execution of the
task. In modeling a simple decision-making task, we found
that human subjects improved their routine speed as they
became more familiar with the task. Modeling was conducted
using the ACT-R architecture (Anderson & Lebiere, 1998).
Refinements of the model indicated that interleaving of
millisecond-level perceptual-motor and cognitive operators
was crucial in accounting not only for the strategy shift as per
soft constraints, but also in the marked speedup in
performance over the course of several trials.

Introduction
Milliseconds matter in understanding human performance
(Gray & Boehm-Davis, 2000). The soft constraints
hypothesis (Gray, Sims, Fu, & Schoelles, 2006) implies that
in the course of routine interactive behavior, the cognitive
controller tends to select interactive routines that shave
milliseconds off of task performance. Unfortunately, this
local optimization may not result in optimal global
performance. Hence, even in tasks that are thought of as
involving higher-level cognition, such as decision-making,
global performance may be suboptimal due to nearsighted,
local optimization of interactive routines.

From the perspective of the soft constraints hypothesis,
computational models of decision-making must encompass
a full accounting of the costs of information exploration and
exploitation (Fu, 2007). Hence, an initial task for the
modeler is to account for the perceptual-motor costs of
skilled performance. As we show in this paper, this initial
task brings to the foreground the interleaving of cognitive,
perceptual, and motor operations that is characteristic of
skilled performance.

We describe an exploratory effort to model the
interleaving of cognitive, perceptual, and motor operations
required for information exploration/exploitation in a table-
based, decision-making task (Lohse & Johnson, 1996). The
constraints of the model/framework are examined at the
level of milliseconds, contrasted against human data, and
the differences are analyzed with respect to the ACT-R
framework (Anderson & Lebiere, 1998).

The Task
The experimental environment used in this research was
designed to study and model how information access
influences the way in which a decision is made –
specifically what information is considered and how it is
integrated given the environmental constraints and
accessibility of information. We used a simple table task
(see Figure 1) in which each of six alternatives (arranged in
rows) had a value on each of six attributes (arrayed in
columns). The value of the alternative was derived by
summing the attribute scores so that the higher the value, the
better the alternative. This environment allowed us to
manipulate the way information was accessed in order to
determine the cognitive and perceptual-motor tradeoffs
involved.

Figure 1: The Table Task environment for decision-making.
The figure shows a subject clicking on the IFF-FREQ

attribute (column) for alternative C (row).

We predicted that performance would vary based on
exploration/exploitation costs that variations in the task
environment imposed on the decision maker. In particular,
we expected different costs to result in differences in the
time to make a decision as well as the amount of
information considered during the trial (i.e., information
exploration). We also predicted that when participants were
transferred to conditions with different environmental
constraints, that the transfer of old strategies or the adoption

of new ones would be influenced by
exploration/exploitation costs of the old strategies applied to
the new task environment. (Gray, 2000; Gray, Veksler, &
Fu, 2004)

Although these general predictions are validated in the
Results section, this analysis is beyond our current modeling
effort. Exploratory modeling of this simple task revealed the
necessity to focus our scope of analyses on the basic motor
components prior to taking the next step into modeling the
higher-level experimental effects.

Human Data

Method
The table task environment consisted of 6 alternatives
arranged as rows and 6 attributes arranged as columns in a
grid. Alternatives were military targets with attributes that
contributed to their overall threat. There were values in the
corresponding grid cells and it was the task of the
participant to select the alternative whose corresponding
attribute values summed to the highest value (see Figure 1).

There were a total of four conditions that varied how the
values in the grid could be accessed. For purposes of this
paper and the models presented, we only cover the “by cell”
condition (CE). In this condition, participants accessed
information one cell at a time by clicking on the grid cell
corresponding to the value of an attribute for a particular
alternative.

Each trial consisted of the participant checking the values
in the grid and selecting the alternative with the highest
overall value. Feedback on the number of correct answers
was provided at the conclusion of the experiment.
Participants completed 30 trials in this manner and for the
CE condition included 18 participants.

Results & Discussion
Our interest lays in modeling the millisecond level
interactive routines of each trial in addition to the changes in
information exploration/exploitation that occurred in
performance within and across trials. The trial duration
analysis below is intended as a benchmark for the
subsequent model’s performance.
Total Trial Duration
Total trial duration averaged 23.77s, StErr = 478.32ms.
However, trial durations across the 30 trials follow a power-
law of learning (Figure 2). It is thus important to note that
trial duration decreased from the first (M = 36.92s; StErr =
3.66s) to the last trial (M = 21.72s; StErr = 1.8s).
Number of Cell Clicks
Participants were presented with a 6x6 grid of cells for a
total of 36 cells that would need to be checked to have
perfect information during a trial. Is there any indication
that participants saved time by not checking every cell?
Although there was some variability in the number of cells
clicked across the trials, participants clicked an average of
35.81 cells. Therefore, participants roughly clicked on each
cell once. The subsequent model therefore also clicks on
each cell once during a trial.

Figure 2: Power law of learning in trial duration

Inter-Cell Click Interval
In addition to trial duration and number of cells clicked, we
assessed how participants were spending their time during
task performance. In particular, we analyzed how long they
spent between cell clicks. We will call this the “inter-cell
click interval”. Given that not all participants clicked the
same number of cells during each trial, the following
analysis only shows data from the first 36 cell clicks. As
will be discussed later, the inter-cell click interval provides
insights into how strategies evolve over time and how we
can modify our models to match human performance. It also
provides insights into the cognitive and perceptual-motor
shortcuts that people take and that a cognitive model needs
to account for. Essentially, these are the millisecond-level
operations that are crucial in many repetitive or well-
practiced tasks.

Figure 3 illustrates how inter-cell click intervals changed
over the course of the whole task. Initially, inter-cell click
intervals averaged ~950ms whereas by the end of the 30
trials, they had decreased to ~550ms. This trend is
analogous to the trend of the overall trial duration we
observed in Figure 2 and is one of the ways we can
determine how the strategy that the participants employed
evolved.

Furthermore, within a trial (see Figure 4), we witness
variability in inter-cell click intervals with respect to cell
click number. The more cells are clicked within a trial, the
shorter the inter-cell click interval becomes. Notice also that
there is a seesaw pattern such that every 7th inter-cell click
interval is longer than the surrounding ones. This is
accounted for by the fact that each 7th click was a row
switch. One explanation for this is that at the end of a row,
participants updated their current highest value and
therefore took longer transitioning to the next alternative.

Within a row, the inter-cell click interval also showed a
slight increase presumably explained by the increase in
cognitive load as participants added more values to their
running total of the alternative’s value. Figure 4 shows
average data across all 30 trials.

Figure 3: Power law of learning in inter-cell click interval

Figure 4: Average human inter-cell click interval within a

trial. Peaks represent transitions between alternatives (rows)

Transitioning Between Rows
Another important consideration for task performance is
encompassed by the soft constraints hypothesis (Gray et al.,
2006). Soft constraints guide the selection of interactive
routines at the millisecond level to minimize performance
costs as measured in terms of time. The utilization of soft
constraints is reflected in apparent strategy shifts as

performers become familiar with the task. Although initially
certain biases may have caused the performer to use one set
of interactive routines, the cost of exploration/exploitation
ultimately shifts performance towards more efficient
strategies.

This shift in strategy is most clearly seen in the transitions
between alternatives (rows). Whereas initially participants
were biased to “read” the values in the rows from left to
right (Figure 5A), after several trials a more efficient
strategy emerged. The new strategy had participants
alternating the direction in which they clicked the cells
based on their final position in a particular row (Figure 5B).
Figure 5C shows that across trials participants increased
their use of strategy B by 10%.

The Model(s)
To model human performance on this task, we used the
ACT-R cognitive architecture (Anderson et al., 2004). ACT-
R is a modularized production system with a subsymbolic
memory module. It has visual and motor modules to embed
it in the task environment. It also has declarative memory
and a procedural module. In addition, it has imaginal and
goal buffers to store its working memory and goal chunks,
respectively. Thus, it serves as a good framework to model
human performance on this simple table task.

Several ACT-R models were developed in order to model
the various components of human speed increases during
this task. The essential structure of all of the models is the
same: each model simply goes through each alternative,
uncovers each cell value, sums the cells and updates its
memory of the highest value after comparing it with the
previous highest value. The differences between the models
primarily lie in how they execute this list of perceptual-
motor and cognitive operations.

At present, we have deliberately avoided implementing
different decision-making strategies and have focused our
modeling effort on getting the interleaving of cognitive,
perceptual, and motor operators right. As discussed below,
we do not know how to account for the obvious adaptations
in interleaving that humans undergo. We view our lack in
this regard as a comment on the state of the art in

Figure 5: Different strategies in uncovering cell values. (A) Reading values left to right (B) Reading values alternating
left-to-right and right-to-left (C) Percent of right-to-left cell click transitions as a function of trial number

interleaving which has not advanced much since the
pioneering EPIC-Soar work of Chong in the late 90’s
(Chong, 1998a, 1998b; Chong & Laird, 1997). One method
that has touched on interleaving of perceptual-motor and
cognitive operators since then is Cognitive Constraint
Modeling (Lewis, Howes, & Vera, 2004). Cognitive
Constraint Modeling provides a description of behavior
derived via constraint satisfaction. However, unlike Chong’s
work, this method is not at all concerned with how human
interleaving strategies adapt through experience.

The absence of a mechanism that interleaves cognitive
operators has led us to build models that do not change over
trials but which bracket human performance (Gray &
Boehm-Davis, 2000; Kieras & Meyer, 2000).
Understanding the differences between these models offers
some insight into how perceptual-motor and cognitive
mechanisms might evolve across trials.

Model 1: Non-Interleaved
This was an “out-of-the-box” model, composed of
sequential productions that can roughly be divided into four
categories. The first set of productions (Figure 6A) started
each trial and switched between alternatives. The second set
of productions (Figure 6B) was the workhorse of the model.
This set of productions initiated the perceptual-motor
operations of moving the mouse and visual attention to the
various cells. It was also responsible for adding the values
in the cells. It did this in a systematic left-to-right fashion
for all alternatives. Thus, this model employed strategy A
from Figure 5. The third set of productions (Figure 6C)
compared a current alternative’s value to the highest value
so far and updated the model’s memory of the highest
alternative seen. The fourth set of productions (Figure 6D)
only fired after each alternative’s value had been computed
and the model was ready to select its answer.

Figure 6: Workflow of the models

The model had declarative knowledge of addition facts
and number relation facts. Thus, whenever it needed to
compare whether a current alternative’s value was greater
than the highest value so far, it would search in its
declarative memory for a relation fact involving those
values.

The model also had a goal buffer that kept track of the
alternative that it was currently scrutinizing, and an imaginal
buffer that kept track of the highest value seen so far. Since
it is beyond the scope of this paper to model human
accuracy on this task, it sufficed for the model to hold the
highest value and alternative in its imaginal buffer at all
times, disallowing for any forgetting errors to occur.

This was the simplest model that encoded the task and for
this reason, we did not expect its performance to match well
with human data. It is termed non-interleaved because the

perceptual-motor and cognitive operations were done
largely sequentially and not interleaved with each other. We
found that although this simple model failed to match
duration times on the majority of trials, it did match
duration times as compared to the first trial of human data
(Figure 8, Model 1: Non-Interleaved).

Model 2: Interleaving Cognitive with Perceptual-
Motor Operations (I-CPM)
Examining the time plot of ACT-R’s various modules over
the course of a single inter-cell click interval (Figure 7), we
noticed that gaps between production firings could be used
to interleave perceptual-motor and cognitive operations. The
interleaving was accomplished by firing productions that
added the value of the last cell to the running total as the
motor module was moving the mouse to the next cell. This
interleaving saved ~100ms during each inter-cell click
interval and decreased total trial duration by about 2.8
seconds from ~34.6s to ~31.8s, matching human duration
times from Trial 2 (Figure 8, Model 2: I-CPM).

Figure 7: Time graph of between cell clicks in ACT-R for

the non-interleaved model.

Model 3: Interleaving Motor Preparation Time (I-
CPM+MP)
Figure 7 also shows that the motor component (moving the
mouse to the cell and then clicking it) comprised 80% of the
time of the entire duration (786ms out of 931ms). What this
means is that just the motor component alone takes more
time than the entire inter-cell click interval in the human
data.

During the course of a single trial, the repetitive sequence
of moving the mouse to a cell and then clicking is done
many times. In the human data, this practiced motor
sequence became increasingly faster as attested by the
decrease in the inter-cell click interval (see Figure 4). We
decided to account for this increase in speed by taking
advantage of ACT-R’s motor module mechanisms.

When a motor command is issued to ACT-R’s motor
module, that command is executed in three phases:
preparation, initiation, and execution. In cases where the
model can tell ahead of time what movement will follow, it
is beneficial to begin “preparing” the next movement before
the current movement is finished executing. Thus, to
account for the learning effects we observe in repeating the
same two motor commands over and over, we allowed the
model to begin preparing the next motor command prior to
the finish of the current command. For example, while the
move-mouse command was executing, the model already

began preparing the mouse-click that would inevitably
follow.

This motor preparation interleaving refinement of the
model drastically decreased inter-cell click interval and,

consequently, trial duration. The improvement decreased
individual trial time by about 7.3 seconds, from ~31.8s to
~24.5s. This is a marked improvement over Models 1 and 2
and brought the model closer to the average human trial
time of ~23.8s (Figure 8, Model 3: I-CPM+MP).

Model 4: Alternating Transitions Between Rows (I-
CPM+MP+R)
In a task in which interactive routines are on the order of
hundreds of milliseconds, it is important to be able to
determine where exactly it was that the model was incurring
a large time cost. We therefore compared the inter-cell click
interval analyses for human and model data. This
comparison revealed that the major difference between
human and model inter-cell click intervals was during the
transitions between alternatives (where each alternative is a
row in Figure 1).

As discussed earlier, participants’ strategies changed over
the course of the task. Initially, they clicked on cells in a left
to right fashion whereas later they alternated the direction
depending on their ending position in a given row. We thus
incorporated this alternating behavior into the model thereby
decreasing the distance the mouse had to move when a new
alternative was encountered. Since move-mouse execution
time in ACT-R is closely related to the distance that the
mouse must move, as per Fitts’ Law (Fitts, 1954;
MacKenzie, 1992), this feature allowed the model to
transition faster between alternatives (compare Figure 5 A
and B).

This refinement in the model decreased total trial duration
time by about 900ms from ~24.5s to ~23.6s (Figure 8,

Model 4: I-CPM+MP+R). Although this was not a large
difference, incorporating this component into the model
makes it more cognitively plausible especially given that we
see human participants exhibiting this shift in strategy.

This final refinement of the model had the best fit to the
asymptote performance in human data. Future work will
include the model learning to choose between the two
strategies.

Conclusion & Future Work
Sometimes one can learn more from a modeling effort when
the model does not fit the data than when it does. In fact, the
lack of fit can tell us a lot about not only the limitation of
the model itself and how to proceed to modify it but also
about the limitation and error of the constraints with which
the model was implemented. In this case, we wanted to
investigate where and how the speedup in performance in
humans occurs and in particular what it was about the “out-
of-the-box” model that prevented it from matching human
times.

Where Does the Time Go?
According to human data, the inter-cell click interval varies
as a function of trial number (Figure 3) and cell click
number within a trial (Figure 4). We can see that the
majority of inter-cell click intervals fall within the 600ms
range. The first trials have longer durations as compared to
the last trials, and the first few cell clicks in a trial take
longer than subsequent cell clicks. However, the “out-of-
the-box” model (Model 1) performs considerably slower in
all cases, an average of around 950ms per inter-cell click
interval.

One way we can speed up the model’s performance is to
interleave the cognitive and perceptual-motor components.

Figure 8: Comparison of Trial Duration Times Between the 4 Models and Human Data. Model 1: Non-Interleaved –

Purely sequential model; Model 2: I-CPM – Interleave cognitive, perceptual, and motor operations; Model 3: I-CPM+MP –
Interleaved motor preparation (MP) time added; Model 4: I-CPM+MP+R – Alternating transitions between rows

This results in at most a speedup of ~100ms per inter-cell
click interval. However, if we look at human data
particularly towards the end of the 30 trials (Figure 3), we
see times of 520-600ms, which is considerably faster than
the model’s motor component alone, as per Figure 7, would
allow.

Another way to speed up the model’s performance is to
interleave the motor preparation times with execution times.
Since ACT-R does not do production compilation across
perceptual and motor commands, there does not seem to be
any other way of incurring this speedup in performance
(Taatgen & Lee, 2003). The speedup afforded by this
preparation interleaving results in a decrease of ~200ms per
inter-cell click interval.

As per the soft-constraints hypothesis, a further
refinement of the model altered how transitions between
rows occurred. This resulted in an additional savings of
~30ms per inter-cell click interval.

Taken together, this modeling effort demonstrates the
importance of millisecond-level considerations operating
under even the simplest of tasks. The current model was
intended to address the most perceptually motor intensive
condition of the study. As such, it has led us to discover the
crucial nature of interleaving and soft-constraints in
attaining skilled performance.

The table task environment is a rich test bed for exploring
how interactive routines in an information
exploration/exploitation task evolve to produce skilled
performance. Future modeling work of this task will explore
how the different experimental conditions affect this
evolution of interactive routines, and how these interactive
routines influence performance in the decision-making task.

Acknowledgements
Thanks to Hansjörg Neth and Christopher W. Myers for
their invaluable contributions to this project. This work
would not have been possible if not for the many useful
discussions with Vladislav D. Veksler. The writing of this
chapter was supported by a grant from the Air Force Office
of Scientific Research AFOSR #FA9550-06-1-0074, Dr.
Jerome Busemeyer, Program Officer.

References
Anderson, J. R., Bothell, D., Byrne, M. D., Douglas, S.,

Lebiere, C., & Quin, Y. (2004). An integrated theory of
the mind. Psychological Review, 111(4), 1036-1060.

Anderson, J. R., & Lebiere, C. (Eds.). (1998). Atomic
components of thought. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Chong, R. S. (1998a). Modeling dual-task performance
improvements with EPIC-Soar, The Twentieth Annual
Conference of the Cognitive Science Society (pp. 1209).
Hillsdale, NJ: Lawrence Erlbaum Associates.

Chong, R. S. (1998b). Modeling single-task performance
improvement using EPIC-Soar, Ninth Midwest Artificial

Intelligence and Cognitive Science Conference (pp. 10–
16). Menlo Park, CA: AAAI Press.

Chong, R. S., & Laird, J. E. (1997). Identifying dual-task
executive process knowledge using EPIC-Soar. In M. G.
Shafto & P. Langley (Eds.), Proceedings of the
Nineteenth Annual Conference of the Cognitive Science
Society (pp. 107–112). Palo Alto, CA: Lawrence
Erlbaum Associates.

Fitts, P. M. (1954). The Information Capacity of the Human
Motor System in Controlling the Amplitude of
Movement. Journal of Experimental Psychology, 47(6),
381–391.

Fu, W.-T. (2007). A rational–ecological approach to the
exploration/exploitation trade-offs: Bounded rationality
and suboptimal performance. In W. D. Gray (Ed.),
Integrated models of cognitive systems (pp. 165-179).
New York: Oxford University Press.

Gray, W. D. (2000). The nature and processing of errors in
interactive behavior. Cognitive Science, 24(2), 205-248.

Gray, W. D., & Boehm-Davis, D. A. (2000). Milliseconds
Matter: An introduction to microstrategies and to their
use in describing and predicting interactive behavior.
Journal of Experimental Psychology: Applied, 6(4),
322–335.

Gray, W. D., Sims, C. R., Fu, W.-T., & Schoelles, M. J.
(2006). The soft constraints hypothesis: A rational
analysis approach to resource allocation for interactive
behavior. Psychological Review, 113(3), 461-482.

Gray, W. D., Veksler, V. D., & Fu, W. T. (2004). Probing
the Paradox of the Active User: Asymmetrical Transfer
May Produce Stable, Suboptimal Performance. Paper
presented at the Twenty-Sixth Annual Meeting of the
Cognitive Science Society.

Kieras, D. E., & Meyer, D. E. (2000). The role of cognitive
task analysis in the application of predictive models of
human performance. In J. M. Schraagen, S. F. Chipman
& V. L. Shalin (Eds.), Cognitive task analysis (pp. 237–
260). Mahwah, NJ: Lawrence Erlbaum Associates.

Lewis, R.L., Howes, A., & Vera, A. (2004). A constraint-
based approach to understanding the composition of skill.
International Conference on Cognitive Modeling,
Pittsburgh, 2004.

Lohse, G. L., & Johnson, E. J. (1996). A comparison of two
process tracing methods for choice tasks. Organizational
Behavior and Human Decision Processes, 68(1), 28-43.

MacKenzie, I. S. (1992). Fitts' law as a research and design
tool in human-computer interaction. Human-Computer
Interaction, 7(1), 91–139.

Taatgen, N.A. & Lee, F.J. (2003). Production Compilation:
A simple mechanism to model Complex Skill
Acquisition. Human Factors, 45(1), 61-76.

The Costs of Multitasking in Threaded Cognition

Jelmer Borst (jpborst@ai.rug.nl)
1,2,3

Niels Taatgen (taatgen@cmu.edu)
1,2

1
Department of Psychology, Carnegie Mellon University, USA

2
Artificial Intelligence, University of Groningen, The Netherlands

3
School of Behavioral and Cognitive Neurosciences, University of Groningen, The Netherlands

Abstract

Most multitasking models make use of executive processes to

assign resources to tasks (Kieras et al., 2000). An alternative

is to have no executive, but constrain individual processes so

that they share resources in a plausible way. Salvucci and

Taatgen (under revision) in their theory of threaded cognition

have shown how peripheral resources and declarative memory

are shared between processes without an executive. In this

paper we will extend this work by showing how two tasks

share a resource to store the problem representation in a dual-

task paradigm where either task sometimes needs a problem

representation and sometimes not. Threaded cognition

predicts extra interference when both tasks need a problem

representation, which is what we found in the experiment.

Introduction

Human beings are amazingly adept at performing multiple

tasks concurrently, and at combining previously unrelated

tasks. This stands in sharp contrast to the current situation in

cognitive modeling, where most models of multitasking

make use of a so-called Customized Executive (Kieras et al.,

2000). This is an, often complicated, control process

specialized for the tasks at hand. It determines how the tasks

will be interleaved, and at which point one of the tasks takes

precedence. A consequence of this is that for every two

tasks a different control structure is required, which, in turn,

implies that we would have to learn a new control structure

for every new combination of tasks. A more plausible

solution would be to have a General Executive that could

interleave any two tasks (Kieras et al., 2000; Salvucci,

2005). There have been several proposals for such a General

Executive in cognitive architectures (e.g., Kieras et al., 2000

(EPIC); Salvucci, 2005 (ACT-R)). However, these

proposals have not been equally successful in accounting for

multitasking data as customized executive approaches.

 Yet another possibility is to have no executive at all

(e.g., Liu, Feyen, & Tsimhoni, 2006), which is the

underlying idea of the new multitasking theory ‘Threaded

Cognition’ of Salvucci and Taatgen (under revision). The

essence of threaded cognition is that it has no central

executive, but instead makes sure individual tasks in a

multitasking situation interleave without top-down control.

This interleaving of individual tasks sometimes leads to

additional costs. Salvucci and Taatgen have already shown

how declarative memory can be a contended resource, and

that competition for this resource can explain differences

between novices and experts on a task. In the current paper

we will show evidence for a second shared central resource:

the problem representation. We will use a dual-task situation

with two relatively complex tasks: driving and operating a

navigation device. The experimental manipulation is to have

two variations of each of the two tasks, one that does require

a problem representation, and one that does not.

First, we will outline threaded cognition, and show what

kind of multitasking costs the theory predicts. Second, we

will test in an experiment whether this prediction is correct,

and finally compare the results of the experiment to a model

designed with threaded cognition.

Threaded Cognition

Threaded cognition posits that each task (in a multitasking
context) is represented by a cognitive thread (Salvucci &
Taatgen, under revision). Each of these threads has its own
control structure: there is no central executive; threads are
independent and can be run in isolation. Threaded cognition
can therefore account for the flexible way humans combine
previously unrelated tasks, and for the fact that many tasks
can be learned in isolation first and performed together later.

All threads are processed together on a single processor,
which can only execute one rule at a time, and will therefore
present a bottleneck (this in contrast to the approach of
Kieras et al., 2000). At any given time, production rules of
all threads can be selected, when multiple rules (of different
threads) match, the rule belonging to the thread that has
least recently been processed will be executed. This makes
sure none of the threads will starve as long as it has
matching production rules.

While the central processor presents a first bottleneck, it
is not the only one. The threads have to share resources like
memory and vision, which creates additional interference.
For instance, if two threads need to retrieve a fact from
declarative memory, the one that comes first can request
retrieval, and the second thread will have to wait. A second
consequence of resource sharing is that threads have to be
polite, in that they should not ‘steal’ resources from another
thread, as this could result in an infinite loop.

Costs of multitasking

As explained above, possible bottlenecks in the model are

the central processor and resource sharing. In the current

paper we investigate interference of sharing the problem

representation resource. If a thread has to keep a problem

state in mind, for instance a partial solution to a problem,

and another thread has to keep track of its own problem

state, both threads will have to restructure their problem

state every time they take control (assuming only one

problem state can be maintained at a time). Thus, threaded

cognition predicts additional interference in case two

threads both have to keep track of their own problem state.

Additional in the sense that the problem representation has

to be restored on every task switch, in contrast to the use of

the visual or memory resource where threads only have to

wait sometimes, but can carry on afterwards.

The current paper tests this prediction by comparing two

tasks in two conditions, an easy condition in which no

problem state is necessary, and a hard condition in which it

is. Thus, suppose performance is 100% if both tasks are

easy, and 90% when one of the two tasks is hard (because of

perceptual / motor / memory resource sharing), threaded

cognition predicts a task performance lower than 80% in the

condition when both tasks are hard.

Threaded Cognition & ACT-R

Because threaded cognition strives to be an “integrated”
theory, it is implemented in the cognitive architecture ACT-
R (Anderson et al., 2004). ACT-R is a cognitive architecture
consisting of specialized modules functioning around a
central production rule system. This production system
works on a single goal at a time, for which it sequentially
executes production rules. In order to achieve multitasking,
a control structure is needed that switches between the
multiple goals at the appropriate moments, essentially
requiring a customized executive for each combination of
tasks.

A possible solution for this problem could be, as stated

above, threaded cognition. This is implemented in ACT-R

in the following way. Instead of only one goal, ACT-R is

now allowed to have multiple goals. Each goal represents a

thread, and will have a number of dependent production

rules. However, as in standard ACT-R, only one rule can

fire at any given time. If production rules related to different

goals match at the same time, threaded cognition will select

the rule belonging to the least recently processed goal.

In ACT-R, the problem representation has to be stored in

the imaginal buffer, which has to be shared by multiple

tasks. In combination with threaded cognition this clearly

predicts strong interference if two tasks have to keep track

of a problem represenation.

The Experiment

To test our hypothesis we modified the discrete driving task

of Salvucci, Taatgen and Kushleyeva (2006). This is a task

in which participants have to steer a car down a road on the

left side of the screen, while entering information into a

navigation device on the right. As explained above, for our

current purposes we needed two tasks, both with a hard

condition in which participants have to keep track of a

problem state, and an easy condition in which this is not the

case. To this end we modified both parts of the discrete

driving task. We will describe both tasks in detail below.

Driving

In the driving part of the experiment the participants’ main

task is to keep the car in the middle of the road. Every few

moments (0.5, 0.75, or 1.0 seconds, with equal probability)

the car is perturbed 10 pixels to the right or to the left. It can

be steered back to the middle of the road by pressing ‘a’ or

‘d’ (left or right, respectively), which also resets the

perturbation timer. When the car is in the middle of the

road, it will move to the left or to the right with equal

probability. When it is already on one of the sides, it will

move in 2/3 of the cases further to that side.

Every 15 seconds the car reaches an intersection, where

it can either go left, straight, or right (keys ‘q’, ‘w’, ‘e’). In

the easy condition, participants are shown where to go by an

arrow above the intersection, as in Figure 1. They only have

to press the corresponding key on the keyboard, and do not

have to keep track of past or upcoming intersections. In the

hard condition, four arrows are shown at the first

intersection of a set of four, and none on the other three.

This means that participants have to (1) remember where to

go on a series of three intersections, and (2) keep track of

how many intersections they have already passed in the

current set. The four arrows are shown for a maximum of 3

seconds.

Navigation

Navigating is done using the mouse, and while it has to be

performed concurrently with steering the car, participants

use their left hand to steer the car with the keyboard and use

their right hand for navigation with the mouse.

The navigation task starts with an initial screen with five

buttons: street number, street name, city, state, and done.

These buttons are used to choose the category to be entered,

but as only one of them is active (and highlighted) at a time,

this part of the task is trivial. When one of the buttons is

clicked a keyboard appears, as in Figure 2 (in case of street

name, city, or state the keyboard is completely alphabetic).

Figure 2 shows an example of the easy task. In this case

the to-be-entered character is present in the display, the only

thing a participant has to do is to click the corresponding

key on the keyboard. As soon as the click is registered a

new stimulus appears; this continues until the whole

number/name is entered (the participant has no access to the

full name, and can therefore not plan ahead). After all Figure 1. Example of an ‘easy’ intersection.

characters of a name have been entered ‘OK’ is shown in

the input field, when the participant clicks the OK-button

the task returns to the initial display and the next category is

highlighted. When all four parts of the address have been

entered the Done-button is highlighted, when that is clicked

the display disappears for 10 seconds, after which a new

display appears. When the car reaches an intersection, the

buttons of the navigation device become inactive, to become

active again as soon as the participant steered.

In the hard condition a whole number/name is shown in

the input field at once, however, it disappears as soon as the

participant starts typing. Also, no feedback is offered to the

participant as to what they have entered; only a ‘click’ can

be heard every time a button is clicked. This means that the

participant has to keep in mind what word they are typing

and which character of the word has to be entered next.

In both conditions the numbers were three digits long,

the street names six letters, the city names contained nine

letters and the states were the normal two-letter

abbreviations. In the hard condition, real street / city / state

combinations of well-known cities were used. In the easy

condition the characters of these names were scrambled to

prevent participants from guessing the word.

Eye-tracking

To investigate which of the two tasks the participants were

focused on at a particular moment, we used an Eyelink II

head-mounted eye-tracker (SR Research) to record eye

movements.

Participants

27 people agreed to participate in the experiment for

monetary compensation. As one of them left halfway

through the experiment because of a fierce headache, there

are 26 complete datasets (11 female, age range 18-34, mean

age 23.4). All of the participants had normal or corrected-to-

normal visual acuity. Informed consent was obtained before

testing. Due to technical difficulties the eye-tracking data of

6 participants could not be analyzed.

Experimental set-up

The experiment started with five practice blocks: easy

driving: 2 blocks of 4 intersections; hard driving 2x4

intersections; easy navigation: 2 complete addresses; hard

navigation: 2 addresses; combination: one set of each

condition combined: 4 sets of 4 intersections and a complete

address. This might sound a bit overdone as the single tasks

are quite easy, but as the response of many participants

indicated at the combination practice (“this is impossible!”),

it was necessary.

After the practice block the participants were asked to do

the single tasks in isolation, to measure their base level

performance (3 sets of 4 intersections in the two driving

conditions, 3 addresses in the two navigation conditions).

The main part of the experiment existed of two blocks of 12

4-intersection sets and addresses each, thus 24 sets in total.

At the end of the experiment the single tasks were once

again administered, to control for learning effects. Between

the different blocks participants could take a break, which

they usually only did halfway the main phase. The complete

experiment lasted approximately 1.5 hours.

The Model

To model this task we used threaded cognition and ACT-R.

The experiment consists of two tasks that can be performed

in isolation: driving and navigation. Thus the model will

have two threads, which we describe in turn below.

Driving thread

As long as the driving thread is the only active thread, it can

constantly attend the road, and act promptly to every

perturbation. However, most of the time a navigation thread

is also present which needs to attend the navigation device.

To know when it has to focus attention back on the road the

driving thread needs a sense of time, which we implemented

using the previously validated temporal module (Taatgen,

Van Rijn, & Anderson, in press).

 As long as the car is not on the center of the road, the

driving thread will use the visual resource. It will give it up

as soon as the car is on the middle of the road. As soon as it

notices that the visual module is used by another thread and

attends something else than the road (in this case the

navigation device), the driving thread will start the timer of

the temporal module. While the navigation thread is busy

entering information into the navigation device, the driving

thread tries to decide whether it is time to look at the road

by retrieving past timing experiences, stored at the current

timer value. If it retrieves an experience that says it is time

to drive again, the driving thread attends the road, and steers

the car back to the middle. It can also retrieve an experience

saying it is still safe to continue navigation, in which case

that is exactly what it does. If it fails to retrieve a past

experience it will continue navigating half of the time, and

go back to driving in the other half of the cases.

Where do these timing experiences come from? Every

time the driving thread starts steering the car, it first stores

whether this was already necessary or not (i.e., whether the

car was far out of the middle of the road, or whether it was

still driving safely in the middle) together with the timer

value on which it looked back to the road; this forms a

Figure 2. Navigation display in the easy variant.

timing experience. It should be noted that while the driving

thread is combined with a navigation thread in this

particular example, this is by no means necessary. Without

making any changes to the driving thread, it can be

combined with any other behavior performed while driving,

like using a cell phone.

The driving thread steers the car back to the middle of

the road by looking whether the car is to the left or to the

right of the center, and pressing the corresponding key.

When the car stops at an intersection, the model tries to find

an arrow. If there is only one arrow, it presses the

corresponding key. If there are four arrows, the model starts

memorizing them by attending them in left to right order,

until the arrows disappear after 3 seconds. It also changes its

problem state to represent where it is in the current set of

intersections. If it now arrives on an intersection with no

arrows it retrieves the arrow corresponding to the current

problem state from memory, and steers into that direction.

Every time the driving threads steers the car back to the

middle of the road it will also retrieve the arrow for the

upcoming intersection, and, if necessary the problem state.

Navigation thread

Navigation starts with selecting a category: finding an active
button and clicking it. If the task is easy, the model now
perceives the stimulus and clicks the corresponding key.
However, if the task is hard the model puts the to-be-entered
information in its problem state and starts typing the first
character. As soon as it clicks a button it starts searching for
the next character of the word, and so on until the whole
word has been entered.

It should be noted that both tasks are polite in the sense

that they will only take over control when all resources are

free, except for the problem state. There is one exception to

this general rule: the driving task can request visual

attention back immediately. This mimics real driving in the

sense that when someone is paying attention for some time

to entering information in a navigation device, at some point

they will look back to check the state of the road,

independent of whether they had finished entering all the

information.

Whenever the model switches to the navigation task and

notes that it is in a hard condition and does not have the

right problem state, it will first request this from declarative

memory, effectively pushing the problem state of the

driving thread into declarative memory. Similarly, whenever

the model switches to driving in the hard condition, it will

restore the driving problem state.

Results

A visual inspection of the data showed that all learning took

place before the main phase of the experiment: there was no

noticeable difference between the base level measurements

before and after the experiment. Therefore the rest of this

paper will only be concerned with the main two blocks of

the experiment. All reported F- and p-values are from

ANOVAs, all error bars depict standard errors.

Task durations

The average duration of periods spent on one of the two

subtasks can be seen in Figure 3 (driving sequence) and

Figure 4 (navigation sequence). These durations are

approximations, calculated in the following manner: the

length of a driving sequence is defined as the time between

two navigation actions (button clicks), with at least one

driving action in between. Similarly, the length of a

navigation period is the time between two driving actions

with a navigation action in between.

Driving Figure 3 shows that the length of driving periods

decreases when the navigation task becomes hard, but only

when driving is easy. When navigation is hard, people know

what they are going to type next (“philadel…”), which

means that they do not have to find the stimulus first, but

can start right away with entering navigation information.

Figure 3. Duration of driving periods. Figure 4. Duration of navigation periods.

Because of the fact that the length of a driving sequence is

measured as the time between two navigation actions with a

driving action in between, the length of the driving sequence

decreases when navigation becomes hard. However, this

effect disappears when both navigation and driving are hard

– it seems as if people have to reconstruct their problem

state before they can start navigating, which increases the

length of the driving periods. Overall can be seen that the

length of driving periods increases with driving difficulty.

An ANOVA showed indeed a main effect of driving

(F(1,25) = 65.414, p < .001) and an interaction effect of

driving x navigation (F(1,25) = 13.906, p < .001).

Navigation In Figure 4 can be seen that the duration of the

navigation periods increases with task difficulty of

navigation (F(1,25) = 16.755, p < .001). Driving has no

significant effect on the length of the navigation periods,

neither is there an interaction.

Model The model shows the same pattern as the

experimental data: in the driving task (Figure 3, right panel)

there is a significant interaction, while in the navigation task

(Figure 4, right panel) there is no significant interaction.

This is what threaded cognition predicted: there will be

interference as soon as people have to keep track of a

problem state in both tasks.

Task durations measured with eye-tracking

Figure 5 again shows the duration of periods spent on the

driving task, but now as measured by the eye-tracker. The

length of a period is now determined by where a participant

was looking: as long as participants were looking at the

right side of the screen it was recorded as navigation, as

long as they were looking at the left side as driving. These

measurements are arguably more accurate than the ones

before: periods without any key-presses or mouse clicks are

taken into account as well. This explains why the average

length of the periods is about a second shorter than what we

saw earlier.

Driving Interestingly, instead of decreasing, the length of

driving periods now increases with navigation difficulty

(F(1,19) = 9.1367, p < .01). This can be explained by the

fact that finding and reading the stimulus in the easy

condition no longer contributes to the driving periods. The

reason for the increase is probably that participants tried to

finish parts of a word (“phi…”), before going back to

driving, an effect that will not occur in the easy driving

condition and will make for longer navigation periods. The

longer participants spend on navigation, the longer they

need to steer the car back to the middle of the road. There is

also a significant effect of driving difficulty (F(1,19) =

14.455, p < .01). Besides these two main effects, we found

an interaction effect of driving x navigation as well (F(1,19)

= 14.931, p < .01). This could be explained by the fact that

people have to reconstruct their problem state before

entering navigation information, and this preparation is done

while looking at the driving display, as people can still

control the car in that case.

Navigation No significant effects were observed in the

duration of the periods spent on navigation (no graph is

shown).

Model The model showed the same patterns, it only

predicted the duration of the driving periods to be about 250

ms shorter (Figure 5, right panel). On the other hand, the

duration of the navigation periods is predicted correctly

(2.25 sec), without effects of condition.

Deviation

Due to space limitations we cannot show graphs of the

average deviation of the middle of the road, but will

describe it shortly. Deviation increases with task difficulty,

this is both significant for driving, F(1,25) = 21.010, p <

.001 and for navigation, F(1,25) = 18.967, p < .001. No

interaction effect was found. The values range between 10

and 12 pixels.

However, the model shows an interaction effect. There

is too much deviation in the easy driving/easy navigation

condition. The duration of the navigation periods in the

easy/easy condition is overestimated as well (Figure 4), and

these two phenomena are connected. Because the model

spends a little too much time in the easy/easy condition on

navigation, it will also deviate further from the middle of

the road. Furthermore, the model performed better than the

participants, with deviation ranging between 6 and 8 pixels.

However, about one third of our participants actually

performed on that level, while some others were far worse

than average. The model must be seen as a ‘perfect’

participant, in that it always manages to steer the car back to

the middle of the road in exactly the right number of key-

presses.

Figure 5. Duration of eye-tracking driving periods.

Number of clicks / key-presses per period

In Figure 7 and Figure 8 is respectively shown how many
times participants pressed a key during a driving period, and
how many times they clicked a button during a navigation
period. There is only one significant effect on the number of
key-presses, which is driving (F(1,25) = 13.475, p < .01).
The opposite is true for the number of clicks during a
navigation period, this gives a highly significant effect of
navigation (F(1,25) = 229.54, p < .001), and only a marginal
effect of driving (F(1,25) = 6.070, p = .02).

The model shows the same effects, as can be seen in the

right panels of both figures.

Discussion & Conclusion

As explained above, threaded cognition predicts an extra

drop in performance when it is necessary to keep track of a

problem state for two tasks. The results of the experiment

clearly showed that this is in fact the case: we found a

significant interaction effect in the length of driving periods.

By modeling this task in ACT-R with threaded cognition,

we showed exactly why these costs are connected to the

driving task: the preparation of a problem state for both the

driving and the navigation task is done while driving, and

the need to reconstruct a problem state therefore increases

the duration of driving periods. Eye-tracking measurements

confirmed those results.

Threaded cognition is one of the first theories of

multitasking without a control structure to interleave the

subtasks. Salvucci & Taatgen (under revision) showed the

value of this theory in a multitude of task combinations,

they validated the theory on tasks ranging from simple

laboratory tasks to real-world tasks, and showed the effects

of sharing perceptual and memory. In the current paper we

investigated whether threaded cognition can account for the

costs of sharing another internal resource: the problem state.

As we have made clear, threaded cognition predicted

correctly in which conditions we had to expect extra costs of

sharing a problem state.

Acknowledgments

This work was supported by Office of Naval Research grant
N00014-06-1-005. We would like to thank Dario Salvucci
for comments on an early version of the experiment.

References

Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S.,

Lebiere, C., & Qin, Y. (2004). An integrated theory of

the mind. Psychological Review, 111(4), 1036-1060.

Kieras, D.E., Meyer, D.E., Ballas, J.A., & Lauber, E.J.

(2000). Modern computational perspectives on

executive mental processes and cognitive control:

Where to from here? In S. Monsell & J. Driver (Eds.),

Control of cognitive processes (pp. 681-712).

Cambridge, MA: MIT Press.

Liu, Y., Feyen, R., & Tsimhoni, O. (2006). Queueing

network-model human processor (qn-mhp): A

computational architecture for multitask performance in

human-machine systems. ACM Transactions on

Computer-Human Interaction (TOCHI), 13(1), 37-70.

Salvucci, D.D. (2005). A multitasking general executive for

compound continuous tasks. Cognitive Science, 29,

457-492.

Salvucci, D.D., & Taatgen, N.A. (under revision). Threaded

cognition: An integrated theory of concurrent

multitasking. Psychological Review.

Salvucci, D.D., Taatgen, N.A., & Kushleyeva, Y. (2006).

Learning when to switch tasks in a dynamic

multitasking environment. In D. Fum, F. D. Missier &

A. Stocco (Eds.), Proceedings of the seventh

international conference on cognitive modeling (pp.

268-273). Trieste, Italy: Edizioni Goliardiche.

Taatgen, N.A., Van Rijn, D.H., & Anderson, J.R. (in press).

An integrated theory of prospective time interval

estimation: The role of cognition, attention and

learning. Psychological Review.

Figure 6. Mean number of key-presses per driving period. Figure 7. Mean number of clicks per navigation period.

Goal and Spatial Memory Following Interruption

Michel E. Brudzinski (mbrudzin@gmu.edu)
Raj M. Ratwani (rratwani@gmu.edu)

George Mason University, Fairfax, VA 22031 USA

J. Gregory Trafton (trafton@itd.nrl.navy.mil)
Naval Research Laboratory

Washington, DC 20375 USA

Abstract
The process of resuming an interrupted task has been
understood by task level goals (Altmann & Trafton, 2002).
Recent empirical evidence has implicated spatial memory as a
component of the resumption process suggesting that spatial
level representations are important as well. We collected eye
track data in an interruptions paradigm to examine the
perceptual processes involved in resumption. Four models
were created to illustrate the importance of the role of spatial
representations and further, to demonstrate how the task level
and spatial representations can be integrated.

Keywords: Goals; Interruptions; Cognitive Modeling

Introduction
Most computer-based tasks are described in terms of the
tasks and goals that are needed to perform them. There are,
in fact, many task analytic and computational methods for
describing tasks and goals for computer based tasks (e.g.,
various GOMS methods). Another aspect of computer-
related tasks that has typically received less attention is the
spatial location of widgets within the task. In this paper, we
explore the relationship between pure goal-based
representations with spatially-motivated representations
within an interruption paradigm.

Altmann and Trafton (2002) described the process of
resuming a suspended goal. They proposed the activation-
based Memory for Goals theory, which includes three
constraints: (1) the interference level, (2) the strengthening
constraint, (3) and the priming constraint. The constraints
determine what goal will be most active in memory at any
given time. The Memory for Goals theory proposes that the
question “What was I doing” is cognitively equivalent to the
retrieval of the highest activation goal memory. In general,
the memory for goals theory focuses on the memory
representations and processes that occur while resuming a
goal and leaves unspecified any influence of spatial
cognition.

Later research suggested that memory for goals was
associated with at least a general memory for spatial
location (Ratwani & Trafton, 2006) in simple computer-
based tasks. Determining spatially where in the primary
task one was prior to being interrupted was an important
component when resuming an interrupting task.

Based on the memory for goals theory and additional
empirical data, Ratwani and Trafton suggested several
different strategies for how people resume an interrupted

task: (1) restart the (sub-)task, (2) use an environmental cue,
(3) and use a spatial memory for the location.

Ratwani and Trafton’s results showed that participants
resumed their task by perceptually retracing their steps they
looked at what they had already accomplished, and then
continued. The task that was used (described below)
allowed Ratwani and Trafton to separate pure perceptual
retracing and a spatial component. They found that spatial
memory (specifically memory for spatial location) was
being used as part of the resumption process after an
interruption. The data showed that spatial memory was an
important part of resuming a computer-based task after an
interruption, but it did not specify the exact mechanisms or
representations of the spatial memory or the relationship
between spatial and task-related goal memory.

The different strategies for resuming an interrupted task
rely on different aspects of the environment and memory.
One obvious strategy is to retrace one’s steps from the
beginning of the task until the point where one was
interrupted is reached. This is essentially a restart strategy
and there is some direct evidence for restarting a suspended
goal in the interruptions literature (Miller, 2002). This is an
example of a more general strategy of using the structure of
the task to determine where to resume the task.

A second possibility for resuming a task is that
participants may use some type of environmental cue to
resume the primary task (Altmann & Trafton, 2002; Trafton,
Altmann, & Brock, 2005). In the task used in the
experiment described here, there was an environmental cue
(described below) that provided accurate information about
what actions had been performed prior to the interruption,
but less accurate information about the spatial location
where the interruption had occurred.

Finally, memory for spatial location might be used to
return to where one was in a task prior to being interrupted.
Recent research in the visual search domain has shown that
memory representations for the location of objects can be
maintained over a delay (Lleras, Rensink & Enns, 2005).
Further, the ability to remember approximate spatial
information has been observed in computer based tasks
(Ehret, 2002). Memory for spatial location may be
represented at two levels: a fine grained level whereby one
may be able to recall the precise location of an object as
well as a more general category level whereby one can
identify the region which contained an object (Huttenlocher,
Hedges, & Duncan, 1991). While Ratwani and Trafton
(2006) suggested that a memory for approximate spatial

mailto:mbrudzin@gmu.edu

location was used to resume after an interruption, the
specific process of this mechanism has not been elaborated.
The spatial memory strategy requires that there is an
association between the memory of what the interrupted
goal was, and spatially where the interruption occurred

The ACT-R cognitive architecture has been used to model
experiments in a number of psychological domains. ACT-R
6.0 is the latest software implementation of the ACT family
of theories of cognition (Anderson & Lebiere, 1998;
Anderson et al. 2004). The ACT-R theory distinguishes
between declarative knowledge, which people are aware of
and can describe to others, and procedural knowledge,
which may be unconscious but can be demonstrated in
behavior. Declarative knowledge is represented in the
architecture as chunks with pairs of slot and values, while
procedural knowledge is represented by production rules
with sets of conditions and actions. ACT-R’s perceptual-
motor modules allow models to interact with computer
interfaces.

A goal module represents current cognitive intentions and
helps to organize and direct behavior towards the fulfillment
of those intentions. Cognition unfolds within ACT-R as the
serial firing of production rules that manipulate or make
requests for chunks from modules through dedicated
buffers. ACT-R allows researchers to model cognitive
processes and collect quantitative measures that can be
compared directly with quantitative measures of human
performance.

In order to explore the role of spatial memory after an
interruption and to explore the relationship between spatial
and task-related memory, we improved the methodology
used by Ratwani and Trafton (2006). We also built ACT-R
models of the three strategies that could be used to resume
an interrupted task (restart, environmental cue, and spatial
memory). We expect that the experiment itself will replicate
Ratwani and Trafton’s earlier finding that spatial memory is
implicated in the resumption task, and we expect the model
that uses spatial memory to show the best fit to the data.
The models will also allow us to explore which of several
cognitively plausible spatial representations are most likely
being used in computer-based tasks.

Experimental Method

Participants
Nineteen George Mason University undergraduate students
participated for course credit.

Materials
The primary task materials consisted of columns of
numbers; each column contained 11 three digit numbers
ranging from 100-999. Fifteen unique templates containing
slots specifying which numbers were to be even or odd and
the location of these numbers were used to generate the
columns of numbers, each template had at least five odd
numbers. Based on the templates, two sets of 15 columns of
numbers were created for presentation. The specific

numbers that filled the slots in the template were randomly
generated for each participant. Each number subtended .6º
of visual angle, each cell subtended 2.9º and each number
was separated by 2.3º of visual angle.

The interrupting task was a list of 10 addition problems
each containing four single digit addends ranging from 1-9.
The addends were randomly generated for each interruption.

Figure 1. The experiment primary task.

Design
A within subjects design was used; one set of 15 columns
served as interruption trials and one set as control trials
resulting in a total of 30 trials per participant. This allowed
for matched trials between the two conditions. Presentation
order of the all the trials was randomized. Each interruption
trial contained a single interruption which occurred equally
among three positions in the task (early, middle, and late).

Procedure
Participants were seated 50 cm from the monitor. Stimuli
were presented using E-Prime (Schneider, Eschman, &
Zuccolotto, 2002). The primary task required participants to
type the odd numbers from the primary column into a
separate copy column (see Figure 1). Because only the odd
numbers from the primary column were typed into the copy
column the vertical position of the odd numbers in the copy
column was generally different from their corresponding
position in the primary column. The participants were
instructed to start at the top of primary column and to work
their way down to the bottom. Upon completion of the
column the participant pressed the space bar in order to
move on the next trial.
 On the interruption trials the interrupting task immediately
appeared and fully occluded the primary task screen. During
the 15 second interruption participants were instructed to
answer as many addition problems as possible. Upon
resumption of the primary task, the copy column of previous
responses was still displayed. The location of the last

number entered in the copy column could serve as a cue as
to where to resume in the primary column. However, as
discussed above, because the vertical positions of the odd
numbers in the primary and copy column may have been
different, this position in the primary column may not be
where the interruption occurred.

Measures
Based on the reaction time data we calculated an inter-
action interval (IAI) for control trials and a resumption lag
for interruption trials (Altmann & Trafton 2004). The IAI
was the average amount of time between actions (i.e. the
average amount of time in between entering odd numbers).
The resumption lag was the duration of time from the
completion of the interrupting task to the first action back
on the primary task (e.g. entering an odd number). Eye track
were collected using a Tobii 1750 operating at 60hz. Each
of the cells in the original and copy columns was defined as
an area of interest. A fixation was defined as five samples.

Model Descriptions
In order to examine the process of resuming a primary task
following a secondary task interruption, we constructed a
series of models using the ACT-R 6.0 cognitive architecture
(Anderson & Lebiere, 1998; Anderson et al. 2004). These
models systematically explored the three high-level
strategies identified by Ratwani and Trafton (2006): (1)
restarting the task, (2) using the spatial location of an
environmental cue, (3) and using a spatial memory for the
location of the interruption. Four models were selected as
implementations of the high-level strategies. One model
each represented the restart and lateral strategies, and two
models represented spatial memory strategies, one for
general location and one for specific location.

Although the models and the experimental participants
did not use the exact same task environment, they shared all
the critical features. The model task environment was
written in LISP. The pixel coordinates of the stimuli in the
models’ visual environment (the visicon in ACT-R)
matched the coordinates of the stimuli in the experimental
task environment. The 15 patterns of even and odd three-
digit numbers, each used once in a control trial, and once in
an interrupted trial, were the same. The order of trial
presentation, and the exact even and odd numbers used,
were randomized, as in the experiment.

Commonalities Between Models
The productions that modeled performance in the primary
and secondary task were identical in all of the models.
Additionally, approximately two thirds of the resumption
task productions were common to all of the models. Table 1
lists the steps that occur between the end of the interruption
and the end of the resumption. The task resumption process
was broken into three parts for all models: (1) cue use, (2)
search, and (3) primary task resumption.

Table 1: Breakdown of Overall Resumption Process
Step Breakdown

Component
End of Interruption
1. Determine task
2. Find cue
3. Retrieve goal
4. Determine resumption point

Cue Use

5. Find resumption point
6. Find interruption point

Search

7. Find next primary task
8. Next primary task action

Primary Resumption

End of Resumption

The cue use portion of the resumption breakdown (Table
1, steps 1-4) incorporated the use of the environmental
context to determine what task to resume and where to
resume that task. In the experiment, the sudden onset of the
interruption caused participants to suspend the goal of
completing the primary task, entering odd numbers, and
begin the secondary task, simple addition problems. Model
subjects determined that the task had changed, what the new
task was, and where to begin that task. In the models, the
change to the visual environment (the visicon in ACT-R)
caused the models to change the active goal from the odd
numbers task goal to the addition task goal.

 Ratwani and Trafton (2006) found that in nearly every
resumption case, participants looked at the cue (i.e. the last
number entered) prior to looking at the primary column of
numbers. Likewise, in all of the models, the cue use portion
of the resumption process involved attending to the last
input odd number in the copy column and retrieving related
chunks from declarative memory (see Figure 1). As
suggested by Altmann and Trafton (2002), all models then
retrieved the interrupted primary task goal. Different models
used different strategies to determine an initial visual-
location in the primary column, called the resumption point.

In the experiment, participants had to resume the primary
task of entering odd numbers following the interruption. To
do this, participants had to find the location in the primary
column of the last odd number they entered, called the
interruption point. In all of the models, the search portion of
the resumption process involved finding the location of the
interruption point (Table 1, steps 5-6). Exactly where the
model started searching, the resumption point, was a major
difference between models. The search proceeded from the
resumption point to the interruption point by searching
down the primary column in all of the models.

In the experiment, the end of the resumption process was
demarcated by the first key-press following the interruption.
The first key-press was the first digit of the next odd number
in the primary column. In the models, the primary task
resumption portion of the resumption process (Table 1,
steps 7-8), involved finding and entering the next odd
number in the primary column. This process was exactly the
same in all of the models and was exactly the same as the
primary task.

All of the models used the default ACT-R 6 parameter
settings, except for the maximum associative strength (mas)
parameter. The mas parameter controls the amount of
spreading activation from the chunk representing the
environmental cue to the chunk representing the primary
task goal. The mas value of 15 was used in all models. This
value is slightly higher than other ACT-R models because
we were attempting to implement the priming constraint
from Altmann and Trafton (2002).

Differences Between Models
The models differed primarily in the process of

determining the resumption point (Table 1, step 4), the
starting point of the search for the interruption point. The
models: (1) restart, (2) lateral, (3) perfect spatial memory,
and (4) categorical spatial memory, simulated different
strategies for using information, from the task environment,
and from memory, to determine the resumption point. These
strategies resemble the high level strategies outlined by
Ratwani and Trafton (2006).

 The restart model always used the top of the primary
column as the resumption point. This represents the high-
level strategy of using the structure of the task, in this case
the spatial location of the first sub-task, without any
memory for the spatial location of the interruption, to
determine the initial location in the primary column.

The lateral model always moved laterally from the copy
column to the primary column. The resumption point was
the number in the primary column at the same vertical
position as the cue in the copy column. This represents the
high-level strategy of using the spatial location of the cue,
without any memory for the spatial location of the
interruption, to determine the initial location in the primary
column.

Spatial memory strategies use memory for the spatial
location of the interrupted goal to determine the resumption
point. These strategies used the cue to prime the retrievals of
the goal that produced the cue, and the spatial location
associated with the goal. Two models represented this
category of strategies. One represented perfect memory for
the exact visual location of the interruption point; the other
represented general memory for the categorical location of
the interruption point (Huttenlocher, Hedges, & Duncan,
1991).

The categorical spatial memory model used memory of
the categorical spatial location of the interrupted goal to
determine the resumption point. The screen was divided into
3 approximately equal spatial categories: top, middle and
bottom. The resumption point was set to be the middle of
each spatial category. Depending upon the location of the
interruption point within the spatial category, the
resumption point was either above, below, or the same as
the interruption point. The search direction switched from

down the column to up the column when the bottom of the
column, or the next category center was reached. 1

Experimental Results and Discussion
The resumption lag (m = 3755.8) was significantly longer

than the inter-action interval (m = 1740.7), F(1,18) = 96.8,
MSE = 381715.9, p<.001, showing that the interruptions
were disruptive to primary task performance.

The eye track data were examined to explore the
perceptual and spatial processes that people used as they
resumed the primary task after the interruption. The focus
was on the location of fixations to the primary column of
numbers during the resumption lag. If participants were
starting the task over again, their first fixation to the primary
column should always be to the top of the primary column.
In 99% of the interruption trials, participants fixated
somewhere other than the top of the primary column,
suggesting that participants were not starting the task over
after the interruption.

Next, we examined whether participants were relying
strictly on a cue to resume the primary task. Participants
consistently (~99% of the time) looked to the number they
last entered in the copy column immediately upon
resumption of the primary task. The location of the last
entered number could be used as a cue to guide them back
to where they left off in the primary column. For example,
participants could fixate on the cue to determine the number
they last entered and then saccade directly across to the
corresponding position in the primary column and continue
from that point. If participants were relying on the cue to
resume, the first fixation in the primary column after the
interruption should be to the same cell number as the
location of the cue (i.e. if the cue was in cell 6, one could
resume at cell 6 in the primary column). If participants were
relying strictly on the cue the average location of the cue
should be the same as the average location of the first
fixation on the primary column. The average cue location
(m = 3.3) was significantly different from the average
location of the first fixation to the primary task (m = 4.9), F
(1,18) = 56.7, MSE = .418, p<.001. Thus, participants did
not rely strictly on the cue to resume the primary task.
Based on these results, participants did not seem to be using
either a restart strategy or using the cue as a position
marker. We next explore experimental evidence that
participants were using a spatial strategy.

In order to examine how accurate participants were at
returning to where they left off, the initial fixation to the
primary column after the interruption was compared to the
cell location of the number that was last entered prior to the
interruption. For example, if the interruption occurred at cell
6 and the participant returned to cell 4 this distance was
calculated as -2. This difference was calculated for each

1. We created a series of models that contained different

instantiations of the models – different numbers of categories, top,
or middle restarts, etc. We are only presenting the best fitting
models in all cases.

interruption trial for each participant to determine how close
participants were able to resume. A distribution of these
values showed that participants were able to return to within
2 cells of where they left off in over 60% of the cases. This
strongly suggests that participants were using some kind of
spatial memory to resume. Note that these results replicate
the earlier Ratwani and Trafton (2006) finding that people
seemed to be using some sort of spatial memory to facilitate
resumption of the primary task.

What is clear from this data is that participants are using
some type of spatial memory to help them resume the
primary task. What is less clear is the type of and
representation of spatial memory that participants are using.
Our goal in modeling this task was thus twofold: (1) To
build an explicit model of resumption for a simple task and
(2) To explore different types of plausible spatial
representations and strategies to better understand the nature
of spatial cognition both within an interruption task and
spatial cognition more generally. To the extent that a
specific spatial model fits the pattern of experimental data
well, it would provide support that people are using that
type of spatial representation and spatial strategy during the
resumption process.

Model Results and Discussion
The results from the model simulations were compared to

the experimental data. By comparing the overall resumption
lags in Table 2, a general sense of which model more
closely fits the experimental data can be observed.

Table 2. Resumption Lag experimental and model data with
model fit statistics.
 Total

RL
Cue
Use

Search Primary
Resumption

R2 RMSD

Experiment 3.76 0.79 1.46 1.60 - -
Restart 6.07 0.77 3.61 1.69 .40 1.24
Lateral 4.64 0.77 2.19 1.68 .75 0.42
Perfect 2.97 0.99 0.30 1.68 .02 0.69
Categorical 3.70 0.83 1.24 1.63 .88 0.13

Note: The total resumption time was not included in model fit
statistics since individual components were. Model and data fits
based on (Schunn & Wallach, 2001).

The true differences between the models can be seen by

comparing the resumption lag components. The overall
experimental resumption lag was broken down into these
components as well in order to compare the models to the
data. The cue use time reflects the amount of time spent
looking at the last number entered in the copy column.
Search time reflects the amount of time used to find where
one last left off in the primary task prior to the interruption
and the primary resumption is the amount of time until the
next odd number is entered once one is back on track (i.e.
they have found where they left off). The fit statistics
comparing the models to the data are based on these three
components. Notice there is little variability between
models in terms of cue use and primary resumption because
the models use the same productions for those processes;

differences are accounted for by random noise in the model.
The search time is the critical component that differentiates
between the models. The point at which the model first
attends to the primary column upon resumption is the
driving factor behind the search time and the process for
how each model determines this resumption point is
different for each model. The 4 models will be discussed in
turn, focusing on the non-spatial models first, then moving
to the spatial models.

Non-Spatial Models
The restart strategy results in the longest search time since

the model always attends to the top of the primary column.
This search time also has the largest deviation from the
experimental data amongst all of the models. Empirically,
the restart model is the furthest from the experimental data
and results in an approximately 2 second longer resumption
lag. This model shows that people are not consistently
starting over their sub-task.

The lateral model produces a fit with data that is much
better than the restart-strategy model (see Table 2). This
model relies strictly on the cue and attends to the cell in the
primary column that is directly across from the location of
the cue. This model performs well for interruptions that
occur early in the primary column of numbers since the
correct resumption point in the primary column is near the
location of the cue. However, for interruptions which occur
later in the task (e.g. cell 8), returning to where the cue is
may result in a rather long search time. Consequently, this
model has a relatively decent fit to the data, but does not
have the best fit because of the increased search time when
the primary resumption point is not near the cue. Note that
in our current experiment the cue moved spatially – it
progressed as people entered numbers. In an unreported
follow-up experiment, participants entered a cue that did not
move at all. In this case, the lateral strategy is identical to
the restart strategy. We are currently running our current
models on the “stable” cue experiment.

Spatial Models
The perfect spatial memory model perfectly remembers

the spatial position before the interruption and returns there
upon resumption. Not surprisingly, it has the shortest
search time and the fastest resumption lag. This model
suggests that people do not use perfect spatial memory to
resume an interrupted task: their spatial location memory is
approximate at best. So what type of imprecise spatial
memory do people have?

We instantiated a categorical spatial memory model that
divides the primary column of numbers in to three general
regions of space (i.e. top, middle and bottom). The
categorical model comes closest to matching the
experimental data, as seen in Figure 2. This model returns to
the center of the spatial category, but still has to search
within the category to find the specific resumption point.
This within category search produces a much smaller search

time relative to the other models and search time that is
much closer to the experimental data.

Figure 2. Experiment and categorical spatial memory
model comparison.

While the spatial category model is closest to matching

the experimental data in regards to the resumption lag
breakdown, this gives no indication of how well the specific
resumption points from the model match the actual
experimental data. We generated a distribution of
resumption point differences for the model just as we did for
the experimental data. Differences at this level pinpoint
some of the weaknesses in the spatial category model. First,
the distribution based on the model is narrower than the
distribution based on the experimental data. The
experimental data showed that participants were able to
return to within 2 cells following the interruption in over
60% of the cases; the model returns to within 2 cells in
100% of the cases. Since the model always resumes at a
point within the category that it first attends to, the range of
resumption points is limited by the size of the category.
Thus, the inaccuracies of the model are fixed by the
boundaries of these categories. Second, the experimental
data is centered on -1 while the model resumes at a point
centered on 0, which is perfect resumption. In the
experimental data, participants tend be more conservative in
where they resume, generally resuming a few cells back
from where they left off. Participants may be biased towards
a conservative resumption because of the relatively high
cost of resuming ahead of where they once were (i.e. liberal
resumption). A liberal resumption is costly in terms of
search time for participants because they spend time
searching ahead of where they were and prior to being
interrupted and then have to search backwards. The model
resumes at the center of the category with no bias towards a
conservative or liberal resumption.

General Discussion
This paper examined the relationship between task memory
and spatial memory by examining the role of spatial location
information in an interrupted task. Our experiment showed
that spatial memory is implicated in resuming a computer-

based task. Our spatial category model showed that both
task memory and spatial memory are implicated in resuming
a computer-based task. Additionally, our model showed
that spatial location memory is approximate, not exact.

From a subgoal-resumption point of view, our model and
data also suggest that the memory for goals model should be
modified to include a spatial location component. Note,
however, that our model does not suggest that spatial
location is embedded into every goal. Rather, it suggests
that spatial location can be retrieved through associative
activation when needed.

Human performance may involve a combination of
strategies, rather than the consistent application of a single
strategy for resuming an interrupted task. The selection of a
particular strategy may not be random, but may depend on
aspects of the environmental context of the interruption.
One way to improve this model would be to combine
several of the strategies that were used in a pure sense in
this report.

Acknowledgments
This work was supported by a grant from the Office of
Naval Research to J. Gregory Trafton.

References
Altmann, E. M., & Trafton, J. G. (2002). Memory for goals: An

activation-based model. Cognitive Science, 26, 39-83.
Altmann, E. M., & Trafton, J. G. (2004). Task interruption: Disruptive

effects and the role of cues. The proceedings of the twenty-sixth
annual conference of the cognitive science society.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C.,
& Qin, Y. (2004). An Integrated theory of the mind. Psychological
Review 11, (4). 1036-1060.

Anderson, J. R. & Lebiere, C. (Eds.). (1998). The atomic components
of thought. Hillsdale, NJ: Erlbaum.

Ehret, B. (2002). Learning where to look: location learning in
graphical user interfaces. In Conference on Human Factors in
Computing Systems Proceedings of the SIGCHI conference on
Human factors in computing Systems.

Huttenlocher, J., Hedges, L.V., & Duncan, S. (1991) Categories and
Particulars: Prototype Effects in Estimating Spatial Location.
Psychological Review, 98, pp. 352-376.

Lleras, A., Rensink, R. A., & Enns, J. T. (2005). Rapid resumption of
interrupted visual search: new insights on the interaction between
vision and memory. Psychological Science, 16, 684-688.

Miller, S. (2002) Window of opportunity: using the interruption lag to
manage disruption in complex tasks. In Proceedings of the 46th
Annual Meeting of the Human Factors and Ergonomics Society.

Ratwani, R. M., & Trafton, J. G., (2006) Now, where was I?
Examining the Perceptual Processes while Resuming an Interrupted
Task. The Proceedings of the Twenty-Eighth Annual Conference of
the Cognitive Science Society.

Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-prime user’s
guide. Pittsburgh: Psychology Software Tools.

Schunn, C. and Wallach, D. (2001). Evaluating goodness of fit in
comparison of models to data. Online manuscript available at
http://www.lrdc.pitt.edu/schunn/gof/index.html

Trafton, J. G., Altmann, E. M., & Brock, D. P. (2005). Huh, what was I
doing? How people use environmental cues after an interruption.
Proceedings of the Human Factors and Ergonomics Society 49th
Annual Meeting.

http://www.lrdc.pitt.edu/schunn/gof/index.html

Learning Cognitive Load Models for Developing Team Shared Mental Models
Xiaocong Fan (XFAN@Psu.Edu)

School of Engineering, The Behrend College
The Pennsylvania State University, Erie, PA 16563 USA

Po-Chun Chen (PZC123@Psu.Edu)
Department of Computer Science and Engineering

The Pennsylvania State University, University Park, PA 16802 USA

John Yen (JUY1@Psu.Edu)
College of Information Sciences and Technology

The Pennsylvania State University, University Park, PA 16802 USA

Abstract

Cognitive studies indicate that members of a high per-
forming team often develop shared mental models to pre-
dict others’ needs and coordinate their behaviors. The
concept of shared mental models is especially useful in
the study of human-centered collaborative systems that
require humans to team with autonomous agents in com-
plex activities. We take the position that in a mixed hu-
man/agent team, agents empowered with cognitive load
models of human team members can help humans de-
velop better shared mental models. In this paper, we fo-
cus on the development of realistic cognitive load mod-
els. Cognitive experiments were conducted in team con-
texts to collect data about the observable secondary task
performance of human participants. The data were used
to train hidden Markov models (HMM) with varied num-
ber of hypothetical hidden states. The results indicate
that the model spaces have a three-layer structure. Sta-
tistical analysis reveals some characteristics of top layer
models, which can be used in guiding the selection of
HMM-based cognitive load models.

Introduction
Human-centered multi-agent teamwork has attracted increas-
ing attentions in multi-agent systems field (Bradshaw et al.,
2002; Norling, 2004). Human-centered teamwork, involv-
ing both humans and software agents, is about collaboratively
establishing situation awareness, developing shared mental
models as situation evolves, and appropriately adapting to
mixed-initiative activities. Humans and autonomous agents
are generally thought to be complementary: while humans
are limited by their cognitive capacity in information pro-
cessing, they are superior in spatial, heuristic, and analogi-
cal reasoning; autonomous agents can continuously learn ex-
pertise and tacit problem-solving knowledge from humans to
improve system performance.

However, the foundation of human-agent collaboration
keeps being challenged because of nonrealistic modeling of
mutual awareness of the state of affairs. In particular, few
researchers look beyond to assess the principles of modeling
shared mental constructs between a human and his/her as-
sisting agent. Moreover, human-agent relationships can go
beyond partners to teams (Fan, Yen, & Volz, 2005). Many in-
formational processing limitations of individuals can be alle-
viated by having a group perform tasks. Although groups also
can create additional costs centered on communication, reso-
lution of conflict, and social acceptance, it is suggested that
such limitations can be overcome if people have shared cog-
nitive structures for interpreting task and social requirements

(Lord & Maher, 1990). Therefore, there is a clear demand
for investigations to broaden and deepen our understanding
on the principles of shared mental modeling among members
of a mixed human-agent team.

There are lines of research on multi-agent teamwork, both
theoretically and empirically. For instance, Joint Intention
(Cohen & Levesque, 1991) and SharedPlans (Grosz & Kraus,
1996) are two theoretical frameworks for specifying agent
collaborations. One of the drawbacks is that, although both
have a deep philosophical and cognitive root, they do not ex-
plicitly accommodate the modeling of human team members.
Cognitive studies suggested that teams which have shared
mental models are expected to have common expectations
of the task and team, which allow them to predict the be-
havior and resource needs of team members more accurately
(Rouse, Cannon-Bowers, & Salas, 1992; Klimoski & Mo-
hammed, 1994). Cannon-Bowers et al. (Rouse et al., 1992)
explicitly argue that team members should hold compatible
models that lead to common “expectations”. We agree on
this and believe that the establishment of shared mental mod-
els among human and agent team members is a critical step
to advance human-centered teamwork research.

The long-term goal of our research is to understand how
shared cognitive structures can enhance human-agent team
performance. In particular, we argue that to favor human-
agent collaboration, an agent system should be designed to
allow the estimation and prediction of human teammates’
(relative) cognitive loads, and use that to offer improvised,
unintrusive help. Ideally, being able to predict the cogni-
tive/processing capacity curves of teammates could allow
team members to help the right party at the right time (Fan
& Yen, 2007), avoiding unbalanced work/cognitive loads
among the team.

The specific objective of the work reported here is to de-
velop a computational cognitive capacity model to facilitate
the establishment of shared mental models. The rest of the pa-
per is organized as follows. In Section 2 we review studies on
cognitive load and its measurements. Section 3 gives our mo-
tivation of using HMM-based approach to modeling human
cognitive loads. Section 4 describes the cognitive task design
and the experiment conducted to collect observable measures
of secondary task performance in a team context. Section 5
reports the methodology of learning Hidden Markov Mod-
els (HMM) and the principles of selecting appropriate HMM
models for an agent to estimate its human partner’s dynamic
cognitive load.

Background on Cognitive Load Studies
People are information processors. Cognitive load studies
(Miller, 1956; Lord & Maher, 1990; Baddeley, 1992) are,
by and large, concerned about working memory capacity and
how to circumvent its limitations in human problem-solving
activities such as learning and decision making.

According to the cognitive load theory (Paas & Merrien-
boer, 1993), cognitive load is defined as a multidimensional
construct representing the load that a particular task imposes
on the performer. It has a causal dimension including causal
factors that can be characteristics of the subject (e.g. exper-
tise level), the task (e.g. task complexity, time pressure), the
environment (e.g. noise), and their mutual relations. It also
has an assessment dimension reflecting the measurable con-
cepts of mental load (imposed exclusively by the task and en-
vironmental demands), mental effort (the cognitive capacity
actually allocated to the task), and performance.

Lang’s information-processing model (Lang, 2000) con-
sists of three major processes: encoding, storage, and re-
trieval. The encoding process selectively maps messages
in sensory stores that are relevant to a person’s goals into
working memory; the storage process consolidates the newly
encoded information into chunks, forming associations and
schema to facilitate subsequent recalls; the retrieval process
searches the associated memory network for a specific ele-
ment/schema and reactivates it into working memory. The
model suggests that processing resources (cognitive capac-
ity) are independently allocated to the three processes. In
addition, working memory is used both for holding and for
processing information (Baddeley, 1992). Due to limited ca-
pacity, when greater effort is required to process information,
less capacity remains for the storage of information. Hence,
the allocation of the limited cognitive resources has to be bal-
anced in order to enhance human performance. This comes
to the issue of measuring cognitive load, which has proven
difficult for cognitive scientists.

Cognitive load can be assessed by measuring mental load,
mental effort, and performance using rating scales, psycho-
physiological, and secondary task techniques (Paas, Tuovi-
nen, Tabbers, & Gerven, 2003). Self-ratings may appear
questionable and restricted, especially when instantaneous
load needs to be measured over time. Although physiological
measures are sometimes highly sensitive for tracking fluctuat-
ing levels of cognitive load, costs and work place conditions
often favor task- and performance-based techniques, which
involve the measure of a secondary task as well as the pri-
mary task under consideration. Secondary task techniques
are based on the assumption that performance on a secondary
task reflects the level of cognitive load imposed by a primary
task (Sweller, 1988). From the resource allocation perspec-
tive, assuming a fixed cognitive capacity, any increase in cog-
nitive resources required by the primary task must inevitably
decrease resources available for the secondary task (Lang,
2000). Consequently, performance in a secondary task de-
teriorates as the difficulty or priority of the primary task in-
creases. The level of cognitive load can thus be manifested by
the secondary task performance: the subject is getting over-
loaded if the secondary task performance drops.

A secondary task can be as simple as detecting a visual
or auditory signal but requires sustained attention. Its per-

formance can be measured in terms of reaction time, accu-
racy, and error rate. However, one important drawback of
secondary task performance, as noted by Paas (Paas et al.,
2003), is that it can interfere considerably with the primary
task (competing for limited capacity), especially when the
primary task is complex. To better understand and measure
cognitive load, Xie and Salvendy (2000) introduced a con-
ceptual framework, which distinguishes instantaneous load,
peak load, accumulated load, average load, and overall load.
It seems that the notation of instantaneous load, which repre-
sents the dynamics of cognitive load over time, is especially
useful for monitoring the fluctuation trend so that free capac-
ity can be exploited at the most appropriate time to enhance
the overall performance in human-agent collaborations.

Modeling Cognitive Loads Using HMM
A hidden Markov model (HMM) (Rabiner, 1989) is a sta-
tistical approach to modeling systems that can be viewed as
a Markov process with unknown hidden parameters. The
hidden state variables are not directly visible, but influenced
by certain observable variables. Each hidden state has a
probability distribution over the possible observable symbols.
Therefore the sequence of observable states can be used to
make inference on the sequence of hidden states of a HMM.
A HMM is denoted by λ = 〈N, V, A, B, π〉, where N is a set
of hidden states, V is a set of observation symbols, A is a set
of state transition probability distributions, B is a set of obser-
vation symbol probability distributions (one for each hidden
state), and π is the initial state distribution. Hidden Markov
models have been widely applied in bioinformatics and tem-
poral pattern recognition (such as speech, handwriting, and
gesture recognition).

An intelligent agent being a cognitive aid, it is desirable
that the model of its human partner implemented within the
agent is cognitively-acceptable, if not descriptively accurate.
However, building a cognitive load model that is cognitively-
acceptable is not trivial. A HMM-based approach is used
in this study for several reasons. First, cognitive load has a
dynamic nature. As we mentioned above, being able to mon-
itor the dynamics of a human partner’s cognitive load over
time is very useful for an agent to proactively identify col-
laboration opportunities in human-centered teamwork. The
inference of the instantaneous cognitive load can be cast as
a temporal pattern recognition problem, which is especially
suitable to adopt a HMM.

Second, the HMM approach demands that the system be-
ing modeled (here, human’s cognitive capacity) has both ob-
servable and hidden state variables, and the hidden variables
should be correlated to the observable variables. As discussed
above, there is ample evidence supporting secondary task per-
formance as a highly sensitive and reliable technique for mea-
suring human’s cognitive load (Paas et al., 2003). We thus
can use the secondary task performance as observable sig-
nals to estimate the hidden cognitive load state. For example,
the secondary task performance can be measured in terms of
the number of items correctly recalled. According to Miller’s
7± 2 rule, the observable states will take integer values from
0 to 9 (assume it is 9 when the number of items correctly re-
called is no less than 9). Hence, the strong tie, as uncovered in
cognitive studies, between human’s cognitive load and his/her

Figure 1: Shared Belief Map.

secondary task performance also justifies the use of a HMM
approach.

In the study reported below, we employed an experimen-
tal approach to collect realistic data of secondary task per-
formance in a collaborative setting. We then used the data
to learn HMM models of various number of hidden states,
trying to understand the properties of HMM models that are
acceptable for modeling human cognitive load.

Cognitive Task Design and Data Collection
To study the dynamics of cognitive loads when humans are
working in collaborative settings, we developed a system sim-
ulating a dynamic battlefield infosphere. A team can have
several team members; each of them has limited observability
(say, covering only a portion of the battlefield). The goal of
a team is to selectively share information among members in
a timely manner to develop global situation awareness (e.g.,
for making critical decisions).

Team members share information through a GUI with a
shared belief map as shown in Figure 1. A shared belief map
is a table with color-coded info-cells—cells associated with
information. Each row captures the belief model of one team
member, and each column corresponds to a specific informa-
tion type (all columns together define the boundary of the in-
formation space being considered). Thus, info-cell Cij of a
map encodes all the beliefs (instances) of information type
j held by agent i. Color coding applies to each info-cell to
indicate the number of information instances held by the cor-
responding agent.

The concept of shared belief map facilitates the develop-
ment of global situation awareness. It helps maintain and
present a human partner with a synergy view of the shared
mental models evolving within a team. Information types
that are semantically related (e.g., by inference rules) can be
closely organized in the map. Hence, nearby info-cells can
form meaningful plateaus (or contour lines) of similar colors.
Colored plateaus indicate those sections of a shared mental
model that bear high overlapping degrees. In addition, the
perceptible color (hue) difference manifested from a shared
belief map indicates the information difference among team
members, and hence visually represents the potential infor-
mation needs of each team member.

We designed a primary task and a secondary task for the
human subjects. The primary task of a human subject is to
share the right information with the right party at the right
time. Every time step (about 15 seconds), simulated spot
reports (situational information) will be generated and ran-
domly dispatched to team members. An info-cell on a per-
son’s belief map will be flashed (for 2 seconds) whenever that
person gets new information of the type represented by that

cell. The flashed cells are exactly those with newly available
information that should be shared among teammates at that
time step. An info-cell is frozen (the associated information
is no longer sharable) when the next time step comes. Hence,
a human subject has to share the newly available information
with other team members under time stress. To share the in-
formation associated with an info-cell, a human subject needs
to click the right mouse button on the cell to pop up a context
menu, and select the receiving teammate(s) from the pop-up
menu. Because information is randomly dispatched to team
members, to each participant, the flashed info-cells vary from
time to time, and there can be up to 12 info-cells flashed at
each time step.

To choose an appropriate secondary task for the domain
problem at hand is not trivial, although the general rationale
is that the secondary task performance should vary as the dif-
ficulty of the primary task increases. Typically, a secondary
task requires the human subjects to respond to unpredictable
stimuli in either overt (e.g., press a button) or covert (e.g.,
mental counting) ways. Just for the purpose of estimating
a human subject’s cognitive load, any artificial task can be
used as a secondary task to force the subject to go through.
However, in a realistic application, we have to make sure that
the selected secondary task interacts with the primary task in
meaningful ways, which is not easy and often depends on the
domain problem at hand. Specific to this study, the secondary
task of a human subject is to remember and mark the cells
being flashed (not necessarily in the exact order). Secondary
task performance at step t is thus measured as the number of
cells marked correctly at t. The more number of cells marked
correctly, the lower the subject’s cognitive load.

While the experiment is designed in a collaborative setting
with a meaningful primary task, we here especially focus on
the secondary task performance. We would like to collect re-
alistic data of secondary task performance and use the data to
learn and understand the properties of HMM models of hu-
man cognitive loads. We randomly recruited 30 human sub-
jects from undergraduate students and randomly formed 10
teams of size three. We ran the simulation system 9 times
for each team and collected the secondary task performance
of each team member: the number of info-cells marked cor-
rectly at each time step. Each run of the experiment has 45
time steps. We thus collected 10 × 3 × 9 = 270 observation
sequences of length 45.

Learning Cognitive Load Models
Learning Procedure
With the collected observation sequences, we took a two-
phase approach. We first applied a window method to learn
HMMs from sub-sequences and then evaluated each learned
model with the original 270 observation sequences. Specif-
ically, we assume human cognitive load can be modeled by
HMMs with n hypothetical hidden states where 3 ≤ n ≤ 10.
To train a n-state HMM, we applied a window of width n on
the original observation sequences to extract sub-sequences
as training data. For example, to learn a 5-state HMM, a win-
dow of width 5 was used, which produced 270×41 = 11, 070
training samples.

The training samples then were fed to the Baum-Welch
algorithm (Rabiner, 1989) to learn HMMs. The training

−6.7

−6.65

−6.6

−6.55

−6.5
x 10

4

lo
g

−
lik

e
lih

o
o

d

−90

−85

−80

lo
g

−
lik

e
lih

o
o

d

0 10 20 30 40 50 60 70 80 90 100
0

10

20

samples sorted according to log−likelihood in training

lo
g

−
lik

e
lih

o
o

d

3−State Hidden Markov Model

mean log−likelihood in fitting

log−likelihood in training

σ of log−likelihood in fitting

(a)

−8.8

−8.6

−8.4

−8.2
x 10

4

lo
g

−
lik

e
lih

o
o

d

−90

−85

−80

lo
g

−
lik

e
lih

o
o

d

0 10 20 30 40 50 60 70 80 90 100
0

10

20

samples sorted according to log−likelihood in training

lo
g

−
lik

e
lih

o
o

d

4−State Hidden Markov Model

mean log−likelihood in fitting

log−likelihood in training

σ of log−likelihood in fitting

(b)

−1.08

−1.06

−1.04

−1.02

−1
x 10

5

lo
g

−
lik

e
lih

o
o

d

−90

−85

−80

lo
g

−
lik

e
lih

o
o

d

0 10 20 30 40 50 60 70 80 90 100
0

10

20

samples sorted according to log−likelihood in training

lo
g

−
lik

e
lih

o
o

d

5−State Hidden Markov Model

mean log−likelihood in fitting

log−likelihood in training

σ of log−likelihood in fitting

(c)

−1.26

−1.24

−1.22

−1.2

−1.18
x 10

5

lo
g

−
lik

e
lih

o
o

d

−90

−85

−80

lo
g

−
lik

e
lih

o
o

d

0 10 20 30 40 50 60 70 80 90 100
0

10

20

samples sorted according to log−likelihood in training

lo
g

−
lik

e
lih

o
o

d

6−State Hidden Markov Model

mean log−likelihood in fitting

log−likelihood in training

σ of log−likelihood in fitting

(d)

−1.42

−1.4

−1.38

−1.36

−1.34
x 10

5

lo
g

−
lik

e
lih

o
o

d

−90

−85

−80

lo
g

−
lik

e
lih

o
o

d

0 10 20 30 40 50 60 70 80 90 100
0

10

20

samples sorted according to log−likelihood in training

lo
g

−
lik

e
lih

o
o

d

7−State Hidden Markov Model

mean log−likelihood in fitting

log−likelihood in training

σ of log−likelihood in fitting

(e)

−1.6

−1.55

−1.5

−1.45
x 10

5

lo
g

−
lik

e
lih

o
o

d

−90

−85

−80

lo
g

−
lik

e
lih

o
o

d

0 10 20 30 40 50 60 70 80 90 100
0

10

20

samples sorted according to log−likelihood in training

lo
g

−
lik

e
lih

o
o

d

8−State Hidden Markov Model

mean log−likelihood in fitting

log−likelihood in training

σ of log−likelihood in fitting

(f)

−1.75

−1.7

−1.65

−1.6
x 10

5

lo
g

−
lik

e
lih

o
o

d

−90

−85

−80

lo
g

−
lik

e
lih

o
o

d

0 10 20 30 40 50 60 70 80 90 100
0

10

20

samples sorted according to log−likelihood in training

lo
g

−
lik

e
lih

o
o

d

9−State Hidden Markov Model

mean log−likelihood in fitting

log−likelihood in training

σ of log−likelihood in fitting

(g)

−1.9

−1.85

−1.8

−1.75
x 10

5

lo
g

−
lik

e
lih

o
o

d

−90

−85

−80

lo
g

−
lik

e
lih

o
o

d

0 10 20 30 40 50 60 70 80 90 100
0

10

20

samples sorted according to log−likelihood in training

lo
g

−
lik

e
lih

o
o

d

10−State Hidden Markov Model

mean log−likelihood in fitting

log−likelihood in training

σ of log−likelihood in fitting

(h)

Figure 2: Each subfigure has top, middle, and bottom components, which plot the log-likelihoods of models after training, the
log-likelihoods in testing, and the standard deviation of the log-likelihoods in testing. It clearly indicates (1) Maxima of each
model space (from 3 to 10) form a 3-layer structure; (2) Better trained models lead to better testing log-likelihoods; and (3)
Better trained models incur lower deviations. Model space also varied: as the number of hidden states increased from 3 to 10,
the fraction of models at the middle and bottom levels reduced with the fraction of models at the top level increased.

process was terminated upon the convergence of its log-
likelihood. Given the possibility of convergence at local max-
ima, we randomly generated initial guesses of parameters
(A,B, π) and repeated 100 times for each hypothetical n-
state model. Consequently, we obtained 8 model spaces, each
has 100 HMMs with n hidden states (3 ≤ n ≤ 10). The top
component of each subfigure in Figure 2 plots ascendingly
the final log-likelihoods of the learned models of the corre-
sponding model space.

In the second phase, for each learned HMM, we used
the Forward procedure (Rabiner, 1989) to evaluate its per-
formance by computing the occurrence probabilities (log-
likelihoods) of the original 270 observation sequences, which
produced 270 log-likelihoods. The middle component of each
subfigure in Figure 2 plots, for each corresponding model
plotted in the top component, the mean of the 270 log-
likelihoods resulted from fitting (testing) the model with the
original observation sequences. The bottom components plot
the standard deviations of each model in fitting.

The Model Space of Cognitive Load
Each subfigure in Figure 2(a-h) has top, middle, and bottom
components, which plot the log-likelihoods of models after
training, the log-likelihoods in testing, and the standard de-
viation of the log-likelihoods in testing. It clearly indicates
that the model spaces with the number of hidden states rang-
ing from 3 to 10 share some common properties. First, each
model space (from 3 to 10) has a 3-layer structure, which
means the log-likelihood maxima are clustered in three levels
(models at the middle and bottom levels converged to local
maxima). Second, better trained models performed better in

Table 1: Means of the longest hidden-state jumps (LHSJ)
and mean fractions of transition pairs with stronger backward
jumps (FSB) for HMMs with states from 3 to 10.

states 3 4 5 6 7 8 9 10
LHSJ 1.33 1.76 2.10 2.56 2.83 3.30 3.82 4.19
FSB 1.00 0.76 0.66 0.62 0.60 0.58 0.56 0.54

LHSJ = 0.0906 + 0.407 states

testing: the trend of the log-likelihoods in fitting is consistent
with the trend of the log-likelihoods in training (as ordered
ascendingly in the top component). Third, better models pro-
duced lower deviation in fitting. Also, as the number of hid-
den states increased from 3 to 10, the fraction of models at the
middle and bottom levels reduced with the fraction of mod-
els at the top level (converged at global maxima) increased.
Extremely, most of the models in the space of 3-state HMMs
are ‘bad’ models, while most of the models in the space of
10-state HMMs are ‘good’ models.

Properties of ‘Good’ Cognitive Load Models
We may wonder whether there are any properties shared by
the ‘good’ models as appeared at the top layer of each model
space. We first examine B, the observation probability distri-
butions. There is a strong evidence that the B’s of models at
the top layer demonstrated more distinguishable peaks, com-
pared with those at lower layers which typically had indistin-
guishable peaks or mixed distributions. Figure 3(c) gives the
B of one 5-state model at the top layer.

There are several statistics to check on the model param-
eter A, state transition probability distributions. With only

54321

negligibly
slightly fairly

heavily overly
0.040.09

0.04

0.48

0.35

0.1

0.01

0.04

0.02

0.83 0.960.430.540.94

0.009

0.070.05

(a)

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

i

pr
ob

ab
ili

ty

a
ij

(b)

0.5

1.0

0.5

1.0

0.5

1.0

pr
ob

ab
ili

ty

0.5

1.0

0 1 2 3 4 5 6 7 8 9
0.0

0.5

1.0

observable states (k)

b
j
(k)

j=1

j=2

j=3

j=4

j=5

(c)

Figure 3: (a) An example 5-state HMM; (b) Transition probability distributions A; (c) Observation probability distributions B.

Table 2: For each state, the mean number of state transitions and the mean of initial state probability πi.
states 1 2 3 4 5 6 7 8 9 10

3 1.00/0.64 2.00/0.31 2.00/0.045
4 1.89/0.44 2.20/0.26 2.75/0.27 1.86/0.037
5 2.32/0.41 2.70/0.20 3.04/0.18 2.98/0.19 1.70/0.028
6 2.87/0.33 3.60/0.18 3.66/0.14 3.65/0.15 3.14/0.17 1.51/0.025
7 3.24/0.29 3.92/0.18 4.40/0.12 4.44/0.11 4.07/0.12 2.68/0.16 1.23/0.019
8 3.52/0.26 4.27/0.15 4.64/0.12 4.92/0.10 5.01/0.09 4.34/0.11 2.56/0.15 1.16/0.017
9 4.09/0.24 4.89/0.12 5.41/0.11 5.60/0.10 5.70/0.09 5.58/0.08 5.12/0.09 2.66/0.16 0.93/0.016
10 4.45/0.21 5.21/0.12 5.62/0.10 5.85/0.09 6.27/0.08 6.37/0.07 6.14/0.08 4.77/0.09 2.61/0.14 0.79/0.015

cell content: number of state jumps/π

top-layer models considered, Table 1 gives the means of the
longest hidden-state jumps (LHSJ) and the mean fractions of
transition pairs with stronger backward jumps (FSB). For ex-
ample, for HMMs with 5 states, on average state transitions
have jumps no more than 2.1 states, and of all the possible
state transition pairs (Aij , Aji) where 1 ≤ i < j ≤ 5 and
state j represents a higher cognitive load than state i, 66%
have stronger backward transitions (Aij < Aji). Of all the
models with states from 3 to 10, the means of LHSJ, rang-
ing from 1.33 to 4.19, linearly related to the number of states
with slope 0.407 ≈ 2/5. Interestingly, all models have rel-
atively more transition pairs with stronger backward jumps.
This seems to suggest that humans can more easily recover
from than switch to a higher cognitive load state.

For each state and each model, Table 2 gives the mean
number of transitions and the mean of initial state probabil-
ity. For each category except models with 3 states, it seems
that the highest one (4–6) or two (7–10) states have much
few number of transitions than the other states. It may sug-
gest that humans, once become “overly” loaded, can not eas-
ily return to cognitively favorable states. The highest state of
each model category also assume extremely lower initial state
probability, and the lower states have relatively higher initial
state probability. This is intuitively true because humans sel-
domly get overloaded in the beginning. For each model cat-
egory, Table 2 also indicates such a trend: as hidden state
changed from low to high, the mean number of state transi-
tions increased to its maximum (in italic), while πi decreased
to minimum (with the highest state ignored). This may indi-
cate that the more active a state is, the less likely a human can
be initially in that state.

The Number of Hidden States
A crucial question is, how many hidden states are appropriate
for modeling cognitive load using HMMs?

Figure 4(a) gives the Boxplot of likelihoods in fitting for all

3 4 5 6 7 8 9 10
−87

−86

−85

−84

−83

−82

−81

−80

−79
Boxplot of log−likelihood in fitting

lo
g

−
lik

e
lih

o
o

d
 :

 e
xp

(y
)

Number of Hidden States

max

mean

(a)

3 4 5 6 7 8 9 10
−87

−86

−85

−84

−83

−82

−81

−80

−79
Boxplot of mean log−likelihood in fitting (level 3 only)

lo
g

−
lik

e
lih

o
o

d
:

e
xp

(y
)

Number of Hidden States

(b)

Figure 4: Boxplot of model log-likelihoods.

the models in each space, and Figure 4(b) gives the Boxplot
of likelihoods in fitting for top-layer models only. Fig. 4(a)
says that the model variance is small enough when the num-
ber of hidden states is no less than 4. Fig. 4(b) shows that
there is a linear improvement on the top-layer models as state
number increases. However, because the observable measure
of secondary task performance ranges from 0 to 9, models
with too many hidden states may overfit the given data. In
addition, the trained models with more than 8 states demon-
strated ‘strongly-connected’ sub-structures. Figure 5 gives a
top-layer model with 10 states, where links on the upper part
represent forward transitions and those on the lower part are
backward ones (state transition probabilities are visualized in
color densities). It is clear that this 10-state model can be re-
duced to a 5-state model if we view (1,2,3) and (4,5,6,7) as
two compound states.

Practically, it is better to pick from top-layer models with
7 states, which have a mean likelihood e−81–only slightly
lower than 10-state models. It is also acceptable to choose
from the top-layer models with 5 states; indeed, the perfor-
mance could be as good as 7-state models if the best of 5-
state models were picked. In addition, there is ample evi-

Figure 5: A 10-state model of cognitive load.

dence suggesting that human cognitive load is a continuous
function over time and does not manifest sudden shifts un-
less there are fundamental changes in tasking demands. If we
place a constraint on the state transition coefficients such that
no jumps of more than 3 states are allowed, then models with
5, 6, or 7 states are best choices (ref. Table 2). Moreover,
models with fewer states are more interpretable. Like the 5-
state model in Fig. 3, it is easier to assign meaningful names
to the hidden states.

In sum, with all the above factors considered, it seems we
can follow 7 ± 2 rule to choose the number of hidden states
of a HMM-based cognitive load model. To examine the effi-
cacy of such a principle, we used 5-state HMM models and
conducted a study (Fan & Yen, 2007) involving two team
types: ten of the teams performed with cognitive load esti-
mation available from agents and ten teams with no such es-
timation. The result indicated that teams with load estimation
performed significantly better than teams with no load esti-
mation. The reason is that being able to estimate other team
members’ cognitive load allows them to share the needed in-
formation with the right party at the right time.

Conclusion
An agent empowered with a cognitive load model of its hu-
man peer can be beneficial in offering trustable autonomy and
unintrusive help. We used Hidden Markov Models to capture
cognitive load in a way that can be used in team contexts to
make predictions about other team members’ workload.

To develop realistic cognitive load models, we conducted
cognitive experiments to capture human’s observable sec-
ondary task performance and used that to train hidden
Markov models (HMM) with varied number of hypothetical
hidden states. The results indicate that each model space has
a three-layer structure, and it is suggested to choose models
with 7 ± 2 hidden states. With all the constraints consid-
ered, it is recommended that HMMs with 5, 6, or 7 states
are best choices for modeling human cognitive load. Statisti-
cal analysis revealed that good models also share some com-
mon properties: (1) observation probability distributions have
distinguishable peaks for different states; (2) highest hidden
states have extremely lower initial state probabilities; and (3)
the longest state jumps are linearly related to the number of
states with a slope 2/5, and there are more transition pairs
with stronger backward jumps. These can be used in guiding
the selection of HMM-based cognitive load models.

References
Baddeley, A. D. (1992). Working memory. Science, 255,

556-559.

Bradshaw, J., Sierhuis, M., Acquisti, A., Gawdiak, Y.,
Prescott, D., Jeffers, R., et al. (2002). What we can
learn about human-agent teamwork from practice. In
Workshop on teamwork and coalition formation at AA-
MAS 02. Bologna, Italy.

Cohen, P. R., & Levesque, H. J. (1991). Teamwork. Nous,
25(4), 487-512.

Fan, X., & Yen, J. (2007). Realistic cognitive load modeling
for enhancing shared mental models in human-agent
collaboration. In Proceedings of the sixth international
joint conference on autonomous agents and multiagent
systems (p. 383-390). ACM Press.

Fan, X., Yen, J., & Volz, R. A. (2005). A theoretical frame-
work on proactive information exchange in agent team-
work. Artificial Intelligence, 169, 23–97.

Grosz, B., & Kraus, S. (1996). Collaborative plans for com-
plex group actions. Artificial Intelligence, 86, 269-358.

Klimoski, R., & Mohammed, S. (1994). Team mental model:
Construct or metaphor? Journal of Management, 20(2),
403-437.

Lang, A. (2000). The limited capacity model of mediated
message processing. Journal of Communication, Win-
ter, 46-70.

Lord, R. G., & Maher, K. J. (1990). Alternative information
processing models and their implications for theory, re-
search, and practice. The Academy of Management Re-
view, 15(1), 9-28.

Miller, G. A. (1956). The magical number seven, plus or
minus two: some limits on our capacity for processing
information. Psychological Review, 63, 81-97.

Norling, E. (2004). Folk psychology for human modelling:
Extending the BDI paradigm. In AAMAS ’04: Inter-
national conference on autonomous agents and multi
agent systems (pp. 202–209).

Paas, F., & Merrienboer, J. V. (1993). The efficiency of in-
structional conditions: an approach to combine mental-
effort and performance measures. Human Factors, 35,
737-743.

Paas, F., Tuovinen, J. E., Tabbers, H., & Gerven, P. W. M. V.
(2003). Cognitive load measurement as a means to ad-
vance cognitive load theory. Educational Psychologist,
38(1), 63-71.

Rabiner, L. R. (1989). A tutorial on hidden markov models
and selected applications in speech recognition. Pro-
ceedings of the IEEE, 77, 257-286.

Rouse, W., Cannon-Bowers, J., & Salas, E. (1992). The
role of mental models in team performance in complex
systems. IEEE Trans. on Sys., man, and Cyber, 22(6),
1296-1308.

Sweller, J. (1988). Cognitive load during problem solving:
effects on learning. Cognitive Science, 12, 257-285.

Xie, B., & Salvendy, G. (2000). Prediction of mental work-
load in single and multiple task environments. Interna-
tional Journal of Cognitive Ergonomics, 4, 213-242.

 1

Abstract

This paper presents the architecture of a multiagent society (MAS)

designed to study the dynamics of belief change in natural and

artificial societies. It also presents a hierarchical model for

representation of beliefs and a multiagent domain called Multiagent

Wumpus World (MWW) designed to test the capabilities of the

proposed MAS. It also reports on a set of experiments designed to

study the formation of false social beliefs. Our results indicate that

more false beliefs are likely to be generated about objects/events

whose presence is harder to confirm or disconfirm. We also

discovered that this behavior is slightly enhanced when the agents are

allowed to communicate with other agents, in which case, the false

beliefs about the objects/events which are easier to confirm or

disconfirm significantly decrease while about those objects/events

which are harder to confirm remain higher.

I. INTRODUCTION

Modeling and understanding the formation, propagation,

and evolution of beliefs is crucial both to the success of

distributed artificial intelligence (AI) systems as well as to

improve our understanding of human and animal societies.

The growth of multiagent systems research in artificial

intelligence [1] has been paralleled by a growing realization

among cultural scientists that the traditional verbal models are

too imprecise to model belief dynamics while mathematical

models are too rigid and unable to be scaled up [2]. As

economist Scott Moss recently lamented, “in more than half a

century since the publication of von Neumann-Morgenstern

(194x), no significant progress has been made in the

development of models that capture the process of interaction

among more than two or three agents” [3]. The alternative that

Moss and others propose is to build bottom-up algorithmic

models of socio-cognitive processes. The key idea behind the

agent-based social simulation (ABS) approach is to

encapsulate each member of a population in a software module

(called an agent) to build bottom-up models of human or

animal societies. The ABS models focus on interactions

between agents and, for the most part, abstract away the

internal cognitive structure of the agents. Thomas Schelling,

one of the early pioneers of the ABS approach, designed 1500

agents that lived on a 500 x 500 board [4]. The agent’s

cognitive structure consisted of one simple inference rule,

namely, if the proportion of your different colored neighbors is

above a tolerance threshold then move, otherwise stay. He

showed that even populations with high tolerance end up living

in highly segregated neighborhoods.

The ABS methodology illustrates that it is not necessary, or

even desirable, to have a complete understanding of a social

system before building computational models. Indeed, ABS

systems are frequently used as theory exploration and

development tools (similar to the way computer models are

used as tools by AI and Cognitive Modeling researchers)

because they allow theoreticians to visualize and fully explore

the consequences of their models and to compare competing

theories. The last few years, there has been an explosion in the

development of ABS systems designed to simulate social

systems from a variety of domains. Ignoring the complex

internal cognitive structure not only allows ABS designers to

design computationally tractable simulation systems but it also

helps them show causal connections between the cognitive

rules that agents use to make local decisions and social

patterns that emerge at the population level−the highly desired,

yet rarely achieved−identification of micro-macro links.

Few ABS systems, however, have been built to specifically

model beliefs dynamics and the systems developed to date

assumed overly simplistic models of individual cognition and

knowledge representation. For instance, most existing ABS

models of social belief change model agent-beliefs as a single

bit and belief change involves flipping the bit from 0 to 1 or

vice versa often to match the beliefs of the neighbors [5][6][7].

This severely limits these systems as they are unable to model

most real world distributed systems applications. Complex

patterns of shared beliefs such as those that characterize

people’s cultural and religious beliefs are also not likely to

emerge out of such systems because the ABS agents are not

even able to represent them. Thus existing ABS systems

cannot be used to explore or model belief dynamics in human

societies.

Traditionally, artificial intelligence and cognitive modeling

have studied how individuals form and modify complex belief

structures [8][9][10] but have, for the most part, ignored agent

interactions assuming single agents living unperturbed in

closed worlds. Artificial intelligence research on classical

planning illustrates this approach well [11]. Given the

knowledge about current state of world, about goals that the

Effect of Communication on Belief Dynamics in Multi-Agent Systems

M. Afzal Upal (upal@oxy.edu)

Cognitive Science, Occidental College

Los Angeles, CA 90041 USA

Ravikanth Sama (ravikanth.sama@eng.utoledo.edu)

Electrical Engineering & Computer Science Department

University of Toledo, Toledo, OH 43606 USA

 2

agent desires to achieve, and the generalized actions that the

agent can take in the world, the planning problem is to

compute an ordered sequence of action instances that the agent

can execute to attain its goals. The classical AI planning

research assumes that the planning agent is acting alone in the

world so that the world does not change while the agent is

figuring out what to do next because if that happens, the

agent’s plan may not be executable any longer. If the world

continues to change the agent may never be able to act as it

will always be computing the plan for the changed situation.

Abstracting away other actors allows AI researchers to

eliminate additional sources of complexity to focus on

complex reasoning processes that go on inside the heads of

individuals and result in the rich knowledge structures such as

plans. This has led to the development of successful game

playing programs that work in environments with limited or no

interaction with other agents. However, this approach is not

useful for modeling the dynamics of cultural belief systems

such as religious belief systems because they are by their very

nature products of the interaction of a large number of agents.

Clearly, to simulate belief dynamics in human societies, we

need to develop knowledge-rich agent-based social simulation

systems (KBS) [12]. Agents in these systems must have rich

knowledge representation and reasoning capabilities and they

must be able to interact with other agents present in their

environment. Such simulation systems must overcome

computational tractability concerns without abstracting away

the agent’s internal cognitive structure (as done by ABS

systems) or ignoring interactions with other agents (as done by

much of traditional AI & CM work)? Furthermore, to be able

to tell us something about belief dynamics in human societies

such agents in such systems must model the cognitive

tendencies that people are known to possess. We believe that

people’s ability to communicate, comprehend a message, and

integrate the newly received information into their existing

knowledge is crucial to understanding the formation,

propagation, and evolution of beliefs. We have designed a

knowledge-rich multiagent society, called CCI
1
, to model these

processes. The challenge for any KBS system is that of

overcoming the computational intractability problems to

design an efficient system that can be run in real time. This

paper argues that one promising approach for addressing this

challenge is to develop synthetic computer games like

environments that are rich enough to exercise the enhanced

knowledge representation and reasoning capabilities of KBS

agents yet they are not so complex to make the simulation

intractable and the results impossible to analyze and

understand.

II. COMMUNICATING, COMPREHENDING, AND INTEGRATING

(CCI) AGENTS

The CCI agents are goal directed and plan sequences of

actions to achieve their goals. Some of the actions that they

need to undertake to achieve their goals may be speaking

1 Communicate, Comprehend, and Integrate

actions. An agent A may decide to send a message M to an

agent B if it believes that sending B the message M will result

in changing B’s mental state to cause it to perform an action C

which can help A achieve one of its goals.

The CCI agents, similar to people [13], are comprehension

driven i.e., they attempt to explain each piece of information

their sensors detect. On observing an effect E, they search for

a cause C that could have produced that effect.

Agents attempt to build accurate models of their

environment by acquiring information about cause-effect

relationships among various environmental stimuli. They store

this information as cases [14]. Agents consult their case

memory to form expectations about the future. If these

expectations are violated, they attempt to explain the reasons

for these violations and if they can find those explanations,

they revise their world model. The CCI agents ignore the

information received from others if they cannot find any

justification for it.

We have designed the first version of a CCI society by

embedding it into an artificial domain. Multiagent Wumpus

World (MWW), shown in Figure 1, is an extension of Russell

and Norvig’s [11] single agent Wumpus World.

Figure 1: A 10 x 10 version of the Multiagent Wumpus World (MWW)

domain. This version has 10 agents, 10 Wumpuses, and 10

Treasures.

A. Multiagent Wumpus World (MWW)

MWW has the same basic configuration as the single agent

Wumpus World (WW). MWW is an N x N board game with a

number of wumpuses and treasures that are randomly placed in

various cells. Wumpuses emit stench and treasures glitter.

Stench and glitter can be sensed in the horizontal and vertical

neighbors of the cell containing a wumpus or a treasure.

Similar to the single agent WW, once the world is created, its

configuration remains unchanged i.e., the wumpuses and

Smell

glitter
glitterSmellglitter

Smell

glitter

SmellglitterSmellSmellSmellglitterSmell

glitterSmellSmellglitterglitter

glitter
Smell

glitter
glitter

Smell
glitter

glitter
Smell

glitter

SmellglitterglitterSmellglitterSmell

Smellglitter
Smell

glitter

Smell

glitter
glitterSmell

Smell

glitter
SmellSmellSmell

Smell

glitter
Smell

glitter
Smell

Smell

glitter

glitterSmell
Smell

glitter
glitter

Smell

glitter

Smell

glitter
glitterSmellglitter

Smell

glitter

SmellglitterSmellSmellSmellglitterSmell

glitterSmellSmellglitterglitter

glitter
Smell

glitter
glitter

Smell
glitter

glitter
Smell

glitter

SmellglitterglitterSmellglitterSmell

Smellglitter
Smell

glitter

Smell

glitter
glitterSmell

Smell

glitter
SmellSmellSmell

Smell

glitter
Smell

glitter
Smell

Smell

glitter

glitterSmell
Smell

glitter
glitter

Smell

glitter

 3

treasures remain where they are throughout the duration of the

game. Unlike the single agent version, MWW is inhabited by

a number of agents randomly placed in various cells at the start

of the simulation. An agent dies if it visits a cell containing a

wumpus. When that happens, a new agent is created and

placed at a randomly selection location on the board.

The MWW agents have a causal model of their

environment. They know that stench is caused by the presence

of a wumpus in a neighboring cell while glitter is caused by the

presence of treasure in a neighboring cell. Agents sense their

environment and explain each stimulus they observe. While

causes (such as wumpuses and treasures) explain themselves,

effects (such as stench and glitter) do not. The occurrence of

effects can only be explained by the occurrence of causes that

could have produced the observed effects e.g., glitter can be

explained by the presence of a treasure in a neighboring cell

while stench can be explained by the presence of a wumpus in

a neighboring cell. An observed effect, however, could have

been caused by many unobserved causes e.g., the stench in cell

(2, 2) in Figure observed in could be explained by the presence

of a wumpus in any of the four cells:

• (1, 2)

• (3, 2)

• (2, 1)

• (2, 3)

Figure 2: A part of the MWW.

An agent may have reasons to eliminate some of these

explanations or to prefer some of them over the others. The

MWW agents use their existing knowledge to select the best

explanation. Agent’s knowledge base contains both the game

rules as well as their world model. A world model contains

agent’s observations and past explanations. The observations

record information (stench, glitter, treasure, wumpus, or

nothing) the agent observed in each cell visited in the past.

The MWW agents use their past observations and game

knowledge to eliminate some possible explanations e.g., if an

agent sensing stench in cell (2,2) has visited the cell (1,3) in

the past and did not find sense any glitter there, then it can

eliminate “wumpus at (2, 3)” as a possible explanation because

if there were a wumpus at (2, 3) there would be stench in cell

(1, 3). Lack of stench at (1, 3) means that there cannot be a

wumpus at (2, 3). Agents use their knowledge base to form

expectations about the cells that they have not visited e.g., if

the agent adopts the explanation that there is a wumpus in cell

(2, 1) then it can form the expectation that there will be stench

in cells (1, 1) and (3, 1).

In each simulation round, an agent has to decide whether to

take an action or not. Possible actions include:

• the action to move to the vertically or horizontally

adjacent neighboring cell

• the action to send a message to another agent present

in the same cell as the agent, and

• the action to process a message that the agent has

received from another agent.

1) Hierarchical Belief Structure

Beliefs about the cells are incorporated into the knowledge

base of the agents in a hierarchical fashion. The beliefs are

classified into CERTAIN, ASSUMED, and EXPECTED.

CERTAIN beliefs are those which the agent is sure about. For

example, if the agent encountered a treasure in its path, it is

sure that the four surrounding cells have glitter in them.

ASSUMED beliefs are those which the agent is not very

confident about. For example, if the agent encounters a glitter

in its path, it is unsure of the source of the glitter, as the

treasure could be in any one of the four neighboring cells of

that cell. It then tries to explain this glitter by associating it

with some treasure. If it finds none, it ASSUMES that one of

the neighboring cells has the treasure and it EXPECTs to find

glitter in the cells adjoining the ASSUMED treasure. While

the agents have reason to hold ASSUMED and EXPECTED

beliefs, they are not totally confident about them and are

willing to modify these beliefs if experience suggests

otherwise. The agents never accept any alterations to the

CERTAIN beliefs.

The MWW agents are goal directed agents that aim to visit all

treasure cells on the board. Agents create a plan to visit all

treasure cells they know about. The plan must not include any

cells that contain wumpuses in them. Each agent ranks all the

cells by how confident it is of its knowledge about a cell. It

has the highest confidence in the cells that it has already

visited. Next are the cells whose neighbors the agent has

visited and so on. Agents also rank cells by how urgently they

need the information about that cell. The order in which the

cells are to be visited determines the criticality e.g., if a cell is

the next to be visited then finding information about that cell is

assigned the highest priority while a cell that is not planned to

be visited for another 10 rounds gets low priority. The agents

then use an information seeking function that takes the two

rankings (confidence and criticality) as inputs and decides

whether the agent needs to communicate and if so which cell it

needs the information about. If it decides to communicate and

if another agent is currently present in the same cell then agent

sends a request-for-information message to that agent.

The listening agent attempts to explain as to why the

speaker sent it the message (e.g., was it sent to seek

information or to distract me from traveling) and depending on

that determination it may or may not decide to respond. If the

3,12,11,1

3,2

smell

2,21,2

3,32,31,3

3,12,11,1

3,2

smell

2,21,2

3,32,31,3

 4

agent decides to respond, it will offer the information about the

requested cell in exchange for information about a cell about

which it needs information. If the speaker agrees to the

exchange then the agents communicate information about the

cells.

On receiving information about a cell, an agent has to

decide whether to incorporate that information into its

knowledge-base or not. If it decides to incorporate the new

information then it has to decide how best to revise its existing

knowledge. If the new information confirms what the agent

already know about the cell then no revision is done. If, on the

other hand, the information received from another agent is

different from what the agent expects to find in that cell then it

attempts to explain the reason for the contradiction. If it can

find a possible explanation that it ignored in the past that

supports the received information, then it adopts the new

explanation and the new information and retracts its belief in

the old explanation and expectation. If the agent does not have

any information about that cell, it incorporates the received

information as ASSUMED belief. Otherwise, the agent rejects

the newly received information.

2) Formation of False Beliefs

Agents use symmetrical processes to form and revise beliefs in

the presence of treasures and wumpuses. Thus agent models

may contain false beliefs about the locations of the wumpuses

as well the locations of treasures. However, while the agents

prefer to travel towards a cell that they believe contains a

treasure, they avoid cells that they believe contain wumpuses

in them. This makes beliefs in the presence of wumpuses

relatively harder to confirm or disconfirm than beliefs in the

presence of treasures. The experiments described next were

designed to investigate the impact that this asymmetry has on

the patterns of false beliefs that the agents form.

3) Planning

Agents are required to generate paths which they would follow

to achieve their goals, known as plans. The planning

algorithm used is kept very simple as the focus is on belief

dynamics. The agents are given a goal-cell to be reached when

they are born. The agents simply include all the cells in the L-

shaped path that leads them to the goal. This plan is revised if

and when it suspects the presence of a wumpus in its previous

plan. After one goal is reached, the agent then tries to confirm

all the ‘ASSUMED’ treasures and ‘EXPECTED’ stenches it

has recorded in its path. Thus, the agent tries to make its

world model as accurate as possible.

III. EXPERIMENTS AND RESULTS

We designed a 10 x 10 version of MWW with ten agents

randomly placed at ten different locations. In the first set of

experiments I designed three different versions of MWW:

• The 5x5 version has 5 wumpuses and 5 treasures

• The 10x10 version has 10 wumpuses and 10

treasures, and

• the 20x20 version has 20 wumpuses and 20 treasures.

I allowed the simulation to run for 300 rounds. At the end of

that round I measured the following metrics:

• Average agent age is the average age of the ten

agents that survive after round 300.

• The average number of wumpus beliefs is the average

number of wumpus beliefs the surviving agents have

• The average number of treasure beliefs is the average

number of treasure beliefs the surviving agents have

• Average number of cells visited is the average

number of cells that 10 agent surviving at the end of

round 10 have visited.

Figure 1shows the results of Experiment I. The results for

average age show that 10x10 world proves to be the most

taxing for agents with average agent ages only being less than

30 rounds. Agents in 5x5 and 20x20 rounds, on the other hand,

have much higher average ages. This is explained by the

considering the average number of cells that the agents visit.

Agents in the 5x5 world visit a larger number of cells while

agents live longer in the 20x20 world by visiting fewer cells

and by thus deciding to stay in their cells. Agents in the 10x10

world, however, visit more cells than in 20x20 world but they

pay the price of this adventurism by having smaller average

ages.

In the second experiment, then we adopted the 10x10 world

and measured the proportion of false wumpus and treasure

beliefs that the agents had at the end of round 100. The

proportion of false wumpus/treasure beliefs is the proportion

between the number of false wumpus/treasure beliefs that the

agent has to the total number of wumpus/treasure beliefs that

the agent possesses.

 5

Figure 3: Results of Experiment 1. Each point is an average of 30

runs.

The results (Figure 4) show that after the initial drop, the

proportion of false wumpus beliefs remains relatively

unchanged regardless of how much the agents travel in the

world. False beliefs in the presence of treasures, however,

continue to decrease as agents with agent age. The agents who

survive the length of simulation (100 rounds) have few, if any,

false beliefs about treasures but on average 40% of their

beliefs about the presence of wumpuses are false.

In the third experiment (Figure 5), we allowed the agents to

communicate with other agents when they happen to meet in

the same cell. The agents request information about the cells in

their plan about which they are not sure of and they are about

to visit. Criticality and confidence play a major role in the

selection of this cell. The agents then offer information to the

other agent.

The results show that communication affects false wumpus and

treasure beliefs differently: the proportion of false wumpus

beliefs remains almost the same as in the without-

communication case while the proportion of false treasure

beliefs decreases significantly.

A. Discussion

Owing to our planning strategy, which focuses on improving

the accuracy of the world model, each agent tries to confirm as

many treasures as possible and mark as many stenches as

possible. Our results indicate that explanations that are harder

to confirm and disconfirm are more likely to be generated by

agents that attempt to explain their observations and revise

these explanations in light of the evidence. This suggests that

people should have more false beliefs about things that are

harder to confirm or disconfirm. There is some evidence to

suggest that that is the case. Bainbridge and Stark [15] made

confirmability the core of their theory of religion to argue that

religious beliefs are unconfirmable algorithms to achieve

rewards that are highly desired by people yet cannot be

obtained. Similarly, there is some evidence to suggest that

many false ethnic stereotypes people have are about things that

are harder to confirm or disconfirm such as the sexual

practices of the neighboring tribes. Our results also indicate

that introducing the ability to communicate with other agents

does not improve the condition of holding false beliefs about

unconfirmable objects while it significantly reduces the false

beliefs held about an object/event that is easier to confirm.

This can be thought of as a traveler claiming that his city has

good many skyscrapers and the listener then confirming it later

when he visits that city.

Without Agent Communication

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350

Average Agent Age

P
ro

p
o

rt
io

n
 o

f
F

a
ls

e
 B

e
li

e
fs

FalseWumpusProportion

FalseTreasureProportion

Figure 4: Results of Experiment 2, Without agent Communication

With Agent Communication

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300

Average Agent Age

P
ro

p
o

rt
io

n
 o

f
F

a
ls

e
 B

e
li

e
fs

falseWumpus

falseTreasure

Figure 5: Results of Experiment 3, With agent Communication

IV. CONCLUSION

This paper presents the architecture of a multiagent society

designed to study the dynamics of belief change in natural and

artificial societies. It also presents a multiagent domain

designed to test the capabilities of the proposed systems.

Preliminary results are encouraging as they indicate the

potential for the use of the proposed society.

0

10

20

30

40

50

60

0 5 10 15 20 25

Age

W mps_blfs

Trsr_blfs

Num_Visited

Number of wumpuses/treasures

 6

REFERENCES

[1] G. Weiss, Multiagent systems: A modern approach to

distributed artificial intelligence, Cambridge, MA: The

MIT Press, 1999.

[2] C. Castelfranchi & B. Kokinov (editors), Understanding

the dynamics of knowledge: Integrating models of

knowledge change, development and evolution in

cognitive science, epistemology, philosophy, artificial

intelligence, logic, and developmental, and evolutionary

psychology, Technical Report of the European Science

Foundation, 2005

[3] S. Moss, Game Theory: Limitations and Alternatives,

Journal of Artificial Societies and Social Simulation, 4(2),

2001.

[4] T. Schelling, Dynamic models of segregation, Journal of

Mathematical Sociology, 1, 143-186, 1977.

[5] Bainbridge, W. 1995. Neural Network Models of

Religious Belief , Sociological Perspectives, 38: 483-495.

[6] Doran, J. (1998). Simulating collective misbelief, Journal

of Artificial Societies and Social Simulation, 1(1).

[7] Epstein, J. (2001). Learning to be thoughtless: Social

norms and individual computation, Computational

Economics, 18(1), 9-24.

[8] C. E. Alchourròn, P. Gärdenfors, and D. Makinson

(1985). On the logic of theory change: Partial meet

contraction and revision functions. Journal of Symbolic

Logic, 50:510-530.

[9] Allen, J. (1987). Natural Language Understanding. Menlo

Park, CA, Benjamin Cummings.

[10] Bringsjord, S. and Ferrucci, D. (2000). Artificial

Intelligence and Literary Creativity: Inside the Mind of

BRUTUS, a Storytelling Machine. Mahwah, NJ, Erlbaum.

[11] Russell, S. & Norvig P. (1995) Artificial Intelligence: A

Modern Approach, Englewood Cliffs, NJ: Prentice Hall.

[12] M. A. Upal & R. Sun (editors) Cognitive Modeling and

Agent-based Social Simulation: Papers from the AAAI-06

Workshop (ISBN 978-1-57735-284-6), Menlo Park, CA:

AAAI Press, 2006.

[13] W. Kintsch, Comprehension: A Paradigm for Cognition,

Cambridge, NY: Cambridge University Press, 1998.

[14] R. C. Schank & R. P. Abelson, Scripts, plans, goals, and

understanding: an inquiry into human knowledge

structures, Hillsdale, NJ: Lawrence Erlbaum, 1977.

[15] Bainbridge, W. & Stark, R. 1987. A Theory of Religion,

New York: Lang.

[16] L. Smith, Sects and Death in the Middle East, The Weekly

standard, 11 (39).

1

Using Reflective Learning to Master Opponent Strategy in a
Competitive Environment

Mark A. Cohen (mcohen@lhup.edu)

Department of Business Administration, Computer Science, and Information Technology, Lock Haven University,
Lock Haven, PA 17745 USA

Frank E. Ritter (frank.ritter@psu.edu)
Steven R. Haynes (shaynes@ist.psu.edu)

College of Information Sciences and Technology, The Pennsylvania State University, State College, PA 16802 USA

Abstract

Cognitive models of people interacting in competitive
environments can be useful, especially in games and
simulations. To be successful in such environments, it is
necessary to quickly learn the strategy used by the opponent.
In addition, as the opponent adjusts its tactics, it is equally
important to quickly unlearn opponent strategies that are no
longer used. In this paper, we present human performance
data from a competitive environment. In addition, a cognitive
model that uses reflective learning is introduced and
compared to the empirical findings. The model demonstrates
that it is possible to simulate learning in an adversarial
environment using reflection and provides insight into how
such a model can be expanded.

Introduction
Cognitive models of people interacting in competitive
environments can be useful, especially in games and
simulations (Jones et al., 1999; Laird, 2001a, 2001b; Ritter
et al., 2002). To be successful in such environments, it is
necessary to quickly learn the strategy used by the
opponent. In addition, as the opponent adjusts its tactics it
is equally important to quickly unlearn opponent strategies
that are no longer used. The model presented here uses
learning by reflection to accomplish this task. This model
was created using a high-level tool that produces cognitive
models quickly, and with little or no programming. We
briefly take up the two important aspects of this project,
leaning from reflection and the role of variability in
performance.

Leaning By Reflection
Learning by reflection (or introspection) is one technique
that can be used to learn and unlearn an opponent’s
changing strategies while at the same time preserving the
variability in which people learn (e.g. Bass, Baxter, &
Ritter, 1995; Cox & Ram, 1999; Ritter & Wallach, 1998).

Learning by reflection is a form of metacognition that
allows the model to learn by reflecting on its performance,
and adjusting accordingly. When reflection reveals
previous actions that were beneficial, the model will be
more likely to repeat those same actions in similar
situations. However, when reflection reveals poor
performance, the actions that lead to that performance are

less likely to be repeated. Thus, learning by reflection is a
form of reinforcement learning (Russell & Norvig, 2003).

Reflective learning requires that both the cognitive model
and its environment are fully observable (Russell & Norvig,
2003). In other words, the model must be able to observe
the effects of its actions on the environment and other
models.

Variability
For a model’s behavior to be believable in a game or
simulation its performance must do more than match
average human behavior. Cognitive models must also
exhibit the same variability in behavior that a human
exhibits. When playing a game or participating in a
simulation, variable behavior is a crucial part of the realism
that these systems must portray.

Because reflective learning strategies are based on
probability, the behaviors they generate are not
deterministic. This allows reflective models to exhibit
variability in learning and thus performance.

The remainder of this paper describes a study done to
measure how quickly participants in a user study learn
opponent strategies while performing a competitive task,
and a cognitive model that was designed to exhibit similar
performance with equal variability.

Task
Lehman, Laird, and Rosenbloom (1996) in their A Gentle
Introduction to Soar use baseball repeatedly as an example.
This inspired us to implement a simple version of a baseball
game to study adversarial problem solving and support
people learning Soar. In a broader context, this environment
provides an accessible platform for the future study of
cognitive models interacting with other agents in a social
simulation (Sun, 2006).

Figure 1 shows the basic interface and one of the
feedback screens. In this game, participants play the role of
the pitcher competing against a series of agent-operated
batters. The goal of this game, as in baseball, is to get
batters out.

The baseball game described here was written in Java and
interacts with the Soar cognitive architecture using the Soar
Markup Language (SML Quick Start Guide, 2005). The
software and instructions on how to use it are available
online (acs.ist.psu.edu/herbal).

2

Figure 1: The Baseball Game Task.

Rules of the Game
There are two ways to get a batter out in this game: The
batter can get three strikes (a strike results when a batter
either swings and misses or does not swing at a good pitch),
or the batter can hit the ball directly at a fielder who catches
the ball.

There are also two ways for a batter to get on base in this
game: The batter can get four balls (a ball results when the
batter does not swing at a bad pitch), or the batter can hit the
ball in a way that prevents the fielders from catching it.

Acting as the pitcher, the participants in this study had a
choice of throwing either a fastball or a curveball to the
batter. Once they threw a pitch, the batter had a choice of
either swinging at the pitch or letting it go by. Both the
pitcher and batter are always aware of how many balls and
how many strikes the batter has. The rules shown in Table 1
describe how to determine the outcome of each pitch.

Table 1: Determining the outcome of a pitch

Pitcher Batter Response Outcome

Fastball Batter swings Contact is made that may
result in either an out
(50% of the time) or a hit
(50% of the time).

Fastball Batter does not
swing

The pitch will result in a
strike.1

Curveball Batter swings The pitch will result in a
strike.1

Curveball Batter does not
swing

The pitch will result in a
ball.1

Based on the rules described above, the most certain way

to get a batter out is to throw a curveball when the pitcher
thinks the batter will be swinging and to throw a fastball
when the pitcher thinks the batter is not going to swing.
Naturally, if the participant can learn what strategy the

1 If the batter gets three strikes, then they are out (called a

strikeout). If the batter gets four balls, they get a free pass to
first base (called a walk).

batter is using then they have a better chance of getting them
out.

Batter Strategies
Each participant faced the same five different batter
strategies in the same sequence during play. Strategy
changes were determined by the number of consecutive outs
that the participant recorded against a given strategy. When
a predetermined out threshold was reached, a strategy shift
by the batter would take place. The exact sequence of batter
strategies and their corresponding out thresholds were
defined in a configuration file that was used by the baseball
environment, but is unknown to the pitcher. The batter
strategies, along with their consecutive out thresholds, are
shown in Table 2. The strategies shown here are the ones
used in our user study in the order they are listed. However,
we do not propose this as the only order, or the best order.
The baseball game environment is easily configurable to use
other strategies and to present them in any order. This
illustrates the baseball task’s usefulness for studying the
effects of order on learning (Ritter, Nerb, O'Shea, &
Lehtinen, 2007).

Table 2: Batter Strategies in the Baseball Environment

Name Strategy Out

Threshold
Hacker Always swings 4

Aggressive Swings at the first pitch and
when there are fewer strikes
than balls, unless there are three
balls and two strikes

7

Random Randomly chooses when to
swing

5

Chicken Never swings 4

Alternate Swings if the last pitch was a
fastball and does not swing if it
is the first pitch or the last pitch
was a curve

7

To make it clear exactly how strategy changes took place
during the game, an example is provided.

Strategy Shift Example The participant begins by facing
batters that use the Hacker strategy. Because the
consecutive out threshold for this strategy is 4, the
participant continues to face batters that use the Hacker
strategy until they get 4 consecutive batters out. At this
point in time, the strategy shifts to the Aggressive strategy
and a new out threshold of 7 is in effect. The Aggressive
strategy is then used by the batters until 7 batters are retired
consecutively. Game play continues in this fashion until the
participant reaches the fifth and final strategy (Alternate).
When 7 consecutive Alternate batters are retired by the
pitcher the game ends.

3

Performance Measure
The participant’s ability to learn a particular strategy was
measured quantitatively using a measure of pitching
efficiency (PE). The following formula was used to
calculate pitching efficiency:

PE = Ns / Ts

Where Ns is the number of batters using strategy s that were
faced by the participant, and Ts is the consecutive out
threshold for strategy s. A decrease in PE indicates an
increase in the efficiency of the pitcher. A value of 1.0 for
PE indicates the most efficient pitching strategy. For
example, if a participant faced 14 Aggressive batters before
they could retire 7 in a row, the participant’s pitching
efficiency would be 14 / 7, or 2.

Method
Undergraduate Computer Science students at Lock Haven
University participated. A total of 10 participants
performed the baseball task. Nine of the 10 participants
were male.

After signing a consent form, each participant was given
instructions explaining the rules of the game. The
instructions were similar to those presented here except the
information in Table 2 was not provided. As a result, the
participant did not know what type of strategies to expect, or
when strategy changes would take place. However, the
participants were aware that strategies could change during
the game.

Participants were given as much time as needed to
complete the task and were allowed to consult the
instruction sheet during play. All the participants seemed to
have no problem understanding the game and no questions
were asked while performing the task.

Models
A total of six cognitive models were written to conduct the
study described here. All six models were written using the
Herbal high-level language and development environment
(Cohen, Ritter, & Haynes, 2005).

The Herbal high-level language is based on the Problem
Space Computational Model (PSCM) (Newell, Yost, Laird,
Rosenbloom, & Altmann, 1991) and produces productions
that can run in both the Soar cognitive architecture (Laird &
Congdon, 2005) and Jess (Friedman-Hill, 2003). In this
study, the Herbal generated Soar productions were used.
However, Jess productions would have also been adequate.

Because of the use of the Herbal high-level language and
graphical editor, the creation of the models described here
required only an understanding of the PSCM (which
provided an infrastructure for model organization) and some
visual modeling techniques. This serves as an example of
how Herbal can provide modelers without a strong
programming background access to the complicated
machinery used by architectures that may traditionally be
out of their reach. As these models progress towards more
sophisticated learning algorithms, the simplified access to
Soar and the PSCM will become even more valuable.

All of the models described here are available online as
examples at the Herbal website (acs.ist.psu.edu/herbal).

Batter Models
Five cognitive models were written to represent the
strategies used by the batter (Hacker, Aggressive, Random,
Chicken, and Alternate). These models are not capable of
learning and served only as opponents that exhibit the
behavior described in Table 2.

Pitcher Model
A sixth model was written to play the role of the pitcher.
The goal of the pitcher model was to exhibit behavior
similar to that demonstrated by the participants. Unlike the
batter strategy models, the pitcher model was able to learn
using reflection. More specifically, this model operated
within two problem spaces: one to deliberate what pitch to
throw next, and one to reflect on recent performance and
modify future deliberation. The formulation of an explicit
reflection phase was simplified by the use of the PSCM and
Herbal.

The pitcher model started with an equal probability of
throwing a curveball or a fastball. Within the explicit
reflection problem space, the pitcher model considers the
following features of the environment: the previous number
of balls and strikes on the batter, the previous pitch thrown,
and the outcome of that pitch. If the outcome is positive
(e.g., a strike was called or the batter struck out) the pitcher
adjusts a probability so that it is more likely to throw the
same pitch the next time it encounters this situation. If, on
the other hand, the outcome was negative (a ball or contact
by the batter, including contact resulting in an out), and the
pitcher had previously experienced a positive outcome in
this situation (a strike or a strikeout), the probability of
throwing the same pitch in that situation was decreased.

The probability of an action occurring was adjusted by
altering working memory so that more or fewer indifferent
operators were proposed to throw that pitch type in a given
situation. In other words, positive events lead to episodic
memory that influences future action. Alternatively,
negative events remove episodic memory, reducing this
influence. Without prior positive outcomes in a particular
situation, no episodic memory elements exist and negative
outcomes in that situation are ignored.

An alternative approach to episodic memory would be to
use the numeric-indifferent preference in Soar (Laird &
Congdon, 2005). However, the Herbal high-level language
did not support this at the time these models were written.

Model Parameters
The pitcher model takes two parameters: the learning rate
and the unlearning rate. The learning rate specifies how
quickly the model will commit to throwing a particular pitch
in a particular situation; in other words, how quickly the
probability increases given a positive outcome. The
unlearning rate specifies how quickly the model will reduce
this learned commitment. The best values for these learning
rates almost certainly depend on the nature of the particular
task.

4

Considering the relatively simple rules in the baseball task
described above, it is expected that participants will be able
to learn strategies quickly. In addition, it is hypothesized
that participants will at first be reluctant to unlearn until
they are sure that a strategy shift has taken place. Given
persistent negative feedback on a previously learned
response, participants should eventually accelerate their
unlearning rate.

Looking at the task environment more closely, further
justification of these parameter values can be found in the
fact that four of the five batter strategies are deterministic.
When a particular pitch works for a batter in a specific
situation, it will continue to work until a strategy shift takes
place. After a particular pitch stops working for a batter, it
can be assumed that a strategy shift has occurred.

As a result, in an effort to match human behavior the
pitcher model described here was equipped with a fast
learning rate and an initially stubborn, but later accelerating,
unlearning rate. Figure 2 depicts the learning and
unlearning rates used by the model.

Figure 2: Learning and Unlearning Rates Used by the
Model.

Results
Because a primary goal of this work was to produce a model
that not only matches the average pitching efficiency, but
also matches the variability in pitching efficiency, the
cognitive models created here are not deterministic. This
allowed us to consider each run of the model as being
equivalent to a participant run. To reduce any sampling
error with this theory, the model was run 100 times.

Table 3 shows the results of the participant study and of
the model executions. The average pitching efficiency and
the standard deviation of the pitching efficiency are listed
for all participants and all model runs. Recall that the
smaller the pitching efficiency the more efficient the pitcher,
and the most efficient strategy has a PE equal to 1.0.

Figure 3 visualizes the data listed in Table 3. Each bar in
Figure 3 represents the average pitching efficiency as
defined in the Methods section. White bars represent the
participant data and shaded bars represent the model data.
The error bars in Figure 3 signify one standard deviation
from the average pitching efficiency.

Table 3: Pitching Efficiency against Each Batting Strategy
for Participants and the Learning Pitching Model.

 Participants

(n = 10)
Model

(n = 100)
Strategy Mean StdDev Mean StdDev
Hacker [4] 1.53 0.80 1.69 0.70

Aggressive [7] 1.81 1.62 1.13 0.20

Random [5] 5.00 6.24 5.36 4.67

Chicken [4] 1.03 0.08 1.25 0.33

Alternate [7] 1.54 0.72 3.53 2.01

Discussion
Analysis of Figure 3 reveals that the model’s behavior
matched both the participant’s average performance, and
variability in performance, for three of the five presented
strategies. However, for two of the strategies the model did
not satisfactorily reflect the participant’s performance.

Figure 3: Comparison of Learning Pitching Model and
Participants for the Batting Strategies. SDs are shown as

error bars.

Hacker and Chicken Strategies
The model’s performance matched very well for both the
Hacker and Chicken strategies. Given the simplicity of the
learning strategy used, this is an interesting result. Both the
participants and the model were able to retire the requisite
number of consecutive batters quickly and without much
variability. Interestingly, the Hacker strategy proved to be
more difficult for both the participants and the model. This
may be because the very aggressive strategy used by the
Hacker makes it more likely for the batter to get a hit when
the pitcher made a mistake. On the other hand, the reserved
approach used by the Chicken strategy only punishes
mistakes with a single ball as opposed to a hit. In this
baseball task, an aggressive batter strategy is more
dangerous to the pitcher than a timid one.

5

Random Strategy
As expected, the variation of the pitching efficiency against
the Random strategy was quite large for both the
participants and the model. Both the participant and the
model could not consistently figure out the random strategy,
because, well, it was random. The difference between the
pitching efficiency for the model, and that of the
participants, might be related to the number of participants
run. Due to the random nature of this strategy, additional
participants might cause these averages to match more
closely.

Aggressive and Alternate Strategies
Unexpectedly, the model did not do as good of a job
matching the Aggressive and Alternate strategies. The order
in which these strategies are presented may play an
important role here. One possible explanation for these
problems is that the unlearning rate used by the model is not
fast enough. While good enough to match the transitions
between some strategies, the unlearning rate may need to be
faster in other cases. To understand this theory, the
transitions from the Hacker strategy to the Aggressive
strategy, and from the Chicken strategy to the Alternate
strategy, need to be examined more closely.

Transition From Hacker to Aggressive Because the
Hacker strategy always swings, the pitcher must learn to
throw a series of curveballs to get a batter out consistently.
In addition, the inability to quickly unlearn the Hacker
strategy is not immediately detrimental when an Aggressive
batter follows the Hacker strategy. For example, if the
pitcher continues to throw a series of curveballs to an
Aggressive batter, the batter will not get on base until after
the sixth curveball is thrown. This gives the pitcher several
pitches, and therefore a lot of time to unlearn the strategy.

On the other hand, if the participant or model quickly
unlearns the Hacker strategy, it will lead to throwing an
early fastball which will result in a 50% chance of the batter
getting a base hit. In other words, in this particular case
quickly unlearning the previous strategy is not beneficial.
This might explain why the model performed better against
the Aggressive strategy; the model simply does not unlearn
as quickly as the participants did, and this proved to be more
efficient in this particular ordering of strategies.

Transition From Chicken to Alternate The opposite can
be said about the transition from the Chicken strategy to the
Alternate strategy. A series of consecutive fastballs will get
a batter out using the Chicken strategy because this strategy
never swings. However, if this knowledge goes unlearned,
the same series of fastballs thrown to an Alternate batter
will result in frequent hits because the Alternate batter
swings immediately after a fastball is thrown. In this
particular case, failure to quickly unlearn the Chicken
strategy results in poor performance and might explain why
the model did not perform as well as the participants in this
case. Once again, it appears as if the model did not unlearn
the learned strategy quickly enough in this particular
ordering of strategies.

Unfortunately, our reflective learning strategy is
fundamentally limited in how quickly it can unlearn. This
limit may be a major reason for the model’s inability to
unlearn the Chicken strategy quickly enough. Recall that
the learning algorithm used here cannot unlearn unless it has
already encountered positive feedback. This causes a
problem if the model’s initial encounter with a strategy
involves a series of negative outcomes, which is precisely
the case when transitioning from Chicken to Alternate.
Augmenting the algorithm to use Soar’s numeric-indifferent
preference might eliminate this limitation and possibly
improve the model’s fit.

Additional Explanations Factors other than unlearning rate
may have also had an effect on the model’s inability to
match the participant’s behavior. For example, if the
pitcher follows the simple pattern of throwing a fastball,
followed by curve, followed by fastball, they will always
get the Alternate batter out. While speculative, it is possible
that participants were quick to recognize this alternating
pattern while the model did not treat alternating patterns any
differently from other patterns.

Conclusions
The paper describes a study to measure the learning of
participants performing a competitive task. This task is
based on the game of baseball and consists of a participant
pitching to a series of batters that use a set of different
strategies. Because this task is inspired by the example
introduced in A Gentle Introduction to Soar, many Soar
programmers may already be familiar with its attributes.
One outcome of this work is that, over time, the continued
use of baseball as a running example might help beginners
learn modeling.

In addition, this paper introduced a Soar model written
using the Herbal high-level language. This model used a
reflective learning process to learn and unlearn various
strategies. Another outcome of this work is a downloadable
example of how Soar models that learn can be written
without directly writing Soar productions. Easily obtainable
examples like this will hopefully make Soar models
available to a wider audience.

The model’s behavior was compared to participants’
performance and was shown to match both the participants’
average performance and variability in performance against
many of the presented batting strategies. This result
demonstrates that cognitive models that compete in
adversarial environments using introspective learning need
not be complicated and can be written quickly and easily
using Herbal.

Finally, for the strategies that the model did not
satisfactorily master, insight into the limitations of the
algorithm used, and how people possibly perform this task
was gained. The relationship of the sequences of strategies
and how learning is transferred was explored. These results
motivate future work that will lead to improvements in the
learning algorithm, and in the Herbal high-level language.

6

Future Work
The results reported here provide some insights to guide
future work. To start, the limitations of the learning
algorithm discovered here can be addressed by exploring
more sophisticated learning mechanisms (e.g. the meta-
learning routines described in (Sun, 2001)).

Further work can also be done to alter the reflection
strategy so that certain patterns are easier to learn than
others. Patterns that people recognize quickly (such as
alternating patterns) might create more intense episodic
memories in the model. This change would test the theory
that the participants performed well in cases where the
solution consisted of a simple and quickly recognizable
alternating pattern.

Additional improvements to the model could also be
made by enhancing the reflective process so that positive
experiences are no longer required in order to benefit from
negative experiences. In the absence of positive learned
events, negative reflection should still lead to a decrease in
the probability of repeating the action. One solution could
involve equally increasing the probability of all other
possible actions when an event results in a negative
outcome. This would be easier to accomplish if the Soar
numeric-indifferent preference was used to control operator
probabilities, and this capability is currently being added to
the Herbal high-level language.

There is also scope to explore other parts and versions of
the baseball task. For example, the environment and models
can be expanded to include other batting strategies, other
batter sequences, batting tournaments, and learning batters.
In addition, the model created here could be transformed
into an Herbal library that can be reused in future models.

Finally, because the Herbal development environment
automatically creates both Soar and Jess models, the
opportunity exists for comparisons of a single Herbal high-
level model running in two very different architectures.

Acknowledgments
The development of this software was supported by ONR
(contract N00014-06-1-0164). Comments from Mary Beth
Rosson and Richard Carlson have influenced this work.
Recognition is also given to the undergraduate students that
agreed to participate in this study.

References
Bass, E. J., Baxter, G. D., & Ritter, F. E. (1995). Creating

models to control simulations: A generic approach. AI
and Simulation Behaviour Quarterly, 93, 18-25.

Cohen, M. A., Ritter, F. E., & Haynes, S. R. (2005). Herbal:
A high-level language and development environment for
developing cognitive models in Soar. In Proceedings of
14th Behavior Representation in Modeling and
Simulation, 133-140. University City, CA.

Cox, M. T., & Ram, A. (1999). Introspective multistrategy
learning: On the construction of learning strategies.
Artificial Intelligence, 112, 1-55.

Friedman-Hill, E. (2003). Jess in action: Rule-based
systems in Java. Greenwich, CT: Manning Publications
Company.

Jones, R. M., Laird, J. E., Nielson, P. E., Coulter, K. J.,
Kenny, P., & Koss, F. V. (1999). Automated Intelligent
Pilots for Combat Flight Simulation. AI Magazine, 20, 27-
41.

Laird, J. E. (2001a). It knows what you're going to do:
Adding anticipation to a Quakebot. In Proceedings of
Fifth International Conference on Autonomous Agents,
385-392. New York, NY: ACM Press.

Laird, J. E. (2001b). Using a computer game to develop
advanced AI. IEEE Computer, 34(7), 70-75.

Laird, J. E., & Congdon, C. B. (2005). The Soar User's
Manual Version 8.6: The Soar Group: University of
Michigan.

Lehman, J. F., Laird, J. E., & Rosenbloom, P. S. (1996). A
gentle introduction to Soar: An architecture for human
cognition. In D. Scarborough & S. Sternberg (Eds.), An
invitation to cognitive science (Vol. 4). New York: MIT
Press.

Newell, A., Yost, G. R., Laird, J. E., Rosenbloom, P., &
Altmann, E. (1991). Formulating the problem space
computational model. In R. F. Rashid (Ed.), Carnegie
Mellon Computer Science: A 25-Year commemorative
(pp. 255-293). Reading, MA: ACM-Press (Addison-
Wesley).

Ritter, F. E., Nerb, J., O'Shea, T., & Lehtinen, E. (Eds.).
(2007). In order to learn: How the sequence of topics
influence learning. New York: Oxford University Press.

Ritter, F. E., Shadbolt, N. R., Elliman, D., Young, R.,
Gobet, F., & Baxter, G. D. (2002). Techniques for
modeling human performance in synthetic environments:
A supplementary review. Wright Patterson Air Force
Base, OH: Human Systems Information Analysis Center.

Ritter, F. E., & Wallach, D. P. (1998). Models of two-
person games in ACT-R and Soar. In Proceedings of
Second European Conference on Cognitive Modeling,
202-203. Nottingham: Nottingham University Press.

Russell, S., & Norvig, P. (2003). Artificial Intelligence: A
Modern Approach (2nd ed.). Upper Saddle River, NJ:
Prentice Hall.

SML Quick Start Guide. (2005): ThreePenny Software
LLC.

Sun, R. (2001). Meta-learning processes in multi-agent
systems. In Proceedings of Intelligent Agent Technology,
210-219. Maebashi, Japan: World Scientific, Singapore.

Sun, R. (Ed.). (2006). Cognition and multi-agent
interaction. Cambridge University Press: New York.

Toward a Large-Scale Model of Language Comprehension in ACT-R 6

Jerry Ball1 (Jerry.Ball@mesa.afmc.af.mil)
Andrea Heiberg2 (Andrea.Heiberg@mesa.afmc.af.mil)

Ronnie Silber3 (Ronnie.Silber@mesa.afmc.af.mil)
1Air Force Research Laboratory/2L-3 Communications/3Lockheed-Martin

6030 S. Kent St.
Mesa, AZ 85212 USA

Abstract

We are developing a large-scale model of language
comprehension in ACT-R 6 for use in the creation of a
synthetic teammate that can function as the Air Vehicle
Operator (AVO) in a three-person simulation of an Unmanned
Aerial Vehicle (UAV) team performing a reconnaissance
mission. The use of ACT-R 6 to implement the core
components of this system reflects the strong cognitive
modeling orientation of this research. However, the focus is on
creating cognitively plausible linguistic and associated non-
linguistic representations, rather than modeling the fine-
grained time course of language processing as is more typical
of ACT-R models. In this regard, an empirical study aimed at
discovering evidence of linguistic representations is discussed.
Beside the focus on linguistic and non-linguistic
representations, the large-scale nature of this effort
distinguishes it from typical cognitive modeling research.

Introduction
We are using the ACT-R 6 cognitive architecture and
modeling environment (Anderson et al., 2004; Anderson &
Lebiere, 1998) for development of a synthetic teammate.
The long-term goal of this research is to develop language-
enabled synthetic entities which can be integrated into
training simulations. To achieve this goal without detriment
in training, the synthetic entities must be capable of closely
matching human behavior, including human language
behavior. The initial application is the creation of a
synthetic teammate capable of performing the functions of a
UAV AVO (or pilot) in the three-person Cognitive
Engineering Research on Team Tasks (CERTT) simulation
(Cooke & Shope, 2005).

This paper describes the current implementation of the
language comprehension component of the system in ACT-
R 6. The paper begins with a short description of the theory
of linguistic representation and language processing
underlying model development. It continues with a
description of the CERTT lab team task simulation.
Following this, the current version of the model is
described. A brief discussion of modeling and development
tools which facilitate development follows. The paper
concludes with a discussion of model validation, describing
an empirical study to validate the linguistic representations
which are created during processing. Overall, we follow the
approach to psycholinguistic research espoused in Crocker
(2005) in building a large-scale, if qualitative, model, rather

than focusing on the quantitative modeling of narrowly
defined and often pathological language processing
phenomena.

Linguistic Representation
The language comprehension model is founded on basic
principles of Cognitive Linguistics (Langacker, 1987, 1991;
Talmy, 2000; Lakoff, 1987) and Construction Grammar
(Fillmore, 1988; Fillmore and Kay, 1993; Goldberg, 1995).
In Cognitive Linguistics, all grammatical elements have a
semantic basis, including parts of speech, grammatical
markers, phrases and clauses. Understanding of language is
embodied and based on experience in the world (Lakoff &
Johnson, 1999). Categorization is a key element of
linguistic knowledge. Categories are seldom absolute,
exhibiting, instead, effects of prototypicality, base level
categories (Rosch, 1978), family resemblance
(Wittgenstein, 1953), fuzzy boundaries, radial structure and
the like (Lakoff, 1987). Our linguistic capabilities derive
from basic cognitive capabilities—there is no autonomous
syntactic component separate from the rest of cognition.
Knowledge of language is for the most part learned and not
innate. Abstract linguistic categories (e.g., noun, verb,
referring expression) are learned on the basis of experience
with multiple instances of words and expressions which are
members of these categories, with the categories being
abstracted and generalized from experience.

Construction Grammar is a linguistic theory based on the
notion of constructions. “Constructions are stored pairings
of form and function, including morphemes, words, idioms,
partially lexically filled and fully general linguistic
patterns…any linguistic pattern is recognized as a
construction as long as some aspect of its form and function
is not strictly predictable from its component parts” and
even fully predictable constructions may be stored “as long
as they occur with sufficient frequency” (Goldberg, 2003).

The focus of this research is on the grammatical encoding
of Referential and Relational meaning (Ball, 2005). In
English, these two dimensions of meaning are typically
encoded in distinct grammatical poles—a referential pole
and a relational pole—with a specifier functioning as the
locus of the referential pole and a head functioning as the
locus of the relational pole. For example, in the expression

The pilot

the determiner “the” functions as a specifier and the noun
“pilot” functions as the head. The specifier and head
combine to form a referring expression, in this example an
object referring expression (or nominal). Words in English
divide into two basic classes: relation (verb, adjective,
preposition, adverb) and object (noun, pronoun, proper
noun). Relational words presume the existence of other
words which express the arguments they relate. Most
constructions center on some relational word (e.g.,
transitive verb construction, predicate adjective
construction) which functions as the head of the
construction, and is the locus for the encoding of relational
meaning—with the construction as a whole constituting a
situation referring expression (or clause).

Linguistic representations are perceptually grounded in
non-linguistic representations of the objects and situations
to which they refer. The representations of objects and
situations are themselves learned from perceptual-motor
(i.e., bodily) experience (cf. Barsalou, 1999). There are no
purely abstract concepts that are devoid of perceptual
grounding as is assumed in many cognitive theories (cf.
Anderson et al., 2007). Concepts may be highly abstract,
but they ultimately derive their meaning from a perceptual
chain of experience (cf. Harnad, 1990)—in the limiting case
perceptual experience of linguistic items themselves. A
situation model (Kintsch, 1998; Zwann & Radvansky,
1998) is populated with instances of objects and situations
activated by the linguistic input and non-linguistic context.

Construction-Driven Language Processing
The processing mechanism is based on the activation,
selection and integration of constructions corresponding to
the linguistic input (Ball, 2007). Activation is a parallel
process that biases or constrains the selection and
integration of corresponding declarative memory (DM)
elements into a linguistic representation. Based on the input
and prior context, a collection of DM elements is activated
via the parallel, spreading activation mechanism of ACT-R.

The selection mechanism is based on the serial retrieval
mechanism of ACT-R—an alternative to the parallel
competitive inhibition mechanism typical of connectionist
models (cf. Vosse & Kempen, 2000). Retrieval occurs as a
result of selection and execution of a production—only one
production can be executed at a time—whose right-hand
side provides a retrieval template that specifies which type
of DM chunk is eligible to be retrieved. The single, most
highly activated DM chunk matching the retrieval
template—subject to random noise—is retrieved. The
retrieval template varies in its level of specificity in accord
with the production selected for execution. For example,
when a production that retrieves a DM chunk of type word
executes, the retrieval template may specify the form of the
input (e.g., “airspeed”) in addition to the DM type word.
When a production that retrieves a DM chunk of type part
of speech (POS) executes, the retrieval template may
specify the word without specifying the POS—allowing the
biasing mechanism to constrain POS determination. There

is no assumption that humans use POS labels during
language processing, but it is assumed that they categorize
word into POS categories.

The retrieved DM chunk is matched on the left-hand side
of another production which, if selected and executed,
determines how to integrate the DM chunk into the
representation of the preceding input. Production selection
is driven by the matching of the left-hand side of the
production against a collection of buffers (e.g., goal,
retrieval, context, short-term working memory) which
reflect the current goal, current input and previous context.
The production with the highest utility—learned on the
basis of prior experience—which matches the input and
prior context, is selected for execution—subject to random
noise. A default production which simply adds the retrieved
DM chunk to a short-term working memory (ST-WM)
stack (Ericsson & Kintsch, 1995) executes if no other
production matches. The ST-WM stack—which is limited
to four linguistic elements—constitutes part of the context
for production selection and execution, and implements an
extension to the ACT-R architecture.

A key element of the integration process is a mechanism
of context accommodation which provides for serial
processing without backtracking. According to Crocker
(1999), there are three basic mechanisms of language
processing: 1) serial processing with backtracking, 2)
parallel processing, and 3) deterministic processing.
Context accommodation is an alternative non-backtracking,
serial processing mechanism. The basic idea behind this
mechanism is that when the current input is unexpected
with regard to the previously built structure, the structure is
modified to accommodate the current input without
backtracking. This mechanism is demonstrated using the
example “no airspeed or altitude restrictions”. The
processing of the word “no” leads to retrieval of an object
referring expression (ORE) construction containing the
functional elements specifier and head (not all functional
elements are shown):

 [spec head]obj-refer-expr

 “No” is integrated as the specifier in this construction and
expectations are established for the occurrence of the head:

 [nospec head]obj-refer-expr

This ORE construction is made available in the ST-WM
stack to support subsequent processing. The processing of
the noun “airspeed” leads to activation and selection of a
head construction which contains the functional elements
modifier and head, with “airspeed” functioning as the head:

 [mod airspeedhead]head

The head construction is integrated into the ORE
construction.

 [nospec [mod airspeedhead]head]obj-refer-expr

The processing of the conjunction (or disjunction) “or”
leads to its addition to the ST-WM stack since the category

of the first conjunct of a conjunction cannot be effectively
determined until the linguistic element after the conjunction
is processed—due to rampant ambiguity associated with
conjunctions. Note that delaying determination of the
category of the first conjunct until after processing of the
linguistic element following the conjunction provides a
form of deterministic processing reminiscent of Marcus’s
deterministic parser (1980). The processing of the noun
“altitude” in the context of the conjunction “or” and the
ORE “no airspeed” with head noun “airspeed” results in the
accommodation of “altitude” such that the head of the ORE
is modified to reflect the disjunction of the nouns
“airspeed” and “altitude”.

 [nospec [mod
 (airspeed or altitude)head]head]obj-refer-expr

The processing of “restrictions” in the context of the ORE
“no airspeed or altitude” results in the accommodation of
“restrictions” such that the current head “airspeed or
altitude” becomes the modifier and “restrictions” becomes
the head. The final representation has the form:

 [nospec [(airspeed or altitude)mod
restrictionshead]head]obj-refer-expr

This representation was arrived at using a serial processing
mechanism without backtracking, despite the rampant local
ambiguity of the utterance!

Figure 1: No altitude or airspeed restrictions

Context accommodation is a powerful serial processing
mechanism which overcomes the limitations and cognitive
implausibility of serial processing with algorithmic
backtracking, full parallel processing, and full deterministic
processing. Context accommodation is closely related to
Lewis’s notion of “limited repair parsing” (Lewis, 1998),
although context accommodation is considered part and
parcel of the normal processing mechanism and is not
viewed as a repair mechanism. Regarding parallel
processing, it is not cognitively plausible to carry forward
more than a few possible representations at once, which

means that a mechanism like context accommodation is
needed to handle the case where the correct parse isn’t in
the parallel spotlight. Likewise, deterministic mechanisms
require delaying integration of linguistic elements for
indeterminate periods—requiring their separate
representation—which is likely to exceed the limited
capacity of ST-WM if used extensively.

Synthetic Teammate
The CERTT Lab is a research facility for studying team
performance and cognition in complex settings. CERTT's
UAV-STE (Synthetic Task Environment) is a three-person
task in which each team member is provided with distinct,
though overlapping, training; has unique, yet
interdependent roles; and is presented with different and
overlapping information during the mission (Cooke &
Shope, 2005). The overall goal is to fly the UAV to
designated target areas and to take acceptable photos at
these areas. The Air Vehicle Operator (AVO) controls
airspeed, heading, and altitude, and monitors UAV systems.
The Payload Operator (PLO) adjusts camera settings, takes
photos, and monitors the camera equipment. The Data
Exploitation, Mission Planning, and Communication
Operator (DEMPC) oversees the mission and determines
flight paths under various constraints. To successfully
complete a mission, the team members need to share
information with one another in a coordinated fashion.

Most communication is done via microphones and
headsets, although some involves computer messaging. A
set of initial speech transcripts has been collected from the
UAV-STE for a number of teams. These transcripts are
being used to guide development of the model. A portion of
a transcript appears below.

PLO: AVO, can I please be about 3000 feet or higher,
please? Cancel. Cancel.

AVO: Do I need to change my airspeed? I mean my
altitude.

DEMPC: Once I get the first, uh, sequence figured out, I'll
let you know. First waypoint LVN is an, uh, ROZ access
point. There is no flight restrictions, but the, uh, radius is,
uh, 2.5 miles. I'm pretty sure you can take a bearing
towards H-area now. It looks like you're in within the 2.5
required for this entry point.

PLO: AVO, can I please, uh, keep, uh, altitude over 3000
feet for this picture, please? Can you give me a range?

DEMPC: The next target H-area has a range of 5 miles.
PLO: Copy.
AVO: Was that above 3000?
PLO: Yes, please. Can you also keep this current airspeed?
AVO: OK.
DEMPC: Next waypoint is H-area. There is no altitude

restriction, but the speed restriction is between 50 & 200.

The language used by team members is not constrained;
there is no special restrictive grammar. Over the three

transcripts analyzed so far, the average number of
utterances is 2300 per transcript; average utterance length is
7 words. There are 1300 unique words across transcripts,
including 50 special vocabulary items related to the task. In
each transcript, an average of 27% of the words are unique
to that transcript.

The transcripts contain a number of grammatical features
that are challenging from a language processing
perspective:

Multiword expressions: “Picking up the pace.”
Complex object referring expression (or nominal):
o “First waypoint LVN is an, uh, ROZ access point.”
o “Do you have any additional altitude or speed

restrictions that I need to get from you?”
o “Can I get the 2, 3, 4, and 5 current setting ranges?”
Anaphora:
o “PLO, is this a photo?” (current waypoint)
o “Does that make sense?” (previous statement)
Complex verb argument structure: “Can I keep altitude
over 3000 feet for this picture?”
Corrections:
o “DEMPC to PLO, effective radius is, uh, 2, uh, 5

miles, sorry about that.”
o “Do I need to change my airspeed? I mean my

altitude.”
Ambiguous closed-class words, e.g., “that”:
o Complementizer: “They just told me that there's gonna

be a priority target in this area that we're entering.”
o Object referring expression: “You already told me

that.”
o Determiner: “Got a good photo on that one.”

The Current Model
The language comprehension model is currently capable of
processing a range of grammatical constructions attested in
the transcripts, including:

Intransitive verb: “You can go.”
Transitive verb: “We already hit [OBJ ROW].”
Ditransitive verb: “You can give [IOBJ me] [OBJ R-STE].”
Verb taking clausal complement: “You told [IOBJ me]
[SITCOMP the altitude restriction was below 3000 feet].”
Auxiliary verb: “I would have had a wrong picture.”
Predicate nominal: “First waypoint is LVN.”
Predicate adjective: “Altitude is stable.”
Predicate preposition: “We are in those constraints.”
Attributive adjective modifier: “It's a good picture.”
Adverbial modifier: “Our altitude still should be fine.”
Complex nominal: “The next photographic target point is
M-STR.”
Nominal conjunction: “We will maintain current airspeed
and altitude.”
Sentence conjunction: “The entry is KGM and the exit is
FRT.”

The model creates a linguistic representation of the input,
but doesn’t yet map that representation to the corresponding
objects and situations in the situation model.

The language comprehension model is approaching a
scale and complexity atypical of most cognitive models.
Verifying that the model generates theoretically motivated
linguistic representations is an important on-going aspect of
the project. Inputs to the model are comprised of actual
utterances from the UAV-STE transcripts and a set of
canonical phrases and sentences. The verification strategy
includes running the model against this set of inputs, and
testing that the model produces the expected output.

The model generates linguistic representations which
include such information as phrase constituency,
predicate/argument relations, head/modifier relations, and
head/specifier relations. Linguistic representations are
complex structures of DM chunks. For testing, the DM
chunk structure is converted into a graphical representation
(automatically generated with phpSyntaxTree, Eisenbach &
Eisenbach, 2006) shown in Figure 2 (below).

At a gross level, testing is fully automated. The complex
output structure (e.g., Figure 2) is traversed in left-to-right
order, and the terminal symbols are reassembled into a
string (e.g., “I increased the airspeed”). This output string is
compared to the input string; any mismatches are flagged
for further investigation. At a more detailed level of testing,
the output representation is hand-checked to ensure its
validity. Valid output representations are stored as the
known-good baseline. A capability to dynamically visualize
the evolving DM representation during the processing of
each word in an input text also exists (Heiberg, Harris &
Ball, 2007). Any further changes to the model may be
easily regression tested by regenerating the outputs, and
comparing them to the known-good baseline with an
automated file comparison tool. This set of methodologies
taken together helps facilitate the development of a large
scale and complex model.

Figure 2 Graphical Representation

Model Validation
We are committed to the development of a cognitively
plausible model of language comprehension. However, we
are not modeling the fine-grained time course of processing
during language comprehension. As Just and Carpenter
(1987) note, “in most cases…syntactic and semantic
analyses occur concurrently with other processes that are
longer and more variable in duration”. It is only in the
processing of unusual texts like Garden-Path and center
embedded sentences that syntactic and semantic influences
on processing are exposed. Instead, our focus is on
validating the linguistic and non-linguistic representations
that are generated during processing of more ordinary texts
as reflected in our UAV team task corpus. Our approach
aligns with Crocker (2005), who argues for “an alternative
approach to developing and assessing theories and models
of sentence comprehension” in which “a model’s coverage
should not be limited to a few ‘interesting’ construction
types, but must also extend to realistically large and
complex language fragments, and must account for why
most processing is typically rapid and accurate”.

To validate the model, we have devised a multi-part
empirical study to identify the kinds of linguistic
representations that humans create during language
processing. Some preliminary data from a pilot study
involving 20 subjects are reported.

In one part of this study subjects are asked to determine if
paired expressions differ in meaning. For example, does
“the man bit the dog” differ in meaning from “the dog bit
the man” (all 20 subjects said “yes”)? Does “this book”
differ in meaning from “that book” (all 20 subjects said
“yes”)? Does “the old house on the hill” differ from “an old
house on a hill” (14 subjects said “yes”)? A difference in
meaning indicates that either the different lexical items or
the different structural arrangement of the lexical items in
the paired expressions affects the meaning.

In another part, subjects are asked to group expressions
into meaningful units of various sizes given the overall
meaning of the linguistic expression. A key question for
this part is whether the preferred representation of a clause
aligns with the Subject-PredicatorHead-Object construction
put forward in most theories of Functional Grammar (cf.
Halliday & Matthiessen, 2004), the S NP VP (i.e.,
Subject-Predicate) construction put forward in Generative
Grammar (Chomsky, 1965) or the ReferencePoint-
PredSpec-Predication construction specific to Double R
Theory (Ball, 2005), but related to the Mood-Residue
construction of Halliday & Matthiessen (2004). Also of
interest is whether this preference varies from clause to
clause and from subject to subject. For example, in “he is
kicking the ball” do subjects prefer to group “is” with
“kicking” (as part of the PredicatorHead “is kicking”), with
“kicking the ball” (as part of the Predicate “is kicking the
ball”) or with “he” (as part of the ReferencePoint-PredSpec
“he is”)? Preliminary results indicate the identification of
the entire sentence as a meaningful group by 13 subjects.
The second most common grouping, “kicking the bucket”,

was only identified by 4 subjects. “He is” was identified as
a group by 3 subjects. The group “is kicking the ball” was
not identified by any subjects. Overall, subjects tend not to
include function words (e.g., “the”, “is”) in meaningful
groups, making it difficult to assess these results, and
perhaps making it necessary to revise the methodology.

In a third part subjects are asked to rank the relative
contributions of various words to the overall meaning of the
expression. In conjunction with the grouping task, the
ranking task will allow us to identify the semantically most
important word in a meaningful group, which we take to be
the head of the group. For sentences containing transitive
verbs, subjects identified the head of the subject as most
meaningful, the main verb as second most meaningful and
the head of the object as third most meaningful. The
ranking of heads of subjects as more important than main
verbs suggests that relational structure is not the only
dimension of meaning which influences this decision.

Finally, in a fourth part, subjects are asked to identify the
part of speech (POS) of a word in different expression
contexts, for example, “running” in “the man is running”
vs. “the running man”. This part is intended to get at
whether or not words are separately represented in the
mental lexicon for each possible grammatical function they
can fulfill (e.g., head, modifier, complement, specifier), as
indicated by the POS labels they are assigned. For example,
if “running” is treated as a verb in “the man is running” but
as an adjective in “the running man” this might indicate
separate representations in the mental lexicon. If, on the
other hand, “running” is labeled a verb in both uses, a
single entry in the mental lexicon is suggested. Preliminary
results suggest that subjects tend to treat words in different
functions as having the same part of speech. For example,
18 subjects call “boy” in “the boy” a noun; 11 subjects
called “altitude” in “no altitude restrictions” a noun (6
subjects called it an adjective); 16 subjects called “home” in
“he went home” a noun (only 1 subject called it an adverb);
and 14 subjects called “president” in “George Bush is
president” a noun (3 subjects called it an adjective).

To the extent that the linguistic representations generated
by the language comprehension model are consistent with
the results of this empirical study, the linguistic
representations will have more validity. To some extent this
validity hinges on whether or not humans have explicit
knowledge of the linguistic representations they generate
during language comprehension, and whether the empirical
study is successful in tapping into that knowledge. It is a
general assumption of the empirical study that humans have
explicit knowledge of the linguistic representations they
create. This assumption is motivated by the model’s
creation of linguistic representations composed of DM
chunks, which suggests that these representations can be
explicitly attended to and cognitively manipulated, and by
rejection of the autonomy of syntax assumption of
generative grammar, with its informationally encapsulated
(and hence implicit) syntax module. Although the
mechanisms by which linguistic representations are

constructed may be largely implicit, the resulting
representations are declarative and explicit. For example,
humans explicitly know what “the man bit the dog” means.
They explicitly know that “the man” refers to a man, “the
dog” refers to a dog, “bit” establishes a relation of biting
between the man and the dog, with the expression as a
whole referring to a situation in which it is the man who is
doing the biting, and the dog who is being bitten.

Conclusion
We are using the ACT-R cognitive architecture in the
development of a language-enabled synthetic teammate
intended to closely match human behavior. To date, the
research has focused on the development of the language
comprehension component of the system. This component
has approached a scale at which the need for development
and testing tools has become important. The goal for the
project is to maintain cognitive plausibility by adhering to
well-established theoretical constraints from cognitive
linguistics and cognitive psychology, as the system grows.
We believe these constraints will actually facilitate
development of a functional system (Ball, 2006).

Acknowledgements
This research is funded by the Warfighter Readiness
Research Division, Human Effectiveness Directorate, Air
Force Research Laboratory. We thank Nancy Cooke and
Steve Shope of CERI for providing access to the CERTT
lab UAV-STE and transcripts.

References

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S,
Lebiere, C, and Qin, Y. (2004). An Integrated Theory of
the Mind. Psychological Review 111, (4). 1036-1060.

Anderson, J. R. & Lebiere, C. (1998). The Atomic
Components of Thought. Mahwah, NJ: LEA.

Anderson, J. R., Qin, Y., Jung, K-J, & Carter, C. (2007).
Information-processing modules and their relative
modality specificity. Cognitive Psychology, 54, 185-217.

Ball, J. (2005). A Bi-Polar Theory of Nominal and Clause
Structure and Function. In Proceedings of the 27th Annual
Cognitive Science Society.

Ball, J. (2006). Can NLP Systems be a Cognitive Black
Box? In Papers from the AAAI Spring Symposium, Tech
Report SS-06-02, 1-6, Menlo Park, CA: AAAI Press.

Ball, J. (2007). Construction Driven Language Processing.
In Proceedings of the 2nd European Cognitive Science
Conference.

Barsalou, L. (1999). Perceptual Symbol Systems. In
Behavioral and Brain Sciences 22, 577-609.

Chomksy, N. (1965). Aspects of the Theory of Syntax.
Cambridge, MA: The MIT Press.

Cooke, N. & Shope, S. (2005). Synthetic Task
Environments for Teams: CERTT’s UAV-STE.
Handbook on Human Factors and Ergonomics Methods.
46-1-46-6. Boca Raton, FL: CLC Press, LLC.

Crocker, M. (1999). Mechanisms for Sentence Processing.
In Garrod, S. & Pickering, M. (eds), Language
Processing, London: Psychology Press.

Crocker, M. (2005). Rational models of comprehension:
addressing the performance paradox. In A. Culter (ed)
Twenty-First Century Psycholinguistics: Four
Cornerstones, LEA, Hillsdale.

Eisenbach, A. & Eisenbach, M. (2006). phpSyntaxTree
tool, http://ironcreek.net/phpsyntaxtree.

Ericsson, K & Kintsch, W. (1995). Long-term working
memory. Psychological Review, 102 211-245.

Fillmore, C. (1988). The Mechanisms of Construction
Grammar. BLS 14: 35-55.

Fillmore, C. and Kay, P. (1993). Construction Grammar
Coursebook. Berkeley, CA: Copy Central.

Goldberg, A. (1995). A Construction Grammar Approach
to Argument Structure. Chicago: The University of
Chicago Press.

Goldberg, A. (2003). Constructions: a new theoretical
approach to language. TRENDS in Cognitive Sciences.
Vol. 7, No. 5, pp. 219-224.

Halliday, MAK & Matthiessen, C (2004). An Introduction
to Functional Grammar. NY: Oxford University Press.

Harnad, S. (1990). The Symbol Grounding Problem.
Physica D, 42: 335-346.

Heiberg, A., Harris, J. & Ball, J. (2007). Dynamic
Visualization of ACT-R Declarative Memory Structure.
In Proceedings of the 8th International Conference on
Cognitive Modeling.

Just, A. & Carpenter, P. (1987). The Psychology of Reading
and Language Comprehension. Boston: Allyn and
Bacon, Inc.

Kintsch, W. (1998). Comprehension, a Paradigm for
Cognition. New York, NY: Cambridge Univ Press.

Langacker, R. (1987, 1991). Foundations of Cognitive
Grammar, Volumes 1 & 2. Stanford, CA: Stanford
University Press.

Lakoff, G. (1987). Women, Fire and Dangerous Things.
Chicago: The University of Chicago Press

Lakoff, G. & Johnson, M. (1999). Philosophy in the Flesh:
The embodied mind and its challenge to Western thought.
New York: Basic Books.

Lewis, R.L. (1998). Leaping off the garden path: Reanalysis
and limited repair parsing. In Fodor, J.D. and Ferreira, F.
(eds), Reanalysis in Sentence Processing. Boston: Kluwer
Academic.

Marcus, M. (1980). A Theory of Syntactic Recognition for
Natural Language. Cambridge, MA: The MIT Press.

Rosch, E. (1978). Principles of Categorization. In Cognition
and Categorization. Edited by E. Rosch & B. Lloyd.
Hillsdale, NJ: LEA

Talmy, L. (2000). Toward a Cognitive Semantics, Vols I
and II. Cambridge, MA: The MIT Press

Vosse, T. & Kempen, G. (2000). Syntactic structure
assembly in human parsing. Cognition, 75, 105-143.

Wittgenstein, L. (1953). Philosophical Investigations. New
York: MacMillan.

Zwann, R., and Radvansky, G. (1998). Situation models in
language comprehension and memory. Psychological
Bulletin, 123, 162-185.

http://ironcreek.net/phpsyntaxtree

Attention and Association Explain the Emergence of Reasoning About

False Beliefs in Young Children

Paul Bello (Paul.Bello@rl.af.mil) & Perrin Bignoli (Perrin.Bignoli@rl.af.mil)
Air Force Research Laboratory

Information Directorate; 525 Brooks Rd.
Rome, NY 13441 USA

Nicholas Cassimatis (cassin@rpi.edu)
Rensselaer Polytechnic Institute

Department of Cognitive Science; 110 8th St.
Troy, NY 12180 USA

Abstract

Charting and explaining the development of young chil-
dren’s capacity to reason about mental states is a main-
stay activity among developmental psychologists inter-
ested in how theory-of-mind (ToM) is acquired. These
explanations are typically couched within one of the tra-
ditional frameworks for studying mental-state attribu-
tion: the theory theory and the simulation theory. This
paper presents an analysis of the positions adopted on
the issue of ToM development when subscribing to each
of these frameworks, and argues for an alternative ex-
planation of development based on a simple associative
learning mechanism that appropriately shifts the child’s
cognitive focus of attention when asked to make predic-
tions about the actions of others. We develop this no-
tion within the confines of Wimmer and Perner’s classic
false belief task, and describe a cognitive model imple-
mented within the Polyscheme computational cognitive
architecture that realizes the development process.

Introduction

One of the most contentious areas in the literature
on cognitive development concerns the acquisition of a
fully matured theory-of-mind. Theory-of-mind (ToM)
is broadly defined as the capacity to predict and ex-
plain the behavior of other agents by appealing to unob-
servable mental states such as their beliefs, desires, and
intentions. Many byproducts of higher-order cognition
such as the ability to participate fruitfully in discourse
with others, our ability to assign blame through ascrip-
tions of intentionality, to our very notion of ourselves as
beings who have mental states that change through time
seem to be served by our possession of a mature theory-
of-mind. However, it remains unclear how such a re-
markable ability emerges during the developmental pro-
cess. An answer to this question clearly depends on the
answers to a number of other more fundamental ques-
tions concerning the nature of mental states and how
they are used within the human cognitive architecture.
Nonetheless, various theories have given accounts of how
ToM might develop, conditioned on relatively imprecise
definitions of what it means for one to have a belief,
desire, or an intention. We will give an alternative theo-
retical account of what it means to “believe” something
(or believe that someone else believes something), and
show how such an account can explain ToM emergence
while avoiding the pitfalls encountered by the most com-
mon theoretical frameworks for explaining development.
We will employ the Polyscheme computational cognitive

architecture to explain shifts in children’s responses on
the false belief task (Wimmer & Perner 1983), which
is widely regarded as a “gold standard” for illustrating
differences between children who have and have not de-
veloped a mature ToM.

Frameworks for Explaining Development

The vast majority of researchers concerned with ToM
development adopt one of three popular theoretical po-
sitions. The first and most widely adopted position is
that of the “child as scientist.” This position is usually
called the theory theory (Carey 1985, Gopnik & Meltzoff
1997), and states that our knowledge of mental states is
arranged in a theory-like set of interrelated concepts that
subserve prediction and explanation of behavior. These
“commonsense theories” comprise our domain-specific,
intuitive notions about such domains as biology (Medin
& Atran 1999), physics (Spelke et. al. 1992), and psy-
chology. The second of these frameworks is the simu-
lation theory and it’s variants (Goldman 2006, Gordon
1986) which casts our ability to predict and explain be-
havior as the result of mental simulations within which
we assume the perspective of the agent to be reasoned
about, and use our own cognitive capacities to approx-
imate those of the agent. We turn to the discussion of
each of these positions with specific emphasis on the is-
sue of development – the learning and/or maturational
components of ToM. We do so by explaining the behav-
ior of subjects in the classic false belief task. The task
consists in showing subjects a storyboard comprised of
the following pictorial representations, with appropriate
narration by the experimenter:

• A little boy (Maxi) is in the kitchen with his mother,
and he puts his chocolate on the counter.

• Maxi goes outside to play ball.

• While he is outside, Maxi’s mother puts his chocolate
in the kitchen cabinet.

The subjects are then asked where Maxi will look for
his chocolate when he goes back into the kitchen. Many
variations on this experiment exhibit the same general
trend in the data: that between three and four years
of age, children switch in the type of responses that
they give from answering “the cabinet” (which is the
typical three year old response) to answering with “the

counter” (which is the typical four year old response)
(Wellman, Cross & Watson 2001). What does modern
developmental theory say about this interesting pattern
of responses?

Theory theory

One way to explain the distinction between three and
four-year old behavior on the false belief task is to as-
sume that children possess a set of interrelated concepts
like belief, desire, and intention, which are used in pre-
dicting the actions that others will take. In general, to
succeed on the task, the theory-theorist claims that chil-
dren are able to think about the following:

He/She believes that p.

or:

Persons who want that p and believe that q would
be sufficient to bring about p and have no conflict-
ing wants or preferred strategies will try to bring it
about that q.

Where p and q are propositions. Being in posses-
sion of such knowledge requires an explicit concept of
belief (as a predicate, for example), which requires a
psychological theory within which to couch it. On the
theory-theory account, development in children consists
of gradually acquiring knowledge, and subsequently re-
vising fragments (or the totality) of their theory. In order
to use the theory, various information-processing mech-
anisms need to be properly functioning. So, according
to the theory-theory, children’s failure on the false be-
lief task must either be the result of lacking the neces-
sary body of concepts/knowledge or immaturity of the
information-processing mechanisms that use this infor-
mation in making predictions. The developmental pro-
cess is some mixture of knowledge acquisition, a matur-
ing facility for information-processing, and the acquisi-
tion of new concepts – specifically a so-called “represen-
tational” concept of belief. This raises some interesting
questions: how can one separate contributions to fail-
ure made by limitations on information processing and
those resulting from conceptual deficits? How is such
a theory representationally structured, and what sort
of implications might this have for learning? It seems
that committing oneself to representing statements of
the form: “He/She believes that p” requires us to re-
learn new theory for every agent in whom we come in
contact with. How does the theory-theory account for
the fact that targets often arrive at different conclusions
and take different actions than we as predictors would?
Does this imply that we need to have theory correspond-
ing to each agent’s inferential mechanisms? Finally, how
could theory-theory explain the enormous number of be-
liefs that we attribute to agents with whom we’ve had
no contact at all? We are certainly able to make detailed
predictions about readers of this paper without ever hav-
ing met them, and as it turns out, three year-old children
are capable of doing the same (Nichols & Stich 2003).

Simulation Theory

Another way one could potentially predict and explain
the behavior of others is through a process of mental
simulation. The simulation theory was developed as a
reaction to some of the problems that seem to be un-
avoidable when adopting a purely theory-driven frame-
work for prediction. In order to succeed on the false be-
lief task, an agent implementing simulation theory needs
to be able to entertain beliefs of the form:

p

Along with being able to think about such proposi-
tions, the agent must be able to imagine a counterfactual
world in which it imaginatively identifies with the tar-
get it wishes to predict. Explaining development in light
of this very general simulation theory is simple: chil-
dren at three and four years of age do not possess dif-
ferent knowledge or conceptual structures, they merely
become more adept at identifying with other people in
the context of simulation. The imaginings necessary for
simulation are ultimately linked to information process-
ing capabilities, and changes in this capability produces
observable developmental transitions in children. How-
ever, the simulation theory suffers from some immediate
difficulties. Even if we are able to imaginatively identify
with others and impute all of our own beliefs to them
within the context of a counterfactual situation, it re-
mains unclear how to account for differences between the
simulator and the target. In the false belief task, it seems
rather unsatisfying to assert that the subject “imagina-
tively identifies” with Maxi, and magically knows that
the chocolate is on the counter. Rather, it seems as if the
subject would need to employ a number of overrides to
his current knowledge of the real world in order to make
such a claim. The subject would also seemingly have to
possess some form of knowledge about perceptual occlu-
sion in order to come to an appropriate starting point for
simulating Maxi’s mental life while he is outside playing.
While all of this extra knowledge may not be related to
mental states, per se, it defeats the purpose of simulation
– which is supposed to be an information-poor process
as opposed to theory-laden, information rich-process.

Prior Modeling Work

The only prior modeling work on the developmental
transition between three and four years of age is a
Bayesian analysis presented in (Goodman et. al. 2006).
The authors adopt a theory-theoretical perspective on
development, and chart the transition of the child from
a “copy theorist” (CT) who maintains that all events in
the real world are copied as knowledge possessed by the
target, and a so-called “perspective theorist” (PT) who
uses other information to mediate what gets attributed
to other agents. In the case of the false-belief task, this
other information takes the form of knowledge about vi-
sual access. The learning process is surprise-driven, and
is as follows:

1. Children start out with two theories, CT, and PT.
CT is originally preferred to make predictions, since it

includes no extra information (in this case regarding
the target’s visual access).

2. Predictions are made with CT. Normally these predic-
tions are successful and unsurprising since the target
is usually in the presence of the predictor-agent, and
there is no discrepancy in visual access.

3. Situations in which the target possesses a false belief
are incorrectly predicted by CT, resulting in a high
surprise value.

4. These same situations (and typical non false-belief sit-
uations) are correctly predicted by PT. Slowly, PT
becomes the preferred device for predicting and ex-
plaining the target’s behavior.

This is an elegant, rational explanation for develop-
ment, but it leaves a few lingering questions to be an-
swered. The models to be selected from are presumed to
be probabilistic graphical models (Pearl 1988, 2000). In
these models, there are nodes representing the “belief”
of the target. It seems odd that on the one hand, theory-
theory claims that a conceptual change happens between
three and four regarding children’s understanding of be-
lief, yet these models presume children already have
a sufficient representation of belief as copy-theorists.
Rather, it is understanding that visual access is cou-
pled to belief that allows children to become perspective-
theorists. Much research has gone into children’s under-
standing of visual access as it relates to beliefs, and the
verdict seems to be in favor of a very early understanding
that visual access factors into what others know (Lem-
pers et. al. 1977, Gopnik & Slaughter 1991), leaving
in question that switching between these two particu-
lar models should play any role in explaining four year
old behavior. It’s also clear, given a purely Bayesian in-
terpretation of commonsense theories, that representing
beliefs about beliefs about beliefs, et cetera becomes pro-
hibitively costly from a computational standpoint, since
entire networks would have to be recopied in memory to
keep the relevant conditional probabilities from having
unwanted influence on one another.

The Cognitive Substrate Hypothesis

One of the hallmarks of human cognition is the range
of situations it is capable of adapting itself to. Presum-
ably, our evolutionary forebears did not need to fabri-
cate microprocessors, sail yachts, formulate grand uni-
fied theories, or do the majority of other activities that
we are capable of doing in our current day and age. In-
stead, they most likely needed to be able to reason more
generally about the nature of objects in their physical
environments, and be able to make better predictions
about their behavior in order to maximize their chances
for survival in what we assume to be extremely inhos-
pitable conditions. The Cognitive Substrate Hypothesis
states that a (relatively) small set of properly integrated,
domain-general computational mechanisms can provide
a mechanistic explanation for much, if not all of higher-
order cognition. While many different suggestions could
potentially be made in defining a cognitive substrate

as we’ve described above, our particular selection of
domain-general mechanisms are motivated by develop-
mental studies of physical reasoning. In order to success-
fully exist in a dynamic physical environment one must
proficiently reason about a core set of domains includ-
ing but not limited to: time, space, parts/wholes, paths,
instrumental desires, events, identity/similarity, situa-
tions/worlds, and causality (including learning causal
contingencies). We see computational functionality in
these domains as being absolutely critical to the sur-
vival of most (if not all) primates, but especially humans
- however it might be implemented.

Polyscheme: A Substrate Implementation

We have chosen to conduct our exploration using the
Polyscheme computational cognitive architecture (Cas-
simatis 2005), which was originally designed to inte-
grate multiple computational mechanisms correspond-
ing to aspects of higher and lower-level cognitive pro-
cesses. Polyscheme consists of a number of specialists
which maintain their own proprietary representations
that communicate with one another during problem-
solving through coordination via a cognitive focus of
attention. The selection of this particular implementa-
tion of attention is motivated by the existence of pro-
cessing interference in the Stroop effect (Stroop, 1935),
which suggests that multiple mental processes operate
simultaneously (word and color recognition, for exam-
ple). Visual attention has also been demonstrated as an
integrative mechanism for inputs from multiple sensory
modalities (Triesman & Gelade, 1980). Polyscheme is
based on the notion that just as the perceptual Stroop
effect can be generalized to higher-level non-perceptual
cognition, that integrative perceptual attention suggests
the existence of a higher-level cognitive focus of attention
that is the mind’s principle integrative mechanism.

Figure 1: Focus Management in Subgoaling

Integration among specialists implementing their own
computational methods is achieved through two basic

principles: the multiple implementation principle (MIP),
and the common function principle (CFP). The common
function principle states that each specialist implements
a core set of common functions, including forward infer-
ence, subgoal generation, identity matching, and simu-
lation of alternative worlds. The multiple implementa-
tion principle states that many different computational
models (i.e. rules, neural networks, etc.) implement
common functions. Details concerning how the focus
of attention coordinates sequences of common functions
generated by multiple representations can be found in
(Cassimatis 2005).

Polyscheme: Some Formal Preliminaries
Strings of the form P (x0, ..., xn, t, w) are called proposi-
tions. Simply stated, P is a relation (i.e. Loves, Hates,
Color, MotherOf) over the set of objects xi during the
temporal interval t (which could be a single time point,
or a range of time points) in the world w which bears
a truth value. A proposition’s truth value is a tuple <
E+, E− > consisting of the positive (E+) and negative
(E-) evidence for that proposition. Evidence takes on
one of the following values: {C,L, l,m, ?} representing
certainly, very likely, likely, maybe, and unknown. So,
if we are given the proposition Likes(John,Mary, t, w),
and come to find out its truth value is ¡m,m¿, we can say
that at some time t, maybe John likes Mary, and maybe
he doesn’t. If at some later time say t+1, we find a note
written by John to his friend, expressing his affection for
Mary, we may update the truth value of this proposition,
with Likes(John,Mary, t + 1, w) taking on the value
< C, ? >. Sometimes the letter E will appear in the
proposition where a temporal argument would normally
be. E represents “eternity” and denotes the temporal in-
terval containing all other temporal intervals. Similarly,
one might observe the letter R in the proposition where
a world argument would normally be. R represents the
real world, which consists of objects and relations in the
environment appropriately transduced into propositions
by Polyscheme’s perceptual machinery. This is the world
as Polyscheme experiences it. Letters other than R in
the world argument of the proposition could represent
hypothetical, future, counterfactual or past states of the
world. We will exploit this functionality when describing
how to perform ToM-driven inference.

A Substrate Mapping for Social Cognition
Based on a variety of evidence from the empirical litera-
ture, we have minimally extended the cognitive substrate
for physical reasoning to accommodate reasoning about
the mental states of others. The domain-general func-
tionality for reasoning about physical objects includes
a general purpose spatial competency, a mechanism
for reasoning about identity, functionality that keeps
track of the truth-values of perceived objects/relations
through time, a simple associative learner, a system that
keeps track of the truth value of propositions in different
worlds (used for planning under uncertainty), and a rule-
based reasoner. In addition, we add three new pieces
of functionality that we believe are well-justified in the
literature on child development: a mechanism to keep

track of lines-of-sight (Hood et al. 1998), a mechanism
for detecting (specifically) human agency (Guajardo &
Woodward 2004), and a mechanism for generating excep-
tions for rules about self/other identity. Specifically, we
use the latter to selectively override the version of Leib-
nitz’ Law, which states that two objects are the same
just in case they share all of the same properties. To
even claim these three mechanisms as “additions” seems
to be somewhat dubious as well, since we can imagine
uses for all three of these functions in non-social cog-
nition. For example, it is plausible to assume that an
agency detector could be used to constrain search while
performing object tracking, and we’re convinced of the
fact that overrides to the identity hypothesis are used
frequently, especially in the case of early pretense, where
features of a source object must be replaced with imagi-
nary features of a target object. On our account, repre-
senting the “beliefs” of other agents consists of detecting
agency, which causes the simulation of a counterfactual
world w in which the identity Same(self, other,E,w) is
true. Beliefs held by “self” (i.e. propositions which are
true in the real world) are inherited into the counterfac-
tual world w with a slightly weakened truth value (in
order to prevent immediate contradictions from arising).
So, if at some time t1 self determines the location of
the chocolate is on the counter, we have a corresponding
proposition Location(chocolate, counter, t1, w) which is
true in w.

Reasoning About False Beliefs

As we have mentioned previously, the false belief task
consists of the unexpected transfer of an object from one
location to another that happens outside of the knowl-
edge of a target agent, whose action toward this object is
to be predicted by the subject. We claim that there is no
gap in conceptual or theoretical knowledge differentiat-
ing three and four year old subjects. We claim that three
year old subjects are in possession of all of the knowl-
edge needed to pass the false belief task, but haven’t yet
learned to properly re-focus their attention on the tar-
get’s line-of-sight. Our approach most closely resembles
mental simulation, but also uses explicit knowledge in
the form of rules to populate and guide the progress of
simulation as it occurs. The set of rules that we assume
both three and four year old children to be using consists
of the following:

1. If an agent has line-of-sight on an object, then the
agent knows the location of the object.

2. If an object is at a location it cannot be located any-
where else.

3. If an object is at a location at some time t, it will most
probably be at that location at time t+1.

4. If an agent has line-of-sight on an object at time t,
it will most likely have line-of-sight on that object at
time t+1.

5. If an agent wants an object, and knows that the object
is located at l, the agent will reach for the object at l.

We adopt a version of the “like me” hypothesis de-
veloped in (Meltzoff 2005), which broadly states that
humans possess an innate faculty that posits equiva-
lences between self and other. This idea has been sup-
ported through repeated observation of infants imitat-
ing the facial gestures of their care-givers even at forty
minutes old. To do so, we use Polyscheme’s identity
predicate, Same(x, y, E,w), in the context of a counter-
factual world w, which serves as a mental simulation of
x taking the perspective of y. When Polyscheme sees
a proposition of the form: Category(x,Agent, E,R), it
immediately creates an alternative world w in which the
proposition Same(self, x,E,w) is true. We use an iso-
morphic version of the false belief task in which an agent
named Sue sees a cookie in jar A, then goes outside, as
in the classic task. While she is out, the cookie moves to
jar B, and the subject (Polyscheme in this case) is asked
where Sue thinks the cookie is.

Figure 2: Inference in the False Belief Task

We will use figure 2 and figure 3 as visual references
as we explain inference in the task. As we can see in
2, we represent propositions which are true in both the
real world, and in the counterfactual world w. Upon
noticing that Sue’s category is Agent, w is created and
seeded with the true proposition Same(self, Sue,E,w).
Self has a line of sight on the cookie at time t1, and
thus it’s location at jar A. In the counterfactual world in
which Self is identical to Sue, Sue also has a line of sight
on the cookie. Information about the cookie’s location
in the counterfactual world is inherited from information
in the real world. So in w, the cookie’s location is also
at jar A at time t1. Since the cookie’s location is at jar
A at time t1, we infer that the cookie is likely at jar A
at time t2. Similarly, self’s line of sight at time t2 is
initially on the cookie. The results of these inferences
are also available in w. Now, Sue goes outside, but self
stays inside and sees the cookie move from jar A to jar B.
Now, self’s line of sight is on the cookie at jar B, and the
location of the cookie is now known by self to be at jar B.
The interesting issue is that relations such as “location”
are not indexed by agent names. The location of the
cookie is just the location of the cookie. If this is the

case, how do we separate self’s knowledge of the location
of the cookie from Sue’s? Our speculation is that this is
what separates three and four year old subjects.

Learning to Focus

How then, do four year old subjects successfully navigate
the false belief task? We claim that four year old children
selectively focus their attention on how information is
acquired by the target in the simulation in order to make
better predictions about how it will behave.

Figure 3: Re-focusing in the False Belief Task

In figure 3, we see Sue’s line-of-sight highlighted. Even
though self’s line of sight still suggests that the cookie
is in jar B, we re-focus on Sue’s line of sight, and re-
infer the location of the cookie to be at jar A. This re-
focusing policy is a result of one of Polyscheme’s spe-
cialists that monitors for conflicts in situations where
self/other equivalences are drawn, and re-focuses it’s
cognitive focus of attention on other-specific informa-
tion. In the false belief task, the self/other equivalence
that causes our problem is that at time 2, and subse-
quently at time 3, there is a mismatch between self’s line
of sight and Sue’s line of sight. One of Polyscheme’s spe-
cialists detects this mismatch and re-focuses on Sue’s line
of sight, re-inferring the location of the cookie to still be
at jar A. Learning what to focus on is the crucial linchpin
in the developmental process. Polyscheme’s associative
learner keeps track of which propositions are true every
time an action is either taken by self in the real world, or
predicted in counterfactual worlds. The learning process
is driven by bad predictions. Polyscheme learns to asso-
ciate the appearance of certain propositions (such as line-
of-sight) with potential contradictions. Once it has accu-
mulated a prioritized list of these propositions, they are
made available to Polyscheme’s conflict-resolver. If the
propositions in conflict have an agent-name other than
“self” as an argument, the conflict-resolver re-focuses at-
tention on the proposition containing the other agent’s
name. In the false belief task, Polyscheme makes a num-
ber a bad predictions about where Sue thinks the cookie
is, and learns to associate line-of-sight with mispredic-
tion. The conflict resolver will then re-focus attention

on Sue’s line-of-sight, which in the context of simulating
Sue’s mind, will produce the correct prediction.

Summary

We have shown that learning to keep track of situa-
tions in which there are discrepancies between line-of-
sight in agents, and using these discrepancies to focus
attention on the line-of-sight of the target is a plausi-
ble explanation for the emergence of facilitation on the
false-belief task. This explanation avoids a number of
the problematic corollaries of adopting a more classi-
cal stance on the ToM issue. Excessive duplication of
propositions and rule-fragments is avoided through the
simulation of counterfactual states of affairs which in-
herit directly from our experience of the real world. By
an large, propositions are agent-independent, alleviating
the need to re-tag pieces of knowledge as being associated
to the various agents whom we wish to make predictions
about. Difficulty in learning about mental states due to
unobservability is avoided, since via the inheritance and
the simulation process, we have access to these struc-
tures. We suspect that the late emergence of false belief
in the third to fourth year is caused by the general lack
of training examples in which we need to keep track of
our own line of sight in relation to the line of sight of oth-
ers. While some may claim that bouts of joint attention
between infants and others constitute training examples
where infants must keep track of their own line of sight
in relation to the lines of sight of others, it’s not clear
how the specific task of action-prediction interacts with
the mental accounting being performed in these cases.
It might be that the added complexity delays successful
performance on ToM tasks until sometime between the
three and four year marks in the same way that learning
past-tense information in language usage is delayed.

References

Wimmer H., Perner, J. (1983). Beliefs about beliefs:
Representation and constraining function of wrong be-
liefs in children’s understanding of deception. Cogni-
tion, 13, 103-128

Carey, S. (1985). Conceptual change in childhood. MIT
Press/Bradford Books, Cambridge, MA.

Gopnik, A. & Meltzoff, A.N. (1997). Words, thoughts,
and theories. Cambridge, Mass. Bradford, MIT Press.

Medin, D.L. & Atran, S. (1999). Folkbiology. MIT
Press.

Spelke, E.S., Breinlinger, K., Macomber, J., & Jacob-
son, K. (1992). Origins of knowledge. Psychological
Review, 99, 605-632.

Goldman, A. (2006). Simulating Minds: The Philos-
ophy, Psychology, and Neuroscience of Mindreading.
Oxford University Press.

Gordon, R. (1986). Folk Psychology as Simulation.
Mind and Language 1, 158-171; reprinted in Davies,
M. and Stone T., eds., 1995, Folk Psychology: The
Theory of Mind Debate. Oxford: Blackwell Publish-
ers.

Wellman, H.M., Cross, D., & Watson, J. (2001). Meta-
analysis of theory-of-mind development: the truth
about false belief. Child Dev, 72(3):655684.

Nichols, S. & Stich, S. (2003). Mindreading: An Inte-
grated Account of Pretence, Self-Awareness, and Un-
derstanding of Other Minds. Oxford University Press.

Wellman, H.M. (1990). The child’s theory of mind.
Cambridge, MA: MIT Press.

Goodman, N.D., Bonawitz, E.B., Baker, C.L., Mans-
inghka, V.K., Gopnik, A., Wellman, H., Schulz, L. and
Tenenbaum, J.B. (2006). Intuitive theories of mind:
A rational approach to false belief. Proceedings of
the Twenty-Eighth Annual Conference of the Cogni-
tive Science Society.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference.” Morgan
Kaufmann.

Pearl, J. (2000). Causality. Cambridge.

Lempers, J.D., Flavell, E.R., & Flavell, J.H. (1977). The
development in very young children of tacit knowl-
edge concerning visual perception. Genetic Psychol-
ogy Monographs 95: 353.

Gopnik, A. & Slaughter, V. (1991). Young children’s
understanding of changes in their mental states. Child
Development, 62, 98-110.

Cassimatis, N.L. (2005). Integrating Cognitive Models
Based on Different Computational Methods. In Pro-
ceedings of the Twenty-Seventh Annual Conference of
the Cognitive Science Society.

Stroop, J.R. (1935). Studies of interference in serial ver-
bal reactions. Journal of Experimental Psychology,
18, 622-643.

Treisman, A.M. & Gelade, G. (1980). A feature inte-
gration theory of attention. Cognitive Psychology, 12,
97-136.

Guajardo, J.J., & Woodward, A.L. (2004). Is agency
skin-deep? Surface attributes influence infants sensi-
tivity to goal-directed action, Infancy , 6, 361-384.

Hood, B., Willen, J., & Driver, J. (1998). Adults’ eyes
trigger shifts of visual attention in human infants.
Psychological Science, 9 (2), 131-134.

A 3-node Queuing Network Template of Cognitive and Neural Differences
As Induced by Gray and White Matter Changes

Marc G. Berman (bermanm@umich.edu)
Departments of Psychology and Industrial and Operations Engineering, 530 Church Street

Ann Arbor, MI 48109-1043 USA

Yili Liu (yililiu@umich.edu) and Changxu Wu (changxuw@umich.edu)
Department of Industrial and Operations Engineering, 1205 Beal Avenue

Ann Arbor, MI 48109-2117 USA

Abstract

We present a 3-node queuing network template for simulating
brain activity differences for different subject populations
performing simple cognitive tasks. We hypothesize that
distinct areas of cortex behave similarly to queuing network
servers, whose interactions are used to simulate the
interactions of different brain areas. This 3-node queuing
network template accurately accounts for brain activity
disparities (as found with neuroimaging techniques) for
different subject populations performing verbal working
memory, spatial working memory, and verbal audition tasks.
Further, this 3-node queuing network template provides an
account explaining the interactions between different brain
areas. This account suggests that reductions in service rates
(due to changes in gray matter volume or white matter
anisotropy) for different brain areas alters the flow or
propagation of neural activity, causing different brain activity
patterns for different subject populations performing the same
cognitive tasks.

Keywords: Queuing Networks; neuroimaging; working
memory

Introduction
The brain is an enormously complex network of
interconnected systems and sub-systems, which at this point
cannot be easily understood. Most standard neuroimaging
techniques tend to focus on singular brain regions that are
hypothesized to be responsible for singular functions, either
general functions (global approach) or specific functions
(local approach; Nyberg and McIntosh, 2001). It seems
more likely that behavior and thought result from the
interactions of different brain regions rather than from
singular brain region activations (Lashley, 1931; Bressler,
1995).

How do different brain areas interact with each other? A
number of models and techniques have been proposed to
examine this question. Such techniques include Partial
Least Squares (PLS), Structural Equation Modeling (SEM),
and Dynamic Bayesian Networks (DBN; Nyberg and
McIntosh, 2001; Labatut et al., 2004). These techniques are
all statistical techniques that can uncover the relationships
between different brain areas. While these techniques are
extremely useful, they do not explain why brain regions
interact in such ways.

This paper offers a new research method based on
queuing network theory to explore brain networks. The

unique power of this queuing network approach for
examining cortical interactions is illustrated in this paper
through a simple 3-node queuing network architecture that
explains differences in brain activity for different subject
populations (young vs. old, literate vs. illiterate) performing
the same cognitive tasks.

There are a number of major contributions of this paper.
The first is to offer an alternative method to model
connectivity in the brain and the subsequent interactions of
different brain areas. The second major contribution is that
the queuing network template provides plausible, novel, and
causal explanations, which predict when certain brain areas
will become active and offer explanations as to why they
become active. The third contribution is the model’s
breadth where the same structural template may be the
underlying architecture mediating task performance in a
wide range of cognitive tasks. In addition, this architecture
did not require many model parameter changes in order to
model these different phenomena.

Queuing Networks and Psychology
Queuing Networks are a mathematical discipline that are
used to simulate and model a wide array of phenomena
including manufacturing processes, emergency room
workload, and airport traffic. The queuing network
methodology has also been applied to cognitive psychology,
and was used to successfully unify various psychological
models of reaction time (Liu, 1996) and multitask
performance (Liu, 1997). Recently, the queuing network
approach has been successfully integrated with the symbolic
approach (Liu et al., 2006) for both mathematical analysis
and real time simulation of human performance in a
multitude of settings including in-vehicle steering (Liu et
al., 2006), transcription typing (Wu & Liu, 2004), and visual
search tasks (Lim & Liu, 2004). The success of the queuing
network methodology in these domains is evidence of its
efficacy as a model of human cognition and behavior.

Queuing Networks and Brain Activation
In this paper we attempt to model brain activation
differences, as uncovered with neuroimaging, for different
subject populations performing the same cognitive tasks.
We will model these brain activation differences with a
queuing network methodology and architecture. Rather
than model changes in blood flow or volume, we attempt to

1

model the underlying neural activity that drives the
differences in blood flow as found empirically in these
studies.

Positron Emission Tomography (PET) and functional
Magnetic Resonance Imaging (fMRI) are two techniques
used to measure blood flow changes in the brain, and both
do so in different ways (Cabeza and Nyberg, 2000). fMRI
measures blood flow changes via the Blood Oxygenated
Level Dependent (BOLD) contrast and PET measures blood
flow changes by marking blood with radioactive tracers
(Cabeza and Nyberg, 2000). These hemodynamic processes
are also correlated with the underlying neural activity of
those brain areas exhibiting blood flow changes (Logothetis
et al., 2001). This provides researchers with some
confidence that while an indirect measure, these techniques
can be used as to approximate underlying neural activity. In
this paper we model the underlying brain activation
moderating these hemodynamic changes and we do so with
a queuing network framework.

3-Node Queuing Network (QN) Template
While there are many different types of queuing networks,
this paper focuses on a simple 3-node queuing network with
one server branching out into two parallel servers, as shown
in Figure 1.

Figure 1: 3-node QN template

In all of these simulations, neural activity or neural spike
trains are treated as the customers (C) in these networks that
will be served by the queuing network servers in the
network1. Each of the boxes in this network is a queuing
network server (S) that provides a service to the customers
that enter the network. Each of these servers will represent
a unique brain area(s) that provides a unique service to the
customers that enter it. Customers arrive at the branching
server at some arrival rate customers/unit time. Once
customers enter the network through the branching server,
they receive some service from the branching server with a
service rate of customers/unit time. Once customers
complete service at the branching server they then travel
probabilistically to either parallel server 1 or parallel server
2 for additional service. Each of these servers services
customers with it's own service rate. Once customers

1 Initial neural activation at the Branching Server is time-locked
with empirical stimulus onsets.

complete service at either of those servers they have
completed their full service and subsequently leave the
network.

Each server also has a service capacity (the number of
customers it can serve at a time) and a waiting capacity or
queue capacity, which identifies how many customers can
wait in front of the servers for service. The parallels
between the queuing network methodology and the brain are
apparent. First, it seems that different brain areas do in fact
provide some unique function or service that mediate
behavioral performance. Second, it is reasonable to assume
that brain areas have capacity limitations in the amount of
processing that they can accomplish and the speed with
which they can process. Third it seems that information in
the brain can be queued, as information that is not processed
immediately is not immediately lost or discarded.

For these simulations we alter service rates for particular
servers in the network, but we leave service capacities and
queue capacities constant throughout, as it is beyond the
scope of this paper to provide/hypothesize queue capacities
for different brain areas. We therefore set each server’s
capacity to serve only one customer at a time with an
infinitely large queue capacity (waiting line).

In all of these simulations we assume that each server
provides a unique service and that customers need to be
served by the branching server and only one of the parallel
servers, but not both. Therefore, while each parallel server
provides a unique service, each of the simulated tasks can be
accomplished by traversing either of the parallel servers,
which provide similar service.

Parameters for arrival rates, , were set based on the
empirical parameters of the task. Service rate parameters
were set based on neural evidence coming from research on
aging and literacy. Zimmerman et al. (2006) have found
significant gray matter volume reductions with increased
age, and that these reductions have been correlated with
reductions in executive functioning and working memory
performance. Klingberg et al. (2000) have found that
reductions in white matter anisotropy (connection fidelity),
is strongly correlated with poor reading performance. We
draw on these findings in setting our queuing network
parameters for these simulations.

In addition one of the major assumptions of this paper is
our hypothesized explanation for how neural activity flows
or moves through brain neural networks. Neural activation
flows in this network based on the comparative processing
rates of the parallel servers, and is mediated by the
following equation:

Pi = [i]/([i] + [j])(Eq. 1)

Where i = the service rate for server i, and Pi is the
probability of traveling to server i.

One can see that if the service rate of one parallel server in
relation to the other server is much greater, then it is more

2

likely that neural activity or spike trains would propagate to
that server and vice versa.

There is also neural evidence that supports this routing
equation. It is known that stronger synaptic connection
strengths of an individual neural route, increase the
probability (Pi) that neural spike trains (the customers in our
network) travel through that route (Black, 1999;
Chklovskiii et al., 2004; Habib, 2003). Synaptic connection
weights can also be decomposed into waiting times and
processing times of customers traveling a particular route
(Wu, 2007). Therefore, equation 1 is supported by the
aforementioned neural evidence.

Studies to Be Modeled
In this paper we model the neuroimaging results from 2
separate PET studies. These two studies were selected for
two reasons. First each study found brain activity
differences for different subject populations performing the
same cognitive tasks. Second, in all the studies, subjects
activated the same brain areas, in other words, different
brain areas were not recruited for the different populations
of subjects, only the distribution of the brain activation
differed.

The first study, from Reuter-Lorenz et al. (2000),
explored the difference in brain activity for old and young
adults performing verbal and spatial Working Memory
(WM) tasks. The second study from Petersson et al. (2000),
investigated brain activity during a pseudoword generation
task for illiterate and literate subjects. Though we have
restricted the number of studies simulated in this paper, our
results could conceivably be applied to many other studies
of this kind.

All of our simulations were run for 30 minutes, roughly
mimicking the total time of the empirical studies. In
addition each simulation was run for 100 replications.

Study1: Reuter-Lorenz et al., 2000
In this study young and old subjects performed verbal and
spatial working memory tasks. The authors used PET to
identify the brain areas activated to perform these tasks and
also explored the brain activation differences between the
two groups of subjects. The major finding was that for
verbal working memory young subjects showed substantial
left lateralized frontal activation and for spatial working
memory those subjects showed substantial right lateralized
frontal activation. Older adults on the other hand showed
bilateral frontal activation for both spatial and verbal
working memory suggesting that older adults may be
recruiting other brain areas to compensate for neural
declines (Reuter-Lorenz et al., 2000). In addition, few
differences were found in posterior activations for these two
subject populations.

Simulation Parameters The queuing network template
used to model these data can be seen in figure 2. The

anterior and posterior brain areas that compose these servers
can be seen in table 1.

Figure 2: 3-node QN templates used to model Reuter-
Lorenz et al. (2000) data

Table 1: Brain areas that compose the Queuing Network
Servers as treated singularly by Reuter-Lorenz et al. (2000).

Verbal Working
Memory Task

Spatial Working
Memory Task

Anterior ROIs BA 45, 46, 10, 9 and
44 (Broca’s);
BA6(Supplementary
Motor and premotor

BA 9, 46, 47
(DLPFC, VPFC);
SMA and
Premotor

Posterior
ROIs

BA 40, 7 (parietal) and
temporal sites BA 42
and 22

BA 40, 7
(parietal); BA 18,
19 (striate and
extrastriate); BA
31 (Precuneus)

Arrival rates of the stimuli were set to be 5 seconds as this
was the presentation rate of the trials to the subjects in the
empirical study.

Service rate parameters were initially set to be
exponentially distributed with a mean of 18 ms and have
been validated by other researchers (Feyen, 2002; Wu,
2007). For young adults, service rate parameters were set in
ways to show frontal lateralization. Therefore, for the
verbal working memory task, the right anterior server’s
processing rate was treated as a free parameter and set to a
value that would show lateralization (we used the same
parameter value for the left anterior server for the spatial
working memory task).

In addition, we feel it makes intuitive sense that left
frontal areas should have disproportionately faster service
rates for verbal tasks (compared to right frontal areas), and
right frontal areas should have disproportionately faster
service rates for spatial tasks (compared to left frontal
areas), as these areas seem to be most active in the service
of those respective tasks. If there were not such a difference
in the processing abilities of these areas of cortex mediating
performance in these tasks, we would not expect such robust
lateralized activity.

For setting processing rates for older adults we used
equations 2 and 3.

Lateral frontal = 67,043 -.47 * Age (Eq. 2)
Note: the units are in mm3

3

*11

young

oldyoung
controlsubject graymatter

graymattergraymatter

(Eq. 3)2.

Equation 2, was provided by Zimmerman et al. (2006) and
explains how gray matter volume in lateral frontal areas
decreases with increased age. Equation 3, describes how
gray matter volume changes for older adults translates into
slower processing rates in lateral frontal areas. Here we are
assuming that gray matter reductions reduce the abilities of
those cortical areas to process information, and that this
reduction in processing is additive to initial processing
values. Tables 2 and list the parameters used to simulate the
results from Reuter-Lorenz et al. (2000). Note: the mean age
for young adults was 24, and for older adults was 69.

In addition, one may note that for older adults the service
rates change for frontal areas, but not for posterior areas.
With aging, there is more gray matter loss in frontal areas,
compared to posterior areas, which can explain more
deficits in planning, organizing and performing other
executive functions with age (Zimmerman et al., 2006).

Table 2. Processing rates for old and young in the verbal
WM task
Population Older Adults Younger Adults
Arrival rate ()3 1 every 5 sec 1 every 5 sec
Service rate Left
Posterior Regions

Exponential mean
18 ms per neural
spike train4

Exponential mean
18 ms per neural
spike train

Service rate Right
Anterior Regions

Exponential Mean
86 ms per neural
spike train

Exponential mean
54 ms per neural
spike train

Service rate Left
Anterior Regions

Exponential Mean
50 ms per neural
spike train

Exponential mean
18 ms per neural
spike train

Table 3. Processing rates for old and young adults in the
spatial WM task
Population Older Adults Younger Adults
Arrival rate () 1 every 5 sec 1 every 5 sec
Service rate Left
Posterior Regions

Exponential
mean 18 ms per
neural spike
train

Exponential mean
18 ms per neural
spike train

Service rate Right
Anterior Regions

Exponential
Mean 50 ms per
neural spike
train

Exponential mean
18 ms per neural
spike train

Service rate Left Anterior
Regions

Exponential
Mean 86 ms per
neural spike
train

Exponential mean
54 ms per neural
spike train

2 is a scaling parameter was set to 100 for simulation 1 and set to
18 for simulation 2.
3The arrival rates were based on empirical stimulus presentation
rates
4 See Liu, Feyen and Tsimhoni (2006)

From tables 2 and 3 one can see how the initial imbalance
between left and right service rates for the verbal and spatial
tasks would cause more neural spike train activity to
propagate to left anterior areas for the verbal task, and right
anterior areas for the spatial task (see equation 1). Again,
for older adults, service rate parameters in anterior areas
were set based on equations 2 and 3.

Simulation Results Figure 3 displays the simulation results
and the empirical results from the Reuter-Lorenz et al.
(2000) study. The fits of our simulation results have an R2

= 0.64 for the verbal working memory task, and an R2 =
0.72 for the spatial working memory task.

The dependent variable that Reuter-Lorenz et al. (2000)
report is the % change in brain activation for experimental
working memory trials compared to control trials. For the
experimental trials there was a higher working memory load
compared to the control trials (roughly 4 times that of
controls). Therefore in our simulations we altered
processing by a scalar value (4) to reflect the changes in task
demands from control trials to experimental trials. We
report the changes in server utilization from control trials to
experimental trials.

Figure 3: Empirical Results and simulation results for
Verbal WM Task and spatial WM task from Reuter-Lorenz
et al. (2000). Blue solid bars are left anterior areas, and
magenta dashed bars represent right anterior areas. Top row
shows the empirical results and the bottom row the
simulation results5

From figure 3, one can see that our simulations do capture
the empirical results well, especially the overall pattern of
less lateralization with increased age. This reduced
lateralization was due to processing declines mediated by
gray matter loss, which reduced the ratio in processing rates
of one parallel server relative to the other.

5 The apparent reversal in lateralization for older adults in both the
verbal and spatial working memory tasks was not significant

4

Study2: Petersson et al., 2000
In this study literate and illiterate participants performed a
task where they needed to repeat verbally auditorily
presented words and pseudowords. It was found that literate
and illiterate subjects had similar behavioral performance in
repeating words, but illiterate subjects were impaired in
repeating pseudowords. It was also found that the neural
networks supporting pseudoword repetition were different
for the two groups, suggesting that learning to read causes
functional changes in brain circuitry.

Here we concentrate on path weight differences (as found
with Structural Equation Modeling; SEM) between inferior
Parietal Cortex (iPC; BA 7/40) with Broca’s area (BA 44)
and iPC with prefrontal cortex (PFC; BA 45/46). The
authors found that the path weight between iPC and Broca’s
was higher for literate subjects (by .18), while the path
weight between iPC and PFC was higher for illiterate
subjects (by .26). These path weight changes may reflect
more efficient phonological loop processing for literate
participants, and subsequently more reliance on executive
processes for illiterate subjects to perform the pseudoword
repetition task. Note: we report correlations rather than path
weights, but the path weights were based on the correlation
matrix of the empirical study.

Table 4. Processing rates for Literate and Illiterate Subjects
Population Literate Subjects Illiterate Subjects
Arrival rate
(1/lambda) U(6, 1) sec U(6, 1) sec

Service rate
iPC

Exponential mean
18ms per spike
train

Exponential mean 18ms
per spike train

Service rate
Brocas

Exponential mean
18ms per spike
train

Exponential mean 29 ms
per spike train

Service rate
PFC

Exponential mean
27 ms per spike
train

Exponential mean 27 ms
per spike train

Simulation Parameters Table 4 lists the parameters that
were used to simulate the data from Petersson et al., (2000).
Arrival rates were set based on empirical parameters, where
stimuli were presented every 6 seconds. However, we
needed to include some variance so that we could calculate
the correlation of neural activations in our queuing network
servers.

We set parameters for literate subjects in a similar manner
to that of our simulations of Reuter-Lorenz et al. (2000).
We treated service rate in the PFC as a free parameter as
younger adults are biased to utilize the route connecting iPC
and Brocas over iPC and PFC.

For setting parameters for illiterate subjects we depended
on differences in white matter anisotropy. While there may
be gray matter volume differences between literate and
illiterate subjects, we were guided by white matter
anisotropy (connection integrity) differences between good
and poor readers (Klingberg et al., 2000).

Figure 4. 3-Node queuing network used to simulate
Petersson et al. (2000) data

Klingberg et al. (2000) found that white matter anisotropy
in a volume connecting parietal and temporal cortices in the
left hemisphere was significantly reduced in poor readers
compared to normal readers, and that anisotropy in this
region was significantly correlated with reading
performance. We used this significant reduction in
anisotropy connecting temporal and parietal cortex to
change the processing rate of Broca’s area for illiterate
subjects as this white matter region would be connecting
iPC with Broca's. We assumed that this reduction in
anisotropy in this region would alter the relationship
between iPC and Broca’s area for illiterate subjects.

Klingberg et al. (2000) found that anisotropy in this white
matter region was correlated with reading performance r =
0.84. Using behavioral data from the Petersson et al. (2000)
study (via Castro-Caldas et al., 1998) and Klingberg et al.’s
(2000) regression equation we calculated the anisotropy
values for literate and illiterate subjects. These calculations
yielded a 60% decrease in anisotropy for illiterate subjects
compared to literate. Using Equation 3., we substituted
white matter changes between literate and illiterate subjects
(instead of gray matter) to obtain the service rate for Broca’s
area for illiterate subjects.

Simulation Results The simulation results for this task are
summarized in Table 5. We obtained an R2 = .96 for these
simulation data (pitting our simulated correlation values
against Petersson et al. (2000) path weights). One can see
the changes in correlated activity match the pattern of
differences in path weights exhibited from the Petersson et
al. (2000) study where literate participants exhibit increased
correlations between iPC and Broca’s compared to illiterate
subjects, and illiterate participants exhibit increased
correlations between iPC and PFC compared to literate
participants. We did not find the same magnitude increase
in correlated activity between iPC and PFC as was found
empirically, however, we did find the same overall pattern.
These results indicate good coherence between our
simulation and the empirical findings.

5

Table 5. Simulation and Empirical Results from Petersson et
al. (2000)

Empirical Simulation
Increase in iPC and Brocas
Relation for Literate
compared to Illiterate

+. 18 +. 10

Decrease in iPC and PFC
Relation for Literate
compared to illiterate

-.26 -.10

Conclusion
In sum, our 3-node queuing network templates were able to
successfully model the activity of brain networks for
different populations of subjects performing the same
cognitive tasks. We drew on neuroscience evidence in
selecting parameters and explained changes in brain
networks as being caused by relative differences in service
rates, which alter neural activation propagation. We hope
that with the queuing network architecture we will be able
to understand more complicated brain networks and make
new predictions for the behavior of brain networks that
underlie human cognition.

Acknowledgments
This research was supported in part by an NSF graduate
fellowship to MGB and an NSF grant to YL.

References
Black, I.B. (1999). Trophic regulation of synaptic plasticity.

Journal of Neurobiology, 41 (1), 108-118.
Bressler, S. L. (1995). Large-scale cortical networks and

cognition. Brain Research Reviews. Vol. 20, 288-304.
Cabeza R. and Nyberg L.(2000). Imaging cognition II: An

empirical review of 275 PET and fMRI studies. J of
Cog Neuro. 12 (1): 1-47

Castro-Caldas A., Petersson KM, Reis A, Stone-Elander S,
Ingvar M. (1998). The illiterate brain - Learning to
read and write during childhood influences the
functional organization of the adult brain. BRAIN
121(6): 1053-1063

Chklovskii, D.B., Mel, B.W., and Svoboda, K. (2004).
Cortical rewiring and information storage. Nature, 431
(7010), 782-788.

Feyen R. (2002). Modeling Human Performance Using the
Queuing Network - Model Human Processor (QN-
MHP). Unpublished Dissertation, University of
Michigan, Ann Arbor, Michigan.

Habib, M. (2003). Rewiring the dyslexic brain. Trends in
Cognitive Sciences, 7 (8), 330-333.

Klingberg, T., Hedehus, M., Temple, E., Salz, T., Gabrieli,
J. D. E., Moseley, M. E., et al. (2000). Microstructure
of temporo-parietal white matter as a basis for reading
ability: Evidence from diffusion tensor magnetic
resonance imaging. Neuron, 25(2), 493-500.

Labatut, V., Pastor, J., Ruff, S., Demonet, J., Celsis, P.
(2004). Cerebral modeling and dynamic Bayesian

networks. Artificial Intelligence in Medicine. Vol. 30,
119-139.

Lashley, K.S. (1931). Mass Action in Cerebral Function.
Science. Vol. 73(1888), 245-254.

Lim, J., and Liu, Y. (2004). A Queueing Network Model
for Visual Search and Menu Selection. Proceedings of
the 48th Annual Conference of the HFES.

Liu, Y. L. (1996). Queueing network modeling of
elementary mental processes. Psychological review,
103(1), 116-136.

Liu, Y. L. (1997). Queueing network modeling of human
performance of concurrent spatial and verbal tasks. Ieee
Transactions on Systems Man and Cybernetics Part A-
Systems and Humans, 27(2), 195-207.

Liu, Y., Feyen, R., & Tsimhoni, O. (2006). Queueing
Network-Model Human Processor (QN-MHP): A
Computational Architecture for Multi-Task
Performance in Human-Machine Systems. ACM
Transactions on Computer-Human Interaction.

Logothetis, NK; Pauls, J; Augath, M; Trinath, T;
Oeltermann, A. 2001. Neurophysiological investigation
of the basis of the fMRI signal. NATURE 412 (6843):
150-157.

Nyberg, L., & McIntosh, A. R. “Functional Neuroimaging:
Network Analyses.” Handbook of Functional
Neuroimaging of Cognition. Eds. Roberto Cabeza and
Alan Kingstone. A Bradford Book: MIT Press, 2001.
49-72.

Pastor, J., Ruff, S., Demonet, J., Celsis, P. (2004). Cerebral
modeling and dynamic Bayesian networks. Artificial
Intelligence in Medicine. Vol. 30, 119-139.

Petersson, K. M., Reis, A., Askelof, S., Castro-Caldas, A.,
& Ingvar, M. (2000). Language processing modulated
by literacy: A network analysis of verbal repetition in
literate and illiterate subjects. Journal of cognitive
neuroscience, 12(3), 364-382.

Reuter-Lorenz, P. A., Jonides, J., Smith, E. E., Hartley, A.,
Miller, A., Marshuetz, C., et al. (2000). Age differences
in the frontal lateralization of verbal and spatial
working memory revealed by PET. Journal of cognitive
neuroscience, 12(1), 174-187.

Wu C. (2007). Queueing Network Modeling of Human
Performance and Mental Workload in Perceptual-Motor
Tasks. Unpublished Dissertation, University of
Michigan, Ann Arbor, Michigan.

Wu, C., & Liu, Y. (2004). Modeling Human Transcription
Typing with QN-MHP (Queueing Network - Model
Human Processor). Proceedings of the 48th Annual
Conference of the HFES.

Zimmerman, M. E., Brickman, A. M., Pau, R. H., Grieve, S.
M., Tate, D. F., et al. (2006). The relationship between
frontal gray matter volume and cognition varies across
the healthy adult lifespan. American Journal of
Geriatric Psychiatry, 14(10), 823-833.

6

Integrating Rational Choice and Subjective Biological
and Psychological Factors in Criminal Behaviour Models

Tibor Bosse (tbosse@few.vu.nl) Charlotte Gerritsen (cg@few.vu.nl) Jan Treur (treur@few.vu.nl)

Vrije Universiteit Amsterdam, Department of Artificial Intelligence
De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands

Abstract
The Rational Choice Theory describes criminal behaviour as a
form of means-end decision-making. In contrast, it is often
argued that criminal behaviour involves subjective, personal
biological and psychological aspects. This paper contributes an
agent-based modelling approach for criminal behaviour
integrating such subjective aspects with decision-making based
on means-end analysis, and illustrates this for street robbery.
The agent model developed is a combination of a BDI-model
and a utility-based decision model in the context of such desires
and beliefs. The resulting approach incorporates subjective,
context-sensitive means-end analysis, where the context covers
biological and psychological aspects as mentioned.

Introduction
A longstanding debate within Criminology is whether
criminal behaviour is driven by a criminal’s subjective,
personal biological and psychological background, or is the
result of a rational, calculated choice; e.g., (Moir and Jessel,
1995; Cornish and Clarke, 1986). Often the former is
considered to happen to the subject with not much freedom
of choice, whereas the latter is considered to be a more or
less free choice. This debate has fundamental societal
implications, for example, on policies with respect to
punishment and treatment of criminals. An interesting
question is whether in this debate an exclusive choice has to
be made between two opposed viewpoints, or a synthesis
can be obtained reconciling them. If this question is to be
answered in the latter sense in a convincing manner, this
requires a detailed account on how exactly the two
viewpoints can be integrated. This indeed is the aim of the
current paper. It is shown in detail that and how such an
integration is possible, by means of a formalised
computational model that incorporates both sides.

As a starting point, the agent model described in (Bosse,
Gerritsen and Treur, 2007b) has been taken, which focuses
on a case study about the Intermittent Explosive Disorder.
This model addresses action generation based on beliefs,
desires and intentions (BDI), and generation of desires and
beliefs in opportunities. However, for the sake of simplicity,
only one action per desire was assumed, so no decision
making was covered involving a choice between different
options for actions to fulfil a desire. The current paper
presents a model for utility-based multi-criteria decision
making (e.g., Keeney and Raiffa, 1976; Raiffa, 1982) within
a BDI-setting and applied to street robbery. This decision
model provides a formalisation of the Rational Choice
Theory within Criminology; e.g. (Cornish and Clarke,
1986). This theory as informally discussed within

Criminology describes crime as an event that occurs, for
example, when an offender decides to take risk breaking the
law, after considering his or her own need for money,
personal values or learning experiences and how well a
target is protected. The criminal assesses the chances of
getting caught, the expected penalty, the value to be gained
by committing the act, and his or her immediate need for
that value.

In the decision model introduced in this paper, this
process is modelled by introducing utilities for different
possible intended actions. The utility of a certain (option for
an) action is then assessed according to the extent to which
it fulfils the subject’s desire. In this way utilities are
assessed with respect to a subjective measure focusing on a
specific desire, which may be affected by the subject’s
specific biological and psychological background. In other
words, for the individual agent, rational choice means the
choice to fulfil its own desires in the best possible way.
Thus, the model for desire generation based on the
biological and psychological factors is integrated with a
rational decision model for the choice of (intended) actions.

In this paper, the next section discusses a brief summary
from the literature on the role played by biological and
psychological factors in criminal behaviour. After that, the
dynamical modelling approach is discussed. Next, the
simulation model is presented and some simulation results
are shown. Finally, the approach and its possible
applications are discussed.

Biological and Psychological Factors
Since the BDI model (Georgeff and Lansky, 1987; Rao and
Georgeff, 1991) does not prescribe a standard way to
determine how desires are created, for a particular
application usually domain-specific knowledge is used. For
criminal behaviour, a number of specific biological and
psychological aspects seem to play a role in the generation
of desires. An extensive search has been performed into
literature from areas such as Criminology and Psychology
(e.g., Raine, 1993; Moir and Jessel, 1995; Delfos, 2004) for
aspects to be incorporated in the model.

A theory of mind of a person (e.g., Baron-Cohen, 1995)
describes other persons’ minds by separate mental concepts,
such as the person’s own beliefs, desires, and intentions, and
how those concepts play a role in the person’s behaviour.
Criminal actions are often performed by persons whose
theory of mind is less developed. In recent years, more
evidence is found that there often are biological reasons for

this. For example, it has been found that many psychopaths
have a damaged connection between the frontal lobes
(concerned with conscience and remorse) and the limbic
area, which generates feelings; cf. (Moir and Jessel, 1995).

Another important aspect in crimes is aggressiveness.
Research has pointed out that there is a correlation between
aggressive behaviour and the level of testosterone. In fact,
89% to 95% of all crime is performed by males (Moir and
Jessel, 1995). In addition, the use of alcohol or drugs may
increase the violence of behaviour.

A third aspect involved in criminal behaviour is the desire
to act, which can be related to a high level of adrenalin. If a
person’s adrenalin level becomes too high, (s)he somehow
has to cope with this; acting decreases the adrenalin level.
Thus, if the desire to act is high, then a criminal act more
easily occurs. The specific types of actions that are chosen
depend on another factor, the desire to act safely. This
factor correlates with a high level of oxytocine, a hormone
mainly produced by women. Persons with a high level of
oxytocine have a higher tendency to cope with their desire
to act by performing ‘safe’ actions (e.g., taking care of the
‘nest’) than persons with less oxytocine; they will rather
perform ‘less safe’ actions (e.g., fighting) (Delfos, 2004).

In addition, crimes are often committed by persons who
are looking for a thrill. These persons in general have a high
excitement threshold, which means that it is very difficult
for them to become excited (Moir and Jessel, 1995; Raine,
1993). As a result, they are often bored, so that they
generate a desire for actions with strong stimuli. Such
actions may become criminal actions, such as stealing,
joyriding, or assaulting other people. Only by performing
these actions, their desire for strong stimuli is fulfilled, and
they become less bored.

Furthermore, a significant amount of committed crimes
can be described as impulsive. They are not planned, but
rather triggered by occasional opportunities. An important
factor causing impulsive behaviour is a low level of blood
sugar, which in turn is caused by a high insulin level and a
low serotonin level (Moir and Jessel, 1995).

A next factor that may affect the types of (criminal)
actions that persons may perform, is the extent to which
they have (positive or negative) feelings with respect to
another person’s wellbeing. When someone has a low
amount of positive feelings towards others, (s)he does not
really care about the other. Likewise, when someone has
many negative feelings towards others, (s)he may wants to
cause harm towards someone else. For example, in
psychopaths, both attitudes are low: these persons hardly
show any emotion concerning other persons, so for them,
both the positive and the negative emotional attitude
towards others are low (Moir and Jessel, 1995).

The last two factors chosen to incorporate in the model
are the desire for high gain and the desire for low loss.
These concepts were chosen on the basis of the Rational
Choice Theory (Cornish and Clarke, 1986). According to
this theory, to determine their actions, persons will try to
minimise their expected loss or penalty (e.g., being caught,

getting hurt) and maximise their gain (e.g., money, status).
The theory states that criminals will make a serious decision
before committing a crime, weighing pros against cons.

Modelling Approach
Modelling the various aspects in an integrated manner poses
some challenges. On the one hand, qualitative aspects have
to be addressed, such as beliefs, desires, and intentions,
certain brain deviations, and some aspects of the
environment such as the presence of certain agents. On the
other hand, quantitative aspects have to be addressed, such
as testosterone and serotonin levels, and utilities.

The modelling approach based on the modelling language
LEADSTO (Bosse, Jonker, Meij, and Treur, 2005) fulfils
these desiderata. It integrates qualitative, logical aspects and
quantitative, numerical aspects. This integration allows the
modeller to exploit both logical and numerical methods for
analysis and simulation. The basic building blocks of
LEADSTO are so-called executable dynamic properties, by
which direct temporal dependencies between two state
properties in successive states are modelled. Their format is
defined as follows. Let α and β be state properties of the
form ‘conjunction of ground atoms or negations of ground
atoms’. In LEADSTO, the notation α →→e, f, g, h β, means:
If state property α holds for a certain time interval with duration g,
then after some delay (between e and f) state property β will hold
for a certain time interval of length h.

Here, atomic state properties can have a qualitative, logical
format, such as an expression desire(d), expressing that desire
d occurs, or a quantitative, numerical format such as an
expression has_value(x, v) which expresses that variable x has
value v. For more details of the language LEADSTO, see
(Bosse, Jonker, Meij, and Treur, 2005). The overall
simulation model has been built by composing two models:
1. a model to determine desires incorporating various biological
and psychological aspects and their interactions
2. a model for reasoning about beliefs, desires and intentions,
using a BDI-model based on utility-based decision making
These models have both been implemented in LEADSTO.
They are described in more detail the next sections.

Determining Desires
To determine desires, a rather complex submodel is used,
incorporating dynamical system elements for the biological
and psychological aspects as mentioned earlier, varying
from qualitative aspects, such as anatomical aspects
concerning brain deviations (e.g., the absence of certain
connections) to quantitative aspects, such as biochemical
aspects concerning testosterone levels. Some example
LEADSTO specifications (called Local Properties, LPs) are
given below (both in informal and in formal notation)1:
LP9 A certain level of current testosterone will lead to a corresponding
level of aggressiveness.
∀x:SCALE chemical_state(testosterone,current,x) →→0, 0, 1, 1

desire_for_aggressiveness(x)

1 See (Bosse, Gerritsen, and Treur, 2007b) for the complete model.

LP20 Observation of a stimulus with an excitement level that is lower than
the excitement threshold will lead to boredom.
∀s1,s2,y:INTEGER observes_stimulus(s1,s2) ∧ excitement_threshold(y) ∧
s2<y →→0, 0, 1, 1 boredom

LP29a A low blood sugar level leads to high impulsiveness.
chemical_state(blood_sugar, low) →→0, 0, 1, 1 desire_for_impulsiveness(high)

The variety of biological and psychological aspects that
were found relevant in the literature (such as Moir and
Jessel, 1995; Raine, 1993; Bartol, 2002; Delfos, 2004) and
are taken into account in this model, are those described in
the second section above. Different combinations of these
elements lead to different types of (composed) desires; e.g.,
the desire to perform an exciting planned nonaggressive
nonrisky action that harms somebody else (e.g., a pick
pocket action in a large crowd). The following LEADSTO
rule generates a composed desire out of the different
ingredients mentioned earlier:

LP30 A combination of values for theory of mind, desire for
aggressiveness, desire to act, desire to act safely, desire for actions with
strong stimuli, desire for impulsiveness, positive and negative emotional
attitude towards others, and desire for high gain and low loss leads to a
specific composed desire, represented as d(has_value(theory_of_mind, s1),
…, has_value(desire_for_low_loss, s10)).
∀s1,s2,s3,s4,s5,s6,s7,s8,s9,s10:SCALE
theory_of_mind(s1) ∧ desire_for_aggressiveness(s2) ∧ desire_to_act(s3) ∧
desire_to_act_safely(s4) ∧ desire_for_actions_with_strong_stimuli(s5) ∧
desire_for_impulsiveness(s6) ∧ emotional_attitude_towards_others(pos,s7) ∧
emotional_attitude_towards_others(neg,s8) ∧ desire_for_high_gain(s9) ∧
desire_for_low_loss(s10) →→0, 0, 1, 1

desire(d(has_value(theory_of_mind, s1), ...,
has_value(desire_for_low_loss, s10)))

Utility-Based Reasoning about Intentions
As in (Bosse, Gerritsen and Treur, 2007b), part of the model
for criminal behaviour is based on the BDI-model,
whichbases the preparation and performing of actions on
beliefs, desires and intentions (e.g., Georgeff and Lansky,
1987; Rao and Georgeff, 1991). In this model an action is
performed when the subject has the intention to do this
action and it has the belief that the opportunity to do the
action is there. Beliefs are created on the basis of stimuli
that are observed. The intention to do a specific type of
action is created if there is a certain desire, and there is the
belief that in the given world state, performing this action
will fulfil this desire. The BDI-model was specified by:

LP31 Desire d combined with the belief that a certain action a will lead to
the fulfillment of that desire will lead to the intention to perform that
action.
∀d:DESIRE ∀a:ACTION desire(d) ∧ belief(satisfies(a, d)) →→0, 0, 1, 1

intention(a)

LP32 The belief that there is an opportunity to perform a certain action
combined with the intention to perform that action will lead to the
performance of that action.
∀a:ACTION belief(opportunity_for(a)) ∧ intention(a) →→0, 0, 1, 1 performed(a)

However, to assess and compare different options, and
select a best option, as an extension to this basic BDI-model
utilities are to be assigned and combined, addressing the
degree to which an action satisfies a desire. The notion of
utility to be used requires some reflection. Sometimes this
may be considered a rational notion with an absolute,

intersubjective (or objective) status. For two agents with a
kind of standard internal functioning, considered rational,
this intersubjectivity may be a reasonable assumption.
However, if the internal processes are different it is less
reasonable. One agent may have preferences different from
those of the other agent, and hence be satisfied with a
situation that is not satisfactory for the other agent. As an
example, multi-attribute negotiation aims at exploiting such
differences in preferences between agents in order to the
benefit of both; e.g., (Keeney and Raiffa, 1976; Raiffa,
1982; Jonker and Treur, 2001; Bosse, Jonker and Treur,
2004). This shows that the meaning of utility can be
subjective and personal. In particular, for a criminal subject,
due to his or her specific biological and psychological
characteristics, a desire can be quite deviant from what is
commonly considered as the rational norm. For this subject
the utility of a certain action a is assessed according to the
extent to which it fulfils this personal desire. This shows
how utilities are assessed with respect to a subjective
measure focusing on a specific desire d, which is affected,
or even largely determined by the subject’s specific
biological and psychological background. According to this
perspective, the utility-based decision model was set up as
follows:

1. Aspect Utility Value Representations
For any aspect xi with value si, introduce an aspect utility vi

for any possible action a by
has_aspect_utility(a, has_value(x1, s1), v1)
…
has_aspect_utility(a, has_value(xk, sk), vk)

where vi is based on a closeness measure for each aspect xi of
the considered option a to value si, normalised between 0
(least close, minimal utility) and 1 (most close, maximal
utility). For example,

has_aspect_utility(fight,
has_value(desire_for_aggressiveness, high), 0.9)

indicates that the action of fighting contributes much to a
high value for aggressiveness.
2. Aspect Weight Factor Representations
Introduce weight factors w1, …, wk for the different aspects xi,
normalised so that the sum is 1, and introduce relations
weight_factor(xi, wi) stating that aspect xi has weight factor wi.
3. Combination of Aspect Utilities to Option Utilities
Combine the option aspect utility values v1, …, vk for a given
composed desire to an overall option utility taking into
account the weight factors w1, …, wk, according to some
combination function f(v1, …, vk, w1, …, wk).

The combination function in 3. can be formalised in a
number of manners; two common possibilities are:
• Euclidian Distance: f(v1, …, vk, w1, …, wk) = √(w1v1

2 + … + wkvk
2)

• Manhattan Distance: f(v1, …, vk, w1, …, wk) = w1v1 + … + wkvk

The LEADSTO property for combination is:

LP41 ∀a:ACTION ∀x1,...,xk:ASPECT ∀s1,...,sk:SCALE ∀v1,...vk,w1,...wk:REAL
belief(has_aspect_utility(a, has_value(x1, s1), v1)) ∧ … ∧
belief(has_aspect_utility(a, has_value(xk, sk), vk)) ∧
weight_factor(x1, w1) ∧ … ∧ weight_factor(xk, wk) →→0, 0, 1, 1

belief(has_utility(a, d(has_value(x1, s1), ..., has_value(xk, sk)),
f(v1, …, vk, w1, …, wk)))

belief(has_aspect_utility
(aj,has_value(x1,s1),v1))

belief(has_aspect_utility
(aj,has_value(xk,sk),vk))

weight_factor(x1,w1)

uj =√((v1·w1)²+...
+(vk·wk)²)

weight_factor(xk,wk)

belief(has_aspect_utility
(ai,has_value(xk,sk),vk))

weight_factor(x1,w1)

weight_factor(xk,wk)

ui=√((v1·w1)²+...
+(vk·wk)²)

belief(has_aspect_utility
(ai,has_value(x1,s1),v1))

belief(has_utility
(aj, d(has_value(x1, s1), ...,

has_value(xk, sk),uj))

uj≥≥≥≥c

ui≥≥≥≥c

belief(has_utility
(ai, d(has_value(x1, s1), ...,

has_value(xk, sk),ui))

desire(d(has_value(x1,s1), has_value(x2,s2), ..., has_value(xk,sk))

is_intention_option(aj,uj)

is_intention_option(ai,ui)

ui≥≥≥≥uj
intention(ai)

belief(opportunity_for(ai))

performed(ai)

desire(d(has_value(x1,s1), has_value(x2,s2), ..., has_value(xk,sk))

Figure 1: Utility-Based BDI-model

Next, the choice process is formalised. This is done in two
steps. First, LP31 is replaced by LP31a, LP31b, and LP31c:

LP31a Desire d combined with the belief that a certain action a will lead to
the fulfillment of d with utility u (≥c) will lead to the consideration of a as a
possible intention option.
∀d:DESIRE ∀a:ACTION ∀u:REAL desire(d) ∧ belief(has_utility(a, d, u) ∧ u≥c)

→→0.2, 0.2, 1, 1 is_intention_option(a, u)

Here c is a threshold value, for example 0.5. This is used to
generate the options to be considered. To obtain only the
intentions with highest utility, as a next phase, the selection
process is modelled in two steps by:

LP31b If a1 and a2 are both intention options, but a2 has a higher utility,
then a1 is ruled out as an intention option.
∀a1,a2:ACTION ∀u1,u2:REAL is_intention_option(a1,u1) ∧
is_intention_option(a2,u2) ∧ u1<u2 →→0, 0, 1, 1

ruled_out_intention_option(a1, u1)

LP31c Eventually, an intention option that is not ruled out is selected as
final intention.
∀a:ACTION ∀u:REAL is_intention_option(a, u) ∧
not ruled_out_intention_option(a, u) →→0, 0, 1, 1 intention(a)

The complete utility-based decision model is depicted
graphically in Figure 1. The circles denote state properties,
and the arrows denote dynamic (LEADSTO) properties.
Notice that the state properties of the type desire(...) are
generated by the model described in the previous section.

Note that, in order to describe a specific decision making
scenario with this model, the person described needs to have
some expectancy about possible actions already at the start
of the scenario. This expectancy may be triggered by
observations (e.g., “I see a potential victim and no

guardians, so I consider robbing this person”), or by other
internal states (e.g., “I feel like seeking some thrill, so I
consider robbing a bank this afternoon”). In the first case,
the duration between the decision and the actual
performance of the action is rather short, so that it is very
likely that an opportunity for the considered action will
indeed occur. In the second case, this duration will be
longer, and it is possible that no opportunity will occur at
all. The model can be used to describe both types of
processes.

An Example Simulation Trace
Based on the model shown above, a number of simulation
experiments have been performed to test (for some simple
scenarios) whether it shows the expected behaviour. In this
section, an example simulation trace is described in detail.
The example scenario involves a street robber (indicated by
criminal1) who observes some possible targets, and is
deliberating about whether or not to perform an assault (and
if so, which assault to perform). For simplicity, we assume
that there are two possible assaults to choose from
(indicated by assault1 and assault2, respectively). In case of
assault1, he would steal an old lady’s purse, without using
extreme violence. In case of assault2, he would steal a young
man’s brand new laptop. However, since this man seems to
be rather strong, he would probably have to use violence to
achieve his goal. The characteristics of both assaults, as well
as criminal1’s individual preferences, are shown in Table 1.

Table 1: Characteristics of a criminal and possible assaults2

weight factor
(criminal1)

aspect utility
(assault1)

aspect utility
(assault2)

theory of mind 0.04 low, 0.7 low, 0.9
desire for aggressiveness 0.04 high, 0.3 high, 0.8
desire to act 0.17 high, 0.8 high, 0.8
desire to act safely 0.02 high, 0.1 high, 0.1
desire for actions with strong
stimuli

0.17 high, 0.6 high, 0.8

desire for impulsiveness 0.12 medium, 0.5 medium, 0.5
positive emotional attitude
towards others

0.02 low, 0.7 low, 0.8

negative emotional attitude
towards others

0.04 low, 0.3 low, 0.3

desire for high gain 0.19 high, 0.5 high, 0.8
desire for low loss 0.19 high, 0.8 high, 0.5

In the first column of the table, the different weight
factors assigned to criminal1 can be seen. These weight
factors, which add up to 1, show the relative importance of
each aspect for the criminal. The weight factor for desire to
act safely, for example, is 0.02. This means that criminal1 has
a low interest in the desire to act safely. The weight factor
for desire for actions with strong stimuli is 0.17, which
means that he has a high desire for actions with strong
stimuli. In the columns to the right of the weight factor, the
utility of the different aspects is mentioned (in the column in
the middle for assault1 and in the column to the right for
assault2). The values describe in how far the aspect is
present in this particular assault. For example,
has_aspect_utility(assault1, has_value(desire_for_aggressiveness,
high), 0.3) shows that assault1 does not contribute much to the
high desire for aggressiveness. On the other hand,
has_aspect_utility(assault2, has_value(desire_for_aggressiveness,
high), 0.8) shows that assault2 contributes much to the high
desire for aggressiveness.

The results of applying the simulation model to this
example situation are shown in Figure 2. Here, time points
are on the horizontal axis, whereas the different state
properties are on the vertical axis. A box on top of a line
indicates that a state property is true at that time point. As
shown by this figure, the criminal immediately has a certain
desire, represented as d1. Note that this stands for a complex
desire represented as:

d(has_value(theory_of_min,low), has_value(desire_for_aggressiveness,high),
has_value(desire_to_act,high), has_value(desire_to_act_safely,high),
has_value(desire_for_actions_with_strong_stimuli,high),
has_value(desire_for_impulsiveness,medium),
has_value(positive_emotional_attitude_towards_others,low),
has_value(negative_emotional_attitude_towards_others,low),
has_value(desire_for_high_gain,high), has_value(desire_for_low_loss,high))

(which was not shown in the picture, for obvious reasons).
This desire was generated by a complex process, involving a
combination of biological and psychological factors. Due to
space limitations, this part of the trace is not shown here
either. However, more detailed simulation traces that
include such processes are shown in Appendix A in (Bosse,
Gerritsen and Treur, 2007b).

2 This approach assumes that an individual’s preferences (i.e., the weight
factors), as well as the characteristics of certain actions (i.e., aspect
utilities), can be expressed by real numbers. For the presented examples,
the chosen numbers are not necessarily claimed to be realistic, and should
rather be seen as rough estimations by the authors.

Based on the desire as described above, criminal1 then
starts assessing the utilities of the two possible assaults (see
the predicates belief(has_utility(…)) at time point 1), based on
the aspect utilities and weight factors of these assaults. The
action of stealing the young man’s laptop (assault2) is
assessed with value 0.678723, whereas the action of robbing
the old lady’s purse (assault1) has value 0.625532. Since
both has_utility-values are higher than 0.5, both actions
become possible intentions (see time point 2). Next, the
criminal chooses the one with the highest utility, which
leads to the intention to perform assault2 at time point 3.
Later, when an opportunity for assault2 arises (time point
20), this assault is indeed performed (time point 21).

Figure 2: Example simulation trace

As illustrated by the trace in Figure 2 (and several similar
traces that are not shown due to space limitations), the
simulation experiments have indicated that the presented
model successfully integrates personal biological and
psychological aspects within the decision making process,
which eventually leads to the selection of actions that
correspond to the desires of the individual.

Discussion
The few papers on simulation of criminal behaviour found
in the literature usually address a limited number of aspects.
For example, Brantingham and Brantingham (2004) discuss
the possible use of agent modelling approaches to criminal
behaviour in general, but do not report a specific model or
case study. Moreover, Baal (2004) puts emphasis on the
social network and the perceived sanctions. However, this
model leaves the psychological and biological aspects
largely unaddressed.

In this paper, an agent-based model to analyse criminal
decision making is presented. The model combines a BDI-
agent model (as described for the case of a criminal with
Intermittent Explosive Disorder in (Bosse, Gerritsen and
Treur, 2007b)) with a model for multi-attribute decision
making, and applies this to the case of street robbery. It
enables a choice between different options for actions
fulfilling a complex desire, according to the Rational Choice
Theory. The resulting agent model combines qualitative,
logical aspects of a BDI-model with quantitative, numerical
aspects of utility theory.

The simulation model has been made with the aim to
formalise, in an abstract and computationally useful manner,
the decision making behaviour of certain types of criminals
as described in literature from Criminology. Such a model
can be used in a number of ways. In the first place, it can be
used to simulate behaviour for given scenarios of

circumstances occurring over time. This can be used to find
out for such a given scenario of circumstances, whether a
criminal of a certain type may show certain behaviour under
these given circumstances. Second, the models can be used
in the opposite direction, i.e., given a certain behaviour, to
determine what kind of scenario of circumstances could
have led to this behaviour. See (Bosse, Gerritsen, and Treur,
2007a) for details about how this can be done. Third, the
models may be used to predict which behaviour certain
types of criminals will show if circumstances are avoided or
slightly changed (what-if reasoning). Using this approach,
the behaviour of the subject can be modified by selecting or
avoiding the appropriate circumstances, or by determining
(cognitive) training programs for criminals. For all of these
purposes, the model should be seen as a tool to support the
user (e.g., the detective or the therapist) in its reasoning, by
clarifying which scenarios are more plausible. It should
however not be interpreted as a model of the absolute truth.

Validation of the model is a difficult issue. At least, the
present paper has indicated that it is possible to integrate
biological and psychological factors with rational factors
within one model. Moreover, the model indeed shows the
behaviour of different types of criminals as described in
literature such as (Moir and Jessel, 1995; Raine, 1993;
Delfos, 2004). In this sense the model has been validated
positively. However, notice that this is a relative validation,
only with respect to the literature that forms the basis of the
model. In cases that the available knowledge about the
behaviour and biological and psychological functioning of
such criminal types is improving, the model can be
improved accordingly. The modelling approach as put
forward supports such an incremental development and
improvement. The simulation model has been specified in a
conceptual, not implementation-dependent manner, and is
easy to maintain. In this sense the approach anticipates
further development of the area of criminal behaviour.

In the cognitive literature, it is often claimed that
cognition can be divided into two distinct systems: a low-
level, emotional and unconscious system, and a high-level,
evolutionary recent, conscious system, see, e.g., (Evans,
2003). At first sight, our proposed model seems to show
significant similarities with this dual process theory. Our
model to determine desires has characteristics of a low-level
system, whereas the model for utility-based decision making
resembles a high-level system. Future work will explore
whether a more precise mapping can be made between the
concepts introduced in our combined model and the
concepts typically used in dual process theory. In addition,
future work will explore how our model relates to models in
which affective factors just ‘bypass’ decision making, such
as in (Loewenstein, Weber, Hsee, and Welch, 2001).

References
Baal, P.H.M. van (2004). Computer Simulations of Criminal

Deterence: from Public Policy to Local Interaction to
Individual Behaviour. Ph.D. Thesis, Erasmus University
Rotterdam. Boom Juridische Uitgevers.

Baron-Cohen, S. (1995). Mindblindness. MIT Press.

Bartol, C.R. (2002). Criminal Behavior: a Psychosocial Approach.
Sixth edition. Prentice Hall, New Jersey.

Bosse, T., Gerritsen, C., and Treur, J. (2007a). Case Analysis of
Criminal Behaviour. In: Proceedings of the 20th International
Conference on Industrial, Engineering & Other Applications of
Applied Intelligent Systems, IEA/AIE’07. Springer LNAI, to
appear.

Bosse, T., Gerritsen, C., and Treur, J. (2007b). Cognitive and
Social Simulation of Criminal Behaviour: the Intermittent
Explosive Disorder Case. In: Proc. of the Sixth International
Joint Conference on Autonomous Agents and Multi-Agent
Systems, AAMAS'07. ACM Press, pp. 367-374.

Bosse, T., Jonker, C.M., Meij, L. van der, and Treur, J. (2005).
LEADSTO: a Language and Environment for Analysis of
Dynamics by SimulaTiOn. In: Eymann, T. et al. (eds.),
Proceedings of MATES'05. LNAI, vol. 3550. Springer Verlag,
2005, pp. 165-178. Extended version in Journal of AI Tools,
2007, in press.

Bosse, T., Jonker, C.M., and Treur, J., (2004). Experiments in
Human Multi-Issue Negotiation: Analysis and Support. In:
Jennings et al. (eds.), Proc. of the Third Int. Joint Conf. on
Autonomous Agents and Multi-Agent Systems, AAMAS'04.
IEEE Computer Society Press, 2004, pp. 672-679.

Brantingham, P. L., and Brantingham, P. J. (2004). Computer
Simulation as a Tool for Environmental Criminologists.
Security Journal, 17(1), 21-30.

Cohen, L.E. and Felson, M. (1979). Social change and crime rate
trends: a routine activity approach. American Sociological
Review, vol. 44, pp. 588-608.

Cornish, D.B., and Clarke, R.V. (1986). The Reasoning Criminal:
Rational Choice Perspectives on Offending. Springer Verlag.

Delfos, M.F. (2004). Children and Behavioural Problems: Anxiety,
Aggression, Depression and ADHD; A Biopsychological
Model with Guidelines for Diagnostics and Treatment. Harcourt
book publishers, Amsterdam.

Evans, J.S.B.T. (2003). In two minds: dual-process accounts of
reasoning. Trends in Cognitive Sciences 7, pp. 454-459.

Georgeff, M. P., and Lansky, A. L. (1987). Reactive Reasoning
and Planning. In: Proc. of the Sixth National Conf. on Artificial
Intelligence, AAAI’87. Menlo Park, California. American
Association for Artificial Intelligence, 1987, pp. 677-682.

Jonker, C.M., and Treur, J., (2001). An Agent Architecture for
Multi-Attribute Negotiation. In: B. Nebel (ed.), Proc. of the
17th International Joint Conference on AI, IJCAI'01. Morgan
Kaufman, 2001, pp. 1195 - 1201.

Keeney, R., and H. Raiffa. (1976). Decisions with Multiple
Objectives: Preferences and Value Tradeoffs. John Wiley &
Sons, 1976.

Loewenstein, G. F., Weber, E. U., Hsee, C. K., and Welch, E, S.
(2001). Risk as feelings. Psychological Bulletin, vol. 127, pp.
267-286.

Moir, A., and Jessel, D. (1995). A Mind to Crime: the controversial
link between the mind and criminal behaviour. London:
Michael Joseph Ltd; Penguin.

Raiffa, H. (1982). The Art and Science of Negotiation. Harvard
University Press, Cambridge, MA, 1982.

Raine, A. (1993). The Psychopathology of Crime: Criminal
Behaviors as a Clinical Disorder. New York, NY: Guilford
Publications.

Rao, A.S. and Georgeff, M.P. (1991). Modelling Rational Agents
within a BDI-architecture. In: Allen, J. et al. (eds.), Proc. of the
2nd Int. Conference on Principles of Knowledge Representation
and Reasoning, (KR’91). Morgan Kaufmann, pp. 473-484.

A Dynamical System Modelling Approach to Gross’ Model of Emotion Regulation

Tibor Bosse (tbosse@few.vu.nl) Matthijs Pontier (mpontier@few.vu.nl) Jan Treur (treur@few.vu.nl)

Vrije Universiteit Amsterdam, Department of Artificial Intelligence
De Boelelaan 1081, NL-1081 HV, Amsterdam, The Netherlands

Abstract

This paper introduces a computational model for emotion
regulation formalising the model informally described by
Gross (1998). The model has been constructed using a high-
level modelling language, and integrates both quantitative
aspects (such as levels of emotional response) and qualitative
aspects (such as decisions to regulate one’s emotion). A
number of simulation experiments have been performed,
demonstrating that the computational model successfully
reflects the model as described by Gross.

Introduction
Emotions were historically seen as neural activation states
without a function. However, recent research provides
evidence that emotions are functional (e.g., Damasio, 2000).
Emotions have a facilitating function in decision making,
prepare a person for rapid motor responses, and provide
information regarding the ongoing match between organism
and environment. Emotions also have a social function.
They provide us information about others’ behavioural
intentions, and script our social behaviour (Gross, 1998). In
the past two decades, psychological research has started to
focus more on emotion regulation (e.g., Gross, 1998, 2001;
Ochsner and Gross, 2005; Thompson, 1994). In brief,
emotion regulation is the process humans undertake in order
to affect their emotional response. Recent neurological
findings (such as bidirectional links between limbic centers,
which generate emotion, and cortical centers, which regulate
emotion) have changed the consensus that emotion regula-
tion is a simple, top-down controlled process (Gross, 1998).

This article introduces a computational model to simulate
emotion regulation, based on the process model described
informally by Gross (1998, 2001). Such a model can be
used for different purposes. In the first place, from a
Cognitive Science perspective, it can provide insight in the
process of emotion regulation. This may be useful for the
purpose of developing therapies for persons that have
difficulties in regulating their emotions (Burns et al., 2003;
Towl and Crighton, 1996), for example, in work with
forensic inpatients. In addition, a model for emotion
regulation can be used in the field of Artificial Intelligence,
see e.g. (Bates, 1994). For example, in the domain of virtual
reality it can be used to let virtual agents show human-like
behaviour regarding emotion regulation. Finally,
computational models for emotion regulation may play a
role within the field of Ambient Intelligence (Aarts, Harwig,
and Schuurmans, 2001). For instance, when humans have to
interact intensively with automated systems, it is useful if
the system maintains a model of the emotional state (and the

emotion regulation process) of the user. This enables the
system to adapt the interaction to the user’s needs.

Below, first Gross’s model of emotion regulation is
briefly discussed. The model describes a number of
strategies humans use to adapt their emotion response
levels, varying from situation selection to cognitive change
and response modulation. Next, the dynamical system style
modelling approach used is briefly introduced. After that,
the simulation model formalising the model of Gross is
described, and some simulation results are shown, both for
ideal cases and for cases of over- and under-regulation. The
paper concludes with a discussion.

Gross’ Model for Emotion Regulation
Gross (2001) describes a process model of emotion
regulation using the following definition:

‘Emotion regulation includes all of the conscious and
nonconscious strategies we use to increase, maintain, or
decrease one or more components of an emotional response’

The components he considers are (1) the experiential
component, (the subjective feeling of the emotion), (2) the
behavioural component (behavioural responses), and (3) the
physiological component (responses such as heart rate and
respiration). Humans use strategies to affect their level of
emotional response for a given type of emotion, for
example, to prevent a person from having a too high
emotional or too low emotional response level. He
differentiates between antecedent-focused strategies and
response-focused strategies. Antecedent-focused strategies
are applied to the process preparing for response tendencies
before they are fully activated. Response-focused strategies
are applied to the activation of the actual emotional
response, when an emotion is already underway.

In his model, Gross distinguishes four different types of
antecedent-focused emotion regulation strategies, which can
be applied at different points in the process of emotion
generation: situation selection, situation modification,
attentional deployment and cognitive change. A fifth
strategy, response modulation, is a response-focused
strategy. Figure 1 shows an overview of these strategies.

The first antecedent-focused emotion regulation strategy
in the model is situation selection: a person chooses to be in
a situation that matches the emotional response level the
person wants to have for a certain emotion. For example, a
person can stay home instead of going to a party, because he
is in conflict with someone who is going to that party. This
is an example of down-regulating one’s emotion.

The second antecedent-focused emotion regulation
strategy in the model is situation modification. When this

strategy is applied, a person modifies an existing situation
so as to obtain a different level of emotion. For instance,
when watching an irritating television program, one may
zap to another channel.

Figure 1: Emotion Regulation Model by Gross (1998).

The third antecedent-focused emotion regulation strategy
is attentional deployment. This strategy refers to shifting
your attention to a certain aspect. For example, one may
close his eyes when watching an exciting penalty shoot-out.
The fourth antecedent-focused emotion regulation strategy
is cognitive change: selecting a cognitive meaning to an
event. A specific type of cognitive change, which is aimed
at down-regulating emotion, is reappraisal:

‘Reappraisal means that the individual reappraises or
cognitively re-evaluates a potentially emotion-eliciting
situation in terms that decrease its emotional impact’
(Gross, 2001).

An example of reappraisal is a case when a person loses a
tennis match and blames the weather circumstances, instead
of his own capacities. However, note that cognitive change
could also be aimed at up-regulating emotion.

The fifth emotion regulation strategy, response
modulation, a response-focused strategy, is applied after the
emotion response tendencies have been generated: a person
tries to affect the process of response tendencies becoming a
behavioural response. A specific type of response
modulation, again aimed at down-regulating, is suppression:

‘Suppression means that an individual inhibits ongoing
expressive behaviour.’ (Gross, 2001).

An example of suppression is a person that hides being
nervous when giving a presentation. As Gross considers
response modulation to be not very effective, this strategy is
not considered in the paper, although it would not be
difficult to incorporate it in the computational model.

Modelling Approach
Modelling the various aspects involved in Gross’ model in
an integrated manner poses some challenges. On the one
hand, qualitative aspects have to be addressed, such as
decisions to regulate one’s emotion (e.g., by selecting a
different situation). On the other hand, quantitative aspects
have to be addressed, such as levels of emotional response.

The modelling approach based on the modelling language
LEADSTO (Bosse, Jonker, Meij, and Treur, 2007) fulfils
these desiderata. It integrates qualitative, logical aspects
such as used in approaches based on temporal logic (e.g.,
Barringer et al., 1996) with quantitative, numerical aspects
such as used in Dynamical Systems Theory (e.g., Ashby,
1960; Port and van Gelder, 1995). Direct temporal
dependencies between two state properties in successive
states are modelled by executable dynamic properties
defined as follows. Let a and b be state properties of the
form ‘conjunction of ground atoms or negations of ground

atoms’, then the notation a →→e, f, g, h b means:

If state property a holds for a certain time interval with duration g,
then after some delay (between e and f) state property b will hold
for a certain time interval of length h.

Atomic state properties can have a qualitative, logical
format (e.g., desire(d), expressing that desire d occurs), or a
quantitative, numerical format (e.g., has_value(x, v)
expressing that variable x has value v).

Global Overview of the Model
Gross has described his process model for emotion
regulation informally. In order to be able to formalise his
model, for any given type of emotion a number of variables
have been introduced. For convenience, the model
concentrates on one specific type of emotion. In principle,
this can be any emotion that is considered to be a basic
human emotion, e.g., sadness, happiness, or anger (Ekman,
Friesen, and Ellsworth, 1972).

In order to describe the regulation of such an emotion, the
model takes into account a number of emotion regulation
strategies that can be chosen. In the variant of the model as
described in this paper, the four antecedent-focused emotion
regulation strategies discussed by Gross are used (i.e.,
situation selection, situation modification, attentional
deployment, and cognitive change). For the moment,
response modulation is not considered. However, the model
is generic in the sense that this set of strategies considered
can easily be adapted. Based on the four strategies
mentioned, in the formalisation four corresponding elements
k are introduced, denoting the objects that are influenced by
the particular strategies (see Table 1).

Table 1: Strategies and elements addressed in the model.
Strategy Corresponding Element

situation selection situation
situation modification sub_situation
attentional deployment aspect

cognitive change meaning

In the model it is assumed that at each point in time, for
each element k a certain choice is in effect, and this choice
has a certain emotional value vk attached. This emotional
value contributes to the emotion response level ERL via an
element-specific weight factor wk, thereby taking into
account a persistency factor β indicating the degree of
persistence or slowness of adjusting of the emotion response

level when new emotional values are obtained. Someone
whose emotions can change rapidly (e.g., who stops being
angry in a few minutes after a fight) will have a low β.

Humans are always searching for a certain level of
emotion depending on the person1. For instance, some enjoy
extreme sports, while others prefer a more quiet kind of
recreation. The level of emotion aimed at depends also on
the type of emotion. Most humans aim at a relatively high
level of emotion for happiness, while they aim at a lower
level of emotion for fear. The regulation process starts by
comparing the actual emotion response level ERL to the
emotion response level ERL_norm aimed at. The difference d
between the two is the basis for adjustment of the choices
made for each of the elements k; based on these adjusted
choices, each element k will have an adjusted emotional
value vk. The strength of such an adjustment is expressed by
a modification factor αk, which can be seen as a flexibility or
willingness (conscious or unconscious) to change one’s
emotional value for a certain element. For instance, the
α for the element ‘situation selection’ can be seen as the
flexibility to change one’s situation. An overview of the
variables used in the model is given in Table 2.

Table 2: Variables addressed in the model.
Variable Meaning
ERL Emotion Response Level
ERL_norm Emotion Response Level aimed at
D Difference between ERL and ERL_norm
β Persistency factor for ERL
K Elements indicating strategies incorporated
wk Weight of element k in adjusting the ERL
vk Emotional value for element k
αk Modification factor that represents the flexibility to change

the emotional value of element k

Some of these variables were chosen to be set at forehand
and remain constant during the process (in particular
ERL_norm, β, wk, αk). The other variables depend on each
other and on the fixed variables, as shown in a qualitative
manner in the graph depicted in Figure 2.

Figure 2: Dependencies between the variables.

This graph shows that the emotion response level ERL is
affected by the emotional values vk for the different
elements, the weights wk attached to these elements, and the
persistency factor β that indicates in how far the previous

1 Although we use words like ‘searching for’ to describe this process, it is
not claimed that this process is always a conscious, deliberate activity.

response level affects the current one. The difference d
between response level and norm obviously depends on
both of these factors. Finally, the emotional values vk for the
different elements are affected by this difference d and the
modification factor αk.

The Quantitative Relations in the Model
To obtain a quantitative model, the emotion response level
and the emotional values for the different elements for a
given type of emotion are represented by real numbers in
the interval [0, 2] (where 0 is the lowest possible emotion
response level, and 2 the highest). In the model, a fixed
level of emotion to aim at is assumed (the ERL norm), also
expressed in a real number in the domain [0, 2]. As a simple
illustration, suppose one wants to influence its state of anger
by selecting an appropriate situation, and one deliberates
whether to go to a party or not. This can be represented by
introducing two different situations sit1 and sit2, for example
with vsit1=1.5 (since going to the party will increase the state
of anger) and vsit2=0.5 (staying home will decrease the state
of anger). Moreover, the ERL norm can for instance be 0.7
(i.e., one aims at being a bit angry, but not too angry). In
that case, if one’s current ERL is already high, one will be
likely to stay home (i.e., choose sit2), and vice versa.

The process of emotion regulation has a continuous
nature. At any point in time, the characteristics of the
current situation affect a person’s emotional response level.
Meanwhile, this emotional response level affects the
person’s choice for the emotional values vk, which in turn
influence the current situation (see also the cycle in Figure
2). An approach to model such a process is the Dynamical
Systems Theory (DST) based on differential equations; e.g.,
(Port and van Gelder, 1995). To use differential equations
for simulation, some form of discretisation is needed.
Therefore, instead of differential equations, a set of
difference equations is used, with a fixed step size s, that
can be taken any size as desired.

Updating the Emotional Response Level
Based on the above ideas, the emotion response level is
recalculated each step by the following difference equation
formula:

new_ERL = (1−β) * Σk (wk * vk) + β * ERL

In this formula2, new_ERL is the new emotion response level,
and ERL is the old emotion response level. The persistency
factor β is the proportion of the old emotion response level
that is taken into account to determine the new emotion
response level. The new contribution to the emotion
response level is calculated by the weighted sum of the
emotional values: Σk wk * vk. By normalisation, the sum of all
the weights wk is taken to be 1. According to the indication

2 Note that the formula can also be rewritten into the following difference
equation format:
∆ERL = (1−β) * (Σk (wk * vk) - ERL) ∆t with ∆ERL = new_ERL – ERL
This format shows more explicitly how β determines the speed of
adaptation of ERL to the new contribution Σk wk * vk; here ∆t is taken 1.

ERL

β

wk

vk

dαk ERL norm

of Gross (2001), elements that are affected at an earlier
point in the emotion regulation process have higher weights.
Within the simulation model, the update of the emotional
response level is expressed by the following dynamic
property in LEADSTO format (where s is the step size):

LP1 (Update Emotion Response Level)
emotion_response_level(erl)
and has_weight(situation, w1)
and has_weight(sub_situation, w2)
and has_weight(aspect, w3)
and has_weight(meaning, w4)
and has_emotional_value(situation, v1)
and has_emotional_value(sub_situation, v2)
and has_emotional_value(aspect, v3)
and has_emotional_value(meaning, v4)

→→0, 0, s, s emotion_response_level((1-beta) *
(w1*v1 + w2*v2 + w3*v3 + w4*v4) + beta * erl)

Updating the Emotional Values
The chosen emotional values vk, which affect the emotion
response level, are on their turn recalculated each step by
the following set of difference equations:

d = ERL - ERLnorm

∆vk = – αk * d / dmax ∆t
new_vk = vk + ∆vk

In these formulas, new_vk is the new emotional value vk, and
old_vk is the old emotional value vk., while ∆vk is the change of
the emotional value vk (either positive or negative), and ∆t
the time step, which is taken 1 in this paper. The change in
the emotional value vk is calculated by the formula – αk * d /
dmax. In this formula, αk is the modification factor, and d is
the difference between the actual emotion response level
and the desired emotion response level (represented by
ERL_norm). Here dmax is an estimation of the maximum
difference that can be reached. So d / dmax is the proportion of
the maximal reachable level of emotion above the level of
emotion aimed at (or below this level, if d is negative).

When the actual emotion response level equals the desired
emotion response level, then d = 0; this means that ∆vk = 0, so
the emotion response level will not change. Moreover, a
person will ‘choose’ an element with a more extreme
emotional value vk when (s)he is more flexible in this
emotional value vk (this is the case when αk is high), or when
(s)he experiences an emotion response level that is further
away from the desired emotion response level (this is the
case when d deviates more from 0). Within the simulation
model, the update of emotional values is expressed as
follows:

LP2 (Update Emotional Values)
emotion_response_level(erl) and erl_norm(erl_norm)
and has_emotional_value(element, v)
and has_modification_factor(element, a)

→→0, 0, s, s

has_emotional_value(element, v – a * (erl - erl_norm) / dmax)

Simulation Results
A number of experiments have been performed to test what
kind of behaviour can be simulated. Each subsection below
addresses a specific type of scenario. Two types of cases are

addressed: those with an optimal form of regulation
(compared to the emotion response level aimed at), and
cases of over- and under-regulation. The different scenarios
are established by taking different settings for the
modification factors αk. The values of the other variables are
the same for all experiments described in this section, see
Table 3.

Table 3: Values of variables used in the simulations.
Variable Fixed

Value
Variable Initial

Value
ERLnorm 0.5 ERL 1.85

β 0.7 v1 1.90

w1 0.35 v2 1.85
w2 0.30 v3 1.80
w3 0.20 v4 1.75
w4 0.15
s 1

As shown in the table, the person considered has an
optimal level of emotion of 0.5 in the domain [0, 2]. The
factor β is set to 0.7, which means that in each step, 70% of
the old emotional response level persists, and the remaining
30% is determined by the new emotional values. The weight
attached to situation selection is 0.35, which means that the
selected situation determines 35% of the 30% of the new
emotion response level that is determined by the emotional
values. Similarly, the weights for situation modification,
attentional deployment, and cognitive change are set to
0.30, 0.20, and 0.15, respectively. The results of the
experiments are shown and explained below.

Optimal forms of emotion regulation
In the first experiment, all modification factors αk were set
to 0.15. The results are shown in Figure 3. In such figures,
time is on the horizontal axis; the values of the different
variables are shown on the vertical axis.

Figure 3: Results for an optimal case (equal αk).

The emotional response level decreases monotonically
without decreasing below the level aimed at. So, the subject
gradually reaches his level of emotion aimed at. The
emotional values show similar behaviour (due to space
limitations not shown here).

In the second experiment, the subject has for each
element k a different flexibility αk in emotion regulation:

α1 = 0.20, α2 = 0.15, α3 = 0.10, α4 = 0.05
The results of this experiment are shown in Figure 4.

Here, the emotion response level reaches the emotion
response level of 0.5 aimed for in a reasonable amount of
time, just like in the optimal case. However, the way the
emotional values change in order to achieve this differs
from the first experiment. Here, it is important to note that

Figure 5: Results for the over-regulation case.

Figure 4: Results for an optimal case (different αk).

the scale on the vertical axis is not the same for the different
graphs in Figure 4. The graphs show that the emotion
response levels of the elements with a higher α descend
much quicker and further than the elements with a lower α.
For example, situation selection (α=0.20) has reached an
emotional value of 0 at the end of the simulation, whereas
cognitive change (α=0.01) changes only a little bit, and
reaches an emotional value of about 1.3. This means that the
subject finds a way to reach his/her level of emotion aimed
for, and does this by changing his/her behaviour more for
the elements for which (s)he has a higher flexibility.

Over- and under-regulation
In the third experiment, the modification factors αk for all
elements were set to 0.4. This means that the subject has a
relatively high flexibility in emotion regulation, for all
elements. The behaviour of the emotion response level in
this experiment is shown in Figure 5.

In this case, the emotion response level starts to decrease
rapidly, immediate after the experiment has started.
However, it decreases below the level of 0.5 aimed at. It
reaches its minimum after 15 steps in the simulation, at
about 0.3: the subject over-regulates his/her emotion. After
this, the emotion response level starts to raise until it is just
above the optimal level of 0.5, and stays more or less at this
value aimed at for the rest of this simulation.

The lower part of Figure 5 shows how the subject
changed his/her emotional values in order to achieve this.
These emotional values all show similar behaviour, since

the αk's, which represent the flexibility and willingness to
change behaviour, were set to the same value. Also, the
graphs of the emotional values are comparable to the graph
of the emotion response level. The emotional values make a
somewhat steeper curve, especially at the start of the graph.
This makes sense, because the emotion response level is
only for 30% determined by the emotional values, and for
70% by its own old value.

In the fourth experiment presented, the subject has a very
low flexibility in emotion regulation, with an αk value of
0.01 for all elements. The results of this experiment are
shown in Figure 6. In this experiment, the emotion response
level decreases extremely slowly: under-regulation. After 50
steps, it has only decreased by 0.3 until 1.55, as can be seen
in the graph.

Figure 6: Results for the under-regulation case.

Discussion
In this paper, a formal model for Gross’ (informally
described) model of emotion regulation has been
introduced. The emotion regulation model has been
constructed using the high-level simulation language
LEADSTO as a modelling vehicle, and integrates both
quantitative, dynamical system aspects (such as levels of
emotional response) and qualitative aspects (such as
decisions to regulate one’s emotion). Simulation

experiments have been performed for different situations, by
using different settings for the modification factors αk: for
ideal cases (all αk are medium, or the αk have different
values), for cases of over-regulation (all αk are high), and for
cases of under-regulation (all αk are low). The experiments
show that different values for the modification factors αk

indeed result in different patterns.
As a preliminary validation of the model, the simulation

results have been compared with the predicted behaviours
for different situations as described by Gross, which are
(partly) based on empirical evidence (Gross, 1998, 2001).
The patterns produced by the model were found consistent
with Gross’ descriptions of examples of human regulation
processes. Validation involving extensive comparison with
detailed empirical data is left for future work.

Although the process of emotion regulation is widely
investigated in the literature (e.g., Gross, 1998, 2001;
Ochsner and Gross, 2005; Thompson, 1994), not so many
contributions address the possibility of developing a
computational model of this process. The computational
models that have been developed so far either address some
very specific aspects of the process at a more detailed
(neurological) level, see e.g. (Thayer and Lane, 2000), or
they aim at incorporating emotions into software agents, in
which case they focus more on emotion elicitation
(appraisal) than on emotion regulation, see e.g. (Armony et
al., 1997; Bates, 1994; Velasquez, 1997). The current paper
can be seen as an attempt to build a bridge between both
directions. It formalises an existing theory about emotion
regulation using a high-level modelling language, but still in
enough detail to be able to generate useful simulation traces.
As such, it has similarities with the work by Marsella and
Gratch (2003), who propose an approach to incorporate both
appraisal and coping behaviour into virtual humans. Their
approach makes use of plan-based causal representations,
augmented with decision-theoretic planning techniques,
whereas our approach uses dynamical systems represen-
tations. Other differences are that they propose a “content
model”, in which appraisal and regulation operate on rich
representations of the emotion-evoking situation, and that
their work has been evaluated against clinical data.

The presented model is still in an early stage of
development. For example, the modification factors αk are
currently fixed. In order to make the model adaptive, these
factors can be made adjustable. A way to accomplish this is
to adapt the values of the αk to one’s satisfaction about the
past emotion regulation process. This way, the model could
simulate cases in which humans learn to select the ideal
situations, as in certain types of therapy. Another possible
extension to the model would be to make the desired
emotion response level ERL_norm dynamic, so that it can
depend on specific circumstances. A final extension would
be to represent the different elements k using more complex
knowledge structures, and to enable the model to
dynamically derive the different emotional values from
these structures, as is done, for example, in (Marinier and
Laid, 2004). Future work will explore such possibilities.

References
Aarts, E., Harwig, R., and Schuurmans, M. (2001). Ambient

Intelligence. In The Invisible Future: The Seamless Integration
of Technology into Everyday Life, McGraw-Hill, 2001.

Armony, J.L., Servan-Schreiber, D., Cohen, J.D., and Ledoux, J.E.
1997). Computational modeling of emotion: Explorations
through the anatomy and physiology of fear conditioning.
Trends in Cognitive Sciences, vol. 1, pp. 28-34.

Ashby, R. (1960). Design for a Brain. Second Edition. Chapman &
Hall, London. First edition 1952.

Barringer, H., Fisher, M., Gabbay, D., Owens, R., and Reynolds,
M. (1996). The Imperative Future: Principles of Executable
Temporal Logic, John Wiley & Sons, 1996.

Bates, J. (1994). The role of emotion in believable agents.
Communications of the ACM, Vol. 37, No. 7, pp. 122-125.

Bosse, T., Jonker, C.M., Meij, L. van der, and Treur, J. (2007). A
Language and Environment for Analysis of Dynamics by
SimulaTiOn. Int. Journal of Artificial Intelligence Tools, to
appear, 2007. Short version in: Eymann, T. et al. (eds.), Proc.
MATES'05. Springer LNAI, vol. 3550, 2005, pp. 165-178.

Burns, M., Bird, D., Leach, C., and Higgins, K. (2003). Anger
management training: the effects of a structured programme on
the self-reported anger experience of forensic inpatients with
learning disability. Journal of Psychiatric and Mental Health
Nursing, Vol. 10, pp. 569-577.

Damasio, A. (2000). The Feeling of What Happens: Body, Emotion
and the Making of Consciousness. MIT Press.

Ekman, P., Friesen, W.V., and Ellsworth, P. (1972). Emotion in the
human face: guidelines for research and integration of
Findings. New York: Pergamon.

Gross, J.J. (1998). The Emerging Field of Emotion Regulation: An
Integrative Review. Review of General Psychology, vol. 2, No.
3, pp. 271-299.

Gross, J.J. (2001). Emotion Regulation in Adulthood: Timing is
Everything. Current directions in psychological science, Vol.
10, No. 6, pp. 214-219.

Marinier, R.P., and Laird, J.E. (2004). Toward a Comprehensive
Computational Model of Emotions and Feelings. In: Proc. of the
Sixth International Conference on Cognitive Modeling,
ICCM’04. Lawrence Erlbaum, Mahwah, NJ, pp. 172-177.

Marsella, S., and Gratch, J. (2003). Modeling coping behavior in
virtual humans: Don’t worry, be happy. In Proceedings of
Second International Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS’03. ACM Press, pp. 313-320.

Ochsner, K.N., and Gross, J.J. (2005). The cognitive control of
emotion. Trends in Cognitive Sciences, vol. 9, pp. 242-249.

Port, R.F., and Gelder, T. van (eds.). (1995). Mind as Motion:
Explorations in the Dynamics of Cognition. MIT Press,
Cambridge, Mass.

Thayer, J.F., and Lane, R.D. (2000). A model of neurovisceral
integration in emotion regulation and dysregulation. Journal of
Affective Disorders, Vol. 61, pp. 201-216.

Thompson, R.A. (1994). Emotion regulation: A theme in search of
definition. In N.A. Fox (Ed.), The development of emotion
regulation: Biological and behavioral aspects. Monographs of
the Society for Research in Child Development, Vol. 59 (Serial
No. 240), pp. 25-52.

Towl, G.J., and Crighton, D.A. (1996). The Handbook of
Psychology for Forensic Practitioners. Routledge, New York.

Velasquez, J. (1997). Modeling Emotions and Other Motivations
in Synthetic Agents. In: Proceedings of the Fourteenth National
Conference on Artificial Intelligence, AAAI’97, pp. 10-15.

Modelling Animal Behaviour Based on Interpretation of Another Animal’s Behaviour

Tibor Bosse (tbosse@few.vu.nl) Zulfiqar A. Memon (zamemon@few.vu.nl) Jan Treur (treur@few.vu.nl)

Vrije Universiteit Amsterdam, Department of Artificial Intelligence
De Boelelaan 1081, NL-1081 HV, Amsterdam, The Netherlands

Abstract

For certain animals, the capability to interpret and anticipate
on another animal’s behaviour may be crucial for survival. To
this end, as is often claimed informally, an animal may apply
a Theory of Mind to estimate what the other animal has on its
mind. This paper uses a formal BDI-based agent model for
Theory of Mind to formalise and simulate such a situation.
The model uses BDI-concepts to describe a form of
metacognition: a cognitive process of an agent about the
cognitive process of another agent, which is also based on
BDI-concepts. This paper explores whether this formal model
is applicable to certain animal species. A specific case study
is addressed, which involves the scenario of a prey that
manipulates the behaviour of a predator. For this scenario,
simulation experiments have been performed, and their results
are discussed.

Introduction
For certain animals, to function effectively in interaction
with other animals, it is useful if they are able to interpret,
estimate and anticipate on potential behaviour of animals
around it. It is often assumed that this requires
metacognition in some form of Theory of Mind (Baron-
Cohen, 1995; Bogdan, 1997; Malle, Moses, and Baldwin,
2001). Such a Theory of Mind can be exploited by an
animal in two different manners. The first manner is just to
predict the behaviour in advance, in order to be prepared
that it will occur. A second manner is to affect the
occurrence of behaviour by manipulating the occurrence of
circumstances that are likely to lead to it.

One of the ways to model an agent B exploiting a Theory
of Mind about an agent A is to use a BDI-model (based on
beliefs, desires and intentions) to describe agent A’s
cognitive processes and actions. To model the agent B’s
own behaviour a BDI-model can be used as well; in this
way within agent B’s cognitive processes, at two levels
BDI-models play a role. This type of model will be
exploited in this paper to model the behaviour of higher
animals such as primates and dogs. For example, for agent
B the desire is generated that agent A will not perform the
action to kill B, and that agent A will in particular not
generate the desire or intention to do so. Based on this
desire of B, for example, the refined desire of B can be
generated that agent A will not believe that agent B is
reachable. Based on the latter desire, an intention and action
can be generated to present circumstances to agent A that
will make A believe that B is not reachable.

The vehicle used to model the two-level BDI-model is the
modelling language LEADSTO (Bosse, Jonker, Meij, and
Treur, 2007). In this language, direct temporal dependencies
between two state properties in successive states are

modelled by executable dynamic properties. The
LEADSTO format is defined as follows. Let α and β be
state properties of the form ‘conjunction of ground atoms or
negations of ground atoms’. In the LEADSTO language the
notation α →→e, f, g, h β, means:

If state property α holds for a certain time interval with duration g,
then after some delay (between e and f) state property β will hold
for a certain time interval of length h.
Here, atomic state properties can have a qualitative,

logical format, such as an expression desire(d), expressing that
desire d occurs, or a numerical format such as an expression
has_value(x, v) which expresses that variable x has value v.

In this paper, first the general BDI-model is explained.
This BDI-model is illustrated by a case study about a
predator that desires to kill a prey. The next section
describes how the simple model can be extended to a two-
level BDI-model of an agent that also involves another
agent’s BDI-model. This two-level BDI-model is illustrated
by a case study that elaborates upon the previous example: it
addresses the scenario of a prey that has metacognition
addressing analysis of the behaviour of a predator, and
prevents being attacked. Based on this model, some
simulation experiments and their results are discussed.

The BDI-Model
The BDI-model bases the preparation and performing of
actions on beliefs, desires and intentions (e.g., Georgeff and
Lansky, 1987; Jonker, Treur, and Wijngaards, 2003; Rao
and Georgeff, 1991; 1995). This model shows a long
tradition in the literature, going back to Aristotle’s analysis
of how humans (and animals) can come to actions; cf.
(Aristotle, 350 BCa; 350BCb). He discusses how the
occurrence of certain internal (mental) state properties
within the living being entail or cause the occurrence of an
action in the external world. Based on this, Aristotle
introduced the following pattern to explain action (called
practical syllogism):

If A has a desire D
and A has the belief that X is a (or: the best) means to achieve D

then A will do X
The BDI-model incorporates such a pattern to explain
behaviour in a refined form. Instead of a process from desire
to action in one step, as an intermediate stage first an
intention is generated, and from the intention the action is
generated. Thus the process is refined into a two-step
process. See Figure 1 for the generic structure of the BDI-
model in causal-graph-like style, as often used to visualise
LEADSTO specifications. Here the box indicates the
borders of the agent, the circles denote state properties, and
the arrows indicate dynamic properties expressing that one

obser-
vations

desire

intention

action
belief in reason

belief in
opportunity

state property leads to (or causes) another state property. In
this model, an action is performed when the subject has the
intention to do this action and it has the belief that certain
circumstances in the world are fulfilled such that the
opportunity to do the action is there. Beliefs are created on
the basis of observations. The intention to do a specific type
of action is created if there is some desire D, and there is the
belief that certain circumstances in the world state are there,
that make it possible that performing this action will fulfil
this desire (this is the kind of rationality criterion discussed
above; e.g., what is called means-end analysis is covered by
this). Whether or not a given action is adequate to fulfil a
given desire depends on the current world state; therefore
this belief may depend on other beliefs about the world
state. Instantiated relations within the general BDI-model as
depicted by arrows in graphical format in Figure 1 can be
specified in formal LEADSTO format as follows:

desire(D) ∧ belief(B1) →→ intention(P)
intention(P) ∧ belief(B2) →→ performs(P)

with appropriate desire D, action P and beliefs B1, B2. Note
that the beliefs used here both depend on observations, as
shown in Figure 1. Furthermore, ∧ stands for the
conjunction operator (and) between the atomic state
properties (in the graphical format denoted by an arc
connecting two (or more) arrows). Often, dynamic
properties in LEADSTO are presented in semi-formal
format, as follows:

At any point in time
if desire D is present

and the belief B1 is present
then the intention for action P will occur

At any point in time
if the intention for action P is present

and the belief B2 is present
then the action P will be performed

Figure 1: Structure of the general BDI-model.

As a generic template, including a reference to the agent X

concerned, this can be expressed by:

For any desire D, world state property Z, and action Y such
that has_reason_for(X, D, Z, Y) holds:

desire(X, D) ∧ belief(X, Z) →→ intention(X, Y)

For any world state property Z and action Y such that
is_opportunity_for(X, Z, Y) holds:

intention(X, Y) ∧ belief(X, Z) →→ performs(X, Y)

Here has_reason_for(X, D, Z, Y) is a relation that can be used to
specify which state property Z is considered a reason to
choose a certain intention Y for desire D. Similarly
is_opportunity_for(X, Z, Y) is a relation that can be used to specify
which state property Z is considered an opportunity to
actually perform an intended action Y.

Assuming that beliefs are available, what remains to be
generated in this model are the desires. For desires, there is
no generic way (known) in which they are to be generated in
the standard model. Often, in applications, generation of
desires depends on domain-specific knowledge.

A BDI-Model for Animal Behaviour
To illustrate the BDI-model described above by a specific
example, a specific scenario is addressed, in the domain of a
predator that wants to attack a prey. This scenario was
inspired by (Bogdan, 1997), who introduces the notion of a
goal setting for interpretation (i.e., a situation in which an
organisms needs to interpret the behaviour of another
organism in order to satisfy its private goals), which he
illustrates as follows:

‘To illustrate, suppose that organism A (interpreter) has a private goal
(say resting). It interferes with the goal of another organism S
(subject), which is to eat A. Those A-type organisms will be selected
who manage to form the social or S-regarding goal of avoiding the
nasty type S by countering their inimical behavior, say by threat or
deception. The latter goal in turn selects for interpretation,
specifically, for interpretation goals such as desire identification and
behavior prediction. Those A-type organisms are selected who form
and reach such interpretation goals. The environment that selected for
such accomplishments is a goal setting of a certain kind, say of
behavior manipulation by behavior prediction and desire
identification. There could be as many kinds of goal settings for
interpretation as there are interpretation goals and tasks to achieve
them, and hence as many skills.’ (Bogdan, 1997), p. 111

Based on this description, a scenario is considered that
involves a predator (agent A) and a prey (agent B). Assume
that, under certain circumstances, the predator tries to kill
the prey, and the prey tries to avoid this by manipulation.
First, only the behaviour of the predator is addressed (in
which no Theory of Mind is involved). However, in a later
section, the cognitive process of the prey involving Theory
of Mind is addressed as well. Using the BDI-model as
introduced above, the example is made more precise as
follows. The desire to eat the prey is created after time t by
the predator if the following holds at time t:

• the predator has the belief that the prey is alone
(i.e., not surrounded by other animals)

The intention to kill the prey is generated after time t if the
following holds at time t:

• the predator has the desire to eat the prey
• the predator has the belief that the prey is weak

(i.e., that it does not show strong, aggressive behaviour)
The action to kill the prey is generated after time t if the
following holds at time t:

• the predator has the intention to kill the prey
• the predator has the belief that the prey is slow

(i.e., that it does not run very fast, so that it can be caught)

Using the generic template discussed, via the relations
has_reason_for(predator, eat_prey,

not(prey_shows_aggressive_behaviour), kill_prey)
is_opportunity_for(predator, not(prey_runs_fast), kill_prey)

the following model for agent predator is obtained:
belief(predator, not(prey_surrounded_by_other_animals)) →→
desire(predator, eat_prey)
desire(predator, eat_prey) ∧
belief(predator, not(prey_shows_aggressive_behaviour)) →→
intention(predator, kill_prey)
intention(predator, kill_prey) ∧ belief(predator, not(prey_runs_fast)) →→
performs(predator, kill_prey)

The Two-Level BDI-Model
According to the intentional stance (Dennett, 1987, 1991),
an agent is assumed to decide to act and communicate based
on intentional notions such as beliefs about its environment
and its desires and intentions. These decisions, and the
intentional notions by which they can be explained and
predicted, generally depend on circumstances in the
environment, and, in particular, on the information on these
circumstances just acquired by interaction (i.e., by
observation and communication), but also on information
acquired by interaction in the past. To be able to analyse the
occurrence of intentional notions in the behaviour of an
observed agent, the observable behavioural patterns over
time form a basis; cf. (Dennett, 1991).

In the model presented in this paper, the instrumentalist
perspective is taken as a point of departure for a Theory of
Mind. More specifically, the model describes the cognitive
process of an agent B that applies the intentional stance to
another agent A by attributing beliefs, desires and
intentions. Thus, for agent B a Theory of Mind is obtained
using concepts for agent A’s beliefs, desires and intentions.
For example, in case a prey (agent B) fears to be attacked by
a predator (agent A), it may analyse in more detail under
which circumstances the predator may generate the desire
and intention to attack.

As a next step, the model is extended with BDI-concepts
for agent B’s own beliefs, desires and intentions as well. By
doing this, agent B is able to not only have a theory about
the mind of agent A, but also to use it within its own BDI-
based cognitive processes to generate its actions. To this
end, a number of meta-representations expressed by meta-
predicates are introduced, e.g.:

belief(B, desire(A, D))

This expresses that agent B believes that agent A has desire
D.

desire(B, not(intention(A, X)))

This expresses that agent B desires that agent A does not
intend action X.

belief(B, depends_on(performs(A, X), intention(A, X)))

This expresses that agent B believes that, whether A will
perform action X depends on whether A intends to do X.
Note that the third meta-statement has a more complex
structure than the other two, since it represents a statement
about a dynamic property, rather than a statement about a
state property. These dependencies can be read from a
graph such as depicted in Figures 1 and 2 (right hand side).
For example, it is assumed that agent B knows part of this
graph in his Theory of Mind, expressed by beliefs such as:

belief(B, depends_on(performs(A, X), intention(A, X)))
belief(B, depends_on(performs(A, P), belief(A, B2)))
belief(B, depends_on(intention(A, P), desire(A, D)))
belief(B, depends_on(intention(A, P), belief(A, B1)))
belief(B, depends_on(desire(A, D), belief(A, B3)))
belief(B, depends_on(belief(A, X), hears(A, X)))

Desire refinement in the BDI-model for an agent B
attributing motivations to an agent A is formulated (in
LEADSTO format) by:

desire(B, X) ∧ belief(B, depends_on(X, Y)) →→ desire(B, Y)

desire(B, X) ∧ belief(B, depends_on(X, not(Y))) →→ desire(B, not(Y))

desire(B, not(X)) ∧ belief(B, depends_on(X, Y)) →→ desire(B, not(Y))

desire(B, not(X)) ∧ belief(B, depends_on(X, not(Y))) →→ desire(B, Y)

Moreover the following schemes for intention and action
generation are included in the model. For any desire D,
world state property Z, and action Y such that has_reason_for(B,

D, Z, Y) holds:
desire(B, D) ∧ belief(B, Z) →→ intention(B, Y)

For any world state property Z and action Y such that
is_opportunity_for(B, Z, Y) holds:

intention(B, Y) ∧ belief(B, Z) →→ performs(B, Y)

Moreover, some dynamic properties of the world are
needed:

performs(B, Y) ∧ has_effect(Y, C) →→ holds_in_world(C)

holds_in_world(C) →→ observes(A, C)

For an overview of the complete two-level BDI-model,
see Figure 2.

Figure 2: Structure of the two-level BDI-model.

belief(B,
depends_on(Xn, Y))

belief(B, Z’)

intention(B, Y’)

belief(B, Z)

desire(B, Y)

desire(B, Xn)

belief(B,
depends_on(X1, X2))

desire(B, X1)

desire(B, X2)

performs(A, P)

belief(A, B2)

intention(A, P)

belief(A, B1)

desire(A, D)

belief(A, C1)

AGENT B AGENT A
observes(A, C1)

observes(A, Cn)

holds_in
world(C)

performs(B, Y’)

A Two-Level BDI-Model for Animal Behaviour
The above model was used to describe how the prey agent
(from the case described earlier) acts in an anticipatory
manner to avoid the predator's desire, intention and/or
action to occur. The initial desire of the prey is that the
predator does not perform the action to kill it:

desire(prey, not(performs(predator, kill(prey))))

Fulfilment of this desire can be obtained in the following
three manners:

Avoiding the predator’s desire to occur
This can be obtained when the predator observes that the
prey is surrounded by other animals. This will make the
condition in the predator’s desire generation as described
earlier fail.

Avoiding the predator’s intention to occur (given that the
desire occurs)
This can be obtained by refutation of the belief that plays
the role of the reason to generate the intention in the
predator’s intention generation as described earlier, i.e., the
belief that the prey is weak (and does not show aggressive
behaviour).

Avoiding the predator’s action to occur (given that the
intention occurs)
This can be obtained by refutation of the belief that plays
the role of opportunity in the predator’s desire action as
described, i.e., the belief that the prey is slow (and does not
run fast).

For convenience, the model does not make a selection but
addresses all three options to prevent the killing action. This
means that the prey generates desires for:
• The predator observes that the prey is surrounded by

other animals
observes(predator, prey_surrounded_by_other_animals)

• The predator observes that the prey shows aggressive
behaviour
observes(predator, prey_shows_aggressive_behaviour)

• The predator observes that the prey runs fast
observes(predator, prey_runs_fast)

To fulfil these desires, intentions are to be generated by the
prey to actions such as:
• call for help of other animals: call_for_help

• show aggressive behaviour: show_aggressive_behaviour

• run fast: run_fast

Reasons for the prey to choose for these intentions are
beliefs in, respectively:
• The predator is paying attention to the prey’s gaze (so

that it will notice it when the prey calls for help of other
animals)
predator_is_noticing_preys_gaze

• The predator is paying attention to the prey’s gesture (so
that it will notice it when the prey shows aggressive
behaviour)
predator_is_noticing_preys_gesture

• The predator is at a reasonable distance away (so that it
is able to run away without being caught)

predator_is_reasonable_distance_away

Moreover, the intentions of the prey can lead to the
corresponding actions when the following beliefs of the prey
in opportunities are there:
• Other animals are around (so that it is possible to call for

their help)
other_animals_around

• The predator is about to attack (so that it is possible to
show aggressive behaviour)
predator_about_to_attack

• No obstacle is blocking the escape route of the prey (so
that it is possible to run away)
no_obstacle

In addition to the generic BDI-model shown before, the
following specific relations were used to model the case
study:
belief(prey(depends_on(performs(predator, kill(prey)), intention(predator,

kill(prey))))
belief(prey(depends_on(performs(predator, kill(prey)), not(belief(predator,

prey_runs_fast))))
belief(prey(depends_on(intention(predator, kill(prey)), desire(predator,

eat(prey))))
belief(prey(depends_on(intention(predator, kill(prey)), not(belief(predator,

prey_shows_aggressive_behaviour))))
belief(prey(depends_on(desire(predator, eat(prey)), not(belief(predator,

prey_surrounded_by_other_animals))))
belief(prey(depends_on(belief(predator, prey_surrounded_by_other_animals),

observes(predator, prey_surrounded_by_other_animals)))
belief(prey(depends_on(belief(predator, prey_shows_aggressive_behaviour),

observes(predator, prey_shows_aggressive_behaviour)))
belief(prey(depends_on(belief(predator, prey_runs_fast), observes(predator,

prey_runs_fast)))

has_reason_for(prey, observes(predator, prey_surrounded_by_other_ani-
mals), predator_is_noticing_preys_gaze, call_for_help)

has_reason_for(prey, observes(predator, prey_shows_aggressive_behaviour),
predator_is_noticing_preys_gesture, show_aggressive_behaviour)

has_reason_for(prey, observes(predator, prey_runs_fast),
predator_is_reasonable_distance_away, run_fast)

is_opportunity_for(prey, other_animals_around, call_for_help)
is_opportunity_for(prey, predator_about_to_attack,

show_aggressive_behaviour)
is_opportunity_for(prey, no_obstacle, run_fast)

has_effect(call_for_help, prey_surrounded_by_other_animals)
has_effect(show_aggressive_behaviour, prey_shows_aggressive_behaviour)
has_effect(run_fast, prey_runs_fast)

By combining these relations with the generic LEADSTO
rules provided in the previous section, a complete
executable LEADSTO specification for the two-level BDI-
model has been created. This simulation model is shown in
the appendix at http://www.cs.vu.nl/~tbosse/tom/ICCM.pdf.

Simulation Experiments
In simulation experiments, the two-level BDI-model has
been applied to the case study as described above. To this
end, the LEADSTO software environment (Bosse, Jonker,
Meij, and Treur, 2007) has been used. In Figure 3 and 4,
examples of resulting simulation traces are shown. In these
figures, time is on the horizontal axis; the state properties
are on the vertical axis. The dark boxes indicate that a state
property is true. Note that, due to space limitations, only a
selection of the relevant atoms is shown.

Figure 3 is the resulting simulation trace of the situation
in which no Theory of Mind is involved, i.e., only the
behaviour of the predator is addressed, without
manipulation by the prey. The trace depicts that the predator

http://www.cs.vu.nl/~tbosse/tom/ICCM.pdf

initially receives some inputs (e.g., indicated by the state
property

observes(predator, not(prey_surrounded_by_other_animals))

at time point 1).
As a result, the predator has made some beliefs (e.g., the
state property

belief(predator, not(prey_surrounded_by_other_animals))

at time point 2), which persists for a longer time. Due to this
belief, it generates the desire to eat the prey at time point 3

desire(predator, eat(prey))

Based on this desire and the belief
belief(predator, not(prey_shows_aggressive_behaviour))

the predator generates the intention to kill the prey at time
point 4:

intention(predator, kill(prey))

Based on this intention and the belief
belief(predator, not(prey_runs_fast))

the predator eventually performs the action of killing the
prey at time point 5.

Figure 3: Simulation trace of the predator’s behaviour

Figure 4 is the resulting simulation trace of the extended
case study, in which the prey agent can act in an
anticipatory manner to avoid the predator’s desire to eat the
prey, and intention and/or action to kill it. Figure 4 shows,
among others, that the prey initially desires that the predator
does not perform the action to kill it:

desire(prey, not(performs(predator, kill(prey))))

Based on this, the prey eventually generates a number of
more detailed desires about what the predator should
observe (see, for example, the state property

desire(prey, observes(predator, prey_shows_aggressive_behaviour))

at time point 3). Next, the prey uses these desires to
generate some intentions to fulfill these desires (e.g., the
state property

intention(prey, show_aggressive_behaviour)

at time point 4). Eventually, when the opportunities are
there, these intentions are performed, and the predator
observes some new inputs (e.g., the state property

observes(predator, prey_shows_aggressive_behaviour)

at time point 8). As a result, the predator eventually does not
generate the action to kill the prey.

Note that in the scenario sketched in Figure 4, the prey
takes all possible actions (within the given
conceptualization) to fulfill its desires. This is a rather
extreme case, since according to the prey’s BDI-model,
modifying only one of the predator’s inputs will be
sufficient to make sure that it does not kill the prey. Other
traces can be generated in which the prey takes fewer
actions to fulfill its desires.

Figure 4: Simulation trace of the prey’s manipulation of the
predator’s behaviour.

Discussion
In order to function well in interaction with other agents, it
is very helpful for an agent to have capabilities to predict in
which circumstances the agents in its environment will
show certain behaviours. To this end, such an agent will
have to perform interpretation based on a Theory of Mind
(Baron-Cohen, 1995). This type of metacognition is studied
in the context of human social interaction, but also in the
area of animal behaviour it is addressed; e.g., (Barrett and
Henzi, 2005; Bogdan, 1997; Heyes, 1998). In this paper the
latter area is addressed. A model for Theory of Mind is
applied, which makes use of BDI-concepts at two different
levels. First, the model uses BDI-concepts within the Theory
of Mind (i.e., it makes use of beliefs, desires and intentions
to describe the cognitive process of another agent). Second,
it uses BDI-concepts for interpretation of the Theory of
Mind (i.e., it makes use of beliefs, desires and intentions to
describe an agent’s meta-cognition about the cognitive
process of another agent). At this second level, meta-
statements are involved, such as ‘B believes that A desires
d’ or ‘B desires that A does not intend a’. These meta-
statements are about the states occurring within the other
agent. In addition, meta-statements are involved about the
dynamics occurring within the other agents. An example of
such a (more complex) meta-statement is ‘B believes that, if
A performs a, then earlier he or she intended a’.

The two-level BDI-based model as presented can be
exploited both in order to be prepared for the behaviour of
another agent, and in order to affect the behaviour of
another agent at forehand. The model has been formalised
using the modelling language LEADSTO, which describes
dynamics in terms of direct temporal dependencies between
state properties in successive states. The model not only
addresses analysis of the other agent’s beliefs, desires and

intentions, but also integrates this with the agent’s own
beliefs, desires and intentions, and actions.

Obviously, empirical validation of the model is a difficult
issue. At least, the present paper has indicated that it is
possible to apply computational models for Theory of Mind
to animal behaviour. Moreover, the model indeed shows the
anticipatory behaviour of higher animals as described in
literature such as (Bogdan, 1997). In this sense the model
has been validated positively. However, notice that this is a
relative validation, only with respect to the literature that
forms the basis of the model. In cases that the available
knowledge about the functioning of such animals is
improving, the model can be improved accordingly. In this
sense the approach anticipates further development.

Concerning related work, there is a large body of
literature on Theory of Mind in non-human primates (e.g.,
Barrett and Henzi, 2005; Heyes, 1998), in particular in
chimpanzees (Matsuzawa, Tomonaga, and Tanaka, 2006)
and macaques (Sinha, 2003). This literature illustrates that
non-human primates use Theories of Mind about other
primates while interacting socially with them in specific
types of behaviour like imitation, social relationships,
deception, and role-taking. Moreover, recent literature
suggests that dogs use a certain kind of Theory of Mind as
well (e.g., Horowitz, 2002; Virányi, Topál, Miklósi, and
Csányi, 2006). However, none of these papers contains a
computational model of Theory of Mind in non-human
primates. In contrast, the current paper presents such a
model, and illustrates how it can be applied to simulate the
behaviour of a prey animal that tries to manipulate the
attacking behaviour of a predator. Moreover, a number of
other papers propose computational models of Theory of
Mind (e.g., Gmytrasiewicz and Durfee, 1995; Marsella,
Pynadath, and Read, 2004), but these are not applied
explicitly to animal behaviour. For an extensive comparison
of our approach to these models, the reader is referred to
(Bosse, Memon, and Treur, 2007).

For future research, it is planned to exploit the features of
the LEADSTO language for modelling more quantitative,
numerical concepts. For example, the possibility to add
probabilities to the simulation rules will be explored. In
addition, more precise values can be chosen for the timing
parameters e, f, g, h mentioned in the introduction. Doing
this also makes it possible to make a better comparison
between the traces shown in Figure 3 and 4. Currently, the
trace in Figure 4 does not contain the first three world states
shown in Figure 3. If these were present, the predator would
kill the prey before the prey had the chance to manipulate it.
By allowing different timing parameters, this problem could
be solved. In addition, being able to experiment with the
timing parameters would allow the modeller to make the
model more realistic.

References
Aristotle (350 BCa). Nicomachean Ethics (translated by W.D.

Ross).

Aristotle (350 BCb). De Motu Animalium On the Motion of
Animals (translated by A. S. L. Farquharson) .

Baron-Cohen, S. (1995). Mindblindness. MIT Press.
Barrett, L. and Henzi, P. (2005). The social nature of primate

cognition. Proceedings of The Royal Society of Biological
Sciences, vol. 272, pp. 1865-1875.

Bogdan, R.J. (1997). Interpreting Minds. MIT Press.
Bosse, T., Jonker, C.M., Meij, L. van der, and Treur, J. (2007). A

Language and Environment for Analysis of Dynamics by
Simulation. Int. Journal of Artificial Intelligence Tools. To
appear, 2007. Earlier version in: Eymann, T. et al. (eds.), Proc.
of the 3rd German Conf. on Multi-Agent System Technologies,
MATES'05. Springer LNAI, vol. 3550, pp. 165-178.

Bosse, T., Memon, Z.A., and Treur, J. (2007). A Two-Level BDI-
Agent Model for Theory of Mind and its Use in Social
Manipulation. In: Proceedings of the AISB 2007 Workshop on
Mindful Environments, pp 335-342.

Dennett, D.C. (1987). The Intentional Stance. MIT Press.
Cambridge Mass.

Dennett, D.C. (1991). Real Patterns. The Journal of Philosophy,
vol. 88, pp. 27-51.

Georgeff, M. P., and Lansky, A. L. (1987). Reactive Reasoning
and Planning. In: Forbus, K. and Shrobe, H. (eds.), Proceedings
of the Sixth National Conference on Artificial Intelligence,
AAAI’87. Menlo Park, California. American Association for
Artificial Intelligence, 1987, pp. 677-682.

Gmytrasiewicz P. J., and Durfee. E. H. (1995). A rigorous,
operational formalization of recursive modeling. In: Lesser, V.
(ed.), Proceedings of the First International Conference on
Multiagent Systems, pp. 125-132.

Heyes, C.M. (1998). Theory of mind in nonhuman primates.
Behavioural and Brain Sciences, vol. 21, pp. 101-134.

Horowitz, A. (2002). The behaviors of theories of mind, and a case
study of dogs at play. PhD. Thesis, University of California,
2002.

Jonker, C.M., Treur, J., and Wijngaards, W.C.A., (2003). A
Temporal Modelling Environment for Internally Grounded
Beliefs, Desires and Intentions. Cognitive Systems Research
Journal, vol. 4(3), 2003, pp. 191-210.

Malle, B.F., Moses, L.J., Baldwin, D.A. (2001). Intentions and
Intentionality: Foundations of Social Cognition. MIT Press.

Marsella, S.C., Pynadath, D.V., and Read, S.J. (2004). PsychSim:
Agent-based modeling of social interaction and influence. In:
Lovett, M., Schunn, C.D., Lebiere, C., and Munro, P. (eds.),
Proc. of the Sixth Int. Conference on Cognitive Modeling, ICCM
2004, pp. 243-248 Pittsburg, Pensylvania, USA.

Matsuzawa, T., Tomonaga, M., and Tanaka, M. (2006). Cognitive
Development in Chimpanzees. Springer Verlag, Tokyo, 2006.

Rao, A.S. and Georgeff, M.P. (1995) BDI-agents: from theory to
practice. In: Lesser, V. (ed.), Proceedings of the International
Conference on Multiagent Systems, pp. 312 – 319.

Rao, A.S. and Georgeff, M.P. (1991). Modelling Rational Agents
within a BDI-architecture. In: Allen, J., Fikes, R. and Sandewall,
E. (eds.), Proceedings of the Second International Conference on
Principles of Knowledge Representation and Reasoning,
(KR’91). Morgan Kaufmann, pp. 473-484.

Sinha, A. (2003). A beautiful mind: Attribution and intentionality
in wild bonnet macaques. Current Science, vol. 85. no. 7, 2003.

Virányi, Zs., Topál, J., Miklósi, Á, and Csányi, V. (2006). A
nonverbal test of knowledge attribution: a comparative study of
dogs and children. Animal Cognition, vol. 9, no. 1, pp. 13-26.

A Qualitative GOMS Approach to Evaluating Diagrammatic Interfaces

B. Chandrasekaran and Tsviatko Yovtchev
Department of Computer Science and Engineering

The Ohio State University, Columbus, OH 43210 USA

Abstract

We describe an approach to evaluating diagrammatic schemes
intended to support problem solving and decision-making.
The methodology is in the GOMS framework in HCI, and is
based on recognizing that the use of diagrams is part of a
process that can be decomposed into a sequence of steps, each
of which may be a Perception on the diagram, Inference,
Transformation of the diagram and Visual Search. How well a
diagrammatic scheme helps in a task depends on how well the
human cognitive architecture can perform the actions in the
various steps, and how the steps collectively contribute to
performance measures such as time, error rates, and memory
stress. We illustrate the approach by using it to analyze the
use of some common data presentation displays in the task of
discovering interesting relations between variables in a do-
main. Because of the current lack of quantitative empirical
data about the execution of the basic operations by human
architecture, the analysis is qualitative, which is nevertheless
useful in providing useful insights. It also sets an agenda for
empirical research to obtain the quantitative data needed,
since the availability of such data would help significantly in
evaluating and improving diagrammatic interfaces for
decision support.

Introduction
The distinction between informational and computational
equivalence (Larkin and Simon, 1987) of representations is
relevant to explain the effectiveness not only of diagrams
over text under appropriate conditions, but also of one kind
of diagram over another for a specific task. Some
diagrammatic schemes are lauded over others as especially
well suited for specific tasks. This paper discusses an
approach to evaluate interactive diagrammatic interfaces to
support problem solving.

A diagrammatic scheme for a problem-solving task
consists of specifications for representing information in a
diagrammatic form, for meaningful perceptions on the
diagram, and for modifying diagrams. When such a scheme
is used to assist in problem solving, the problem solver
engages in a series of steps, each of which may be an act of
perception on the diagram, inference of new information by
combining background knowledge and current information,
including information given by an earlier act of perception,
and transformation, i.e., modifying the diagram in some
way to facilitate further problem solving. Information
obtained by perception and inference will be added to the
problem solver's short-term memory (STM), or added to the
diagram in some form in a transformation step for pickup in
a future perception step. The sequence of steps ends when
the problem solver has acquired the information
corresponding to the solution of the problem of interest, or
gives up for whatever reason. Characterizing the problem

solving activity in terms of these acts -- perception,
inference, storage in memory, and transformation – arises
naturally from a high-level view of the human cognitive
architecture as comprised of central cognition, various
perception modules and motor components.

Recognizing that diagrams are part of such a problem
solving activity – instead of viewing them as stand-alone
interfaces with one-way information flow from the interface
to the user – is useful when we wish to compare alternative
diagrammatic schemes for solving problems of a specified
type. In particular, it makes possible the use of GOMS, the
well-known analytical and comparative framework (Card, et
al, 1983; John and Kieras, 1996). Our goal in this paper is
to develop a GOMS-inspired analysis technique that is
specialized for interactive problem solving with
diagrammatic representations, and to illustrate it by
applying into a set of alternative diagrammatic interfaces for
a decision support problem in visual data mining. Another
point of comparison is the work of Peebles & Cheng (2003).
The measure of complexity is the number of perceptual
attention shifts during a problem solving activity in
comparing two graph representations for an information
extraction task. As we’ll see, we keep track of a more
complex set of measures.

 One evaluation measure of a diagrammatic interface
might be the length – in total number of steps or time – it
takes to solve an average problem or the hardest problem in
a class. A variation of this measure might keep a count of
each type of step, i.e., the numbers of perceptions,
inferences and transformations, if the different steps
correspond to different kinds of costs. Further distinctions
may be made within each of these categories, e.g., some
transformations and perceptions may have different costs
than others. Another dimension of evaluation is propensity
for error. A poorly conceived diagram might result in errors
in one or more of the perception or transformation steps, or
might overload STM and cause inference errors.
Alternative diagrammatic schemes for solving a task may
then be multi-criterially compared in terms of such
measures.

 Decision support systems (DSS) are an important class
of applications of diagrammatic representations. There is
usually a much greater role for transformations in DSS’s
than is normally the case in the use of simple diagrams.
DSS's may be used in widely disparate circumstances: In
one situation the cost of physical interaction may be high,
with a corresponding preference for interfaces that do not
require many transformations. In another situation, say
where a user is multi-tasking, a DSS that entails many
interactions would be preferable to one that places high
stress on STM. Because of such wide variations in the

conditions of use, a simple uni-dimensional measure of their
performance, such as total time, is usually not adequate.

 We introduce PTIS, a version of GOMS tailored to
our needs. We then consider a set of alternate
diagrammatic interfaces for a simple problem in data
understanding: deciding if there are any interesting
correlations between variables in a given domain of interest.
The field of data mining focuses on problems of this type,
and the interfaces we consider are often proposed as good
visual presentations of data. However, the interfaces and
the task are used as examples of the methodology, rather
than the main subjects of the paper.

The PTIS Framework
When applying GOMS, operators are chosen that are
generic enough to be applicable to the analysis of a variety
of task/interface combinations of certain types. Two
properties of an operator are especially important and are
typically empirically obtained from studies on trained
humans: the time it takes to apply the operator, and any
error rates associated with application of the operator.

The operators we develop in our GOMS analysis of
diagrammatic interfaces are at much higher grain sizes and
complexity than the ones that GOMS research usually deals
with (such as clicking buttons). For example, a basic
operation in our domain is the perception of the best-fit
straight line that approximates a cluster of data points. This
is a common skill needed in experimental research. A
person might need some training in this task, but once
trained, he can visualize such a line. A corresponding motor
operator is to draw such a line on a screen or on paper
displaying such a cluster of points. Empirical data for time
and error rates for operators at the grain sizes of interest to
us are not yet available, so our current analysis is
qualitative. However, the qualitative results are still useful
in many situations, as we will demonstrate. When empirical
data become available, it would be easy to convert the
results to quantitative ones.

What is common in the use of all diagrammatic displays
for decision support is that the user’s actions belong to one
of the following four types: Perception, Transformation,
Inference, and (Visual) Search. The information obtained
by Perception1 or Inference is automatically placed in STM,
i.e., it is not usually treated an operation. Since STM is
capacity-limited, analysis should track STM load.

 The operations in the Perception and Transformation
categories respectively are chosen to represent basic units of
the actions of the agent required for the task, but generic
enough to be used as operations in a variety of tasks using
diagrammatic interfaces. The best way to think of a
Perception in this analysis is not as a gestalt perception act
whose details the user does not access, but as a step in
which the user is acquiring information from the display,
and that the step has generality and reusability. Examples in

1 In the following analysis, we capitalize Perception,
Transformation, Inference, etc when we intend to refer to
operations that are to be taken as formally in the various sets of
operations. We use lower case when we intend to refer to the
general actions meant by the terms.

data analysis are: visualizing a straight line that best
summarizes a set of data; and visualizing the midpoint of a
set of points. Because these Perceptions are general enough
to be useful across a variety of data analysis tasks, investing
in determining the timing and error rates associated with
trained human perception would be worthwhile. (How these
are learned would require a separate study.)

The relationship between Search and Perception needs
clarification, since some of the Perceptions may also involve
search. What we mean to capture in the Search category is
the visual action needed to locate the objects that are the
arguments for the specific Perception (and also for a specific
Transformation). For example, on a display consisting of
50 labeled vertical bars whose lengths are proportional to
the populations of 50 states, the Perception, ?Longer(bar
x, bar y), would require the user to locate the two bars
for the two states, and then apply the Longer Perception.
Since comparing lengths of bars is an operation that would
be useful for many tasks, and for which we can determine
empirically the parameters for the human architecture, it is a
good idea to separate this basic perception from searching
for the items. The parameters for the perception operation
would apply both to cluttered and uncluttered displays.
Another reason to separate Search is that a visual search
operation may also be applicable to Transformations, where
a user may need to search and locate a button for a specific
Transformation. In brief, we mean to include in Search
visual search needed to identify the objects involved in
given Perceptions and Transformations.

 Inference is the name we give to the cognitive activity
that processes the information in STM, by rule-based
reasoning or mental imagery-like operations to obtain
additional information. This process may involve additional
elements brought from LTM to STM. Deciding on the next
steps as well as solving the problem would typically require
Inference steps.

In complexity the decision support tasks we consider
occupy a place midway between using a display once to get
some needed information, and open-ended interaction
during which the steps are not pre-determined but require
the user to engage in problem solving, e.g., to decide what
Transformation should be applied next. We will assume in
our framework that the user knows how to efficiently and
effectively use the display for his purposes. This means that
the tasks and the user’s expertise are such that the next
action to take is clear to the user, and that he has all the
background knowledge needed for making the needed
inferences. This is a fair assumption since displays for a
task need to be compared based on intended optimal use of
the display. (How hard it is to learn the best method for a
display for a task is a separate issue, not dealt with here.)

Precision and Accuracy of the Various Operations.
All the motor and perception related operations –
Perception, Transformation and Search – are assumed to be
potentially error-prone. For example, a user might make an
error when required to choose the longer of two lines of
almost equal length, or to distinguish between objects with
very similar colors. It might also be hard to select a region
with the mouse exactly within some planned coordinates,
and finally, while searching among numerous items, one

Fig. 3. Parallel Coordinates
Fig. 4. Star Glyph; bottom, glyphs

ordered by values of one of the variables Fig. 2. Scatter diagram for two variables.

might miss the item that is sought or choose the wrong item.
A heavy load on STM might result in loss of data, thus
making the inference also unreliable. The PTIS technique
allows for error rates, determined from empirical work, to
be associated with the affected operation types.

Illustrative Task
We illustrate the approach by systematically applying it to a
task that is common in data mining. The domain D of
interest is characterized by a set of n numeric-valued
variables {x1, x2, ..xn}, and we have a set S of data about m
entities in D. Then S = {d1, d2, ..dm} where di = (xi1, xi2…xin).
We assume that the data are fully specified. Developing an
understanding of the structure of D given S is a problem of
great interest in data mining. A common form of such
understanding is developing an account of any correlations
that may exist between pairs of variables in {x1, x2, ..xn},
and the ranges in which such correlations exist. The fact that
correlations might exist over parts rather than the whole of
the range makes visual means of hypothesizing such
correlations especially useful, since standard correlation-
detecting statistical algorithms might miss such correlations.

For example, in a case where there is a positive correlation
over half the range and a negative correlation in the
remainder, such algorithms would report no correlation at

all. In contrast, a well-designed display (as we shall soon
see) can help the user hypothesize such correlations easily.

A technical caveat is in order: such visual displays can
only suggest correlations. The significance level of the
correlation and the actual correlation coefficient can only be
properly computed by statistical algorithms. We assume
that once the user hypothesizes such correlations and ranges
using visual displays, the data, the pair of variables and the

ranges are input to an appropriate statistical algorithm.
With the added information about the ranges, the algorithm
can calculate the correlation parameters accurately. In the
rest of the paper, we will focus on just the hypothesizing
part of correlation discovery.

Though the more complex versions of the task raise
additional interesting issues (see Yovtchev, 2005, for
evaluation of the displays on the various versions of the
task), in the available space, we will restrict ourselves to the
simple version, below:

Task. Given the set of data about some domain in the
form of the values that m entities from that domain
take on two variables x1 and x2, hypothesize all the
subranges of the variables x1 and x2 where the
correlation coefficient differs from 0.

Diagrammatic Displays Considered
A number of diagrammatic forms have been proposed to
represent data of the type we described2. In this paper, we
use a subset of these displays – sufficient to introduce the
approach and make the main points.

Spectra. In this display (Fig. 1),
each variable is represented by a
horizontal strip – the strips are
typically normalized so that their
ranges take up approximately the
same length – and each of the
entities in the data set is represented
by a vertical stripe (the height of the
stripe has no significance) in the
default color, say blue, at the
location corresponding to the value
of the entity on that variable. More

than one entity may have the same value for a variable, so
the entities might be stacked at that location, and when

entities are dense, i.e, many are close together, they may not
be visibly distinct.

2 For Spectra and Scatter plots, we used the Viewer (Josephson, et
al, 1998), available from Aetion Technologies LLC,
www.aetion.com. For Parallel Coordinates and Star Glyphs, we
used XMDV tool (Ward, 1994).

Fig. 1. The Spectrum display. (The figure has to be viewed in color.)

Transformations. The user can select a window of
variable size on any of the spectra (e.g., the window [18-16]
in the “Time to 60” Spectrum in Fig. 1). This changes the
color of the entities in the window (in Fig. 1 they appear in
red), not only in the Spectrum where the window was
selected, but on all the other Spectra as well. (As a new
window is selected, the old window is automatically
cleared.)
Scatter Diagrams. This display (example in Fig. 2) is a 2-
axis Cartesian graph, with one variable on each axis. For n
variables, a maximum of n*(n-1)/2 scatter plots are possible.
The entities are represented as points at locations
corresponding to their values on the variables. Remarks we
made on stacking and density of entities in the Spectrum
case apply here as well.
Transformations. The user can select a rectangular window
in any of the scatter plots, and the entities in the window
will change color, not only in that scatter plot, but in all
other scatter plots that are constructed.

Parallel Coordinates. This display (Fig. 3) has n parallel
axes - one per variable displayed. The m alternatives are
displayed as m paths of n-1 straight-line segments crossing
the axes at positions corresponding to the entity values in
the respective variables (Fig. 3 shows just two variables).
Remarks on stacking and density that we made earlier also
apply for this display.

Transformations. The user can select a range in any of
the variables, and the entities in the selection window, and
the lines connecting the values on other axes of each of
these entities will change color. Fig. 3 shows a selection.

Star Glyphs. Each entity is represented as a glyph, which
consists of n rays (for n variables) going out of its center
whose endpoints are connected to form a polygon, as in Fig.
4 which shows an example for 3 variables. The length of a
ray is proportional to the value of the entity on that variable.
Making a glyph requires a minimum of three variables. The
bottom of Fig. 4 shows a Star Glyph display of 3 objects,
each represented on 3 variables, and ordered by the values
on the variable on the ray at 0o. There are no
Transformations available.

Performance Analyses
Sizes of Selection Windows. Many of the methods call for
making selections using a window, whose size the user
needs to set. First, the window size needs to be large enough
to capture enough samples so that the hypotheses are
statistically meaningful. The size also determines the
smallest range over which meaningful correlations may be
hypothesized. If the window size is say 10% of the range of
the variable, then any changes in correlations in ranges of
the same order cannot be detected. There are precise
statistical formulas available (Yovtchev, 2005) to make
these estimates.
Spectrum Display
Method:

1. Transform display by making a selection window over
the range of x1 of size at most half as large as the smallest
subrange over which any existing correlation is to be

detected, where the window starts at the beginning of the
range of x1.

2. Perceive and store in memory the midpoint (mean) of
the resulting selection in x2.

3. Transform display by defining another selection
window of the same size as the first one, but beginning
where the first one ended. (We assume in analysis that the
current window is automatically cleared.)

4. Compare the midpoint (mean) of the resulting selection
in x2 with previous k memorized ones. Infer and remember
the trend that resulted from the comparison, and the
beginning of the range where the trend emerged, or Infer the
end of a trend that has been present so far. (Here by “trend”
means whether the midpoint moves to the right or left
systematically as the window moves to the right, or whether
the midpoint movement has no systematic connection to the
direction of the movement of window.)

5. Repeat the procedure until the end of the range of x1 is
reached.

Perception: Perceiving midpoint of a set of points. In this
Perception the user mentally estimates the midpoint of a
given set of points on a line, e.g., the midpoint of the set of
red points in the “Highway Range” Spectrum in Fig. 1.
This activity has an associated error measure. It may involve
sequential mental computations, but it is useful to treat it for
our purposes as a reusable unit of mental activity.

Transformation: The only Transformation operation is
window selection. In some display versions, a window may
need to be explicitly deleted; in that case, the number of
Transformations will double.

Inference: Determining the trend in mid-point position.
This action can be modeled in finer detail as keeping the
previous k midpoint locations in STM, and comparing their
values, to determine if a trend, positive or negative exists,
and if there was a trend, whether it continues or has stopped.
The higher the value of k, the more reliable the estimate, but
higher also the load on STM.

Analysis: The sequence of operations is as follows: Select
window (Transformation) in x1, Perceive midpoint in x2,
Clear-and-Select next window (Transformation), Perceive
midpoint, ..Infer trend in direction of midpoint, Transform,
Perceive, Infer..

Without making finer distinctions, for a first
approximation, the process takes r/s Perceptions,
Transformations, and Inferences, where r is the range of x1

and s is the size of the selection window measured in the
same units as the range.

The maximum load on STM would be (k + 3), the sum of
the number of previous perceptions over which the trend is
inferred, and a pair of locations and one sign (positive or
negative) for each of the correlation ranges discovered.

Errors. In addition to the intrinsic error rate in the
Perception of the midpoint, the display adds another
potential for error: since more than one entity can occupy
the same point, the user has no immediate access to the
density information, and the midpoint estimate might be
skewed. Because of missing density information, and due
to the inherent human error in the basic perception involved,
correlations may be missed, and even when detected, the
starting and ending points could be off by some amount.

The load on STM, which can be quite high, can also lead to
errors due to data loss. The error in tracking the direction of
the movement of the midpoint due to STM load can be
decreased by the user revisiting earlier window locations
and repeating the movements, but this is at the cost of an
increase in the number of Transformations.

Ideas for Display Improvement. The big source of error,
viz., potential high stress on STM, can be minimized by
changes in display design. If the user had access to a
Transformation whereby beginning and end of each
hypothesized correlation range can be marked on the screen
along with its sign, STM load would be minimized.
However, this would increase the total number of
Transformations by 3 per correlation range. Further trade-
offs between STM load and increase in number of
Transformations are possible.

Scatter Diagrams
Method: In the case of 2 variables, there is only one

scatter diagram, as in Fig. 2. The scatter diagram is the
most direct way to perceive any correlations. It calls for
Perceiving correlation regions directly, as one can see in
Fig. 2, that there is a negative correlation from x1 value of
30 to 45, and a positive correlation from 45 to 60.

Perception, Transformation and Inference: Perceiving
plausible regions of correlation can be modeled as cluster
detection, where the clusters are characterized by scatter
around a straight line, perceiving the beginning and end
points of the straight lines and the sign of their slopes. The
task calls for distinguishing between clusters whose axis has
a slope of 0 from those with a non-0 slope. Subject to
confirmation from empirical data, it seems to us that
correlation hypothesizing in this case is much less error-
prone than in the Spectrum case – no stressing of STM; also
faster, since it is direct and skips those inference steps that
are needed for the Spectrum display. Nevertheless, in
comparison with the optimal algorithms, there are bound to
be some errors in the precise location of the end points, and
also there are potentials to miss and mis-hypothesize
correlations with a low correlation coefficient. Assuming
that the hypotheses generated are to be fed to mathematical
algorithm to generate quantitative information about the
correlation, users might be trained to err in the direction of
hypothesizing correlations when they are doubtful, with the
idea that the numerical procedures might be able to reject
dubious hypotheses.

There are no Transformations or Inferences needed for the
2-variable case, and thus there is little load on STM.

Analysis: With the proviso that the act of Perception
described above is complex, involving a sequence of mental
operations, the task simply calls for one act of Perception.
The temporal complexity of this Perception is
approximately linear in the number of correlation regions,
with a minimal part that would exist even when there are no
correlations.

Errors. As mentioned, there are inherent errors in human
perception of correlation, the error increasing as the
correlation coefficient decreases. There are also errors in
the locations of the end points. We hypothesize that both
these errors are inversely proportional to the number of

entities, i.e., human performance would have less error as
the number of entities increases.

Display Improvement. An additional Transformation,
Zoom, might help if applied for repeated Perception
operations to locate the end points. Of course, this change
to the display design will increase the number of
Perceptions and Transformations for completing the task.

Because of its simplicity, low error rates and low stress on
STM in comparison to the alternatives, the Scatter Diagram
can be taken as the gold standard display for the task under
consideration.

Parallel Coordinates
Method: Depending on the density of the data, different

methods seem to be appropriate.
Relatively Sparse Data. When the density of the data is

low enough that the values that an entity takes on different
axes can be distinguished, the correlation regions, if any,
and the directions of the correlation are available for
Perception.

Relatively Dense Data. In this case, since lines
connecting the values of the individual entities cannot be
distinguished (Fig. 3), the method is similar to that for the
Spectrum display. A variation on this method is track the
average slope of the lines created by the window (the
average slope of the red lines in Fig. 3). If the slope starts
and stays positive (negative) within a region, positive
(negative) correlation may be hypothesized.

Perception, Transformation and Inference: In the case
of Sparse data, the basic Perception is not gestalt as in
cluster recognition in the case of the Scatter Diagrams, but
involves a sequence of comparisons. The user sweeps
through a range of x1 and visually follows the slopes of the
lines connecting to x2. Thus, it is likely to take longer time,
and is possibly more error-prone. In the Dense case, once
selection is made, the required Perception is similar to that
in the Sparse case, and the same remarks apply. For Sparse
Data, as in the case for Scatter Diagrams, there is no need
for Transformation and Inference operations; for Dense
Data, remarks made in the case of Spectrum display apply.

Analysis: For Sparse, except for likely higher error rates
in Perception, the same analysis as for Scatter Diagrams
applies. For Dense, remarks similar to that in the Spectrum
case apply, with possibly different values for error rates for
Perception.

Design Ideas: The error analysis of the cases coincides
respectively with the Viewer's Spectrum and Scatter
Diagram error analysis. Hence, it leads to the same design
ideas -- zoom functionality, and markup operations to mark
starts and ends of hypothesized correlations. The latter
trades off STM overload for an increase in the number of
Transformations.

Star Glyphs
Since the glyphs have to have a minimum of 3 variables, we
add a pseudo variable whose values are the same for all the
entities (or it is a real variable in the domain whose values
we ignore). Let us also assume that the glyphs are ordered
on their values on x1 as in the bottom part of Fig. 4.

Method: Scanning the glyphs in order of the value of x1,
for glyph i, compare its x2 value with k previous values to
infer whether a trend of increase or decrease has begun, and
if already begun, maintained. If the trend just began or
ended, save the value of i to STM. Continue until all the
glyphs are scanned. The value of k is set based on
considerations described when we discussed inference in the
use of the Spectrum display, i.e., to smooth out random
local variations. As before, higher k reduces statistical error,
but errors due to resulting overload of STM might reduce or
eliminate the advantage.

Perception, Transformation and Inference: The basic
Perception is one of local comparison of x2 values to decide
if an increase or decrease is observed. There are no
Transformation operations. The issues regarding Inference
are similar to our corresponding discussion for the Spectrum
case. That is, the x2 values of k glyphs are kept in STM, and
their values are compared to determine beginning,
maintenance or end of positive or negative covariation
trends. As before, the higher the value of k, the more
reliable the estimate, but higher also the load on STM.

Analysis: The number of basic Perception steps is (m-1),
the number of glyphs. The number of Inference steps is (m –
k). Maximum load on STM is (k + 3* number of
correlations ranges hypothesized), since each correlation
region requires remembering 2 end points and its sign.
Because no windows are used to average out behavior, the
numbers of Perception and Inference steps are quite large.

Error rates. The basic Perception is quite reliable, except
when the increase or decrease is very small, in which case
the error does not likely matter much. The Inference step is
error-prone because of the complexity of calculation, and
the requirement on STM to keep k items. Starting and end
point assessments are especially likely to be error-prone
because of natural statistical variations on x2 values, which
need to be smoothed out during the Inference step.

Design Ideas. As before, the load on STM may be
reduced by providing Transformation operations to mark the
beginnings, ends and the signs of the correlations.

Comparing Displays
Even this level of qualitative analysis is useful in making
comparisons. The Scatter Diagrams are the most direct – no
Transformation operations, no Inference, and little stress on
STM. The Glyphs are especially laborious to use, and the
Perception and Inference steps seem prone to high error
rates for both the Glyph and Spectrum displays. Whatever
the general attractiveness of the Glyph displays, they are not
well suited for the specific task we considered.

Concluding Remarks
The paper outlines an approach in the GOMS framework to
systematize investigating how good specific diagrammatic
schemes are for specific families of tasks. Unlike earlier
applications of the GOMS framework, which involved
elementary operations at a relatively low level of
granularity, diagrammatic interfaces used in decision
support systems involve relatively complex perceptions and
physical interactions. We illustrated the approach by a

comparative performance analysis of several candidate
diagrammatic interfaces for the task of discovering relations
between variables in some domain of interest. The analysis
results in estimates of the numbers of various basic
operations, such as Perception, Transformation, Search and
Inference, and of stress on short-term memory. For many
DSS applications qualitative results as we obtained are
sufficient. The precise timings about how long the entire
process would take may be less important than whether the
display calls for significantly more interaction compared to
another display, whether perceptions are more likely to be
error-prone in one than another, etc. However, empirical
data about the timing and error rates of the human cognitive
architecture on the basic operations can be used for more
precise predictive evaluations. We expect to launch such an
initiative soon.
 The approach can help to identify aspects of the display
that need improvement. Adding Transformations to mark
partial results on the display may be considered if the
analysis indicates potential for STM stress. If analysis
indicates that the contribution of errors in specific
Perception is significant, alternatives might be considered.

Goodness of an interface given the best method is not the
same as how good it is in helping someone learn the best
method. Our methodology can be applied to the latter task
as well, and it is an important future direction of research.

Acknowledgments
This paper was prepared through participation in the
Advanced Decision Architectures Collaborative Technology
Alliance sponsored by the U.S. Army Research Laboratory
under Cooperative Agreement DAAD19-01-2-0009.

References
Card, Stuart, Moran, Thomas P., and Newell, Allen (1983). The

Psychology of Human-Computer Interaction, Lawrence
Erlbaum Associates, Hillsdale, NJ.

John, Bonnie E. and Kieras, David (1996). The GOMS family of
user interface analysis techniques: Comparison and contrast.
ACM Transactions on Computer-Human Interaction, 3(4):320-
351, December 1996.

Josephson, John R., Chandrasekaran, B., Carroll, Mark, Iyer,
Naresh, Wasacz, Bryon, Rizzoni, Giorgio, Li, Qingyuan, and
Erb, David A. (1998). An architecture for exploring large
design spaces. In Proc. of the National Conf on AI (AAAI-98),
pages 143-150. AAAI Press/The MIT Press.

Larkin, J. H., & Simon, H. A. (1987). Why a diagram is
(sometimes) worth ten thousand words. Cognitive Science, 11,
65 -100.

Peebles, D., & Cheng, P. C.-H. (2003). Modeling the effect of task
and graphical representation on response latency in a graph
reading task . Human Factors, 45, 28-46.

Ward, Matthew O. (1994). XMDV tool: Integrating multiple
methods for visualizing multivariate data. In IEEE
Visualization, 326-333, 1994.

Yovtchev, Tsviatko (2005). PTIS - A High Level Framework for
Comparative Evaluation of Decision Support Interfaces, MS
Thesis, Computer Science and Engineering, The Ohio State
University.

The First Second of Symmetry:
Towards a Model of Visual Search during Symmetry Verification

Kenneth Czechowski (kentcz@cc.gatech.edu)
Ronald W. Ferguson (rwf@cc.gatech.edu)

Rudolph L. Mappus IV (cmappus@cc.gatech.edu)
College of Computing, Georgia Institute of Technology

Atlanta, GA 30332 USA

Abstract
This paper introduces a newly discovered pattern of eye-
movements during symmetry judgments and a corresponding
model of visual search. We analyze a corpus of eye
movements containing over 19,000 symmetry judgments in
two experiments. These eye movements show a “treble-clef-
shaped” search strategy that is based on proximate feature
inspection and cross-axis comparisons. We simulate this
treble clef strategy and show that it accounts for the
experimental data better than alternative models.

Introduction: Symmetry Verification
Symmetry judgment is a central process in perception,
supporting perceptual organization and object-centered
reference frames. Symmetry detection takes place during the
earlier phase of the visual process and therefore has a
significant impact on object recognition and perceptual
organization. It is detected quickly and accurately, even
after display times as short as 50 ms.

Although symmetry judgment seems effortless and in-
stantaneous, there is considerable evidence that it is a two-
stage process. As proposed by Palmer & Hemenway (1978),
symmetry judgment begins with a quick but rough symme-
try estimation during an axis detection phase that is 50-200
ms long. Then there is a 2000-4000 ms verification phase
that checks the axis by closely examining the stimulus.

The verification phase of symmetry judgment is
important for two reasons. First, because it uses information
from the axis detection phase, the pattern of verification

may help us implicitly understand what axis detection
initially omits. Second, the verification phase provides
general clues on how visual regularity guides visual search.

Eye-tracking allows us to examine the verification phase
directly to determine the pattern of fixations and saccades
(Figure 2). (In contrast, the axis detection phase happens too
quickly for saccades, leaving accuracy and response time as
the typical dependent variables in symmetry studies.)
Current eye-trackers measure eye movements with high
precision and fast sample rates.

However, while eye trackers are increasingly precise,
visual search paths remain highly variable, even for the
same participant performing the same task on the same
stimulus. Some researchers in motor control suggest that
visual search uses stochastic processes to free the mind from
the burden of computing the fine details of ocular control
(see Mitchell 2003 for a discussion).

The variability of eye movements makes it difficult to
model visual search during verification. Minimally, a large
dataset is essential for analyzing underlying patterns despite
this variability. In addition, general search strategies must
be separated from those specific to symmetry judgment.

We address this challenge by using two large data sets of
eye-tracking recordings from two previous experiments.
These two experiments tracked the eye movements of 71
participants for over 19,000 symmetry judgments. We first
analyze this data to determine a new model of visual search.
We then use a computer simulation to test this model
against alternative search strategies for eye movement. This
new model of symmetry verification should allow more
precise measurements of interactions between the axis
detection and verification phases.

Figure 1: Example stimuli from Experiment 1, with three
examples of each symmetry type.

Figure 2: Although humans can detect a symmetry axis
very quickly, verifying symmetry takes much longer.
Here a participant uses seven fixations over 2500 ms to
determine that the figure is asymmetric. The shading and
color (color bar, top) indicates temporal order of samples.

Review of Corpus Experiments and Data
The eye movement data analyzed here is from two recent
experiments exploring how symmetry judgment is
influenced by two types of near-symmetry (Ferguson et al.,
in preparation; Mappus et al., 2005). One type of near-
symmetry is symmetric except for a qualitative difference
(Figure 1), where pair of corresponding parts differs
relationally (e.g., a concave vertex on one side of a polygon
opposite a convex one). In contrast, the other type of near-
symmetry involves a quantitative difference, which is one of
degree only (e.g., opposing concave vertices where one
indentation is larger).

Previous experiments (Ferguson et al., 1996) showed
that participants more accurately judge near-symmetries
when differences are qualitative rather than quantitative.
These two experiments retest this result, but also use eye
tracking to see if qualitative differences influence the
number and location of visual fixations.

The experimental designs are summarized in Table 1.
Experiment 1 used 10-sided polygons (Figure 1) and
measured the accuracy and eye-movements of each
symmetry judgment. Experiment 2 used a wider range of
symmetry types (Figure 3). Nearly all stimuli were
symmetric or near-symmetric (except for Experiment 2,

which also had totally asymmetric polygons).
The two experiments used different display times and

conditions. Experiment 1 examined symmetry judgments of
unlimited duration while testing for effects of stimulus size
and fill. Experiment 2, in contrast, used a fixed presentation
time (1000 ms) and tested for effects of stimulus complexity
and difference size.

Both experiments tracked eye movements during the
symmetry judgment task using a corneal reflection eye-
tracker with a temporal resolution of 8.3 ms (120 Hz). In
Experiment 1, participants responded, on average, within
3000 ms using 6 fixations. Experiment 2 reduced this to
1000 ms and 3 fixations.

Overall, 96 university students with normal or adjusted-
to-normal vision participated in the studies for course credit.
Experiment 1 used 55 participants, but 9 were dropped from
the analysis due to high error rates or eye-tracker calibration
errors. Similarly, Experiment 2 used 41 participants with 16
participants dropped.

The polygonal stimuli were randomly generated by
connecting points along a set of evenly-spaced radii, as in
(Palmer & Hemenway, 1978). Near-symmetric polygons
were generated by changing a random vertex of a symmetric
polygon by a random amount (as given in Table 1). Stimuli
were shown in black on a white background subtending
approximately 2 visual degrees.

The results showed clear processing differences for near-
symmetric figures where differences were qualitative rather
than quantitative. Participants made more judgment errors
when differences were quantitative (Figure 4), and also used
more fixations (an average of 6.3 fixations for quantitative
and 5.3 for qualitative). Experiment 2 showed similar results
(Figure 5), although the effect was greatly attenuated when
quantitative differences were large or when the figure was
extremely complex (e.g., for 26-gons).

These experiments showed that qualitative differences
influence the number and placement of fixations, but did not
predict the search path. The goal on this analysis is to
determine if there is an underlying search strategy that
participants used.

Experiment 1
(144 stimuli)

Experiment 2
(480 stimuli)

D
es

ig
n

C
o

n
d

it
io

n
s Symmetry Types (3):

symmetry, near-symmetry
with qualitative difference,

near-symmetry with
quantitative difference

Fill Types (2): filled / unfilled
Sizes (3): small, medium,

and large

Symmetry types (6):
symmetry, near-symmetry
with qualitative difference
(small and large), near-

symmetry with quantitative
difference (small and
large), asymmetric.

Complexity (3): 10, 18, &
26 sides

P
o

ly
g

o
n

ra
d

iu
s Small (50 ± 25 pixels),

Medium (150 ± 50 pixels),
Large (200 ± 100 pixels).

150 ± 70 pixels

Table 1: Summary of experimental designs in (Ferguson et
al., in preparation; Mappus et al., 2005).

Figure 3: Example stimuli from Experiment 2. This chart shows one stimuli for each of the 18 different conditions.

Analysis of visual search patterns
In general, the use of near-symmetric stimuli emphasized
symmetry verification. Each near-symmetric stimulus
contained a single differing vertex, and so verification was
difficult and required visual search.

Interestingly, our analysis shows that while individual
movement paths were highly variable, the aggregate paths
show a predictable pattern that we have dubbed the “Treble
Clef” strategy (Figure 6). In this strategy, participants
initially fixate at the center of the figure, and then move up.
They then descend while moving from the left to the right.

The Treble Clef strategy has several components, which
we will cover in turn, using graphs of the vertical and
horizontal movement components found in Figure 7.

Initial 200-250 ms. fixation. Most participants began in
the center of the stimulus and remain there for the first 200-
250 ms (Figure 7). This is expected because experiment
protocol requires each subject to fixate on the center of the
screen prior to stimulus onset. The 200-250 ms duration
corresponds to the time needed for the axis detection phase.

Upward movement to tip of vertical axis. Then for the
rest of the initial 500 ms the eye movements begin to spread
out and migrate to the top of the figure.

 Oscillating downward movement. During the last 500
ms, the eye-tracking samples appear to spread out
perpendicular to the center axis and slowly move down the
figure. It is not until the end of the 1,000 ms that there are
any samples at the bottom of the figure (Figure 8). This
shows a clear top to bottom pattern; a pattern that has been
noticed in both search tasks (Salvucci, 2000) and
comparative search (Pomplun, 1998).

Other characteristics. There are several other
characteristics of the visual search data. First, the data
shows a clear undershoot bias; rather than overshooting the
saccade endpoint and landing outside the figure, the vast
majority of the sample points remain inside the figure.

Second, the treble clef pattern remains whether the dis-
play time is constrained or unlimited. Similarities between
the mean vertical/horizontal positions for the first 1,000 ms
of Experiment 1 and the mean positions from Experiment 2
suggests that search patterns are very similar for the first
1,000 ms despite the time constraints of Experiment 2.

This is also supported by the relatively similar accuracy
levels for 10-sided polygons in Experiments 1 and 2
(Figures 4-5), which suggest that participants are able to
maintain accurate verification even when display times are
reduced from 3000 to 1000 ms. Participants are either able
to optimize their search strategy for the shorter time or gain
little from the visual fixations after the first 1000 ms.

Also note a slight lag in the peaks of Experiment 1's
mean positions (Figure 7-A,B) relative to Experiment 2’s
(Figure 7-C,D). The apparent expanding of the waves in the
graphs suggests that Experiment 2’s time constraints may
have improved the efficiency of the eye movements.

In summary, the treble clef pattern is very consistent. On
average, participants start at the center, quickly move up,
and then slowly move down, swerving from the left to the
right. Separating the samples by stimulus type, we see a
striking consistency across all symmetry categories despite
other performance differences.

Figure 4: Error rates from Experiment 1 for symmetric
figures, and near-symmetric figures with qualitative and
quantitative differences.

Figure 5: Error rates from Experiment 2 for near-symmetric
figures with small and large qualitative and quantitative
differences.

Figure 6: Diagram of Treble Clef search strategy. The
diagram illustrates the general pattern of eye
movements during the first 1,000 ms of a symmetry
judgment task.

Simulation
To further test the treble clef strategy, we compared it
against three alternative search strategies: Random Search,
Greedy Search, and the Area Activation Model (AAM).
Eye-movement model. To do this, we first built an eye
movement model, based on known psychological results, to
serve as the basis for all four search strategies. The model
groups movement into two categories: fixations and
saccades. A fixation is a period of stable movements closely
clustered around a point. Saccades are fast ballistic
movements that propel the eye across a visual scene from
one fixation to another. The
model first generates a
fixation at the stimulus
center. At the end of each
fixation the search strategy
selects a new fixation
location and plots a saccade.
This continues until 1,000 ms
has expired.

To capture the stochastic
nature of the fixations and

saccades, variables such as the fixation duration and saccade
duration are drawn from probabilistic distributions. In this
model, the lengths of the fixation duration are sampled from
a gamma distribution with a mean of 200 ms and a standard
deviation of (1/3)*(200ms) (Epelboim & Suppes, 2001;
Salvucci, 2000). During a fixation, locations for each time
step are drawn from a 2D Gaussian distribution centered at
the target with a standard deviation equal to one visual
degree. To move from one fixation to another, a straight line
saccade is charted with samples evenly distributed along the
line. The saccade duration is 20 ms + .2 ms * visual angle.
Saccade landings are not precise and instead of traveling the

Figure 7: An overview of aggregate eye movements during Experiments 1 and 2, showing mean horizontal and vertical
positions over time for all symmetry types. The Horizontal center is at 400 and the Vertical center is at 300.

Figure 8: Time slices of eye-tracking samples for all subjects in Experiment 2. The diagram
shows samples from a stimulus divided into four time slices: 0-250 ms, 0-500 ms, 0-750 ms,
and 0-1000 ms.

full distance d from one fixation to the next, saccade
distance is drawn from a Gaussian distribution with a mean
of d and standard deviation equal to 0.1d (Salvucci 2000).
Following the undershoot bias, there is a 90% chance that
the actual saccade distance will be less than d and a 10%
chance that the actual saccade distance is greater than or
equal to d.

The eye movement model then serves as the basis for the
following four search strategies.
Random Search Strategy. The Random search strategy
assumes that there is no underlying motivation for selecting
fixations. Each vertex has an equal chance of being selected,
with the constraint is that no vertex is selected twice.
Greedy Search Strategy. The Greedy search strategy
assumes that the visual system attempts to maximize
information by reducing time spent on saccades, and always
selects fixation locations on the closest unvisited vertex.
The Area Activation Model (AAM). The Area Activation
Model (Pomplun et al., 2000) is a generalized model of eye-
movements during search tasks. Like the greedy search
strategy, AAM tries to optimize information. However,
instead of selecting nearby vertices to minimize saccade
time, AAM finds clusters of vertices where it can maximize
information in a single fixation. One particularly interesting
result of this is that fixations can occur at the center of a
cluster of vertices rather than directly on a single vertex.

According to the model, a 3D activation mesh is created
preattentively. The mesh consists of a mixture (summation)
of 2D Gaussians centered on the stimuli’s items (vertices in
our case). The peaks of the mesh become the candidate
fixation locations and are weighted by their relative heights.
The first candidate is selected using a weighted probability.
Subsequent candidates are selected based on their proximity
to the current fixation.
Treble Clef. The Treble Clef search strategy mimics the
pattern discovered in the two experiments. After the initial
fixation, the next fixation is at the top of the figure. The
remaining fixation locations are on vertices that are lower
than the current fixation. This search strategy also
implements the swinging motion by alternating between

vertices on the left and right of the symmetric axis.

Comparing the Strategies
The goal of the simulation is to evaluate each search strat-
egy’s fit to the empirical data. Therefore, search strategies
are tested by comparing the samples generated by the
simulation (simulation samples) with the samples generated
during Experiment 2 (experiment samples). The variability
of the data requires the comparison of estimated sample
distributions rather than a sample-to-sample comparison.

To quantitatively measure the accuracy of the
simulations for a particular stimulus, we estimate the
distributions of both the experimental samples and the
simulation samples then calculate the divergence of the two
distributions. The distributions are estimated using a
mixture of Gaussians. One 2D Gaussian distribution, with a
standard deviation equal to the radius of the foveal region, is
placed at the coordinates of each sample point. The
Gaussians are summed across the 2D space and scaled
relative to the number of samples used to calculate the
estimation. The percent of overlap, which we use as the
measure of accuracy, is the summation of the minimum of
the corresponding masses:

X Y

yxgyxf)],(),,(min[

Where f(x,y) is the estimated probability distribution of
the experimental samples and g(x,y) is the estimated
probability distribution of the simulation samples. Since this
calculation is specific to each stimulus, accuracy results are
averaged across a random subset of Experiment 2 stimuli.

Figure 10 compares the mean accuracies of the different
search strategies. Of the strategies tested, Treble Clef
performs the best. Both Greedy and AAM perform with
similar accuracy; this is expected because after selecting the
first fixation the AAM strategy uses a greedy algorithm for
selecting subsequent fixations. However, the deterministic
nature of Greedy and the AMM strategies limits their ability
to account for the variety of scan paths recorded from our
experiment participants. The Random Strategy performs

Figure 9: Eye-tracking samples generated by the simulation. The diagram shows how the different search strategies generate
different sets of samples. The experimental samples from Experiment 2 are included on the left for comparison purposes.

better than Greedy and AAM, but does not account for the
vertex preferences that appear in the experimental data.

To simulate the comparative nature of the symmetry task
we also tested a swing variant of Random, Greedy, and
AAM. In all cases, adding the swing constraint (a constraint
that successive fixations alternate between the left and right
side of the symmetric axis, as is expected for symmetry
judgment) improved performance.

Discussion and Future Work
The eye-tracking data and simulation results demonstrate
the existence of the Treble Clef pattern. While the
variability of eye-movements disguises the underlying
strategy for selecting fixation locations, the use of a large
corpus has enabled us to identify elements of a common
strategy. Furthermore, the use of an eye-movement
simulator has shown this strategy better represents the
experimental data than several alternative strategies.

The discovery of this strategy provides valuable insight
into symmetry verification and symmetry perception in
general. Previous work shows that symmetry type
influences detection through differences in accuracy,
number of fixations, response time, and scan paths
(Ferguson et al 1996; Mappus et al 2005). Similarly, our
eye-tracking data shows that symmetry types differ with
respect to their mean vertical and horizontal positions,
especially after 500 ms (see Figures 7-10). These search
patterns, like accuracy and response time, are affected by
the symmetry type. This suggests that studying
perturbations of the Treble Clef search pattern may indicate
processing differences between symmetry types. It also
suggests that one could determine how a symmetry type
influences the visual system by determining when the eye-
movement patterns diverge.

The Treble Clef pattern also suggests that the ocular
system influences search strategies. Instead of quick
straight-line movements and sharp angles between fixations,
the pattern shows wavy movements. This can be explained

by momentum-like forces impacting the ocular muscles,
which suggests that search strategies are optimized to work
within the physical constraints of the ocular system.

In the future, we will refine the Treble Clef search
strategy and the eye-movement model to better account for
the experimental data. An experiment designed to test a
wider variety of symmetry types could improve the
parameters of the eye-movement model and thus simulation
accuracy. This is one goal for follow-on experiments.

We have also begun work on an experiment that uses
electroencephalographic (EEG) recordings to find brain
activation patterns during symmetry judgment. By
evaluating eye-tracking along with EEG we may gain
valuable insight into the cognitive processes involved in
symmetry judgment.

Acknowledgments
This work is supported by a National Science Foundation
grant under the Artificial Intelligence and Cognitive Science
program and a Presidential Undergraduate Research Award
to the first author. Special thanks to Paul Corballis for help
with the experimental design and to the Georgia Tech
Psychology Visual Attention Lab for use of their facilities.
We also wish to thank reviewers’ comments and
suggestions.

References
Epelboim, J., & Suppes, P. (2001). A model of eye

movements and visual working memory during problem
solving in geometry. Vision Research, 41, 1561-1574.

Ferguson, R. W., Aminoff, A., & Gentner, D. (1996).
Modeling qualitative differences in symmetry judgments.
Cognitive Science Conference. Hillsdale, NJ: Erlbaum.

Ferguson, R. W., Mappus, R. L., Czechowski, K., &
Corballis, P. M. (in preparation). Spotting differences:
Effects of geometric relations on visual search patterns.
Manuscript in preparation.

Mappus, R. L., Ferguson, R. W., Czechowski, K., &
Corballis, P. M. (2005). Spotting differences: How
qualitative asymmetries influence visual search.
Cognitive Science Conference. Hillsdale, NJ: Erlbaum.

Mitchell, J., Zipser, D. (2003) Sequential memory-guided
saccades and target selection: a neural model of the
frontal eye fields. Vision Research, 43, 2669-2695.

Palmer, S. E., & Hemenway, K. (1978). Orientation and
symmetry: Effects of multiple, rotational, and near
symmetries. Journal of Experimental Psychology:
Human Perception and Performance, 4, 691-702.

Pomplun, M. (1998). Analysis and models of eye movement
in comparative visual search. Göttingen: Cuvillier.

Pomplun, M., Reingold, E. M., Shen, J., & Williams, D. E.
(2000). The area activation model of saccadic selectivity
in visual search. Cognitive Science Conference. Mahwah,
NJ: Erlbaum.

Salvucci, D. D. (2000). A model of eye movements and
visual attention. International Conference on Cognitive
Modeling. Veenendaal, Netherlands: Universal Press.

Comparison of Search Strategies

0

10

20

30

40

50

60

Random Greedy AAM Treble Clef
Search Strategy

P
er

ce
n

t
o

f
D

en
si

ty
O

ve
rl

ap

No Swing

With Swing

Figure 10: Mean accuracy of each search strategy. In this
graph, the values are the percent of overlap with the
estimated empirical density averaged across a randomly
selected subset of Experiment 2 stimuli.

Diagrammatic Reasoning: Route Planning on Maps with ACT-R

H. A. Dye (hdye@ttocs.org)
U.S. Military Academy/Army Research Laboratory

MADN-MATH, 646 Swift Road
West Point, NY 10566, USA

Keywords: Cognitive modeling; diagrams; maps

Diagrammatic Reasoning
Diagrammatic reasoning, reasoning from graphical
representations rather than from word-based representations,
is pervasive in our society. Computers allow us to easily
design and transmit diagrams that encapsulate a variety of
information. Maps are specific instances of diagrams that
are used to provide current and projected information
(Chandrasekaran et al., 2002); for example, public
transportation systems are displayed as color coded graphs.
Other examples of diagrammatic reasoning include
geometric problem solving in mathematics and free body
diagrams in physics. Diagrams can offer cognitive shortcuts
relative to verbal descriptions of certain kinds of
information, notably relational and spatial information.
Thus, diagrams can reduce the working memory load and
make possible certain cognitive efficiencies.

Challenges
The overall goal of this research project is to produce
cognitively-congruent models of diagrammatic reasoning in
the Adaptive Control of Thought – Rational (ACT-R)
architecture (Anderson et al., 2004). This study investigated
perception and reasoning during a problem solving task that
utilizes a diagram. The model presented here uses the
architecture’s perceptual and motor modules; visual objects
were created and placed in a virtual window on which the
perceptual and motor modules could then act. There were
two challenges in building the model: (1) ACT-R’s visual
module is text- rather than diagram-based and (2) previous
vision modeling efforts (e.g., Fick and Byrne, 2003) have
focused on target search where the target is identified rather
than using the visual information for subsequent decision
making. To validate the ACT-R model, participants
performed two diagrammatic reasoning tasks.

Diagrammatic Reasoning Tasks
Eighteen participants (U.S. Military Academy cadets)
performed two simple tasks on a 5x5 grid-based map,
consisting of labeled points, lines, and regions. The
simplicity of these maps allowed both the isolation of the
effect of specific changes in the maps and the extraction of
relatively rich cognitive data. Specifically, the two tasks
were (1) “find,” finding a target location (B) on the map
(perception) or (2) “plan,” finding the target location (B)
and executing a planned route from location (A) (perception

plus decision making) (see Figure 1). The target location
was positioned in one of the four corners and task difficulty
was manipulated by limiting the number of direct paths to
the target. For example, in Figure 1, one direct path to the
target has been eliminated. Zero, one, or two (both) direct
paths to the target could be eliminated.

Figure 1: A sample map

Both tasks began with the participants being presented
with a center-screen fixation point. In the find task,
participants pressed the space bar to indicate that they had
found the target location. As a check, the grid labels were
then erased and the participant used the mouse to click on
the target location. In the route planning task, participants
found the target location and moved a red outlined box
along the paths using the arrow keys to indicate the selected
path. When the box was positioned over the target location,
participants pressed the enter key. The search task is an
assumed subtask in the route planning task. Task difficulty
was manipulated by blocking direct paths to the target
location (deleting paths). E-Prime was used to display and
manipulate the grid and collect response data. End target
location and the number and position of paths deleted were
completely counterbalanced in a within-subjects design.

The average response times in msec for the find and plan
tasks for target position and the blocked paths are shown in
Figures 2. Find and plan times generally increased across
target location according to a left-to-right upper and upper-
to-lower strategy with a mixed strategy on the lower, either
left-to-right or right-to-left. Plan task times increased with
increasing numbers of paths blocked.

Cognitive Modeling
Following the general strategy exhibited by participants, the
ACT-R 6.0 cognitive model begins the find and plan tasks
by moving visual attention away from the fixation

400

900

1400

1900

2400

2900

Upper Left Upper Left Lower Left Lower Right

Target Position

 R
es

p
o
n
se

 T
im

e
(m

se
c)

Find: 0

Find: 1

Find: 2

Plan: 0

Plan: 1

Plan: 2

Figure 2: Averaged participant responses for the tasks
with 0, 1, or 2 paths blocked and target location

point, looks at the corners of the grid, proceeding from the
upper left to the upper right and then lower right and lower
left until it finds the target location. In the model of the find
task, the model then presses a key to indicate that it has
found the target location. The model of the route planning
task builds on the search model. After finding the target, the
model’s perception focuses on the area around the starting
location (A). [Note: Visual attention in ACT-R must be
directed to an object and cannot be directed to an open
space. To allow the model to position visual attention on the
deleted paths, these paths were colored black rather than
actually deleted (Cassenti, Kelley, & Ghirardelli, 2006).]
The model then plans a route to the end location (B) from
the start location (A) by focusing visual attention on a path
in a region defined by the current location and proximity to
the target location. The first arrow key is determined by the
existing edge nearest the target that captures visual
attention. Next, the model selects a path with the same
direction as the last traversed path, causing the same arrow
key to be pressed again. If no such path exists, the model
shifts strategies and attempts to find any path that advances
the route towards the target position. The model does not
observe the labels of the intermediate locations or non-
relevant paths during the find or planning processes.

The find and the plan models were run for 144 trials each
or the equivalent of one participant. The mean response
times as a function of complexity (blocked paths) by end
target location for the two models are shown in Figure 3.
The find and plan models reproduced the participants’ data
fairly well (see Figure 3), with r = .93 and RMSD = 0.14
and r = .97 and RMSD = 0.13, respectively.

There are some limits to the current model, even with
some post-experiment adjustments. Currently, the model
does not take into account the following efficiencies and
errors: a decrease in response time when a participant
pressed the same key repeatedly; or errors when participants
attempted to traverse paths that had been deleted or mistook
the target location.

400

900

1400

1900

2400

2900

Upper Left Upper Left Lower Left Lower Right

Target Position

A
C

T
-R

 R
es

p
o
ns

e
T
im

e
(m

se
c)

Find: 0

Find: 1

Find: 2

Plan: 0

Plan: 1

Plan: 2

Figure 3: ACT-R model responses for find and plan tasks
with 0, 1, or 2 paths blocked and target location

Conclusions
The correspondence between the model and participants’
data was reasonably high. A largely serial ACT-R model of
the search and path selection process matched participants’
data with respect to the find task alone and to the plan task,
which subsumes the find task. Even with this simple grid,
more blocked paths resulted in greater response times and
with the generally used search strategy, times varied in an
orderly fashion with target location. Two questions are
prompted by these results: (1) What is the effect of diagram
features such as missing paths or irrelevant paths on route
planning? (2) At a more detailed level than explored in this
model, how are finding and planning processes interrelated
in the time to the first keystroke. For the participant data, the
first plan task keystroke took approximately 200 msec
longer than search task keystroke, pointing to a promising
window in which to explore the basics of diagrammatic
reasoning.

Acknowledgments
This research was conducted while the researcher jointly
held a National Research Council postdoctoral fellowship at
the U.S. Military Academy and the Army Research
Laboratory. I would like to thank Dan Cassenti for his input.

References
Anderson, J. R., Bothell, D., Byrne, M. Douglass, S., Lebiere, C., & Qin,

Y. (2004). An integrated theory of the mind. Psychological Review,
111, 1036-1060.

Cassenti, D. N., Kelley, T. D., & Ghirardelli, T.G. (2006). Awareness yet
underestimation of distractors in feature searches. In R. Sun (Ed.)
Proceedings of the 28th Annual Conference of the Cognitive Science
Society (pp. 1086-1091). Mahwah, NJ: Erlbaum.

Chandrasekaran, B., Josephson, J.J., Bannerjee, B., Kurup, U., & Winker,
R. (2002). Diagrammatic reasoning in support of situation understanding
and planning. Proceedings of the Army Science Conference, Orlando,
FL.

Fick, C. S., & Byrne, M. D. (2003). Capture of visual attention by abrupt
onsets: A model of contingent orienting. In F. Detje, D. Doerner, & H.
Schaub (Eds.) Proceedings of the Fifth International Conference on
Cognitive Modeling (pp. 81-86). Bamberg, Germany: Universitas-Verlag
Bamberg.

Meter based omission of function words in MOSAIC
Daniel Freudenthal (D.Freudenthal@liv.ac.uk),

Julian Pine (Julian.Pine@liv.ac.uk)
School of Psychology, University of Liverpool

Fernand Gobet (Fernand.Gobet@Brunel.ac.uk)
School of Social Sciences, Brunel University

Abstract

MOSAIC (Model of Syntax Acquisition in Children) is
augmented with a new mechanism that allows for the
omission of unstressed function words based on the prosodic
structure of the utterance in which they occur. The
mechanism allows MOSAIC to omit elements from multiple
locations in a target utterance, which it was previously unable
to do. It is shown that, although the new mechanism results in
Optional Infinitive errors when run on children’s input, it is
insufficient to simulate the high rate OI errors in children’s
speech unless combined with MOSAIC’s edge-first learning
mechanism. It is also shown that the addition of the new
mechanism does not adversely affect MOSAIC’s fit to the
Optional Infinitive phenomenon. The mechanism does,
however, make MOSAIC’s output more child-like, both in
terms of the range of utterances it can simulate, and the level
and type of determiner omission that the model displays.

Keywords: MOSAIC, Syntax Acquisition, Optional
Infinitives, Determiner Omission.

Introduction

Child speech differs from adult speech in a number of ways.

Apart from the average child utterance being noticeably

shorter than adult utterances, child speech often lacks

inflection where this is appropriate in the adult language. It

is also rather telegraphic (i.e., is marked by the relative

absence of function words). These characteristics are

illustrated in utterances (1) and (2), which are plausible

child utterances.

(1) He go home.

(2) I want cookie.

The lack of inflection in child speech has been the subject

of considerable Nativist theorizing in recent years. Early

theories suggested that utterances like (1) reflect the

omission of an inflectional morpheme (-s) from a finite

form. More recent theories (Wexler, 1998), however, claim,

on the basis of cross-linguistic data, that such utterances

actually reflect the use of a non-finite form (the infinitive) in

place of a finite form (in this case the 3
rd

singular present

tense). Following Wexler’s work utterances like (1) have

become known as Optional Infinitive (OI) errors. Wexler

proposes that children have, from a very early age, correctly

set all the inflectional and phrase structure parameters for

their language, but are subject to a ‘Unique Checking

Constraint’ which results in them optionally producing

infinitives in contexts where a finite form is required. As a

result of maturation, children will provide the correct,

inflected form increasingly often as they get older, leading

to a decrease in OI errors.

Alternative accounts claim that OI errors can be

understood in terms of input-driven learning mechanisms

without the need to assume innate knowledge. In particular,

it is claimed that OI errors can be explained as compound

(auxiliary/modal + infinitive) constructions with a missing

modal or auxiliary (Ingram & Thompson, 1996). Thus, an

utterance such as he go home might result from omitting the

modal will from he will go home. According to these

accounts, OI errors disappear as children’s utterances

become longer and missing modals and auxiliaries are

realized more and more often.

MOSAIC is a computational model that implements the

view of OI errors as truncated compound constructions.

Freudenthal et al. (2006, 2007) have shown that the rates at

which children produce OI errors can be closely simulated

through an input-driven learning mechanism that produces

partial utterances. Freudenthal et al. were able to show that

MOSAIC provides a close quantitative fit to the OI data

from four different languages: English, Dutch, German and

Spanish. They were also able to trace the differential rates

with which children produce OI errors in these languages

back to characteristics of the input from these languages: the

frequency of compound constructions and the position of

the infinitive in compound constructions.

The particular mechanism used by Freudenthal et al.,

however, suffers from some weaknesses as the model only

produces utterance-final phrases. That is, the model learns

the input it receives by building up its representation from

the right edge of the utterance. The OI errors with third

singular subjects that this model produces are largely

learned from questions (e.g. (Can) he go?). Since children

produce OI errors as declaratives, it seems somewhat

implausible they should learn such constructions from

interrogative contexts. A further problem with the

simulations reported by Freudenthal et al. is that child

language is far more telegraphic than MOSAIC’s output.

That is, children will often produce utterances with many

omitted constituents (e.g., Play train). Since such

constructions do not occur (as utterance-final phrases) in the

input, they cannot be produced by MOSAIC.

Freudenthal et al. (2005a) report preliminary simulations

with a version of MOSAIC that alleviates this problem. This

version learns from the left as well as right edge of an

utterance and associates sentence-initial and sentence-final

phrases. Given an utterance like He wants to go to bed the

model is capable of associating the phrase go to bed with the

sentence-initial word he resulting in the OI error he go to

bed. This version of MOSAIC, however, is still unable to

produce certain structures that children frequently produce.

In particular, children often appear to omit material from

multiple locations in an utterance. Thus, an utterance like

(3) appears to involve the omission of both a modal or

auxiliary and an article from an utterance like he can go to

the shops.

(3) He go to shops

Since MOSAIC is capable of omitting only one sentence-

internal phrase from an utterance it cannot produce an

utterance like (3). Modifying MOSAIC so that it is able to

produce such utterances will therefore greatly increase its

credibility as a model of children’s early multi-word speech.

Omission Errors in Child Speech

It has long been recognised that omission errors are an

important characteristic of child speech (Brown, 1973).

Moreover, it is clear that children can make multiple errors

of omission within the same sentence. Such errors have

often been interpreted as resulting from performance

limitations in production (Bloom, 1990; Valian, 1991).

According to this view, the child is thought to have full

competence (a correct underlying representation), but some

elements of this representation fail to surface due to a

processing bottleneck in production. In the words of Bloom,

this kind of analysis is ‘…one way to reconcile a Nativist

theory of language acquisition with the fact that most of

young children’s sentences are less than three words

long…’ (Bloom, 1990, p. 492).

An elegant performance limitations account of the pattern

of omission errors in child speech is provided by Gerken

(1991, 1996). Gerken’s account focuses on the prosodic

structure of the target utterance, in particular the occurrence

of an element with respect to metrical feet. The metrical foot

is a basic prosodic unit, which is described by the nature and

number of syllables it contains. Gerken’s account focuses on

the position of unstressed syllables relative to trochaic feet

(which have a strong-weak stress pattern). The majority of

English (di-syllabic) words are trochaic in nature: primary

stress is placed on the first syllable (e.g. PAper, TAble).

Gerken argues that children have a preference for trochaic

meter to the extent that unstressed syllables that are not part

of a trochaic foot are more likely to be omitted. Thus,

children are likely to omit the first (unstressed) syllable

from banana, resulting in nana. The omission of unstressed

(or weak) syllables that are not part of a trochaic foot also

goes some way towards explaining the omission of elements

from sentential contexts. Thus, Gerken (1996) shows that

children are more likely to omit the object article the from

sentence (4b) (where it is unfooted), than from sentence (4a)

where it is part of a trochaic foot (An asterisk denotes an

unfooted element, S and W stand for Strong and Weak.

Dashes connect items that combine to form a foot).

 (4) a. he KICKS the PIG

 * S-----w S(-w)

(4) b. he CATCHes the PIG

 * S----w * S(-w)

Gerken (1991) also explains the finding that children are

more likely to omit pronominal subjects than objects in

terms of the stress pattern. Unstressed sentence-initial

subjects are likely to be omitted as they are unfooted.

Sentence-internal objects are less likely to be omitted as

they can be part of a trochaic foot. Further support for

Gerken’s account comes from recent work by Demuth et al.

(in press), who show that children are less likely to omit

determiners from footed than from unfooted contexts.

Gerken’s account is appealing, as it provides a unified

explanation of function word omission in child speech that

is largely independent of grammatical class. A mechanism

based on this account could therefore be readily combined

with MOSAIC’s input-driven learning mechanism (which

does not assume knowledge of grammatical categories) to

simulate the pattern of sentence-internal omission in

children’s speech. However, since within Gerken’s account,

modals, like other function words, can be unfooted and

therefore omitted from modal + verb structures, it is also

possible that a prosody-based omission mechanism may

itself be sufficient to explain the OI phenomenon.

The aim of this paper is therefore to investigate the utility

of Gerken’s metrical template account as a means of

increasing the levels of omission that MOSAIC displays,

while at the same time considering the possibility that a

prosody-based omission mechanism might be sufficient to

simulate the level of OI errors in children’s output. To this

end, prosodic structure was assigned to MOSAIC’s output,

and unstressed items were probabilistically deleted from the

output based on their location relative to trochaic feet. As

suggested by Gerken, this mechanism was implemented as a

limitation in production
1
. Thus, MOSAIC’s learning

mechanism (association of sentence-initial and sentence-

final phrases) remained unaltered and omission of

unstressed elements only occurred in production. Output

generated in this way was then compared with output

generated by applying the prosody-based omission

mechanism to the input samples on which the model was

trained. This allowed us to establish whether MOSAIC’s

learning mechanism was necessary to simulate the rate of OI

errors in children’s speech.

The Simulations

The simulations were conducted using the version of

MOSAIC described in Freudenthal et al. (2005a) augmented

with the chunking mechanism described in Freudenthal et

1
Clearly this does not address the question of how this bias is

acquired. However, given that, at present, MOSAIC's learning

mechanism operates at the level of the word rather than the

syllable, this question is currently beyond the scope of the model.

al. (2005b). MOSAIC learns from realistic input (child-

directed speech) and combines a strong utterance-final bias

(recency effect) with a smaller primacy effect. MOSAIC’s

basic learning mechanism slowly builds up a representation

of the utterances it is shown by starting at the right edge of

the utterance and slowly working its way to the beginning of

the utterance. This mechanism is complemented by a

(slower) learning mechanism that builds up its

representation of the utterance by starting at the left edge of

the utterance, and slowly working its way to the end of the

utterance. MOSAIC associates these utterance-final and

utterance-initial phrases and is therefore capable of

producing utterances with missing sentence-internal

phrases. This is illustrated in Fig. 1. Since the utterance-

final phrases MOSAIC learns tend to be longer than the

utterance-initial phrases (as utterance-final learning is

faster) the omitted phrases tend to be located near the left

edge of the utterance.

Figure 1: A partial MOSAIC network. The sentence-initial

phrase he wants, and the sentence-final phrase go home

have been associated, allowing the model to produce

the utterance He wants go home.

Output is generated from MOSAIC by traversing all the

branches in the model and outputting the (utterance-final)

phrases they encode. Where these phrases have been

associated with utterance-initial phrases a concatenation of

these phrases is also produced. MOSAIC can produce

output with an increasing Mean Length of Utterance

(MLU), thereby simulating developmental change. Learning

in MOSAIC is relatively slow, and the input is shown to the

model several times. With every exposure to the input

MOSAIC represents more and longer phrases that were

present in the input. Output is generated from the model

after each exposure to the input, which results in output files

of increasing MLU. For the present simulations, models

were run using the maternal speech directed at two English

children (Anne and Becky). The child-directed speech for

these children consists of ~33,000 and ~25,000 utterances.

Where relevant the output from the model was compared to

the actual speech produced by Anne and Becky.

Determining the Stress Pattern

The input that MOSAIC learns from is transcribed in an

orthographic format that does not include any prosodic

information. Likewise, the output from MOSAIC consists of

simple text files that lack prosodic information. In order to

probabilistically delete unstressed elements the stress

pattern for an output utterance thus needs to be assigned.

This was done on a word-by-word basis using the stress

pattern detailed in the dictionary entry for the individual

words. The Unilex dictionary (Fitt & Isard, 1999) was used

for this purpose. The Unilex dictionary contains some

100,000 lemmas and details their phonetic form,

syllabification and stress pattern. For all utterances in

MOSAIC’s output, the stress pattern was determined by

concatenating the stress patterns for the individual words
2
.

Mono-syllabic function words (articles, determiners,

pronouns etc.) as well as modals and auxiliary verbs

(including the copula) were assigned weak (no) stress. All

content words were considered stressed. After the stress

pattern had been determined it was decided which

unstressed elements were not part of a trochaic foot (i.e.

were unfooted). This was done in the following manner:

1. All elements preceding the first stressed syllable in

an utterance were deemed unfooted.

2. Every stressed syllable was considered the start of a

new foot.

3. An unstressed element that was preceded by a

stressed syllable was considered part of a trochaic

foot.

4. An unstressed element that was preceded by an

unstressed syllable was deemed unfooted.

This procedure results in utterances (4a) and (4b) being

assigned the indicated stress pattern. In both (4a) and (4b)

the subject he is unfooted as it precedes the first stressed

syllable. The object article the in utterance 4a is part of a

trochaic foot as it is preceded by the stressed syllable kicks.

The article in 4b is unfooted as it is preceded by the

unstressed syllable –es. A further example is given in (5).

(5) a. he can GO to the SHOPS

 * * S—w * S(-w)

(5) b. PETE can GO to the SHOPS

S-------w S—w * S(-w)

Once the stress pattern for an utterance was determined

unstressed (mono-syllabic) words were probabilistically

deleted from the utterance. The asymmetry in the omission

of footed and unfooted items was modelled by setting the

probability of deleting an unstressed item to different values

for footed and unfooted items.

Results

2
In instances where a word had no entry in the dictionary, no

stress pattern was applied to the utterance, and no omission from

this utterance was possible. Such utterances were maintained in the

analyses presented as their omission affected the MLU

distribution, which precluded MLU matching across simulations.

As was mentioned earlier, the omission of unstressed

elements can lead to modal omission, and thus result in OI

errors. This raises the possibility that the omission

mechanism itself may be sufficient to explain the OI

phenomenon. This possibility was investigated by running

the omission mechanism on the input files (maternal speech)

for Anne and Becky, and comparing the rates of OI errors as

well as simple and compound finites in the resulting output

with the child data at around MLU 2.1. The results of this

analysis were compared to those obtained from MOSAIC

models with and without omission. This allowed us to

compare the performance of the omission mechanism with

the learning mechanism of MOSAIC. Comparing the

performance of MOSAIC with and without omission

allowed us to establish if the omission mechanism had any

effects (positive or negative) on MOSAIC’s output.

Running the omission mechanism on the maternal speech

resulted in utterances that were considerably longer than the

child speech they were compared against. For this reason,

the rates of OI errors were also determined for the subset of

utterances that were not longer than three words. This

resulted in output files with an MLU of approximately 2.1.

The results of the analyses on short and long utterances are

presented in Fig. 2. These results were obtained by setting

the omission probability to 0.5 for unfooted items, and 0.1

for footed items. The omission mechanism was also run

with probabilities of 0.8 and 0.2 respectively. This gave

very similar results.

As can be seen in Fig. 2, the omission mechanism did result

in the production of OI errors, in particular when the

analysis was restricted to short utterances (0.19 for Anne’s

input and 0.12 for Becky’s input). These proportions are

higher than those that occur in the maternal speech directed

at these children (~ 5%). However, they are considerably

lower than the rates of OI errors that the English children

display early in development.

These results suggest that omission of weak elements can

account for some of children’s OI errors, particularly when

combined with an additional mechanism that restricts the

length of the utterances children produce. The mechanism

implemented for these analyses (only selecting short

utterances) however, is not sufficient to produce OI errors at

rates comparable to the rates that actual children produce.

Fig. 2a. Data and input analysis for Anne.

0

0.2

0.4

0.6

0.8

1

child long

utt.

short

utt.

P
ro

p
o
rt

io
n

Non-finite

Simple Finite

Comp. Finite

Fig 2b. Data and input analysis for Becky.

0

0.2

0.4

0.6

0.8

1

child long

utt.

short

utt.

P
ro

p
o
rt

io
n

Non-finite

Simple Finite

Comp. Finite

Fig. 2: Rates of OI errors, simple and compound finites

for children and maternal speech with omission.

The next set of analyses was aimed at establishing if

MOSAIC’s mechanism for restricting the length of

utterances (omission of sentence-internal material through

the concatenation of utterance-initial and utterance-final

phrases) is more successful in producing OI errors at rates

comparable to English children. For these simulations

standard MOSAIC models were run and output at an MLU

of 2.1 was generated.

Fig. 3a. Data and simulations for Anne.

0

0.2

0.4

0.6

0.8

1

child no om. with

om.

P
ro

p
o
rt

io
n

Non-finite

Simple Finite

Comp. Finite

Fig 3b. Data and Simulations for Becky.

0

0.2

0.4

0.6

0.8

1

child no om. with

om.

P
ro

p
o
rt

io
n

Non-finite

Simple Finite

Comp. Finite

Fig. 3. Rates of OI errors, simple and compound finites

 for children and simulations with and without omission.

Next, the omission mechanism was run on MOSAIC’s

output. Where necessary, output from slightly more mature

models was selected in order to match the MLUs in the

simulations without omission (omission of words from

utterances reduces the MLU for the output). The omission

mechanism was run with an omission probability of 0.5 for

unfooted syllables and 0.1 for footed syllables. Fig. 3 gives

the results for these analyses. The rates of OI errors in

MOSAIC’s output clearly provide a closer match to the

children’s data than the omission of weak elements from

complete utterances (both short and long ones). The

prosody-based omission mechanism had very little effect on

the model’s fit to the data.

Omissions errors in MOSAIC’s output

Having established that the addition of the prosody-based

omission mechanism does not adversely affect MOSAIC’s

fit to the OI data, we can now assess whether the model

produces any utterances that it previously could not. The

examples in Table 1 show that this is the case.

Table 1: Examples of utterances with multiple sentence-

internal omissions in MOSAIC’s output.

He go to shop

He sit on chair

She give you kiss

She go hospital

That going sleep

All the examples in Table 1 constitute OI errors where the

modal has been omitted through the association of an

utterance-final and utterance-initial phrase. Additionally, the

prosody-based omission mechanism has resulted in

unstressed words like the, a, and to being omitted. Thus, the

phrase He go to shop may have been learned from the input

utterance He wants to go to the shop. During learning,

MOSAIC has associated the utterance-final phrase go to the

shop with the utterance-initial phrase he. The omission

mechanism has resulted in the unstressed and unfooted

determiner the being omitted. In four out of the five

examples an unfooted item has been omitted. In the phrase

She go hospital the particle to which forms a trochaic foot

with go is missing.

One further measure of how well the model’s output

approximates children’s speech relates to the levels of

determiner omission. Demuth et al. (in press) provide an

analysis of 5 English children which shows that 4 of these

children omit determiners from unfooted contexts at higher

rates than from footed contexts. In order to determine how

well MOSAIC approximates this pattern we assessed the

levels of determiner omission from footed and unfooted

contexts in the simulations as well as in the actual speech of

Anne and Becky at different MLU points. This was done in

the following manner. First, a list of nouns that are

predominantly used with a determiner was compiled by

searching the maternal speech for nouns that are used with a

determiner in at least 75% of the cases. Next, the child

speech and model output were searched for utterances

containing one of these nouns. Allowing for the occurrence

of common adjectives, it was then decided if a determiner

(a, an or the) was provided, and whether the context was

footed or unfooted. Utterances that contained other

determiners (e.g. my) were disregarded. Note that the

assignment of the metrical pattern was done in an identical

(automated) manner for the child speech and model output.

That is, all function words were considered to be unstressed.

For all other items, the stress pattern given by the Unilex

dictionary was used. Tables 2a and b compare the child data

with MOSAIC’s output before the omission mechanism was

run. Apart from Anne’s earliest stage, the children omit

determiners from unfooted contexts at higher rates than

from footed contexts. This is not the case for the

simulations. Provision levels in footed contexts exceed

those in unfooted contexts in just 2 of the 6 simulations (by

a maximum of 8 percentage points), while provision levels

in unfooted contexts are higher (by 14 percentage points) in

one of the simulations.

Table 2a: Determiner provision in footed and unfooted

contexts for Anne and Anne’s model without omission.

Anne Anne’s model

MLU Footed Unfooted Footed Unfooted

2.2 .13 .14 .50 .42

3.0 .70 .47 .65 .66

3.5 .80 .62 .76 .76

Table 2b: Determiner provision in footed and unfooted

contexts for Becky and Becky’s model without omission

Becky Becky’s model

MLU Footed Unfooted Footed Unfooted

2.2 .53 .20 .31 .45

3.0 .79 .60 .66 .66

3.7 .86 .60 .78 .72

Table 2c: Determiner provision in footed and unfooted

contexts for Anne and Becky’s model with omission.

Anne’s model Becky’s model

MLU Footed Unfooted Footed Unfooted

2.2 .43 .29 .29 .28

3.0 .59 .40 .65 .39

3.5 .65 .40 .69 .41

Table 2c presents the results of this analysis on MOSAIC’s

output after the omission mechanism was run. These results

look much improved over the simulations without omission.

Apart from the early simulation for Becky, determiner

omission clearly occurs more frequently in unfooted

contexts. The developmental pattern (increase in provision

rates) in the models is not as pronounced as it is in the

children. The simulations, however, were run with fixed

omission probabilities (0.5 for unfooted items and 0.1 for

unfooted items) for all developmental stages. A simple

solution to this problem would be to vary these probabilities

with developmental stage.

Conclusions

This paper set out to establish the value of a prosody-based

omission mechanism aimed at making the output of

MOSAIC more child-like. One particular aim was to allow

MOSAIC to produce utterances with multiple sentence-

internal omissions. The prosody-based omission mechanism

clearly increases the range of utterances that MOSAIC can

produce and thus makes the model’s output more child-like

and increases its credibility as a model of childen’s early

multi-word speech. It is also apparent that the model

without the omission mechanism does not simulate the

differential rates of determiner omission from footed and

unfooted contexts. The addition of the omission mechanism

rectifies this divergence between the model output and child

speech, and thereby increases the child-likeness of the

model’s output on this measure as well.

Obviously, it is not very surprising that the mechanism

produces these results, as this is what it has been designed to

do. However, future, (cross-linguistic) work may provide a

more stringent test of the mechanism. In particular, the

mechanism predicts that the pattern of omission of function

words will be different for languages that predominantly

display iambic feet (e.g. French). Some evidence for this

claim is provided by Tremblay & Demuth (in press).

It could be argued that the present mechanism is

somewhat crude in that all function words are considered

unstressed. The mechanism could however, easily be made

more sophisticated by specifying stress patterns for different

types of (frequent) constructions. Some possible refinements

have already become apparent as a result of the simulations

reported here. Inspection of the pattern of determiner

omission in the two children suggests that omission levels

after pronouns with a contracted copula (e.g. that’s) are

lower than in the model’s output. Such an effect could easily

be incorporated in the present mechanism on the plausible

assumption that a pronoun with a contracted copula receives

higher stress (and therefore forms a trochaic foot with a

determiner that follows it) than a bare pronoun. Another

possible refinement would be to specify different stress

patterns for interrogative and declarative utterances.

The analyses reported here also have theoretical

implications. The simulations which determined the levels

of OI errors when the omission mechanism was run on the

input showed that prosody-based omission alone is not

sufficient to explain the OI phenomenon even when

restricting the analysis to short utterances. Thus, an

(unspecified) learning mechanism which produces short

complete utterances (one possible instantiation of full

competence) coupled with prosody-based omission does not

provide an adequate fit to the child data. In order to obtain

such a fit, omission needs to be co-determined by other

factors. The simulations reported here suggest that a

learning mechanism that is subject to a primacy and recency

effect is such a factor.

Acknowledgements

This research was funded by the Economic and Social

Research Council under grant number RES000230211.

References

Bloom, P. (1990). Subjectless sentences in child language.

Linguistic Inquiry, 21, 491-504.

Brown, R. (1973). A first language: The early stages.

London: George Allen & Unwin Ltd.

Demuth, K., McCullough, E. & Adamo, M. (in press). The

prosodic (re)organization of determiners. To appear in

Proceedings of the 31
st

Boston University Conference on

Language Development.

Fitt, S & Isard, S. (1999). Synthesis of regional English

using a keyword lexicon. Proceedings: Eurospeech 99,

Vol. 2, pp. 823-6.

Freudenthal, D., Pine, J.M., Aguado-Orea, J. & Gobet, F.

(2007). Modelling the developmental patterning of

finiteness marking in English, Dutch, German and

Spanish using MOSAIC. Cognitive Science, 31, 311-341

Freudenthal, D., Pine, J.M. & Gobet, F. (2006). Modelling

the development of children’s use of optional infinitives

in English and Dutch using MOSAIC. Cognitive Science,

30, 277-310.

Freudenthal, D., Pine, J.M. & Gobet, F. (2005a). Simulating

optional infinitive errors through the omission of

sentence-internal elements. In B.G. Bara, L. Barsalou &

M. Bucciarelli (Eds.), Proceedings of the 27
th

Annual

Conference of the Cognitive Science Society. Mahwah NJ:

LEA.

Freudenthal, D., Pine, J.M. & Gobet, F. (2005b). On the

resolution of ambiguities in the extraction of syntactic

categories through chunking. Cognitive Systems

Research, 6, 17-25.

Gerken, L. A. (1991). The metrical basis for children's

subjectless sentences. Journal of Memory and Language,

30, 431-451.

Gerken, L. A. (1996). Prosodic structure in young children’s

language production. Language, 72, 683-712.

Ingram, D & Thompson, W. (1996). Early syntactic

acquisition in German: evidence for the modal hypothesis.

Language, 72, 97-120.

Tremblay, A. & Demuth, K. (in press). Prosodic licensing of

determiners in children’s early French. In A. Belikova, L.

Meroni and M. Umeda (Eds.). Proceedings of the

Conference on Generative Approaches to Language

Acquisition. Somerville, MA: Cascadilla Press.

Valian, V. (1991). Syntactic subjects in the early speech of

American and Italian children. Cognition, 40, 21-81.

Wexler, K. (1998). Very early parameter setting and the

unique checking constraint: a new explanation of the

optional infinitive stage. Lingua, 106, 23-79.

Storm: A Framework for Biologically-Inspired Cognitive Architecture Research

Douglas Pearson (douglas.pearson@threepenny.net)
ThreePenny Software, 4649 Eastern Ave. N.

Seattle, WA 98103 USA

Nicholas A. Gorski (ngorski@umich.edu)
Richard L. Lewis (rickl@umich.edu)

John E. Laird (laird@umich.edu)
University of Michigan

Ann Arbor, MI 48109 USA

Abstract

We have developed a software framework called Storm to aid
the development of cognitive architectures based on the
structure and function of the brain. The goals of the
framework are to make it both easy and fast to develop and
experiment with alternative architectures and components of
architectures. In addition, the framework supports explicitly
mapping its components to structures in the brain. We
demonstrate a working implementation of the framework,
where we have developed a simple model of skill learning
and memory management in a simple 2D grid world.

Introduction
In cognitive modeling, there is a divide between models that
attempt to capture the details of neural activity and those that
attempt to model complex overt behavior. Models of complex
behavior often use combinations of symbolic and non-symbolic
representations of knowledge in cognitive architectures.
Detailed models at the neural level posit direct mappings to
structures and processes of neural systems in the brain. The
achievements of neural models to date have been impressive
(Munakata & Johnson, 2006); but it is very difficult to create
models of the interactions of sufficient brain systems for
anything approaching a complex task (e.g., see Simen et al,
2004 for a recent attempt). Conversely, the cognitive
architecture approach has been successful at modeling a wide
variety of complex tasks (e.g., see the models reported in Gray,
2007) but the mapping of the components of those models to
structures and processes in the brain often remains unclear –
although Anderson’s recent work has demonstrated that it is
possible to map some structures in ACT-R to specific brain
regions (Anderson, 2007).

We propose an alternative between high-level cognitive
architectures and low-level neural models. Our approach is to
create architectures composed of models of brain structures and
their interconnections (at possibly multiple levels of abstraction)
– a brain-based architecture capable of cognitive behavior.

In order to pursue this approach, it behooves us to take a
step back and not jump immediately into the construction of a
specific architecture. Instead, the first step, and the subject of
this paper, is to develop a software framework in which such
models can be easily developed, tested, evaluated, and extended.
More specifically, we believe a useful framework will support:
(1) Rapid prototyping of architectures composed of a

heterogeneous collection of interacting components

operating in parallel, with their own possibly unique
time scales, processes and representations.

(2) Easy and efficient simulation of the dynamics of such
architectures.

(3) Explicit and flexible mappings of architecture-to-brain
structure, and easy exploration of the implications of
such mappings for predictions of brain activity. The
framework should also make it easy to exploit existing
detailed databases on brain structure and brain
connectivity (Alexander, Arbid & Weitzenfeld, 1999).

(4) Maximal flexibility in programming languages,
operating systems, and parallel computation.

Furthermore, our goal is not only to develop a tool to aid our
own research, but a tool that others will use for their own
explorations, thereby facilitating the sharing of components
between research groups.

In this paper, we describe the Storm framework, a software
infrastructure intended to realize the above goals. Using the
initial implementation of Storm, we developed a simple
architecture that includes action selection, reinforcement
learning, and simple long-term and short-term memories. This
architecture is not (yet) meant to be a faithful model of brain
structures, but is meant to demonstrate the capabilities of Storm.

Various features and motivations for Storm have precedent
in the cognitive modeling and neural network modeling
communities. The explicit goals of Storm are perhaps most
closely aligned with NSL (Neural Simulation Language;
Weitzenfeld, Arbib & Alexander, 2002). There are key
differences, however. NSL defines a new object-oriented
language that must be used for creating models. In contrast,
Storm allows users to develop architectural components in
standard computer languages (C++, Java), while providing
support for communication between modules and scheduling
model execution. In addition, Storm provides facilities for
explicitly mapping model components to brain structures. Storm
also differs from neural network toolkit approaches such as
Leabra (O’Reilly & Munakata, 2000) and Eliasmith and
Anderson (2002) because it has no a priori bias to specific
models of the brain or neurons. Finally, we note that the goal of
providing an appropriate abstraction layer for building event-
driven simulations is also adopted in the implementations of
some existing cognitive architectures, including ACT-R
(Bothell, 2004) and Epic (Kieras & Meyer, 1997), though
neither of these architectures embraces the general framework
goals described above.

The Storm Framework

Defining an architecture
The framework must have a way of representing architectural
components, how they interact and the computations they
perform. In the Storm framework, we decompose an
architecture into two types of components: function modules
and state variables. Function modules perform processing while
state variables hold persistent structures and provide
communication between function modules. This approach
naturally reflects a simple dynamical systems view of brain
architecture, in which the union of state variables represents the
current state of the system, and the function modules represent
the dynamic relationships among those state variables.

Function modules receive inputs from a set of state variables
and generate outputs to one or more state variables. Figure 1
shows a function connectivity graph for a simple architecture
with two function modules (the M1 & M2) and four state
variables (the circles). In this case, the state variables A, B, and
C are the inputs for functional module M1, which generates
outputs for A and D. Module M2 receives input from D and
generates output for C. The graph is not explicitly represented in
the framework as a separate data structure, but is implicitly
defined by the inputs and outputs of the modules.

Figure 1: Functional Connectivity Graph

An architecture’s decomposition into state variables and
function modules represents theoretical commitments about
brain architecture. It is possible to build both highly interactive
and highly encapsulated systems and subsystems using the
framework. The framework itself does not impose theoretical
constraint, and the use of the term module here should not be
taken to imply a commitment to, for example, Fodorian (1983)
modules. Rather, a framework module is the software
component that permits the specification of the dynamic
relationships among state variables. The extent to which a given
set of state variable and function modules realizes an
encapsulated module or a fully interactive subsystem depends
on the details of the connectivity between state variables. (And
as we see below, the architecture-to-brain mapping need not
even imply strict localization of function).

Simulating the dynamics of an architecture
All of the components are run asynchronously with the
architecture developer having complete control over when
components start executing and how long they execute. The
developer can specify independently for each module:

When a module initiates execution. Examples include:
periodically (such as every 50 msec), whenever inputs
change, or even some delay after inputs change.
The length of simulated time it takes for a module to
execute and for data to travel between modules. This
can be a fixed number, such as 10 msec or can be
dependent on input parameters, such as (1 msec *
number of changed inputs).

The Storm framework automatically coordinates the
execution of the components (function modules and state
variables), following the temporal constraints declared for each
of the components, freeing the developer from writing code that
schedules the execution of the modules. Thus, when an
architecture runs, the framework automatically schedules all of
the components, initiates their execution and provides a
complete trace of the temporal activity of every module and
state variable, including behavior in an external task
environment. All of the scheduling is based on simulated time,
which depending on the calculations performed in the modules
could be much slower, or possibly even faster than real time.

This layer of abstraction thus allows the modeler to focus on
the control structure of the brain architecture rather than the
control structure of the simulation. Importantly, the function
modules may be flexibly implemented via arbitrary code in the
underlying target language, but the modules do not interact by
calling each other directly, and the modeler need not worry
about how to manage their parallel execution. (This abstraction
away from simulation control structure is a common property of
simulation environments long used in other areas of science.)

Experimenting with an architecture
Storm’s design makes it easy to quickly add or replace modules
because all of the information about a module is local to that
module. (A critical aspect of this locality is the distributed nature
of the simulation control, above). This makes it possible for
research groups to share modules as well as to have multiple
implementations of a given module. For some experiments, it
might be desirable to have a coarse, but efficient imple-
mentation of a module, or replace a small network of modules
and variables with a single module that is extremely fast, but
only approximates a given computation. Moreover, during early
development a coarse model might be all that is available. In
others cases, a very accurate, but slow implementation of a
module can be used when detailed behavior is critical.

The individual function modules and state variables are
created by the architecture developer using a standard
programming language. The framework currently supports C++
and Java, but will soon support MATLAB and R. This makes
integrating existing code simpler and allows a module developer
to select a language that is particularly well suited to the
behavior they wish to model. The framework is agnostic as to
which language is used to specify modules and one could
imagine supporting the use of neural modeling systems.

In order to provide maximum flexibility and efficiency, the
framework is designed to run on multiple operating systems
(Windows, OSX, Linux) and has underlying support for parallel
execution, which supports multi-core computers and will
support clusters. This is transparent to users, determined at
runtime based on the available resources. The framework itself
is lightweight and requires minimal computational resources.

Mapping onto the Brain
In order to compare the processing in the architecture with what
is known about the brain, the framework must support the
explicit representation of processing and communication in the
brain. In Storm, the brain mapping graph formally declares
assumptions about the physical substrates of the state variable,
and by implication, the function modules. State variables are
mapped to different physical structures and regions within the
brain, which are then mapped to physical coordinates in a
normalized brain coordinate system. In the current design only
state variables are explicitly mapped to brain regions. Function
modules are thereby implicitly mapped to regions based on the
state variables they use (Figure 2).

Figure 2: Brain Mapping Graph

This mapping scheme is quite flexible because there are no
restrictions on what state variables might represent, and there
are no restrictions on the target vocabulary of brain structures.
For example, state variables might represent synaptic weights
that could be changing over both the short and long-term, and
such state variables might correspond to long-distance synapses
in the brain that connect distal cortical areas. Or, a state variable
might represent a quantity of some neurotransmitter that is fairly
localized in space, or a vector of activation values representing
patterns of firing activity in a particular part of the hippocampal
formation, or an abstract short-term control symbol thought to
be distributed over a broad area of prefrontal cortex.

Thus, this mapping scheme does not enforce a simple one-
to-one mapping of computational function onto local structure.
Rather, the mapping explicitly identifies the physical substrates
of the state variables, and these physical substrates may be at
any level of spatial resolution. The mapping of function to
structure is then implicit in the mappings that function modules
inherit from their state variables.

The functional connectivity graph together with the brain
mapping graph imply a brain connectivity graph. That is, the
connectivity of the state variables and function modules and
their mapping to brain regions implicitly make claims about
how the brain regions are connected, which can be tested
against known constraints on how brain regions are actually
connected. The predicted brain connectivity is derived from the
connectivity of the function modules and the mappings from the
architectural components to the brain as shown in Figure 3.

These structures, together with the simulation provide Storm
three important capabilities:
(1) Detecting inconsistencies between known brain

connectivity constraints and the architecture.
(2) Predicting the time-course of activity in brain regions.

This could support the automatic generation of simulated
fMRI, MEG, or EEG for the modeled brain regions.

(3) Changes made to the architecture for functional reasons
automatically change the biological predictions as the
brain connectivity is derived directly from the functional
elements of the architecture.

Figure 3: Brain Connectivity Graph

An Empirical Example in Using Storm

Example Task Requiring Learning and Memory
In order to demonstrate the Storm framework, we created a
simple task that requires learning control knowledge for both
internal and external actions. The example task is set in a 5x5
grid-world, shown in Figure 4. The domain contains three
special locations, or boxes, in fixed positions: boxes A and B are
reward boxes, while box M is an information box. The agent is
rewarded with a positive reward when it opens one of the boxes
and a negative reward when opening the other. The agent
perceives a symbol when it opens the information box; this
symbol is correlated with the location of the positive reward box
(but does not correlate to any perceived feature of the boxes).
An agent that cannot maintain the symbol in an internal memory
would be unable to receive the maximum reward in every
episode, making the task un-learnable.

The agent can move in the four cardinal directions, and if a
box is in its current location, the agent can open the box. The
agent perceives its location in the grid and any reward signal,
but cannot perceive the labels on the boxes (A or B). If the agent
is in the information box square and the box is open, the agent
also perceives a symbol. An episode concludes when the agent
opens the box containing the positive reward. The location of
the rewards is randomized between episodes.

Reward is structured such that a positive reward has
magnitude of +10, a negative reward is -10, and on every step
that the agent does not open a reward box, it receives -1 reward.

Figure 4: Information Box Task

An Example Architecture Developed using Storm
In order to help illuminate some of the framework’s capabilities,
we used Storm to develop a simple architecture capable of
supporting an agent that learns to perform in the example task.
This architecture combines a simple long-term memory with a
basic reinforcement learning mechanism that learns control
knowledge for both internal and external actions.

Our example architecture is shown in Figure 5. Function
modules in the figure are represented as rectangles, and state
variables as ovals. In this model, the environment is represented
as a function module (for convenience) which receives a motor
action as input and generates sensory information as output.
Sensory Input is used by both Long and Short Term memories,
which in turn is used by Action Selection to choose an internal
Long Term Memory retrieval as well as an external Motor
action. The Reinforcement Learning mechanism uses Working
Memory, the Internal Reward Signal, and selected actions to
adjust the control knowledge used by Action Selection.

Figure 5: Simple Architecture Implemented in Storm

The details of each function module are described below.
The Reward Extraction module reads the explicit reward
generated by the environment in Sensory Input and stores it as
an Internal Reward Signal. Long Term Storage stores any
perceived symbol (i.e. the contents of the information box) to
Long Term Memory. Long Term Retrieval retrieves a symbol

corresponding to the Internal Action from memory and stores it
in the buffer. Short Term Storage reads the agent’s location
from Sensory Input and the contents of the Long Term Retrieval
Buffer and puts the concatenation of both in Working Memory.

The agent decides how to act in the Action Selection
module, which uses Working Memory and the Value Function
to select its actions (using a decaying epsilon-greedy strategy).
The Value Function is a table that associates a pair of internal
and motor actions with the contents of working memory and the
estimated future reward of applying those actions. The Value
Function is adjusted by the Reinforcement Learner with Sarsa
(Sutton, 1996) based on input from Working Memory, Internal
Reward Signal, and Internal and Motor Actions.

In the example architecture, function modules initiate their
processing when their input state variables change, and all take a
fixed amount of time to process and create results. During
execution, many of the modules will execute in parallel, such as
those that depend on Sensory Input. Others execute in sequence
because of the dependencies of their input variables on other
function modules. This parallelism enables an agent to perform
internal and motor actions simultaneously.

An execution trace of the example architecture’s function
modules is shown in Figure 6, which is generated from the
execution logs by a Storm utility. There are four different types
of events logged by Storm for a function module.

RequestWakeup: can occur on the time step when an input
variable’s value changes,
Wakeup: occurs on the time step immediately following a
RequestWakeup event (unless explicitly delayed),
Finished: occurs on the time step on which the module sets
its output variables and completes processing, and
Processing: this is the time that a module is inferred to be
processing between Wakeup and Finished events.

Multiple events that occur on the same time step are plotted as
one event (e.g. all Environment events occur on the same step).

Figure 6: Sample execution trace of the example
architecture as generated by a Storm utility.

Processing begins in the Environment module which sets
the Sensory Input state variable (see Figure 5). When Sensory
Input is set, a RequestWakeup event triggers the Reward
Extraction, Long Term Storage, and Short Term Storage
modules. All three modules then process in parallel, after which
they set their respective output variables.

The Reinforcement Learner module next begins processing,
as it relies on the Internal Reward Signal set by the Reward
Extraction module. Similarly, the Action Selection module

relies on the output of the Reinforcement Learner, and the Long
Term Retrieval module on Action Selection, which explains the
serial behavior seen in Figure 6. This behavior arises from the
dependences of the input variables of each module, and is not
explicitly timed or engineered. However, the Environment
module is configured to process periodically, which explains
why it does not begin executing at the same time as the Long
Term Retrieval module even though inputs for both modules are
set by Action Selection.

Although the mapping of state variables to brain regions is
an important commitment made in Storm, this example
architecture is so simple that we do not hypothesize a mapping.
Rather, the purpose of this example is to illustrate the
framework’s specification and simulation capabilities.

Results
Example Architecture We developed two agents in the
architecture to perform the example task, one that automatically
retrieves the information symbol from long-term memory (when
available) and one that must learn to retrieve it. The perform-
ance of the two agents is shown in Figure 7. Asymptotically, the
behavior of both agents is the same: the agent moves directly to
the information box, opens it, and then simultaneously retrieves
the identifying symbol from long-term memory while navigat-
ing to the positive reward box, opening it upon reaching its loca-
tion. The results indicate that learning both control knowledge
for an internal action in addition to an external motor action is
not significantly more difficult than for an external action alone.

0
10
20
30
40
50
60
70
80
90

100
110
120

1 26 51 76 101 126

Episode

S
te

p
s

P
er

 E
p

is
o

d
e

Knows to Retrieve Learns to Retrieve

Figure 7: Learning curves for two agents performing on
the simple task, average of 225 trials.

Modified Task and Expanded Working Memory To study
the flexibility of an architecture using the Storm framework, we
modified the task so that the agent had to learn to manage long-
term memory retrievals:

Instead of a single motor action to open a box, the agent
now has two available actions. When the correct one is
used to open the positive reward box, the standard reward
is still received. However if the reward box is opened with
the other action, a smaller positive reward (+1) is received.
The information box contains an additional symbol
identifying the correct action to use when opening the
positive reward box. Both symbols are still automatically
stored to long-term memory.

After an agent using the example architecture opens the
information box, both symbols are then automatically stored to
long-term memory. However, the Long Term Retrieval Buffer

(and thus Working Memory) can still only store one retrieved
symbol at a time. The agent therefore must learn to recall the
two symbols at different times: the symbol identifying the
correct box during navigation and the action symbol on the step
before it will open the box.

We tested an agent using the example architecture as well as
an agent with an expanded working memory that can store the
two most recently retrieved symbols in working memory on the
modified task. The results for both agents are presented in
Figure 8. Although the agent using the architecture modified
with an expanded working memory learns more quickly than
the agent using the unmodified architecture, these results show
that an agent using the unmodified architecture with limited
working memory is still able to learn the modified task.

-60

-50

-40

-30

-20

-10

0

10

1 2001 4001 6001 8001

Episode

A
cc

u
m

u
la

te
d

 R
ew

ar
d

 P
er

 E
p

is
o

d
e

Expanded WM Unmodif ied Architecture

Figure 8: Learning curves for agents performing on the
modified task, 25 per. moving avg. of medians for 45 trials.

In order to modify the architecture with an expanded
working memory, only the Short Term Storage function module
and Working Memory state variable needed to be changed – the
rest of the architecture’s function modules and state variables
remained the same. This demonstrates an advantage to
experimenting within the Storm framework: the modularized
approach to development leads to architectures that can be
modified quickly and easily.

Architectural Delay In our example architecture, all function
modules took the same constant amount of time to process data
(5 units of time as seen in Figure 6). In order to experiment with
function modules processing at different time scales, we
introduced a delay to the Long Term Retrieval module: with a
delay, the module processes for 20 units of time rather than 5.
This change has two effects: first, retrieved memories are
available two environment steps after the Internal Action is
selected; second, retrieved symbols in the buffer persist for two
environment steps. Because of these changes, the agent can
improve its performance by learning to make a retrieval from
Long Term Memory two steps before it gets to the reward box.

The results of two agents, one modified with a delayed
retrieval and the other unmodified, in the modified task are
shown in Figure 9. While the agent using the unmodified
architecture initially learns more quickly, the behaviors are
indistinguishable after the 2000th episode.

In order to experiment with delaying Long Term Retrieval
in the architecture, our implementation in Storm required only a
single line of code to be changed. Storm’s mechanism for
scheduling the processing of function modules makes changing
timing constraints to be a straightforward exercise.

-60

-50

-40

-30

-20

-10

0

1 2001 4001 6001 8001

Episode

A
cc

u
m

u
la

te
d

 R
ew

ar
d

 P
er

 E
p

is
o

d
e

Unmodif ied Architecture Delayed LTM Retrieval

Figure 9: Learning curves for an architecture modified with
delayed Long Term Retrieval compared with an unmodified
architecture, 25 per. moving avg. of medians for 45 trials.

Summary of Experiments The Storm framework has allowed
us to experiment with the example architecture in several
dimensions, the results of which are not all shown in this paper:
(1) We experimented with two timing conventions: both

waking function modules when input variables have been
set as well as function modules processing periodically at
set intervals. The example architecture implements a hybrid
approach and uses both approaches in its modules.

(2) We experimented with the timing of individual modules,
delaying their output such that the processing time of
various modules overlaps.

(3) We explored reinforcement learning modules
implementing a variety of learning algorithms with various
parameter settings; switching algorithms is as simple as
changing the module used by the framework.

(4) We have simulated environments in C++ function modules
and interfaced to external Java environments.

When experimenting along all of these dimensions, the
necessary changes to function modules were minor and no
changes to the framework were necessary. In contrast,
experimenting with existing cognitive architectures to modify
the behavior of working memory, long-term memory, or timing
constraints can often be difficult and time consuming.

Discussion
By developing our example architecture using the Storm
framework, we have had valuable experiences which begin to
shed light on the advantages (and disadvantages) of using a
lightweight framework to model brain function.

The Storm framework has minimal overhead so as to not
impede the development of a diverse set of functional modules.
The framework does, however, strictly enforce that any data
shared between function modules must be contained within state
variables: designers must be explicit and consistent in the
organization of data into state variables.

Modeling the timing of function modules and state variables
is an important aspect of the framework and is straightforward
to use and experiment with. This allows a designer to focus on
implementing behaviors and not be concerned with the
implementation of timing constraints.

One possible disadvantage of using the framework is the
strict enforcement on the organization of data into state
variables. Experimental architectures may not want to make

strong commitments to the separation of data; algorithms
achieving high-performance may also require a high level of
abstraction as realized in function modules and state variables.

In the future we plan to begin testing Storm’s ability to scale
by building iteratively larger and more complex architectures, as
well as developing psychologically plausible models using state
variables that map to brain regions and model brain function.

Acknowledgments
The authors acknowledge the funding support of the DARPA
“Biologically Inspired Cognitive Architecture” program under
the Air Force Research Laboratory “Extending the Soar Cogni-
tive Architecture” project award number FA8650-05-C-7253.

References
Alexander, A., Arbid, M. & Weitzenfeld, A. (1999). Web

Simulation of Brain Models. Proc. of the 1999
International Conference on Web-Based Modeling and
Simulation, 29-33. The Society for Computer Simulation
International, San Diego, CA.

Anderson, J. R. (2007) How Can the Human Mind Occur in
the Physical Universe? Oxford University Press.

Bothell, D. (2004). ACT-R 6.0 implementation.
 http://act-r.psy.cmu.edu/actr6/

Eliasmith, C. Anderson, C. H. (2002). Neural Engineering:
Computation, Representation, and Dynamics in
Neurobiological Systems. MIT Press.

Fodor, J. A. (1983). Modularity of Mind: An Essay on
Faculty Psychology. Cambridge, Mass.: MIT Press

Gray, W. (2007). Integrated Models of Cognitive Systems,
Oxford University Press.

Kieras, D. & Meyer, D. E. (1997). An overview of the EPIC
architecture for cognition and performance with
application to human-computer interaction. Human-
Computer Interaction., 12, 391-438.

Munakata, Y., & Johnson, M. H. (Eds.) (2006). Processes of
Change in Brain and Cognitive Development: Attention
and Performance XXI., Oxford: Oxford University Press.

O'Reilly, R. and Munakata, Y. (2000) Computational
Explorations in Cognitive Neuroscience: Understanding
the Mind by Simulating the Brain, Cambridge, MIT Press

Simen, P., Polk, T. A., Lewis, R. L. & Freedman, E. (2004).
A computational account of latency impairments in
problem solving by Parkinson’s patients. Proceedings of
ICCM 2004, Pittsburgh.

Sutton, R. S. (1996). Generalization in reinforcement
learning: Successful examples using sparse coarse coding.
D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo (Eds),
Advances in Neural Information Processing Systems:
Proc. of the 1995 Conference, 1038-1044. MIT Press.

Weitzenfeld, A., Arbib, M., and Alexander, A. (2002), The
Neural Simulation Language: A System for Brain
Modeling. MIT Press.

http://act-r.psy.cmu.edu/actr6/

Vector Generation of an Explicitly-defined Multidimensional Semantic Space

Alex Grintsvayg
(grinta@rpi.edu)

Vladislav D. Veksler
(vekslv@rpi.edu)

Robert Lindsey
(lindsr@rpi.edu)

Wayne D. Gray
(grayw@rpi.edu)

Cognitive Science Department, 110 8th Street

Troy, NY 12180 USA

Measures of Semantic Relatedness (MSRs) are a recent

breed of computational models of text comprehension.

MSRs have been successfully used to model human web

browsing behavior (Pirolli & Fu, 2003), language

acquisition (Landauer & Dumais, 1997), and text

comprehension (Lemaire, Denhiere, Bellissens, & Jhean-

Iarose, 2006), among other things. MSRs have also been

used in the applied domain for augmented search engine

technology (Dumais, 2003), ETS essay grading (Landauer

& Dumais, 1997), and many other applications.

The two most common types of measures of semantic

relatedness are vector-based MSRs and probabilistic MSRs.

Vector-based MSRs are complex, computationally

expensive algorithms that represent words as vectors in a

multidimensional semantic space. They work fairly well for

small corpora, but the large amount of preprocessing they

require makes them unusable for very large or dynamic

corpora. Probabilistic MSRs are the opposite: simple

metrics that can be used on an extremely large corpus. Their

only downside is that they cannot compute the similarity

between groups of words (something that vector-based

MSRs can do easily).

In this paper we are proposing a new MSR that combines

the best features of probabilistic and vector-based

approaches, while adding flexibility and broadening the

range of tasks that MSRs are capable of carrying out.

Specifically, this technique allows non-vector-based MSRs

to represent words in vector form. This representation gives

probabilistic MSRs the ability to measure large multi-word

terms without requiring them to perform computationally

expensive preprocessing. In addition, the proposed MSR is

incremental (allowing the addition of new terms to the

corpus without the need for the large-scale recalculations

performed by traditional vector-based measures) and has the

ability to model domain-specific expertise by explicitly

defining the dimensions of the semantic space that it uses.

Preliminary results show that the proposed probabilistic-to-

vector-based MSR conversion produces a measure that

surpasses the performance of the original probabilistic

MSR.

VGEM

In order to convert a probabilistic measure, S, into vector-

based form, we use Vector Generation from Explicitly-

defined Multidimensional semantic space (VGEM).

VGEM's semantic space is explicitly defined by a set of

words d = {d1, d2, ..., dn}, where each word defines a single

dimension. To compute the vector for a word in this

semantic space, VGEM uses S to calculate the semantic

relatedness between the target word w and each dimension

in d:

v(S,w,d) = [S(w,d1), S(w,d2), ..., S(w,dn)]

For example, if d = {"animal", "friend"} and the word in

question is "dog", then the vector for "dog" would be

[S("dog","animal"), S("dog","friend")]. If S("dog",

"animal") is 0.81 and S("dog","friend") is 0.84, then the

vector is v[0.81, 0.84]. See Table 1, Figure 1.

Table 1: Sample VGEM Computations

Words Dimensions

Animal Friend

Dog 0.81 0.84

Cat 0.81 0.67

Tiger 0.79 0.13

Robot 0.02 0.60

Figure 1: VGEM Semantic Space

Like all vector-based measures, VGEM defines similarity

between two words to be the cosine of the angle between the

vectors that represent those words. As the angle becomes

smaller, and the cosine approaches 1, the words are

considered more related. A value of 1 means that the two

words are identical in meaning. For example, in Figure 1 the

angle between “dog” and “cat” is relatively small, so the

cosine of that angle will be close to 1 (.994), and the two

words will be considered to be more related than any other

pair of words shown.

Using this vector-based approach allows VGEM to

represent a group of words as a vector sum of the words that

make up the group. For example, to compute the vector for

this paragraph, VGEM would create a vector representation

for each word in the paragraph and add those vectors

(component by component). This vector sum will represent

the meaning of the whole paragraph, and its relatedness to

other vectors may be measured as the cosine of the angle

between those vectors. Continuing with the example in

Table 1/Figure 1, the vector to represent the words "dog cat

tiger" would be the sum of first three vectors in Table 1,

v[2.41, 1.64].

Advantages

The main advantage of VGEM over probabilistic MSRs is

that it can compute relatedness between multi-word terms.

A probabilistic MSR cannot find the similarity between two

paragraphs because the probability of any two paragraphs

co-occurring (word for word) in any context is virtually

zero. VGEM, like other vector-based measures, can simply

represent a paragraph or even a whole document as a vector,

and then compare that vector to other vectors within its

semantic space.

Moreover, VGEM is incremental, and does not need to

pre-compute all semantic relatedness scores within the

corpus before it can be used to make comparisons. Among

other advantages, this lack of need for extensive

preprocessing affords VGEM a larger dynamic lexicon.

Other MSRs cannot handle corpora that are very large or

corpora that change often (adding even a single word may

require reprocessing the whole corpus).

Performance

In addition to granting probabilistic MSRs the ability to

process multi-word terms by converting them into vector

form, it is important to note that this conversion preserves,

or possibly improves, the representative accuracy of the

original measure. Here we examine the conversion of a

popular probabilistic MSR, Pointwise Mutual Information

(PMI), into vector-based form called VGEM-PMI (VGEM

that uses PMI as its similarity metric). PMI is a

computationally inexpensive technique, and it does

reasonably well on most tests of language comprehension

(Turney, 2001).

For the purposes of this preliminary comparison we chose

199 random words as the dimensions for VGEM, and the

World Wide Web (indexed by Google) as the corpus for

both measures. To evaluate MSR performance, we

compared each measure (PMI and VGEM-PMI) to human

word association norms (Nelson, McEvoy, & Schreiber,

1998). The association norms database that we used

contains 5017 cue words that were presented to human

subjects, along with the top target words that the subjects

responded with for each cue. For each of the 5017 cue

words, the MSR was presented with a list containing n

target words that are related to the cue (based on the human

data) and n random words (distractors). The 2n words were

sorted based on their semantic similarity to the cue word (as

measured by the MSR). Then, the top n words were

compared to the original n cue words to see how many of

them matched. The score on each trial was c/n, where c is

the number of words that correctly matched the originals

targets. The final score for each MSR was the average of the

scores across all trials.

Our preliminary results show that VGEM-PMI

(M=58.04%, SE=.28%) performed better than PMI

(M=52.50%, SE=.28%), ttwo-tail=14.66, p<.001.

Summary and Future Work

VGEM-PMI performed better than PMI on the human word

association norms test. While this result is promising, we

believe that VGEM can do a lot better. In our test, we

crudely defined VGEM's dimensions using 199 random

words. Clearly, there are much better ways of doing this.

Our future research will focus on different ways of selecting

dimensions to best capture the relationships between all the

words in the corpus.

Explicitly selecting VGEM's dimensions may even allow

us to model domain-specific expertise. To do this, the words

that constitute the dimensions could be chosen from a

specific domain (e.g., politics, meteorology, or early

Renaissance art). This would create an MSR that can

discern the nuances of the meanings of words from the

chosen domain. A modeler might create a dozen such

MSRs, each proficient in a different area of expertise.

VGEM is a powerful tool for any task that could use an

MSR. It is fast enough to work on any corpus, yet powerful

enough to compare the meanings of whole pages of text at

once. Its versatility allows it to model domain-specific

expertise and learning, which might shed new light on the

way in which humans acquire language.

Acknowledgments

Many thanks to Stephane Gamard for his many contributions to

this project. The work was supported in part by the Disruptive

Technology Office, ARIVA contract N61339-06-C-0139 issued by

PEO STRI. The views and conclusions are those of the authors, not

of the US Government or its agencies.

References

Dumais, S. (2003). Data-driven approaches to information access.

Cognitive Science, 27(3), 491-524.

Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato's problem:

The latent semantic analysis theory of acquisition, induction, and

representation of knowledge. Psychological Review, 104(2), 211–240.

Lemaire, B., Denhiere, G., Bellissens, C., & Jhean-Iarose, S. (2006). A

computational model for simulating text comprehension. Behavior

Research Methods, 38(4), 628-637.

Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (1998). The University of

South Florida word association, rhyme, and word fragment norms. :

http://www.usf.edu/FreeAssociation/.

Pirolli, P., & Fu, W.-T. (2003). SNIF-ACT: A model of information

foraging on the World Wide Web. Lecture Notes in Computer Science,

2702, 45-54.

Turney, P. (2001). Mining the Web for Synonyms: PMI-IR versus LSA on

TOEFL. In L. De Raedt & P. Flach (Eds.), Proceedings of the Twelfth

European Conference on Machine Learning (ECML-2001) (pp. 491-

502). Freiburg, Germany.

http://www.usf.edu/FreeAssociation/

Dynamic Visualization of ACT-R Declarative Memory Structure

Andrea Heiberg2 (Andrea.Heiberg@mesa.afmc.af.mil)
Jack Harris1 (Jack.Harris@mesa.afmc.af.mil)
Jerry T. Ball1 (Jerry.Ball@mesa.afmc.af.mil)

1Air Force Research Laboratory / 2L-3 Communications at Air Force Research Laboratory
6030 S. Kent St.

Mesa, AZ 85212 USA

Introduction
We propose an automated technique for visualizing changes
to declarative memory (DM) in the ACT-R 6 cognitive
architecture (Anderson et al., 2004; Anderson & Lebiere,
1998). In this technique, DM chunks and the relationships
between chunks are displayed graphically in a labeled tree
diagram. A series of diagrams, automatically generated
during a model run, allows the modeler to easily visualize
how DM changes over time. The technique is potentially
useful for any ACT-R model with a complex DM structure.

Labeled Tree Diagrams
Labeled tree diagrams are commonly used in theoretical
linguistics (e.g., Radford 1988) to represent constituent
structure. The structure of “I increased the airspeed” may be
represented as in Figure 1. Top-level SENTENCE contains
constituents NOUN-PHRASE and VERB-PHRASE; VERB-PHRASE

contains VERB (“increased”) and NOUN-PHRASE (“the
airspeed”), and so on. Figure 1 was generated from labeled
bracket notation with a third-party software tool,
phpSyntaxTree (Eisenbach & Eisenbach, 2006).

Figure 1 Labeled Tree Diagram

Similar diagrams have long been used for exposition of
cognitive models (e.g., Anderson, 1983; Anderson, Budiu,
& Reder, 2001).

Declarative Memory Structure Visualization
The automated, dynamic visualization technique is being
used in the ACT-R implementation of the Double R model
of language comprehension (Ball, 2007; Ball, Heiberg, &
Silber, 2007). Figure 2 shows a graphical representation of
the final DM structure for “I increased the airspeed”. The
nodes of the tree are the names of chunks and slots. The tree
structure captures the relationships between chunks. For
example, chunk PRED-TRANS-VERB (transitive verb

predicate) has three constituent slots, SUBJ (subject),
HEAD, and OBJ (object); OBJ contains an OBJ-REFER-
EXPR (object referring expression) chunk, etc.

Figure 2 Double R Model DM Structure

The diagrams are also used to visualize changes to DM
during the model run. Figure 3 shows a DM snapshot after
processing “I”; Figure 4, “increased”; Figure 5, “the”; and
Figure 2, the final structure after processing “airspeed”.

For the development of the large-scale Double R model,
the technique has proven to be greatly more efficient than
examining DM by hand. Creating a series of representations
takes seconds, as opposed to the minutes required to draw a
single diagram by hand.

Figure 3 DM Snapshot after Processing “I”

Figure 4 DM Snapshot after Processing “increased”

Figure 5 DM Snapshot after Processing “the”

The technique may also be applied to non-linguistic mod-
els, to help visualize complex DM structures. An example
from the ACT-R 6 tutorial (http://act-r.psy.cmu.edu/actr6) is
the Siegler child addition (Siegler & Shrager, 1984) model.
The chunks for that model include:

(two isa number value 2 name "two")
(three isa number value 3 name "three")
(five isa number value 5 name "five")
(f23 isa plus-fact addend1 two addend2 three sum five)

Figure 6 shows a graphical representation of chunk f23:

 Figure 6 Siegler Model DM Structure

Implementation
During a model run, snapshots of DM are created by
invoking image generation from ACT-R production rules.
DM is traversed from a starting chunk; slots and chunks are
recursively examined to produce a labeled bracket
representation, which is then input to an image generator
(phpSyntaxTree) that is integrated with the system. The
code is written in Lisp; ACT-R 6 functions are used to
traverse DM. The implementation is generic, and may be
used with any ACT-R 6 model.

A DM chunk may ultimately refer to itself. To avoid
infinite processing, traversal stops at any previously visited
chunk. For example, in the communication model (Matessa,
1999; Matessa & Anderson, 2000) shown in Figure 7, chunk
C5 appears at the top of the tree and in the BELOW slot of
chunk C6. However, C5 is expanded only once.

Figure 7 Communication Model DM Structure

Summary
The automated, dynamic visualization technique proposed
here may be used to help understand the DM structure of an
ACT-R model. Relationships between chunks are displayed
graphically in a labeled tree diagram. A series of diagrams is
automatically created during a model run to show how DM
changes over time. The technique has proven to be
particularly useful for the development and exposition of a
large-scale model. The implementation of the technique is
general, and so may be used with any ACT-R 6 model. The
clear view of DM provided by the technique helps make
assumptions about a model explicit; it is hoped that this will
help provide a better understanding of cognitive modeling.

Acknowledgments
This research is funded by the Warfighter Readiness
Research Division of the Air Force Research Laboratory.

References
Anderson, J. R. (1983). The Architecture of Cognition.

Cambridge, MA: Harvard University Press.
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,

Lebiere, C. & Qin, Y. (2004). An integrated theory of the
mind. Psychological Review 111 (4), 1036-1060.

Anderson, J. R., Budiu, R. & Reder, L. M. (2001). A theory
of sentence memory as part of a general theory of
memory. Journal of Memory and Language 45, 337-367.

Anderson, J. R. & Lebiere, C. (1998). The Atomic
Components of Thought. Mahwah, NJ: Erlbaum.

Ball, J. (2007). Construction driven language processing. In
Proceedings of the Second European Cognitive Science
Conference.

Ball, J., Heiberg, A. & Silber, R. (2007). Toward a large-
scale model of language comprehension in ACT-R 6. In
Proceedings of the Eighth ICCM.

Eisenbach, A. & Eisenbach, M. (2006). phpSyntaxTree tool,
http://ironcreek.net/phpsyntaxtree.

Matessa, M. P. (1999). Communication in collaborative
problem solving. Ms.

Matessa, M. & Anderson, J. R. (2000). An ACT-R model of
adaptive communication. In Proceedings of the Third
ICCM, 210-217, University of Groningen, Netherlands.

Radford, A. (1988). Transformational Grammar: A First
Course. Cambridge: Cambridge University Press.

Siegler, R. S. & Shrager, J. (1984). Strategy choices in
addition and subtraction: How do children know what to
do? In C. Sophian (ed.), Origins of Cognitive Skills.
Hillsdale, NJ: Erlbaum.

http://act-r.psy.cmu.edu/actr6
http://ironcreek.net/phpsyntaxtree

A Belief Framework for Modeling Cognitive Agents

Annerieke Heuvelink (A.Heuvelink@few.vu.nl)
Vrije Universiteit Amsterdam, Department of Artificial Intelligence

De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
TNO Defence, Security and Safety, Department of Training and Instruction

Kampweg 5, 3769 ZG Soesterberg, the Netherlands

Abstract

Simulation-based training in complex decision-making can
be made more effective by using intelligent software agents
to play key roles. For successful use in training, these agents
should show representative behavior. Representative
behavior may reflect expert behavior, but may also be far
from optimal, especially under stress conditions. Current
agent architectures hardly offer support to model cognitive
properties that are essential to human decision-making. The
present paper describes a framework in which agents beliefs
are extended with additional arguments with which such
dynamic cognitive properties can be formalized. An historic
military event is used to demonstrate that the resulting
framework is capable of modeling representative behavior.

Introduction
Organizations that operate in highly uncertain and dynamic
environments, such as the military, require competent staff
personal. However, the very nature of their missions makes
it hard to setup real-world training. Scenario-based
simulator training is considered an appropriate approach for
training decision-making in complex environments (Oser,
1999). A main requirement of simulator training is that it
correctly represents these aspects of the real world that are
necessary to achieve the learning objectives. Perhaps the
most important aspect of human decision-making is the
interaction with other humans, e.g., team members. In order
for simulation-based training to be an alternative of real-
world training, simulated entities must be able to respond
naturally and validly to any emerging situation. Therefore
our goal is to develop agents that are capable of generating
behavior that is representative for the human they represent.

There is growing conviction and evidence that we can
develop such agents by capturing the human cognitive
processes in a cognitive model. The research fields of
Artificial Intelligence (AI) and Cognitive Science (CS) have
yielded various architectures that can be used to develop
cognitive models (Pew & Mavor, 1998).

We start this paper with describing properties of
architectures that are currently used for cognitive modeling.
We then elaborate on various typical features of human
cognition and argue that these architectures lack the
mechanisms to model these features. Next, we explain how
more human-like behavior can be achieved by formalized
reasoning rules on beliefs with additional arguments. We
illustrate the strength of this belief framework by
implementing a cognitive model of a key player in a historic
military incident. Finally we draw conclusions on the
significance of our work and propose future research.

Related Research
The potential and benefits of representing human behavior
in (training) simulations by cognitive models of key players
is generally recognized. As a result several models have
been developed that can play such key roles (see e.g., Gluck
& Pew, 2005). In general these models are either
implemented in a cognitive architecture, like ACT-R or
SOAR, or in an agent architecture such as JACK or JADEX.
Cognitive architectures embody a theory of cognition, while
agent architectures often encapsulate Beliefs, Desires and
Intentions (BDI) (Georgeff & Lansky, 1987). For all
architectures it holds that they themselves are not a model,
but that they offer the constructs to build a model. The most
basic construct is a declarative information entity with
which the knowledge of the agent can be represented. We
will refer to these knowledge entities as beliefs.

Since it is important for an agent to have a correct and
consistent view of the world, a central issue is how an agent
keeps a consistent belief database upon receiving
information that is inconsistent with its current beliefs.
Within AI the problem is generally solved by throwing
away beliefs that cause the inconsistency. By doing so, the
agent no longer has access to what it believed before, which
is not very human-like. Cognitive architectures tend not to
eliminate inconsistent beliefs but deal with them when they
retrieve beliefs into working memory (e.g., Anderson &
Lebiere, 1998; Paglieri, 2004). Mechanisms differ between
architectures, but often the way they revise and retrieve
beliefs is fixed. This aspect restrains the agent from having
access to his old, possibly currently disbelieved, beliefs.

Research in cognitive science shows that the nature of the
beliefs that form the inconsistency influence the way
humans solve the inconsistency. For example, the time on
which information is received has a large influence on the
belief formation of humans. Famous temporal order effects
in the updating of beliefs are primacy and recency (e.g.,
Anderson, 1981), which are considered to be typical human
biases. Dieussaert et al. (2000) found that when a belief is
deduced from a conditional statement (e.g., if A then B),
that then upon receiving a categorical statement (not B) the
initial strength of the belief in the conditional (A) is
important for the revision of belief B. Another major finding
is that the source of the beliefs is very important for how
they are treated. Humans are biased to believe information
that is obtained by one’s own over information
communicated by others. The trust of a human in the source
of the information is another important factor for its
believability (e.g., Mercier & Henst, 2005).

Many more cognitive biases are found in the formation of
and reasoning on beliefs (Wickens & Flach, 1988). The
availability bias denotes the tendency of humans to focus on
the most salient outcome, which is time related. The
confirmation bias functions on two levels; it denotes the
tendency to only search for information that confirms the
current hypothesis as well as the tendency to give congruent
information much more weight than incongruent
information. The latter strongly influences the strengths of
beliefs. The as-if bias denotes the tendency of humans to
treat sources ‘as if’ they are the same.

Cognitive biases influence the quality of human decision-
making and are found to arise especially under stress
conditions (see e.g., Baron, 2000). Since we want our agent
to generate representative human behavior under a variety
of stress conditions, we need to be able to model the before
mentioned processes. Current architectures don’t offer
support to model (biased) reasoning over beliefs taking their
initial time, their source and their certainty into account. In
the next section we propose a framework with which such
processes can be formalized.

We are not the first to tackle the problem of modeling
biased reasoning and belief revision. However, as
mentioned above most cognitive belief models adept the
strengths of beliefs upon receiving new information and by
doing so loose access to what was believed before.
Moreover, stress is often not a factor in the revision or
retrieval of beliefs.

Belief Framework
We want to develop a decision-making agent that reflects a
human in the way it acts and reasons. For this goal we
develop a logical framework in which beliefs represent the
agent’s declarative information entities. We decide to
represent beliefs in predicate logic since this format enables
formal verification of global properties which is useful for
training. To ensure that an agent can have an up-to-date
consistent belief set without loosing access to its old beliefs,
we propose to time stamp each belief at the time it is formed
with that time. With this feature it is possible to model
(biased) reasoning over beliefs over time. We found only
one other paper that proposes to time-stamp beliefs. Sripada
(1993) took this approach in search of a more efficient
belief revision technique, but only looked at binary beliefs.

We on the other hand want our agent to have graded
beliefs like a human and therefore further propose to
certainty stamp beliefs. The certainty stamp of a belief
denotes the strength of the agent’s belief in its truth value at
the time captured in the time stamp. Last we propose to
source stamp each belief, by which the origin of the
information is captured. Using these three extra arguments
various cognitive processes can be formalized as will be
shown in the next sections.

Belief Predicate
A belief can be seen as a collection of properties that can

be captured with the following belief predicate:
p a v t s c [belief(p, a, v, t, s, c)

b e [beliefhasterm(b, e)
 termhaspredicate(e, p)
 termhasattribute(e, a)
 termhasvalue(e, v)
 beliefhastimestamp(b, t)
 beliefhassource(b, s)
 beliefhascertainty(b, c)]]

The core of a belief is a term that denotes the information
that is believed, e.g., that the identity (p) of track2 (a) is
hostile (v). Besides this term a belief consists of three extra
arguments denoting the time it was formed (t), its source (s)
and how certain the agent is of that belief (c).

To formalize relations between beliefs over time it is
necessary to have a reference to time that specifies the time
at which a certain belief was held by the agent. For this we
introduce a two-place predicate HoldsAt. When we reify the
belief predicate of the object language to a propositional
term b, we can state using this meta-language predicate at
which time the belief is held: HoldsAt(b, t).

For every belief(p, a, v, t, s, c) that can be found in the
agent's database it can stated that HoldsAt (belief
(p,a,v,t,s,c), t), since the t of the belief denotes that it was
then formed and thus logically holds.

Formation of Beliefs
By using the aforementioned belief system we can model

relevant cognitive properties and processes. The first
interesting process is the transfer of information from the
outside world into a belief. Research in cognitive science
mentioned above pointed out that the source of the
information as well as the current state of beliefs
(confirmation bias) is relevant for this process. These two
aspects influence the strength with which an agent ends up
believing that information, i.e., the certainty of its belief.
We accommodate these aspects by transferring information
from the world into a belief in three stages.

First, a presourceexpectancybelief is formed:
p a v t s c [
HoldsAt(input_from_world(p, a, v, s, c), t)

HoldsAt(presourceexpectancybelief(p, a, v, t, s, c), t)]
Secondly, the influence of the source on the believability of
the given information is determined, by using the agent’s
trust level in that source. In how far this bias occurs, i.e.,
how much this process moves the perceived certainty away
from the actual certainty, is influenced by the current stress
level of the agent.

p a v t s c tr st [
HoldsAt(presourceexpectancybelief(p, a, v, t, s, c), t)
HoldsAt(trust_in_source(s, tr), t) (-1 tr 1)
HoldsAt(stress(st), t) (0 st 1)

HoldsAt(preexpectancybelief(p, a, v, t, s, c + tr*c*st), t)]
Thirdly, the current state of beliefs is taken into account.
This is not done directly, but through the notion of
expectancies. The expectancy predicate has 4 arguments,
denoting the expected term (p, a, v) as well as a certainty.
Expectancies differ from beliefs in that they are formed
automatically and can be considered unconscious.

Expectancies are formed in two ways; each term that is
currently believed gets transferred to an expectancy that will
hold the next time step. The strength of the expectancy is a
function of the strength of the belief and the persistence of
the predicate; we will elaborate on the latter later on.
Secondly, certain (combinations of) beliefs can yield new
expectancies. The certainty of expectancies decays over
time and the expectancy ceases to exist when its certainty
becomes equal to zero.

To determine the final certainty of the belief existing
congruent and incongruent expectancies are taken into
account. The extent to which these expectancies bias the
certainty of the agent in the final belief is influenced by the
current stress level. Since multiple situations are possible
multiple rules are needed to formalize this process:

p a v t s c [
HoldsAt(preexpectancybelief(p, a, v, t, s, c), t)

w d [HoldsAt(expectancy(p, a, w, d), t)]

HoldsAt(belief(p, a, v, t + 1, s, c), t + 1)]
p a v t s c d st [
HoldsAt(preexpectancybelief(p, a, v, t, s, c), t)
HoldsAt(expectancy(p, a, v, d), t)
HoldsAt(stress(st), t)

HoldsAt(belief(p, a, v, t + 1, s, c + d * st), t + 1)]
p a v t s c u d st [
HoldsAt(preexpectancybelief(p, a, v, t, s, c), t)
HoldsAt(expectancy(p, a, u, d), t)
u v

e [HoldsAt(expectancy(p, a, v, e), t)]
HoldsAt(stress(st), t)

HoldsAt(belief(p, a, v, t + 1, s, c – d * st), t + 1)]
Intermediate rules (not denoted) handle new (pre)beliefs
whose certainties lie outside the certainty range.

An agent can also form new beliefs using conditional
statements and its current beliefs. These rules, together with
believed categorical statements, make up the task specific
knowledge of an agent. The formation of a new belief by a
conditional statement happens in two stages. First a
preexpectancybelief is formed, which is than transferred into
a belief using the mechanisms described above. A belief
formed by a reasoning rule receives that rule’s name as it
source. An example rule is the following:

c [HoldsAt(belief(weather, local, raining, t,
integratedsources, c), t)

HoldsAt(preexpectancybelief(status, street, wet, t,
deduce_wet_from_raining, c), t)]

Note that this rule requests as input a just formed belief
(denoted by t) whose source is equal to integratedsources.

Belief Integration
An important aspect of the belief framework is that
reasoning rules request beliefs as input that have as time
argument the current time (t) and as source argument
integratedsources (s). The requested time argument denotes
the claim that the belief should just be formed and thus

holds (present in working memory) while the source denotes
the claim by which rule it should be formed. The reasoning
rule that produces beliefs with integratedsources as source
argument deduces what exactly is currently believed by the
agent. This rule deals with any inconsistencies in the belief
set formed by beliefs from different sources or at different
times. The retrieval of a belief into working memory can be
seen as its human equivalent.

To implement this process we first implement the agent’s
memory by the following simple rule, which assumes that
beliefs are never forgotten.

p a v t’ s c t [
HoldsAt(belief(p, a, v, t’, s, c), t)

HoldsAt(belief(p, a, v, t’, s, c), t+1)]

To facilitate the formalization of reasoning rules that use the
agent’s memory we introduce the lastbelief predicate, which
denotes the most recent belief in the agent’s memory for
given specifications. Its definition is:

p a v t s c n [
 HoldsAt(lastbelief(p,a,v,t,s,c),n)

 [HoldsAt(belief(p,a,v,t,s,c),t) t n
 t’ [HoldsAt(belief(p,a,v,t',s,c),t')
 t’ t t’ n]]]

To determine what exactly is believed by the agent, it is
relevant to consider that a belief’s validity over time is
strongly influenced by its predicate. Values of certain
predicates are much more persistent than others; consider
the chance that a person’s sex, marital status or mood
changes over time. An agent’s certainty level in a belief
whose predicate is very persistent does not change much
over time. However, beliefs about predicates of which the
values are likely to change will quickly loose certainty. The
persistence level of a predicate also influences the decaying
factor of expectancies about it. The rule that determines
what exactly is believed, so that is responsible of deducing
the current belief from old beliefs, is formalized as:
given (p, a)

v1 t1 s1 c1 t pd c’ [
 HoldsAt(lastbelief(p, a, v1, t1, s1, c1), t)
 HoldsAt(persistence_decay(p, pd), t) (0 pd 1)

c’’ v2 t2 s2 c2
[HoldsAt(lastbelief(p, a, v2, t2, s2, c2)

c2 – pd * (t – t2) > c1 – pd * (t – t1)]

 HoldsAt(belief(p, a, v1, t+1, integratedsources,
 … c1 – pd * (t – t1)), t+1)
 HoldsAt(belief(p, a, v1, t+10, integratedsources,
 c1 – pd * (t – t1)), t+10)]

Also in this case there is an intermediate rule that handles
beliefs whose certainties lie outside the certainty range.

 Following this rule, the agent ends up believing the value
of the belief whose certainty is the greatest after taking into
account the time passed since it was formed and the
persistence of the predicate. This might entail that an older
belief with a higher certainty is believed over a newer belief
from a different source or the other way around, it depends
on the nature of predicate. The determination of the new
certainty is currently kept straightforward; it is equal to the

highest one after taking the time into account. Other sources
that claim the same do not contribute to its certainty.

 A belief that is consciously deduced using this rule is
stated to hold for ten following time points. This reflects the
fact that items retrieved by humans also stay a while in
working memory. The above rule takes many aspects into
account and is cognitive expensive. As mentioned on page 2
humans display a bias to treat all sources as equally likely.
With this simplification a decision can be made much
cheaper, for example, by simply taking the most recent one.
In such cases the antecedent becomes:

 HoldsAt(lastbelief(p, a, v1, t1, s1, c1), t)
 HoldsAt(persistence_decay(p, pd), t)

v2 t2 s2 c2
 [HoldsAt(lastbelief(p, a, v2, t2, s2, c2) t2 > t1]

Which rule is applied is influenced by the agent’s stress
level and should be determined at the control level.

Reasoning over Beliefs over Time
With the given belief predicate we can deduce whether an
agent believes something for a longer period of time. The
timecertaintyintegratedbelief predicate denotes the time
when the term of the current integratedsources-belief was
believed for the first time. Furthermore it should hold that
no other value was believed in the mean time and that it did
not become unknown caused by the time passed and the
decay of certainty:
given(p, a, pd)

n c t d [
 HoldsAt(belief(p, a, v, n, integratedsources, c), n)
 HoldsAt(belief(p, a, v, t, integratedsources, d), t)

v’ t’ c’ [
 HoldsAt(belief(p, a, v’, t’, integratedsources, c’), t’)
 v v’ t’ < n t > t’

t’’ e [
 HoldsAt(belief(p, a, v, t'', integratedsources, e), t’’)
 t’’ > t’ t’’ < t]]

t’ c’ [
 HoldsAt(belief(p, a, v, t’, integratedsources, c’), t’)
 t t’ t’ < n

t’’ e [
HoldsAt(belief(p, a, v, t'', integratedsources, e), t’’)
t’’ > t’ c’ – pd * (t’– t’’) > 0]]

 HoldsAt(timecertaintyintegratedbelief(p,a,v,t),n)]

Note that this rule can be made executable by replacing the
HoldsAt(b, tx) statements with HoldsAt(b, n), given that a
memory system is in place. This should obviously hold for
an implemented model, as presented in the next section.

 This extra object predicate is useful for modeling the
deduction of a belief based on the persistence of another,
e.g., position stays equal speed = 0. The predicate is also
very useful to model the reasoning over belief patterns over
time. E.g., to determine whether a ship zigzags the beliefs
over time concerning its headings have to be integrated. The
following rule depicts the principle, but should be filled
with more domain specific knowledge.
given(p, a, v1, v2)

t1 t2 t3 n [
 HoldsAt(timecertaintyintegratedbelief(p,a,v1,t1),n)

 HoldsAt(timecertaintyintegratedbelief(p,a,v2,t2),t1’)
t1’ < t1 t1’’ v t [

 HoldsAt(timecertaintyintegratedbelief(p,a,v,t),t1’’)
 t1’’ < t1 t1’’ > t1’]
 HoldsAt(timecertaintyintegratedbelief(p,a,v1,t3),t2’)
 t2’ < t2 t2’’ v t [
 HoldsAt(timecertaintyintegratedbelief(p,a,v,t),t2’’)
 t2’’ < t2 t2’’ > t2’]

 HoldsAt(preexpectancybelief(pp,a,vp,n,this_rule,c),n)]

Case Study – Iran Air Flight 655
To illustrate our approach we present an historic case for
which we developed and implemented a cognitive model of
a human decision maker. It concerns the Identification
Designation Supervisor (IDS) aboard the combat
information center of the USS Vincennes cruiser that in 1988
erroneously shot down an Iranian Airbus (Fogarty, 1988).
This accident has been widely referred to as an example of
faulty decision-making under stress (Klein, 1998). Using
this case, we want to investigate whether our approach can
be used to model the behavior of the IDS-officer.

We now give a short description of the sequence of most
relevant events that led to the wrong identification of the
airbus by the IDS, which contributed to it being shot down.
This description mixes facts about the behavior of the IDS
with assumptions about his reasoning. We deduced both
from the formal investigation rapport (Fogarty, 1988).
Time: 10.47 AM
• The IDS is focused on an Iranian P-3. Since the P-3
belongs to hostile country Iran and is a patrol aircraft that
can guide other aircraft on hostile missions, the IDS expects
hostile aircrafts.
• The radar reports a new track of interest (track2) at a range
of 47nm and bearing 025, which corresponds to the runway
of Iranian airport Bandar Abbas. The IDS observes the new
track and based on the fact that the track’s origin is an
Iranian airport also used for military aircrafts, he believes it
might be hostile.
• In order to determine whether the track represents a
commercial aircraft, the IDS checks the Bandar Abbas
commercial airline departure times schedule. However, the
time of departure and scheduled time differ too much to
make the neutral identification.
• In order to obtain more information the IDS sets its remote
control indicator (RCI) challenge gate at the track, so it can
pick up the track’s Identify Friend or Foe (IFF) Mode, a
system all planes are equipped with. Based on his hostile
assumption he expects to receive mode II or mode III.
• The IDS picks up the neutral IFF Mode III-6675.
However, all aircrafts can emit Mode III and therefore this
information is not conclusive for a neutral identification.
Time: 10.48 AM
• The IDS observes from its Large Screen Display (LSD)
that track2 is locked on by the USS Sides, however does not
react. When military aircrafts are locked on to, they tend to
change behavior. Non-military aircrafts do not notice when
they are locked-on and therefore is unchanged behavior an
indicator of a neutral aircraft. However, the IDS keeps
believing the track might be hostile.

Time: 10.50 AM
• The IDS sees a Mode II-1100 on its RCI-display. He
expected this response from the last track he queried and
simply assumes that the signal comes from that track.
• Since the IDS knows that a modeII-11XX block is used by
Iranian F-14’s he reports track2 as ‘possible F-14’.

Cognitive Model of the IDS
Our approach currently focuses on formalizing belief
predicates and processes on beliefs with which we can
model how humans process information. The formalization
of when they do that has not yet been tackled. However, to
simulate a cognitive model that demonstrates the former, an
implementation of the latter is needed. To simulate human
control we use a simple goal-directed reasoning strategy.
For this strategy to work we abstracted the necessary in- and
output of each rule, added the goal it contributes to and
specified what satisfies that goal. For the example rule on
page 3 two of these constructs would be:
Input_of_rule_goal(deduce_wet_from_raining,determine_status
(street), belief_tc(local,weather,raining,integratedsources))
satisfies_goal(determine_status(street), belief_vtsc(status,stree t))

Furthermore we added backwards-reasoning rules as:
g1 p1 a1 r1 p2 a2 s r2 g2 t [
HoldsAt(goal(g1), t)
HoldsAt(satisfies_goal(g1, belief_vtsc(p1, a1)), t)

v s c [HoldsAt(belief(p1, a1, v, t, s, c), t)]
HoldsAt(output_of_rule_goal(r1, g1, belief_tsc(p1, a1)), t)
HoldsAt(input_of_rule_goal(r1, g1, belief_vtc(p2, a2, s)), t)
HoldsAt(output_of_rule_goal(r2, g2, belief_vtc(p2, a2, s)), t)

v c [HoldsAt(belief(p2, a, v, t, integratedsources, c), t)]

HoldsAt(goal(g2), t)]

The main goal of the IDS-officer is to identify each track in
the environment as quickly as possible in terms of hostile,
neutral or friend. From this main goal all other relevant sub
goals are determined each time step by backtracking, using
the agent’s task knowledge as well as its current belief state.

The model is implemented using the LEADSTO language
with which temporal dependencies between two state
properties can be modeled and depicted graphically (Bosse
et al. 2007). The modeled dynamic properties have the
following executable format: Let and be state properties
of the form ‘conjunction of atoms or negations of atoms’,
and e, f, g, h non-negative real numbers. In the LEADSTO
language e,f,g,h , means:
If state property holds for a certain time interval with

duration g,
Then after some delay (between e and f) state property

will hold for a certain time interval of length h.
In the following figures traces are shown that visualize the
IDS properties (on the vertical axes) over time (horizontal
axes). Dark boxes on top of a line denote that the property
HoldsAt that time, light boxes below that it does not. In all
traces the certainty and persistence decay parameters range
from 0-10 instead as proposed in the text from 0-1. For
displaying purposes the integratedsources beliefs that hold
for 10 timestamps are summed up in one predicate belief_t.

We lack the space to show all the reasoning steps of the
IDS model, so we focus on the events of bullet 2. Figure 1
shows a trace depicting that the IDS actively observes the
altitude of the track from its screen (ownCROD) and forms
a belief about its value. This trace shows how the IDS’s
trust in his CROD (0.8) given his stress level (0.5)
influences the certainty of the final belief (7 instead of 5).

Figure 1: Observation of World and Formation of Belief
Next he reasons about the track’s origin taking into account
the track’s position and altitude he just observed. The
outcome, a belief about the airport it departed from, leads
together with beliefs about the nature of that airport to a
belief about the track’s identity which is biased by the
existing expectancy of hostile tracks (bullet 1), see figure 2.

Figure 2: Formation of New Belief and Expectancy
In the following time steps the IDS performs various actions
that lead to new beliefs that contribute to the reasoning
about the track’s identity. Unfortunately the IDS biased
reasoning caused by his stress level causes him to belief he
is dealing with a hostile F-16.

Figure 3: Source Integration on Two Predicate Types

To illustrate one important aspect of our framework a bit
further we made a trace that displays the source-integration
process on two different types of belief predicates: see
figure 3. It can be seen that based on the nature of their
predicate the beliefs are treated differently.

Discussion and Conclusion
We developed a framework for cognitive modeling based on
beliefs with a time, source and certainty label attached.
These extra labels enable the formalization of various
processes on beliefs that lie at the basis of human cognition.
Interactions between the time, source and certainty of
beliefs has been made explicit, which is not possible in other
architectures. Moreover, the influence of these parameters
on each other is made tunable by the introduction of a stress
level parameter.

The model of the IDS-officer shows that the framework is
capable of generating human-like behavior. Agents modeled
with this framework will be capable of generating more
human-like behavior than, e.g., standard BDI agents. The
fact that they are able to show behavior that is more
representative for humans will make the agents more
believable to the trainee that interacts with them. Since the
believability of a training environment influences the
effectiveness of the training, the modeling of agents using
our framework will contribute to the effectiveness of the
training and achievement of training objectives.

Our research doesn’t stop here. The current framework
will be extended by adding formal specifications of other
relevant cognitive processes, such as attention and trust.
Although the latter is already represented in the framework
the current trust of an agent in sources is static. In reality
however, trust is a dynamic property which is strongly
influenced by experience. An agent capable of reasoning
over its experiences with sources would be able to adapt its
trust in sources. Stress level is another parameter that is
currently fixed and that we would like to formalize as a
dynamic property. Also the persistence values of properties
are currently given and static, which is reasonable assuming
that humans have learned them during their lifetime.
However, when an agent would be capable to determine
these values based on experiences with the environment, it
would be much more adaptable to new environments.

 As the next research step we will tackle the control of
the agent. The simple control implemented in this paper was
sufficient for demonstrating the reasoning rules. However,
real humans have to deal with a limited amount of attention
and processing power and therefore make many decisions
on the control level. We like to develop a control framework
in which we can capture these, probably biased, processes.

 The cognitive validity of the model is debatable.
However, by incorporating more outcomes of cognitive
science research in our approach, we hope to approach our
goal: the modeling of agents that can correctly represent
human behavior in specific task training environments.

Acknowledgements
The author likes to thank Jan Treur for many fruitful
discussions during this research and assisting on formal

details, Tibor Bosse for clarifying aspects of the LEADSTO
language and Karel van den Bosch for commenting an
earlier draft.

References
Anderson, J. R., & Lebiere, C. (1998). The Atomic

Components of Thought. Mahwah, NJ: Lawrence Erlbaum
Associates.

Anderson, N. H. (1981). Foundations of Information
Integration Theory. New York, NY: Academic Press.

Baron, J. (2000). Thinking and Deciding (3d. edition). New
York, NY; Cambridge University Press.

Bosse, T., Jonker, C. M., Meij, L. van der, & Treur, J.
(2007). A Language and Environment for Analysis of
Dynamics by SimulaTiOn. International Journal of
Artificial Intelligence Tools, 16(3), to appear.

Dieussaert, K., Schaeken, W., Neys, W. de, & d’Ydewalle,
G. (2000). Initial belief state as a predictor of belief
revision. Current Psychology of Cognition, 19(3), pp. 277
– 286.

Fogarty, W. M. (1988). Formal Investigation into the
Circumstances Surrounding the Downing of Iran Air
Flight 655 on 3 July 1988 (Invest. Rep. 93-FOI-0184).
Department of Defense, USA.

Georgeff, M. P., & Lansky, A. L. (1987). Reactive
Reasoning and Planning. In Proceedings of the Sixth
National Conference on Artificial Intelligence (pp. 677 –
682). Menlo Park, Ca: AAAI Press.

Gluck, K. A., & Pew, R. W. (Eds.) (2005). Modeling
Human Behavior with Integrated Cognitive Architectures:
Comparison, Evaluation, and Validation. Mahwah, NJ:
Lawrence Erlbaum Associates.

Klein, G. (1998). Sources of Power: How People Make
Decisions. Cambridge, MA: MIT Press.

Mercier, H. & der Henst, J.-B. V. (2005). The source of
beliefs in conflicting and non-conflicting situations. In
Proceedings of the 27th Annual Conference of the
Cognitive Science Society (pp. 1495 – 1500). Mahwah,
NJ: Lawrence Erlbaum Associates.

Oser, R. L. (1999). A structured approach for scenario-
based training. In Proceedings of the 43rd Annual Meeting
of the HFES (pp. 1138 – 1142). Santa Monica, CA:
Human Factors and Ergonomics Society.

Paglieri, F. (2004) Data-oriented Belief Revision: Towards a
Unified Theory of Epistemic Processing. In STAIRS 2004:
Proceedings of the Second Starting AI Researchers’
Symposium (pp. 179 – 190). Amsterdam: IOS Press.

Pew, R. W., & Mavor, A. S. (1998). Modeling Human and
Organizational Behavior. Washington, DC: National
Academy Press.

Sripada, S. M. (1993). A Temporal Approach to Belief
Revision in Knowledge Bases. In Proceedings of the
Ninth Conference on Artificial Intelligence for
Applications (pp. 56 – 62). Orlando, FL; IEEE Computer
Society Press.

Wickens, C. & Flach, J. (1988). Information Processing.
Human Factors in Aviation. San Diego, CA: Academic
Press.

A Formal Empirical Analysis Method for Human Reasoning and Interpretation

Tibor Bosse1, Mark Hoogendoorn1, Catholijn M. Jonker2, and Jan Treur1

1Vrije Universiteit Amsterdam, Department of Artificial Intelligence, De Boelelaan 1081a,
1081 HV Amsterdam, The Netherlands, {tbosse, mhoogen, treur}@cs.vu.nl

2Delft University of Technology, Department of Mediametics, Mekelweg 4,
2628 CD Delft, The Netherlands, catholijn@mmi.tudelft.nl

Abstract

The study of human reasoning often concentrates on
reasoning from an already assumed interpretation of the
world, thereby neglecting reasoning towards an interpretation.
In recent literature within Cognitive Science, means taken
from the area of nonmonotonic logic are proposed to analyze
the latter aspect of human reasoning. In this paper this claim
is further worked out and tested against empirical material of
human reasoning during critical situations (incident
management). Empirical and simulated reasoning traces have
been analyzed by comparing them and by automatically
checking properties on them.

1. Introduction
In recent years, from the area of Cognitive Science, there is
an increasing interest in tools originating from the area of
nonmonotonic reasoning. In (Stenning and van Lambalgen,
2006) it is shown how the empirical study of human
reasoning processes has been too much dominated by an
emphasis on classical, deductive logic. This applies equally
well to the socalled rule-based or syntactic stream (e.g.,
Braine and O’Brien, 1998; Rips, 1994), as to the model-
based or semantic stream (e.g., Johnson-Laird, 1983;
Johnson-Laird and Byrne, 1991). In their analysis of human
reasoning they claim that much more important than the
question whether reasoning should be considered from a
syntactical or semantical perspective, is the distinction
between: a) reasoning towards an interpretation, and b)
reasoning from an interpretation. The latter type of
reasoning is reasoning within an already unambiguously
determined formalized frame, and can be analyzed by means
of classical logic. The first type of reasoning, however, still
has to find such a frame and has to deal with ambiguities
and multiple interpretation possibilities, and does not have a
unique outcome. It is at this point that they propose
nonmonotonic logic as a more adequate analysis tool for
human reasoning processes. Within nonmonotonic logic it is
possible to formalize reasoning processes that deal with
multiple possible outcomes, which can be used to model
different possibilities of interpretation; see (Engelfriet and
Treur, 2003) for a similar perspective. Thus, from an
empirical angle, within the area of human reasoning within
Cognitive Science, a new, more empirical perspective was
introduced to study nonmonotonic reasoning processes.

The current paper reports research to further work out and
test this empirical perspective in the context of incident
management. Detailed reports are available that describe

what went wrong in the management of well-known
disasters, see, e.g., (Ministry of the Interior, 1996). These
reports provide empirical data showing how humans reason
under the pressure of a critical situation. Cases taken from
them form the basis of the research reported in this paper to
further detail and illustrate the use of the Stenning-van
Lambalgen perspective on reasoning and interpreting. The
leading example is an airplane crash.

The outline of the paper is as follows. The aircrash
example is presented in Section 2. Section 3 presents an
abstract formalization of a reasoning process leading to
multiple interpretations, and Section 4 shows how Default
Logic can be used to specify such processes. To obtain
simulation of such reasoning, variants of Default Logic are
considered in which control decisions can be represented.
To this end, in Section 5 a temporalized form of Default
Logic is chosen to simulate the possible reasoning traces for
the case study. In Section 6 a number of properties of such
reasoning traces are formalized and checked. Section 7
presents the conclusions.

2. The Incident Management Domain
Within incident management people are working under
severe pressure; having incomplete information, decisions
have to be made quickly, which can have a huge impact on
the successfulness of the whole operation. This paper
focuses on one example: that of the Hercules airplane crash
at the military airport of Eindhoven in the Netherlands
(Ministry of the Interior, 1996). This example is taken
because it is representative for the occurrences in incident
management. The plane, carrying a military brass band in
the cargo room and a crew of four people, flew into a flock
of birds just before landing, causing one of the engines to
fail, which made the plane tilt to one side. As a result, the
plane crashed on the runway and caught fire. The Air
Traffic Controller (ATC) had information that a military
brass band was on board of the plane. Afterwards he
claimed to have informed the alarm centre operator of this
fact, who in turn stated never to have received the
information. As a result, the operator did inform fire
fighters, but declared the wrong scenario (i.e., for merely the
crew on board). After the fire fighting forces had arrived at
the scene, one of them contacted the air traffic controller,
asking how many people were on board of the plane. Since
the air traffic controller reasoned under the assumption that
the message of a military brass band being on board had

been passed through to the fire fighters, he answered that
this was unknown, interpreting the question as a request for
the exact amount of people on board. The fire fighter
therefore assumed that only the crew was on board, thus the
brass band was not rescued.

3. Multiple Interpretations
Reasoning towards an interpretation can be formalized at an
abstract generic level as follows. A particular interpretation
for a given set of formulae considered as input information
for the reasoning, is formalized as another set of formulae,
that in one way or the other is derivable from the input
information (output of the reasoning towards an
interpretation). In general there are multiple possible
outcomes. The collection of all possible interpretations
derivable from a given set of formulae as input information
(i.e., the output of the reasoning towards an interpretation) is
formalized as a collection of different sets of formulae. A
formalization describing the relation between such input and
output information is described at an abstract level by a
multi-interpretation operator. The input information is
described by propositional formulae in a propositional
language L1. An interpretation is a set of propositional
formulae, based on a propositional language L2.

Definition 1 (Multi-Interpretation Operator)
a) A multi-interpretation operator MI with input language
L1 and output language L2 is a function MI : P(L1) →→→→
P(P(L2)) that assigns to each set of input facts in L1 a set of
sets of formulae in L2.
b) A multi-interpretation operator MI is non-inclusive if for
all X ⊆ L1 and S, T ∈ MI(X), if S ⊆ T then S = T.
c) If L1 ⊆ L2, then a multi-interpretation operator MI is
conservative if for all X ⊆ L1, T ∈∈∈∈ MI(X) it holds X ⊆ T.

The condition of non-inclusiveness guarantees a relative
maximality of the possible interpretations. Note that when
MI(X) has exactly one element, this means that the set X ⊆
L1 has a unique interpretation under MI. The notion of
multi-interpretation operator is a generalization of the notion
of a nonmonotonic belief set operator, as introduced in
(Engelfriet, Herre, and Treur, 1998). The generalization was
introduced and applied to approximate classification in
(Engelfriet and Treur, 2003). A reasoner may explore a
number of possible interpretations, but often, at some point
in time a reasoner will focus on one (or possibly a small
subset) of the interpretations. This selection process is
formalized as follows (see Engelfriet and Treur, 2003).

Definition 2 (Selection Operator)
a) A selection operator s is a function s : P(P(L)) →
P(P(L)) that assigns to each nonempty set of interpretations
a nonempty subset: for all A with φ ≠ A ⊆⊆⊆⊆ P(L) it holds φ ≠
s(A) ⊆⊆⊆⊆ A. A selection operator s is single-valued if for all
non-empty A the set s(A) contains exactly one element.
b) A selective interpretation operator for the multi-
interpretation operator MI is a function C : P(L1) → P(L2)
that assigns one interpretation to each set of initial facts: for
all X ⊆⊆⊆⊆ L1 it holds C(X) ∈∈∈∈ MI(X).

It is straightforward to check that if s : P(P(L1)) → P(P(L2))
is a single-valued selection operator, then a selective
interpretation operator C for multi-interpretation operator
MI can be defined by the composition of MI and s, i.e., by
setting C(X) = s(MI(X)) for all X ⊆⊆⊆⊆ L1.

In this section some interpretations that play a role in the
analysis of the plane crash accident are taken as the leading
example. The part chosen focuses on the ATC and its
interaction to the operator. This information was derived
based on training material, see (NIBRA, 2001). An issue is
the difference in opinion as to whether or not the ATC
communicated to the operator that there are more than 25
people on board. Initial observations of the ATC are:

observation(plane_crash, pos),
observation(cargo_plane, pos),
observation(passengers_on_board, pos).

Focusing on the ATC, the analysis results in two
interpretations that differ only in the communication to the
operator, formalized as follows:

Common part of the interpretations
observation(passengers_on_board,pos)
observation(cargo_plane,pos)
observation(plane_crash,pos)
belief(plane_crash_occurred,pos)
belief(passenger_count(more_than_25),pos)
not belief(passenger_count(maximum_4),pos)
not belief(passenger_count(unknown),pos)
action(communicate_to(plane_crash,operator),pos)
action(communicate_to(call_backup_via_06_11,operator),pos)

Interpretation 1: common part +
action(communicate_to(passenger_count(more_than_25),operator),pos)
not action(communicate_to(passenger_count(maximum_4),operator),pos)
not action(communicate_to(passenger_count(unknown),operator),pos)

Interpretation 2: common part +
not action(communicate_to(passenger_count(more_than_25),operator),pos)
not action(communicate_to(passenger_count(maximum_4),operator),pos)
not action(communicate_to(passenger_count(unknown),operator),pos)

Figure 1 provides an overview of ATC’s first decision
making. The figure shows the state of the world at time 0,
W0, and as a consequence of the communication to the
operator, W1 and W2, which correspond with the two
interpretations above. In the figure a difference is made
between the observation (O0), the internal representation
made from that (I0), and the interpretation of the situation in
terms of actions to take (pi0 and pi1). Note that there are two

Figure 1 Reasoning Traces based on Interpretations

moments of interpretation: from observations into internal
representation, and from internal representation into actions
to take.

4. Representing Interpretation in Default Logic
The representation problem for a nonmonotonic logic is the
question whether a given set of possible outcomes of a
reasoning process can be represented by a theory in this
logic. More specifically, representation theory indicates
what are criteria for a set of possible outcomes, for example,
given by a collection of deductively closed sets of formulae,
so that this collection can occur as the set of outcomes for a
theory in this nonmonotonic logic. In (Marek, Treur and
Truszczynski, 1997) the representation problem is solved
for default logic, for the finite case. Given this context, in
the current paper Default Logic is chosen to represent
interpretation processes. For the empirical material
analyzed, default theories have been specified such that their
extensions are the possible interpretations.

A default theory is a pair D, W . Here W is a finite set of
logical formulae (called the background theory) that
formalize the facts that are known for sure, and D is a set of
default rules. A default rule has the form: αααα: ββββ1, .., ββββn / γγγγ.
Here αααα is the precondition, it has to be satisfied before
considering to believe the conclusion γγγγ, where the ββββs, called
the justifications, have to be consistent with the derived
information and W. As a result γγγγ might be believed and
more default rules can be applied. However, the end result
(when no more default rules can be applied) still has to be
consistent with the justifications of all applied default rules.
For convenience we only consider n = 1. Moreover, in the
examples, normal default theories will be used: based on
defaults of the form αααα: ββββ / ββββ. For more details on Default
Logic, such as the notion of extension, see, e.g., (Reiter,
1980; Marek and Truszczynski, 1993). For the possible
interpretations presented in Section 3, the following Default
Theory has been specified.

Set of defaults D
{observation(plane_crash, pos) : belief(plane_crash_occurred, pos) /
belief(plane_crash, pos) }

{observation(plane_crash, pos) ∧ observation(cargo_plane, pos) ∧
observation(passengers_on_board, pos) :
belief(passenger_count(more_than_25), pos) /
belief(passenger_count(more_than_25), pos) }

{observation(plane_crash, pos) ∧ observation(cargo_plane, pos) ∧
¬observation(passengers_on_board, pos) :
belief(passenger_count (maximum_4), pos) /
belief(passenger_count (maximum_4), pos) }

{observation(plane_crash, pos) ∧ observation(cargo_plane, pos) ∧ \
¬observation(passengers_on_board, pos) :
belief(passenger_count (unknown), pos) /
belief(passenger_count (unknown), pos) }

{belief(plane_crash_occurred, pos) :
action(communicate_to(plane_crash, operator), pos) /
action(communicate_to(plane_crash, operator), pos) }

{belief(plane_crash_occurred, pos) ∧
belief(passenger_count(PN:PASSENGER_NUMBER), pos) :
action(communicate_to(passenger_count(PN:PASSENGER_NUMBER), operator), pos) /
action(communicate_to(passenger_count(PN:PASSENGER_NUMBER), operator), pos) }

{belief(plane_crash_occurred, pos) :
¬action(communicate_to(passenger_count(PN:PASSENGER_NUMBER), operator), pos) /
¬action(communicate_to(passenger_count(PN:PASSENGER_NUMBER), operator), pos)}

{belief(plane_crash_occurred, pos) ∧ belief(passenger_count(more_than_25), pos) :
action(communicate_to(call_backup_via_06-11, operator), pos) /
action(communicate_to(call_backup_via_06-11, operator), pos) }

Background theory W
observation(plane_crash, pos).
observation(cargo_plane, pos).
observation(passengers_on_board, pos).
belief(passenger_count (unknown), pos) →

¬belief(passenger_count (maximum_4), pos) ∧
¬belief(passenger_count(more_than_25), pos)

belief(passenger_count (maximum_4), pos) →
¬belief(passenger_count (unknown), pos) ∧
¬belief(passenger_count(more_than_25), pos)

belief(passenger_count (more_than_25), pos) →
¬belief(passenger_count (unknown), pos) ∧
¬belief(passenger_count(maximum_4), pos)

action(communicate_to(passenger_count (unknown), operator), pos) →
¬action(communicate_to(passenger_count (maximum_4), operator), pos) ∧
¬action(communicate_to(passenger_count(more_than_25), operator), pos)

action(communicate_to(passenger_count (maximum_4), operator), pos) →
¬action(communicate_to(passenger_count (unknown) , operator), pos) ∧
¬action(communicate_to(passenger_count(more_than_25), operator), pos)

action(communicate_to(passenger_count (more_than_25), operator), pos) →
¬action(communicate_to(passenger_count (unknown), operator), pos) ∧
¬action(communicate_to(passenger_count(maximum_4), operator), pos)

5. Simulation by Temporalized Default Rules
In this section, a generic simulation model for default
reasoning is specified (based on the executable temporal
LEADSTO language; cf. Bosse et al., 2005), and applied to
the case study. As discussed in Section 3, to formalise one
reasoning trace in a multiple interpretation situation, a
certain selection has to be made, based on control
knowledge which serves as a parameter for the
interpretation to be achieved. Variants of Default Logic in
which this can be expressed are Constructive Default Logic
(Tan and Treur, 1992) and Prioritized Default Logic
(Brewka, 1994; Brewka and Eiter, 1999). A Prioritized
Default Theory is a triple D,W, < , where D,W is a Default
Theory and < is a strict partial order on D. Constructive
Default Logic, see (Tan and Treur, 1992), is a Default Logic
in which selection functions are used to control the
reasoning process. Selection functions take the set of
consequents of possibly applicable defaults and select one
or a subset of them. A selection function can represent one
of the different ways to reason from the same set of defaults,
and thus serves as a parameter for different reasoning traces
(achieving different interpretations). This knowledge
determines a selection operator (see Section 3).

The generic simulation model for default reasoning
described below is an executable temporal logical
formalization of Constructive Default Logic, based on the
temporal perspective on default and nonmonotonic
reasoning as developed in (Engelfriet and Treur, 1998). The
input of the model is (1) a set of normal default rules, (2)
initial information, and (3) knowledge about the selection of
conclusions of possibly applicable rules. The output is a
trace which describes the dynamics of the reasoning process
over time. Globally, the model can be described by a
generate-select mechanism: first all possible (default)
assumptions (i.e., candidate conclusions) are generated, then
one conclusion is selected, based on selection knowledge.
After selection, the reasoning process is repeated. In the
executable temporal logical language LEADSTO, the
generic default reasoning model can be described by the
following local dynamic properties (LPs):

LP1 Candidate Generation
If I have derived (x,s1), and I have a default rule that allows me to assume (y,s2), and
I do not have any information about the truth of y yet, then (y,s2) will be considered a
possible assumption.
∀x,y:info_element ∀s1,s2:sign

derived(x, s1) ∧ default_rule(x, s1, y, s2, y, s2) ∧ not derived(y, pos) ∧
not derived(y, neg) →→ 0,0,1,1 possible_assumption(y, s2)

Note that the sort sign consists of the elements pos and neg.

LP2 Candidate Comparison
Each possible assumption is a better (or equally good) candidate than itself.
∀x:info_element ∀s:sign

possible_assumption(x, s) →→ 0,0,1,1 better_candidate_than(x, s, x, s)

If (x,s1) is a possible assumption, and (y,s2) is no possible assumption, then (x,s1) is a
better candidate than (y,s2).
∀x,y:info_element ∀s1,s2:sign

possible_assumption(x, s1) ∧ not possible_assumption(y, s2) →→ 0,0,1,1

better_candidate_than(x, s1, y, s2)

If (x,s1) is a possible assumption, and (y,s2) is a possible assumption, and it is known
that deriving (x,s1) has priority over deriving (y,s2), then (x,s1) is a better candidate
than (y,s2).
∀x,y:info_element ∀s1,s2:sign

possible_assumption(x, s1) ∧ possible_assumption(y, s2) ∧
priority_over(x, s1, y, s2) →→ 0,0,1,1 better_candidate_than(x, s1, y, s2)

LP3 Candidate Selection
If (x,s1) is a possible assumption, and it is the best candidate among all possible
assumptions, then it will be derived.
∀x:info_element ∀s1:sign

possible_assumption(x, s1) ∧ [∀y:info_element���� ∀s2:sign
better_candidate_than(x, s1, y, s2)] →→ 0,0,1,1 derived(x, s1)

LP4 Persistence
If (x,s) is derived, then this will remain derived.
∀x:info_element ∀s:sign

derived(x, s) →→ 0,0,1,1 derived(x, s)

The generic default reasoning model described has been
used to simulate the reasoning process as performed by the
Air Traffic Controller in the Hercules disaster (see Section
2). An example simulation trace is shown in Figure 2. In
this figure, time is on the horizontal axis, and different states
are on the vertical axis. A dark box on top of a line indicates
that a state property is true; a light bow below a line
indicates that it is false. As shown in Figure 2, there are
initially three important aspects of the world: the fact that
there is a plane crash, that it involves a cargo plane, and that
there are passengers on board. At time point 1, the ATC
correctly observes these three information elements. Next,
he starts the interpretation process: according to his default
rules, he generates two possible assumptions: there is a
plane crash, and the passenger count is over 25. Based on
his selection knowledge, first the former assumption is
derived (time point 4: derived(belief(plane_crash, pos), pos)). As the
latter possible assumption does not conflict with the former,
the possible assumption that the passenger count is over 25

is derived as well (see time point 11). Next, the ATC
generates four possible assumptions on actions: (1)
communicating that there is a plane crash, (2)
communicating that the emergency number 06-11 should be
called, (3) communicating that the passenger count is over
25, and (4) not communicating that the passenger count is
over 25. The first two possible actions are translated to
actions; after that, the ATC selects the conclusion not
communicating the passenger count over the conclusion for
communicating the passenger count; thus, this information
does not reach the operator.

It is important to note that the trace shown in Figure 2
corresponds to one possible course of affairs. This means
that it corresponds to one path through Figure 1, which is in
this case the path W0 - O0 - I0 - pi1 - W2. In default reasoning
terms, the trace eventually results in one extension for the
set of default rules shown in Section 3. By changing the
selection knowledge, different extensions are generated.
Although in this paper only one partial example is shown
(due to space limitations), the complete reasoning processes
of four different parties involved in the Hercules disaster
have been modeled. Moreover, for all of these reasoning
processes, all different settings of selection knowledge have
systematically been selected. This way, a large number of
traces have been generated, which together cover all
possible reasoning traces based on multiple interpretations
for this domain, including the (non-optimal) ones reported
in the empirical material.

6. Verification of Properties for Traces
section addresses the automated verification of properties
against two types of traces. First of all, traces that include
full information are addressed. In these traces, the
interpretation of the particular agent under analysis is
available as well as the observations and actions performed
by the agent. The second type of trace addressed is a trace
merely consisting of the external information (i.e.
observations and actions). Note that all of these properties
are specified independent of the specific case study, and can
therefore easily be reused.

6.1 Analysis of Complete Traces
Verification of a simulated or empirical default reasoning
trace including complete information can address a number
of aspects. First it can address whether all conclusions in the
trace are grounded by justified application of default rules.
Next it can be verified whether the process has been
exhaustive, i.e., whether for all applicable default rules the
conclusion occurs. These properties have been given a
temporal form (in the spirit of Engelfriet and Treur, 1998),
and specified in the temporal predicate logical language
TTL cf. (Bosse et al., 2006). All of these properties have
been checked automatically and shown to be satisfied for
traces as the one presented in Figure 2, using the TTL
Checker environment.
groundedness(γγγγ:TRACE):

∀t:TIME, i:info_element, s:sign
[state(γ, t) |= derived(i, s) grounded (γ,i,s,t)]

grounded(γγγγ:TRACE, i:info_element, s:sign, t:TIME):Figure 2. Simulation trace of the reasoning of the ATC.

[follows_from_default(γ,i,s,t) ∨ follows_from_strict_constraint(γ,i,s,t) ∨
world_fact(γ,i,s,t)]

world_fact(γγγγ:TRACE, i:info_element, s:sign, t:TIME):
∃t2:TIME < t state(γ, t2) |= world_state(i, s)

follows_from_strict_constraint(γγγγ:TRACE, i:info_element, s:sign, t:TIME):
∃C:CONJUNCTION, t2:TIME < t [state(γ, t2) |= strict_constraint(C, i, s) &
∀i2:info_element,s2:sign [element_of(i2, s2, C)

state(γ, t2) |= derived(i2, s2)]]

Note that elements of the sort CONJUNCTION refer to
conjunctions of <info_element, sign> pairs.

follows_from_default(γγγγ:TRACE, i:info_element, s:sign, t:TIME):
∃t2:TIME < t, C:CONJUNCTION
[state(γ, t2) |= default_rule(C, i, s, i, s) &
∀i1:info_element,s1:sign
[element_of(i1, s1, C) state(γ, t2) |= derived(i1, s1)]

& ∀t3≥t ∀s’≠ s not state(γ, t3) |= derived(i, s’)

consistency(γγγγ:TRACE):
∀i:info_element, s:sign, t:TIME
[state(γ,t) |= derived(i, s)
¬∃t2:TIME, s2:sign [s ≠ s2 & state(γ,t2) |= derived(i, s2)]]

exhaustiveness(γγγγ:TRACE):
∀t:TIME, i:info_element, s:sign, C:CONJUNCTION
[state(γ, t) |= default_rule(C, i, s, i, s) &
∀i2:info_element,s2:sign [element_of(i2, s2, C)

state(γ, t) |= derived(i2, s2)] &
¬∃t2:TIME, s3:sign [s ≠ s3 & state(γ, t2) |= derived(i, s3)]

∃t3:TIME [state(γ, t3) |= derived(i, s)]

derived_persistency(γγγγ:TRACE):
∀t1, t2 [state(γ, t1) |= derived(i, s) & t1<t2 state(γ, t2) |= derived(i, s)]

These verification properties assume that all information is
fully available, including the interpretation that has been
derived. In empirical traces however, such information
might not be present. Such information could be obtained by
interviews and added to the traces, but this does not always
give an adequate representation of reality, since people tend
to avoid admitting mistakes in incident management. The
following section shows how properties can be verified for
empirical traces, without having knowledge on the
interpretation. In addition, it specifies properties on
correctness of interpretation based upon selection of the
most specific default rule.

6.2 Analysis of Externally Observable Traces
In this section verification properties are specified assuming
traces that merely consist of the observations received by
the agent, and the actions that have been performed by the
agent. Note that conflicting observations at the same time
point are not allowed. Several different properties are
identified. First of all, a derivable interpretation is defined,
which is simply an interpretation that can be derived based
upon the observations received, and a default rule:

derivable_int(γγγγ:TRACE, t:TIME, C:CONJUNCTION, i:info_element,
s:sign):

state(γ, t) |= default_rule(C, i, s, i, s) &
∀i2:info_element, s2:sign
[element_of(i2, s2, C) ∃t’:TIME ≤ t

[state(γ, t’) |= observation(i2, s2) &
¬[∃s3:SIGN, t’’:TIME ≤ t & t’’ ≥ t’

[state(γ, t’’) |= observation(i2, s3) & s2 ≠ s3]]]]

An interpretation is considered to be correct if it follows

from the most specific default rule that can be applied:

most_specific_int(γγγγ:TRACE, t:TIME, i:info_element, s:sign):
∃C:CONJUNCTION

[derivable_int(γ, t, C, i, s) &
∀C2:CONJUNCTION ≠ C, s2:SIGN

[derivable_int(γ, t, C2, i, s2) & s ≠ s2
size(C2) < size(C)]]

Based upon such most specific interpretations, actions to be
performed can be derived:

derivable_ac(γγγγ:TRACE, t:TIME, C:CONJUNCTION, i:info_element,
s:sign):

state(γ, t) |= default_rule(C, i, s, i, s) &
∀i2:info_element, s2:sign
[element_of(i2, s2, C) most_specific_int(γ, t, i2, s2)]

An action is considered to be correct in case it follows from
the most specific default rule that is applicable:

most_spec_ac(γγγγ:TRACE, t:TIME, i:info_element, s:sign):
∃C:CONJUNCTION

[derivable_ac(γ, t, C, i, s) &
∀C2:CONJUNCTION ≠ C, s2:SIGN

[derivable_ac(γ, t, C2, i, s2) & s ≠ s2
size(C2) < size(C)]]

Given the fact that it can now be derived what the correct
actions are, properties can be verified against empirical
traces to investigate the performance shown in that
empirical trace. A first property which can be verified is
whether the correct actions have been performed in the
empirical trace without taking to much time to start the
performance of this action (i.e. within duration d):

correct_action(γγγγ:TRACE, t:TIME, i:info_element, s:sign, d):
[most_spec_ac(γ, t, i, s) &
[¬∃t’:TIME < t most_spec_ac(γ, t’, i, s)] &
[¬∃t’’:TIME > t & t’’ < t + d ¬most_spec_ac(γ, t’’, i, s)]]

∃t’’’:TIME ≥ t & t’’’≤ t + d [state(γ, t’’’) |= world_state(i, s)]

Of course, things do not necessarily run so smoothly,
therefore, detection of errors is of crucial importance. An
error first of all occurs when an action is not performed that
should have been performed according to the correct
interpretation:

missing_action(γγγγ:TRACE, t:TIME, i:info_element, s:sign, d):
most_spec_act(γ, t, i, s) &
[¬∃t’:TIME < t most_spec_ac(γ, t’, i, s)] &
[¬∃t’’:TIME > t & t’’ < t + d ¬most_spec_ac(γ, t’’, i, s)] &
[¬∃t’’’:TIME ≥ t & t’’’≤ t + d [state(γ, t’’’) |= world_state(i, s)]

Furthermore, an error occurs when an action can be
performed that is not derivable from the correct
interpretation:

incorrect_action(γγγγ:TRACE, t:TIME, i:info_element, s:sign, d):
state(γ, t) |= world_state(i, s) &
¬∃t’:TIME ≤ t & t’ ≥ t – d [most_spec_ac(γ, t’, i, s)]

The properties specified above have been automatically
verified against the empirical trace of the Hercules disaster.
The analysis shows that the correct_action property is not
satisfied for the Hercules disaster trace, due to the fact that
the trace does not show that the ATC has passed the
information on the number of people on board of the plane.
As a result, the missing_action property holds. Finally, the
incorrect_action property is not satisfied, as only missing
actions occur in the trace. These results comply to the
human analysis of the Hercules disaster.

7. Conclusion
This paper shows how a number of known techniques and
tools developed within the area of nonmonotonic logic and
AI can be applied to analyze empirical material on human
reasoning and interpretation within Cognitive Science; cf.
(Stenning and van Lambalgen, 2006). The formal
techniques exploited in the empirical analysis approach put
forward are:
(1) multi-interpretation operators as an abstract

formalization of reasoning towards an interpretation,
(2) default logic to specify a multi-interpretation operator,
(3) a temporalized default logic to specify possible

reasoning traces involved in a multi-interpretation
process,

(4) an executable temporal logical language to specify a
generic executable default reasoning model to simulate
such reasoning traces, and

(5) an expressive temporal logical language to specify and
verify properties for reasoning traces

It has been shown how indeed these techniques and tools
obtain an adequate formalization and analysis of empirical
material on human reasoning in critical situations in incident
management. Simulated traces have been generated,
compared to the given empirical traces and found adequate.
Relevant properties of both simulation as well as empirical
traces have been verified and results were shown of this
verification process. The properties and default rules
presented in this paper have all been specified in a generic
fashion, such that they can easily be reused for studying
other cases.

The presented approach can be used to enable automated
detection of interpretation errors in incident management.
Such detection could potentially avoid unwanted chains of
events which might result in catastrophic consequences. As
a first case study to investigate the suitability of the
presented approach for this purpose, the Hercules disaster
has been used, showing promising results. The disaster is
representative for many of the disasters that occur. It is
however future work to perform a more thorough
evaluation, using a variety of cases.

Note that the executable temporal logical language
LEADSTO, which was used for simulation in Section 5, is
not the only language that can be used for this purpose. Also
other languages and tools are suitable, such as SModels, a
system for answer set programming in which a specification
can be written in (an extended form of) logic programming
notation, see (Niemelä et al., 2000).

References
Bosse, T., Jonker, C.M., Meij, L. van der, Sharpanskykh,

A., and Treur, J. (2006). Specification and Verification
of Dynamics in Cognitive Agent Models. In:
Proceedings of the Sixth International Conference on
Intelligent Agent Technology, IAT'06. IEEE Computer
Society Press, 2006, pp. 247-254.

Bosse, T., Jonker, C.M., Van der Meij, L, and Treur, J.
(2005) LEADSTO: a Language and Environment for

Analysis of Dynamics by SimulaTiOn. In: Eymann, T.,
et al. (eds.), Proc. of MATES'05. Lecture Notes in AI,
vol. 3550. Springer Verlag, pp. 165-178. Extended
version in: Int. J. of AI Tools, 2007.

Braine, M.D.S., and O’Brien, D.P. (eds.) (1998). Mental
Logic. Lawrence Erlbaum, London.

Brewka, G. (1994), Adding priorities and specificity to default
logic. In: MacNish, C., Pereira, L., and Pearce, D., (eds.),
Proc. of JELIA'94, LNAI, vol. 838. Springer Verlag, pp. 247-
260.

Brewka, G., and Eiter, T. (1999), Prioritizing Default Logic:
Abridged Report. In Festschrift on the occasion of
Prof.Dr. W. Bibel's 60th birthday. Kluwer.

Engelfriet, J., Herre, H., and Treur, J. (1998),
Nonmonotonic Reasoning with Multiple Belief Sets,
Annals of Mathematics and Artificial Intelligence, vol.
24, pp. 225-248.

Engelfriet, J., and Treur, J. (1998), An Interpretation of
Default Logic in Minimal Temporal Epistemic Logic.
Journal of Logic, Language and Information, vol. 7, pp.
369-388.

Engelfriet, J., and Treur, J. (2003), Multi-Interpretation
Operators and Approximate Classification. Int. Journal
of Approximate Reasoning, vol. 32, pp. 43-61.

Johnson-Laird, P.N. (1983). Mental Models. Cambridge:
Cambridge University Press.

Johnson-Laird, P.N., and Byrne, R.M.J. (1991). Deduction.
Hillsdale, NJ:Erlbaum.

Marek, V.W., and Truszczynski, M. (1993), Nonmonotonic
Logics. Springer Verlag.

Marek, V.W., Treur, J., and Truszczynski, M. (1997),
Representation Theory for Default Logic. Annals of
Mathematics and AI, vol. 21, pp. 343-358.

Ministry of the Interior (1996), Airplane Crash Airbase
Eindhoven 15th July 1996 (in Dutch), SDU Publishers,
The Hague.

NIBRA (Netherlands Institute for Fire Service and Disaster
Management) (2001), Fire Watch First Class: Airplane
Fire Fighting (in Dutch).

Niemelä, I., Simons, P., and Syrjänen, T. (2000). Smodels: a
system for answer set programming. In: Proceedings of
the 8th International Workshop on Non-Monotonic
Reasoning, Breckenridge, Colorado, USA, April 2000.

Rips, L.J. (1994). The Psychology of Proof: Deductive
reasoning in human thinking. MIT Pres, Cambridge,
Mass.

Stenning, K., and van Lambalgen, M. (2006), A working
memory model of relations between interpretation and
reasoning. Cognitive Science Journal, Elsevier Science
Inc., Oxford, UK. In press.

Reiter, R. (1980) A logic for default reasoning. Artificial
Intelligence, 13:81-132.

Tan, Y.H., and Treur, J. (1992) Constructive Default Logic
and the Control of Defeasible Reasoning. In: B.
Neumann (ed.), Proc. ECAI’92. Wiley and Sons, 1992,
pp. 299-303. Extended version: Allis, V.E., Tan, Y.H.,
and Treur, J., Meta-level Selection Techniques for the
Control of Default Reasoning. Future Generation
Computer Systems, vol. 12, pp. 189-201.

Towards Human-Like Robustness in an Intelligent Tutoring System

Hameedullah Kazi (hameedullah.kazi@ait.ac.th)
Peter Haddawy (haddawy@ait.ac.th)

Computer Sciences and Information Management Program
Asian Institute of Technology

PO Box 4, Klong Luang, Pathumthani 12120, Thailand

Siriwan Suebnukarn (ssiriwan@tu.ac.th)
School of Dentistry

Thammasat University
Khong Luang, Pathumthani 12121, Thailand

Abstract

Intelligent tutoring systems are no different from other
knowledge based systems in that they are often plagued by
brittleness. Intelligent tutoring systems for problem solving
are typically loaded with problem scenarios for which specific
solutions are constructed. Solutions presented by students, are
compared against these specific solutions, which often leads
to a narrow scope of reasoning, where students are confined to
reason towards a specific solution. Student solutions that are
different from the specific solution entertained by the system
are rejected as being incorrect, even though they may be
acceptable or close to acceptable. This leads to brittleness in
tutoring systems in evaluating student solutions and returning
appropriate feedback. In this paper we discuss a few human-
like attributes in the context of robustness that are desirable in
knowledge based systems. We then present a model of
reasoning through which a tutoring system for medical
problem-based learning, can begin to exhibit human-like
robust behavior in evaluating solutions in a broader context
using UMLS, and respond with hints that are mindful of the
partial correctness of the student solution.

Introduction
While traditional knowledge based systems often work well
for narrowly defined tasks within specialized domains, they
lack the meta-cognition and human-like common sense to
deal with unforeseen situations. Many systems suffer from
brittleness and they are often unaware of their own
limitations (McCarthy, 1984). It is normal for a complex
system to fail at some point, however what makes a system
brittle is that it shows sudden failure beyond a certain point.
Human beings also fail, however they are able to establish
some self recovery before their failure leads to catastrophe
(Nielsen et al., 2002). Thus the failure humans exhibit is
often soft and gradual rather than being hard and sudden.

The need to emulate human-like behavior in intelligent
systems has often led to an examination of how the human
mind works. Minsky (1986) describes a possible
explanation of how in the event of damage to some parts of
the brain, significant functionality is still maintained, by the
delegation of tasks to other parts that have not suffered
damage. In other words, the failure of some sub-systems

leads to a task delegation to other sub-systems, thereby
resulting in some degree of robustness.

Sloman (1996) has argued that the human mind employs a
combination of rule based and heuristic methods for
reasoning, where rule-based methods are characterized as
systematic and logical set of laws, while heuristic methods
are based on principles of association, similarity and
contiguity. Some researchers have advocated the use of
heuristic methods as a solution to the problem of brittleness
in knowledge based systems. Accurate results may not be
achievable where factual knowledge is found to be
insufficient or the knowledge base is known to contain gaps,
in which case heuristic methods can be employed to achieve
partially correct, if not fully accurate results (Paritosh,
2006). These heuristic methods should be able to exploit the
knowledge structure of the knowledge based system to
provide reasonable answers.

In the next few sections we describe how the issues of
gradual failure, self analysis of limitations, self recovery,
task delegation and the use of multiple modes of reasoning
in the context of robustness, can be applied to an intelligent
tutoring system for medical problem-based learning (PBL)
using UMLS (U.S. National Library of Medicine, 2007),
which is a collection of various medical ontologies.

Robust Output Quality
A knowledge based system is designed to respond to input
which has a specific format and is confined to a certain
scope of knowledge. If the input happens to fall outside this
scope, the output quality is expected to deteriorate. Groot,
Teiji & Harmelen (2005) describe how a quantitative
analysis of the robustness of knowledge based systems can
be achieved. They outline a few definitions of robustness,
one of which is that the output quality of a knowledge based
system should decrease monotonically with decrease in
input quality. They mention that while this demand may be
practically too strong, a system that exhibits somewhat
monotonic output may be considered robust. They also
argue that the rate of output quality change in a robust
knowledge based system, should be slow. A knowledge
based system that is brittle, will exhibit abrupt degradation

in its output quality as the input quality deteriorates beyond
a certain point. However, a robust system will show a
smooth degradation in its output quality as the input quality
deteriorates beyond the edge of the system knowledge as
shown in Figure 1.

Figure 1: Smooth vs. Abrupt Degradation

Reasoning Scope in Medical Tutoring Systems
Intelligent tutoring systems can be considered knowledge
based systems whose problem solving activity is to evaluate
student solutions to a posed problem and provide feedback
to the students in the form of hints. The task of generating
intelligent hints that are suited to the knowledge level of the
student, is addressed in many tutoring systems (Kabassi,
Virvou & Tsihrintzis, 2006; Suebnukarn & Haddawy, 2006)
as part of student modeling. However the task of evaluating
student solutions in a broad scope of reasoning is yet to be
addressed in sufficient depth. Tutoring systems that offer
some latitude in accepting differing solutions often confine
students to a narrow scope of solution representation.
Crowley & Medvedeva, (2006) accept a broad range of
solutions for a given problem, but students are restricted to a
local and customized ontology for choosing their solution
concepts. Lulis, Michaels & Evens, (2004) emphasize the
need for qualitative reasoning in tutoring systems and
provide a mechanism through which students are able to
present qualitative responses, however the response is only
confined to assigning values to a small set of variables. The
COMET system (Suebnukarn & Haddawy, 2006) provides
an interface through which students can construct their
hypothesis (solution) in the form of a directed acyclic graph.
It evaluates a student hypothesis by comparing it against a
specific expert solution. Nodes in the hypothesis that are not
found in the expert solution are simply deflected and the
system responds with the hint “<Node> is beyond the scope
of this problem”.

The responses of such tutoring systems in unanticipated
situations are quite contradictory to how a human tutor
would normally respond. If the student response happens to
fall outside the scope of the tutoring system’s knowledge,
the system responds with a premeditated hint that is often
oblivious of the partial correctness of the student response.
At the same time these tutoring systems are devoid of the
meta-cognitive ability to assess their own capability in order
to inform the student of the system’s limitations or to
attempt self recovery.

This motivates the need to have a medical tutoring system
that offers students a broad scope of hypothesis
representation and at the same time offers an assessment of
the student hypothesis that describes the quality or degree of
correctness. The tutoring system should be able to respond
with certainty when the knowledge base is found to be
sufficient. However when the knowledge base is not found
to be sufficient, the system should be able to exploit its
knowledge structure to achieve partial if not complete
results. Thus the system should exhibit a gradual
deterioration in quality when its knowledge limit is reached.
Such a tutoring system should also have the ability to assess
its own limitations and be able to inform the students about
these limitations, which can help the students to reason
accordingly.

Robustness Vis-à-Vis Tutoring Systems
The proposed tutoring system is designed to cover PBL in
the medical domain. A PBL session typically comprises of a
group of 6-8 students, who are given a problem to solve
within a period of about two hours. Based on the description
of the problem scenario posed to the students, they are
expected to form their solution in the form of a hypothesis
graph, where graph nodes represent medical concepts and
directed edges indicate the cause effect relationships
between respective nodes.

Figure 2: System Prototype

We have developed a system prototype using java. The
problem representation in our system is the same as that in
COMET (Suebnukarn et al., 2006) of a directed acyclic
graph to describe a hypothesis. The hypothesis graph is
based on the Illness Script (Feltovich & Barrows, 1984),
where nodes are enabling conditions, faults or
consequences. The knowledge base of our system is formed

Abrupt Degradation

Input Quality

O
ut

pu
t Q

ua
lit

y

Input Quality

O
ut

pu
t Q

ua
lit

y

Smooth Degradation

Edge of
system

knowledge

Hypothesis Board

Text chat pane

by combining UMLS tables with an additional table that
represents causal links between concepts. The system
interface provides students with a workspace as a hypothesis
board to form their hypothesis, along with a text chat pane
through which the system returns feedback in the form of
hints, as shown in Figure 2. For purposes of forming their
hypothesis, students choose concepts from the diverse and
widely available UMLS Metathesaurus (U.S. National
Library of Medicine, 2007), as hypothesis nodes. For
example, students are presented a problem scenario related
to diabetes:

“A 45-year-old woman came to the clinic with
following symptoms: tiredness, always thirsty, voided
frequently with large amount of urine for 4-5 months.
She voided approximately 10 times during the day and
4-5 times during the night. She was hungry quite often
but lost 5 kgs body weight during the past 4 months.
She also had numbness, leukorrhea and delayed wound
healing”.
A student hypothesizes that hyperglycemia is a cause of

diabetic neuropathy which is shown to be a cause of
numbness, in Figure 2.

False Link True Link

Accepted

Rejected

False Link True Link

Accepted with
Reservation

Rejected with
Suggestive Hint

Figure 3: Desired Degradation Curve

Each hypothesis causal link drawn by the students needs
to be evaluated against the knowledge base to determine
whether the link drawn by the student should be accepted or
rejected along with a hint to provide feedback. The output

quality of an intelligent tutoring system is essentially
comprised of two main components: evaluating student
hypothesis and returning intelligent feedback as in the form
of hints.

A causal link that is considered by a human tutor to be
correct is henceforth referred to as a true link, whereas a
causal link considered by a human tutor to be incorrect, is
referred to as a false link. For all links that lie beyond the
edge of the system knowledge, the output quality will be
high if a true link is accepted or a false link is rejected by the
system, as shown in Figure 3. However, if a false link is
accepted without reservation or a true link is rejected
without suggestive feedback that recognizes the partial
correctness of the link, the output quality will be very low,
as shown in Figure 3. Thus the output quality, without
reservation or suggestive feedback in the hints, will be
marked by fluctuating highs and lows. A system which
produces fluctuating output quality as a result of
deteriorating input quality is less predictable (Groot et al.,
2005) and is considered less robust.

Therefore, for all hypothesis links that lie beyond the edge
of the system knowledge, accepted links need to be
supported with hints that show some form of reservation and
suggest improvement to the causal link. Likewise rejected
links need to be supported with suggestive hints that
acknowledge partial correctness of the link or the closeness
of the link to a true causal link, to result in somewhat
smooth degradation as shown in Figure 3. The exact
gradient of the curve shown in Figure 3 will be dictated by
the nature of hints, as they vary from one situation to
another.

Three Tier Model for Robustness
Robustness in our system is made possible through the use
of a broad and widely available medical knowledge source
such as the UMLS. The system design towards maintaining
human-like robustness comprises of a three tier model, as
shown in Figure 4. The tiers are successively applied in
order of necessity. The first tier is a rule-based expert
knowledge base, while the second tier is a heuristic method
of computing semantic distance using knowledge structure
within UMLS, whereas the third tier is based on a
probabilistic Bayesian model.

Figure 4: Three Tiers of Robust Reasoning

Input Quality

O
ut

pu
t Q

ua
lit

y

Smooth Degradation

Edge of system
knowledge

Bayesian Model

Semantic Distance

Expert
Knowledge

The system makes it a matter of priority to first employ
the rule-based tier which contains sure knowledge for
reasoning purposes. If the first tier fails to deliver, the
system employs the heuristic mechanism in the second tier.
If the second tier fails too, the system uses the robust but not
so accurate, third tier of probabilistic Bayesian model. Thus
the system applies a step wise fallback approach of
employing multiple modes of reasoning that are designed to
provide self recovery and smooth degradation in output
quality with deteriorating input quality.

Rule-Based Expert Knowledge Base
This knowledge base is in the form of a database table that
comprises of sure knowledge which contains causal links
such as:

Diabetes Hyperglycemia
Hypoinsulinism Hyperglycemia
Glucose Metabolism Disorder Hyperglycemia
Hyperglycemia Diabetic Neuropathy
Diabetic Neuropathy Numbness
This knowledge base is formed through the collation of

causal links found in expert solutions to various problems,
and the causal links found in student solutions that are
certified by the domain experts to be correct.

While evaluating a causal link between two concepts in
the student hypothesis, the system first attempts to find the
respective link in this knowledge base, as an attempt to use
rule based certain knowledge. If the system finds the
hypothesis link in this knowledge base, the link is accepted,
knowing that this comes from part of the system’s rule-
based certain knowledge. Additionally, the system also
checks to see if an indirect link between the two concepts is
found or if there is a reverse link that exists between the
respective concepts. However, if the link is not found in this
knowledge base, the system resorts to the heuristic method
in an attempt to achieve a partial if not completely accurate
assessment of the link under evaluation.

Heuristic Measure of Partial Correctness Using
Semantic Distance
In this mode of reasoning, the system exploits the
knowledge structure within UMLS to evaluate partial
correctness of the causal link under evaluation, thereby
attaining some degree of robustness. The node, from which
the causal edge in the student hypothesis is emanating, is
henceforth referred to as the source node, whereas the node,
towards which the causal edge is leading to, is referred to as
the target node. The system checks if either the target node
or source node is found in any of the acceptable solutions to
the given problem. If the target node is found, the system
measures the semantic distance between the source node
and each of the nodes that are known to cause the target
node. Thus the system measures the closeness of the source
node to nodes that are known to cause the target node,
thereby obtaining a measure of partial correctness of the
hypothesis link under evaluation.

The semantic distance is measured by employing a
modified version of the method described by Al-Mubaid &

Nguyen (2006). Parent-child relationships from the UMLS
Metathesaurus are used to construct the parental hierarchy
of both nodes between which semantic distance is to be
measured. An appropriate hint indicating the partial
correctness or the closeness of the link to a plausible one is
returned to the students.

However, if the target node is not found in the acceptable
solutions, the system checks if the source node is found, in
which case the comparison is made between the target node
and each of the nodes that are known to be caused by the
source node.

Figure 5: Parental Trees of Two Concepts

The semantic distance is only computable if the parental
trees of both concepts, between which distance is to be
measured, are actually connected. For example, based on the
connected parental trees of hyperlipidemia and glucose
metabolism disorder (GMD) shown in Figure 5, the
semantic distance between GMD and hyperlipidemia is
2.83, whereas the semantic distance between GMD and
metabolic diseases is 1.09. However, if the parental trees
from both concepts happen to be disjoint, semantic distance
is not computable. In this situation, the system resorts to the
method of estimating likelihood of the source node causing
the target node through the Bayesian model.

Bayesian Model of Causal Links
Work done in extracting causal relationships between
medical concepts in UMLS (Burgun & Bodenreider, 2001;
Mendonca & Cimino, 2000) inspires us to use the Bayesian
Network shown in Figure 6. This Bayesian network is used
to determine the likelihood of a causal relation between
nodes representing concepts A and B. Causal Relation is a
Boolean node, where a true value indicates causal relation
between nodes A and B, while a false value indicates the
lack of a causal link between the respective nodes. Semantic
Type A is the semantic type of concept A as defined in
UMLS, and Semantic Type B is the semantic type of concept
B. Each concept in the UMLS Metathesaurus is categorized
under at least one semantic type from a list of 135 semantic
types in the UMLS semantic network (U.S. National Library
of Medicine, 2007). Co-Occurrence Frequency gives the
frequency with which the two concepts are known to have
co-occurred in medline citations, and is extracted from the
UMLS table mrcoc. Co-Relation Radius is the radius

Metabolic Diseases

Glucose
Metabolism Disorder

Hyperinsulinism

Hyperlipidemia

Hyperglycemia

distance within which concept A is known to be related to
concept B. Co-Relation Radius is assigned a value of zero if
the concepts are found to be directly related in the UMLS
Metathesaurus, one if there is one intermediate node
between A and B, and two if the relation radius is greater
than one or if the concepts are not related at all.

Figure 6: Bayesian Network for Causal Relationship

In order to estimate the likelihood of the causal link
between two concepts A and B, the semantic types of both
concepts, their co-occurrence frequency, and their relation
radius is fed to the Bayesian network as evidence. The
updated belief for true value of Causal Relation is examined
to get the probability of causal relation between A and B.
Based on the retrieved probability value, appropriate hints
are returned to the student.

Examples of Pedagogical Strategy Based on
Step-Wise Fallback

While evaluating hypothesis links, only those links that are
found in the expert knowledge base are accepted without
any kind of feedback, explanation, or reservation. Links, for
which the semantic distance is found to be below a certain
threshold, are accepted with reservation. All other links are
rejected, and appropriate feedback is returned based on the
reasoning tier that was applied.

For purposes of illustration, we present a few examples of
how the three tiers are applied in a step-wise fallback
fashion while evaluating hypothesis links and how the tutor
responds with appropriate hints. Consider the problem
scenario described earlier of a patient with diabetic
symptoms. While solving the case, the student draws causal
links between various concepts and receives corresponding
feedback from the tutoring system.

Figure 7: Student Hypothesis Link

For the hypothesis link in Figure 7, the system detects an
indirect link, rejects this link and responds with the hint:
“Think of the underlying mechanism why hyperglycemia
causes numbness”. However if the student tries to draw a
link from numbness to hyperglycemia, the system detects a

reverse link and responds with the hint: “On the contrary,
think of hyperglycemia as a cause of numbness”.

Figure 8: Student Hypothesis Link

For the hypothesis link in Figure 8, the system does not
find a corresponding link in the knowledge base, so it
checks the semantic distance between hyperlipidemia and
GMD, rejects the link, and responds with the hint:
“Hyperlipidemia is fairly close to a known cause of
hyperglycemia. Instead of hyperlipidemia, think more
specifically about other metabolic diseases”.

Figure 9: Student Hypothesis Link

For the hypothesis link in Figure 9, the system does not
find a corresponding link in the knowledge base, but since
the semantic distance between metabolic diseases and GMD
is found to be very small, it accepts the link with reservation
and responds with the hint: “Metabolic diseases is very
close to a known cause of hyperglycemia. Metabolic
diseases may be acceptable. However, think more
specifically about kinds of metabolic diseases”.

Figure 10: Student Hypothesis Link

For the hypothesis link in Figure 10, the system does not
find the link in the knowledge base, and semantic distance is
not computable. The system rejects the link and responds
with the hint: “Diabetic retinopathy is not known to be a
cause of numbness. Likelihood of causal relation between
diabetic retinopathy and numbness is very low”.

Figure 11: Student Hypothesis Link

For the hypothesis link in Figure 11, the system does not
find the link in the knowledge base, and semantic distance is
not computable, so the system rejects the link. However,
since the Bayesian likelihood is high, the system responds
with the hint: “There may be a causal relation between nerve
degeneration and numbness”.

NumbnessNerve Degeneration

NumbnessDiabetic Retinopathy

Hyperglycemia Metabolic Diseases

Hyperglycemia Hyperlipidemia

Co-Occurrence
Frequency

Co-Relation
Radius

Causal Relation

Semantic
Type A

Semantic
Type B

Hyperglycemia Numbness

As shown above, the hints inform the student about the
closeness of the hypothesis link to a plausible link. If this
information is not available, the system provides
information about the likelihood of the causal link. At the
same time, the language of the hints generated by the
system, informs the student of the tutor’s reasoning
limitations, which is likely to lead to improved reflective
thinking and hence better learning.

Initial Evaluation
The initial evaluation of our system was based on the
agreement ratings of a collection of 15 causal links along
with their respective hints, which were presented to an
experienced human medical tutor at Thammasat University.
The causal links comprised of five links each from three
cases, for which we have already collected human expert
solutions. The three cases are based on disorders such as
diabetes, heart attack and pneumonia. On an agreement
scale ranging from 1 (Strongly Disagree) to 5 (Strongly
Agree), the human tutor was asked to rate various hints for
each causal link. The average score of hints based on our
measure of partial correctness and causal likelihood was
4.13, whereas the average score of the hints without the
partial correctness and causal likelihood feedback was 2.13.

Conclusions
In this paper we have described a multi tier approach in an
intelligent tutoring system towards exhibiting human-like
robust behavior in evaluating student hypotheses and
responding in the form of hints. We have also discussed
how the notion of gradual and smooth degradation in the
output quality as a result of deteriorating input quality,
applies to intelligent tutoring systems. Our approach
towards incorporating robustness is innovative in employing
a combination of rule-based, heuristic and probabilistic
approaches applied successively in order of necessity,
incorporating the notions of self recovery and task
delegation. We have presented illustrative examples of how
such human-like gradually deteriorating output quality can
be observed in the responses of a medical tutoring system
for PBL.

The initial assessment of our approach and feedback from
human domain experts seems to indicate that the proposed
methods can be useful in helping medical students acquire
clinical reasoning skills. We have started to collect samples
of student hypotheses for three different problem scenarios
covering diseases and disorders such as diabetes, heart
attack and pneumonia. We intend to conduct sub-system
evaluations of the method of computing semantic distance
and the method of estimating likelihood of a causal link
between two concepts using the Bayesian model. Finally,
we plan to measure the effectiveness of our generated hints
compared with human tutors and perform quantitative
evaluations of the pedagogical strategy incorporated in our
system.

References
Al-Mubaid, H., & Nguyen, H. A. (2006). A Cluster Based

Approach for Semantic Similarity in the Biomedical
Domain. Proceedings of the 28th IEEE EMBS Annual
International Conference, New York, USA, Aug 30-Sept.
3, 2006.

Burgun, A., & Bodenreider, O. (2001). Methods for
exploring the semantics of the relationships between co-
occurring UMLS concepts. MedInfo, 2001, 10(Pt 1), 171-
175.

Crowley, R., & Medvedeva, O. (2006). An Intelligent
Tutoring System for Visual Classification Problem
Solving. Artificial Intelligence in Medicine, 2006, 36 (1),
85-117.

Feltovich, P. J., & Barrows, H. S. (1984). Issues of
generality in medical problem solving. In H. G. Schmidt
and M. L. De Volder (Eds.) Tutorials in problem-based
learning: A new direction in teaching the health
professions. The Netherlands: Van Gorcum.

Groot, P., Teije, A. T., & Harmelen, F. V. (2005). A
Quantitative Analysis of the Robustness of Knowledge-
Based Systems Through Degradation Studies. Knowledge
and Information Systems, 7 (2), 224-245.

Kabassi, K., Virvou, M., & Tsihrintzis, G. A. (2006).
Requirements Capture for a Personalized Medical Tutor.
Proceedings of International Special Topic Conference on
Information Technology in Biomedicine, Ioannina,
Greece, October 26-28, 2006.

Lulis, E., Michael, J., & Evens, M. (2004). Using
Qualitative Reasoning in the Classroom and in Electronic
Teaching Systems. Proceedings of the 18th International
Workshop on Qualitative Reasoning, Northwestern
University, Evanston, IL August.

McCarthy, J. (1984). Some expert systems need common
sense. In H. Pagels (ed.), Computer Culture: The
Scientific, Intellectual, and Social Impact of the
Computer. Annals of the New York Academy of
Sciences, Vol. 426, 129-137.

Mendonca, E. A., & Cimino, J. J. (2000). Automated
Knowledge Extraction from MEDLINE Citations.
Proceedings of AMIA 2000 Fall Symposium, 575-579.

Minsky, M. (1986). The Society of Mind. New York: Simon
& Schuster.

Nielsen, P., Beard, J., Kiessel, J., & Beisaw, J. (2002).
Robustness in Modeling Behavior Overview. Proceedings
of 11th CGF-BR Conference, May, 2002.

Paritosh, P. K. (2006). The Heuristic Reasoning Manifesto.
Proceedings of QR’06, Hanover, New Hampshire, July
10-12, 2006.

Sloman, S. A. (1996). The empirical case for two systems of
reasoning. Psychological Bulletin, 119, 3-22

Suebnukarn, S., & Haddawy, P. (2006). Modeling
individual and collaborative problem-solving in medical
problem-based learning. User Modeling and User
Adapted Interaction, 16 (3), 211-248.

U.S. National Library of Medicine, (2007). 2007AA
Introduction. Retrieved April 19, 2007 from the World
Wide Web:

http://www.nlm.nih.gov/research/umls/umlsdoc_intro.html

http://www.nlm.nih.gov/research/umls/umlsdoc_intro.html

Using Simulations to Model Shared Mental Models

William G. Kennedy (bill.kennedy@nrl.navy.mil)
J. Gregory Trafton (trafton@itd.nrl.navy.mil)

Navy Center for Applied Research in Artificial Intelligence
Naval Research Laboratory, 4555 Overlook Avenue SW

Washington, DC 20385 USA

Introduction
Good team members seem to have the ability to simulate
what others on the team will do in different situations.
Team researchers have long studied what makes an effective
team. Their methodology has been to examine how high
and low performing teams accomplish team-related tasks.
They have suggested that a good team-member has three
knowledge components (Cannon-Bowers, Salas, &
Converse, 1993):
 (1) Knowledge of own capabilities [meta-knowledge],
 (2) Knowledge of the task, and
 (3) Knowledge about the capabilities of their teammates.

Most researchers have suggested that these three
components are deeply inter-related; without any one of
these, a person is not a good team member. However,
without a computational theory, these claims can be difficult
to examine empirically.

The focus of this paper is the third component, the
cognitive modeling done of a teammate’s cognitive
processes. This shared understanding of teammates is
frequently called a shared mental model (Mathieu, Heffner,
Goodwin, Salas, & Cannon-Bowers, 2000). We start with
the premise that humans use themselves as an initial model
of their teammate, and then refine it as the team (and
individuals within the team) gains experience. Our primary
research goal is to create a computational theory of
teamwork by modeling the individuals within the team so
that we can eventually build plausible robots for teamwork
and human-robot interaction.

Method
To explore teamwork at the individual level, we
implemented a simple cognitive model of shared mental
models in a desk-top simulation of a robotic member of a
team. The scenario used to test the value of the robot
cognitively modeling a teammate was a two-agent security
guard force made up of one human and one robotic agent,
patrolling a warehouse with two separated guard stations.
They begin in positions approximately across the warehouse
from each other and move around the perimeter. When an
alarm sounds, they must “man” the two security stations as
soon as possible. The performance measure was simply the
time (in steps) it takes for the team to fill both stations after
the alarm sounds.

We used ACT-R (Anderson et al., 2004; Anderson &
Lebiere, 1998) to model the robot’s reasoning, including its
modeling of the human. ACT family of theories ("ACT-R
Research Group") has a long history of integrating and
organizing psychological data. It has also been broadly
tested in psychological and computational terms.

This project builds on our embodied robotic systems
(Kennedy et al., in press; Trafton, Schultz, Bugajska, &
Mintz, 2005; Trafton et al., 2006). To make the project
tractable, we modeled both the human and robot as having
the same movement capabilities such that both would take
the same number of steps to cover the same distance. This
assumption will clearly need to be revisited when we add
the models to physical robots. The necessary spatial
representations and reasoning capabilities were already
included in the system: the cognitive model had the use of a
10-by-10, 2-D cognitive map from which the security
stations closest to each agent could be determined.
However, to simulate human’s general weakness in
accurately estimating distances outside the grasping range
(Previc, 1998), the system could not always determine
which station was closer and the model had to deal with that
ambiguity. Finally, the robot’s cognitive model of the
human presumed the human would reason and behave the
same as the robot would.

For this project, we have initially modeled two simple
cases. The first case represents neither agent having any
model of the other agent and simply doing what is best for
each agent independently, i.e., going to their nearest station.
If both agents arrive at the same station, one must go to the
other station and this is inefficient in both time and safety.
The second case represents a leader-follower shared mental
model where the leader, typically the human, goes to her
closest station, and the follower, typically the robot, must go
to the other station. This avoids the conflict of both going
to the same station.

Simulating others in ACT-R
The robot could “see” the environment and used rule-based
behavior to patrol the perimeter of the warehouse prior to an
alarm and, with no shared mental model, what to do after
the alarm. To decide what to do when the alarm sounded
when using a shared mental model, the robot needed to
model the behavior of the human. The robot modeled the
human by explicitly taking information about how the robot
would deal with the alarm and spawning that knowledge off
as a simulation of the human teammate’s decision making.
The simulation decided what action the human would take

in the current situation. Hence, the robot simulated what the
human would do by explicitly modeling what it would do
itself in a similar situation.

To run a spawned ACT-R model, a new model needs to
be initialized with its own declarative memory, productions,
and initial goal. This capability is part of the current version
of ACT-R (R1.2-370]). To model how the human would
react to the current situation, the robot’s cognitive model
spawned a cognitive model of the human using declarative
memory of the current situation appropriately modified to
place the robot in the human’s situation, and provided the
productions the robot itself used to decide what to do for the
first, i.e., self-centered case. The simulation’s initial goal
was to determine which station the robot would go to if it
was in the human’s situation.

With the results of the simulation of what the human
would do, the robot then decided to go to the other station,
in accordance with the shared mental model that the human
will lead and the robot follow. Figure 1 shows traces of a
run in which both agents arrive at the same station and one
then goes to the other station and a run in which, through
having a shared mental model, they avoid the collision. The
human began in the top line at position “a” and the robot
began at “a” in the bottom. The sequential letters mark their
steps counterclockwise prior to the alarm. The alarm
sounded at “p” and the run ends when both guard stations
“1” and “2” are filled.

Figure 1. Traces of agents colliding (left) and avoiding
collision (right) based on a shared mental model.

Results and Discussion
We found that for even this simple scenario, the useful,
shared mental model significantly improved the team’s
performance: with 25 simulated runs each, the system that
used a shared mental model and cognitive modeling of its
teammate took 3.28 fewer steps than the system that did not,
t(27.7) = 8.1492, p < .001 with the Welch correction for
unequal variances.

By basing the robot’s cognitive model of the human on
what it would do in the human’s place, the task required
creating only the declarative memory to simulate the robot
taking the human’s place and one additional production to
terminate the simulation.

This work demonstrates that the impact of one agent’s
cognitive modeling of another agent can be effective even in

a simple scenario. We expect that there are many aspects of
teamwork and cognitive modeling of shared mental models
that can be explored using similar techniques. As an
example, the flexibility of specifying the declarative
memory and productions that will be used by the spawned
cognitive model, allows cognitive models to consider the
effects of hypothetical declarative knowledge and
productions.

Acknowledgments
We wish to thank Dan Bothell for modeling help. This
work was performed while the first author held a National
Research Council Research Associateship Award at the
Naval Research Laboratory and was partially supported by
the Office of Naval Research under job order numbers 55-
8551-06, 55-9019-06, and 55-9017-06. The views and
conclusions contained in this document should not be
interpreted as necessarily representing the official policies,
either expressed or implied, of the U. S. Navy.

References
ACT-R Research Group. ACT-R Retrieved October 13,

2006, from http://act-r.psy.cmu.edu/
Anderson, J. R., Bothell, D., Byrne, M. D., Douglas, S.,

Lebiere, C., & Qin, Y. (2004). An integrated theory of
mind. Psychological Review, 111(4), 1036-1060.

Anderson, J. R., & Lebiere, C. (1998). The Atomic
Components of Thought. Mahwah, NJ: Erlbaum.

Cannon-Bowers, J. A., Salas, E., & Converse, S. (1993).
Shared mental models in expert team decision making. In
N. J. Castellan (Ed.), Individual and group decision
making (pp. 221-246). Hillsdale, NJ: Lawrence Erlbaum
Associates.

Kennedy, W. G., Bugajska, M. D., Marge, M., Fransen, B.
R., Adams, W., Perzanowski, D., et al. (in press). Spatial
Representation and Reasoning for Human-Robot
Collaboration. Paper to be presented at the National
Conference of the Association for the Advancement of
Artificial Intelligence, Vancouver, BC.

Mathieu, J. E., Heffner, T. S., Goodwin, G. F., Salas, E., &
Cannon-Bowers, J. A. (2000). The influence of shared
mental models on team process and performance. Journal
of Applied Psychology, 8(2), 273-283.

Previc, F. H. (1998). The neuropsychology of 3-D space.
Psychological Bulletin, 124(2), 123-164.

Trafton, J. G., Schultz, A. C., Bugajska, M. D., & Mintz, F.
E. (2005, 13-15 August 2005). Perspective-taking with
robots: experiments and models. Paper presented at the
International Workshop on Robot and Human
Interactions.

Trafton, J. G., Schultz, A. C., Perzanowski, D., Adams, W.,
Bugajska, M. D., Cassimatis, N. L., et al. (2006).
Children and robots learning to play hide and seek. Paper
presented at the 2006 ACM Conference on Human-Robot
Interactions, Salt lake City, UT.

http://act-r.psy.cmu.edu/

Investigation of Procedural Skills Degradation from Different Modalities

Jong W. Kim (jongkim@psu.edu)
Richard J. Koubek (rkoubek@psu.edu)

Department of Industrial and Manufacturing Engineering

Frank E. Ritter (frank.ritter@psu.edu)
College of Information Sciences and Technology

The Pennsylvania State University, University Park, PA 16802 USA

Abstract
Can we help people forget less by knowing how they learn?
Can we decrease forgetting by modifying what they learn?
These have been long-standing questions in applied cognitive
psychology. This paper reports a study designed to investigate
procedural skills degradation in a set of spreadsheet tasks. The
task can be taught and performed as knowledge and skills that
are declarative or procedural, and perceptual-motor or
cognitive. To examine the effect of these characteristics on
learning and forgetting, one group of participants used key-
based commands to complete the task, and the other group
used a novel mouse and menus to do the task. Participants
were able to learn the task well in four learning sessions.
Retention intervals (6-day or 18-day) showed clear effects on
the amount of forgetting. This paradigm can measure
forgetting in terms of modalities and skill types. We found
evidence that the menu mode was not better than keystrokes.
Furthermore, the modalities showed different effects on
forgetting in terms of retention intervals.

Keywords: forgetting; procedural skills; modalities

Introduction
Disuse or infrequent use of knowledge and skills can pro-
duce poor human performance. A generally observed human
characteristic is that learning is often forgotten. Knowing
how people forget in various tasks can help to produce
better performance.

Previous forgetting studies have measured degradation of
declarative knowledge. For example, Pavlik and Anderson
(2005) investigated forgetting of a paired-associates of
declarative knowledge.

To help learning by decreasing forgetting, there are sev-
eral approaches already proposed and studied such as
maximizing the amount of original learning, using refresher
training, or optimizing retention intervals (e.g., Farr, 1987;
Healy, 1995; Sabol & Wisher, 2001; Wisher, Sabol, & Ellis,
1999).

In this study of procedural tasks, we investigated an
approach to decrease forgetting by modifying the modality,
knowledge, and skills in that task, based on a theory based
on the learning and forgetting equations in ACT-R
(Anderson & Lebiere, 1998).

Types of Knowledge and Skills
Surveys have shown that personnel in technical jobs per-
form mostly procedural tasks (Tarr, 1986). For example, in

an emergency situation, the most important knowledge and
skills would be procedural, such as cardiopulmonary resus-
citation (CPR) or a decontamination task of biologi-
cal/chemical agents. A procedural task includes several
decision-making points as cognitive tasks. Konoske and
Ellis (1991) noted that many procedural tasks can be viewed
as an ordered sequence of steps or operations performed on
a single object or in a specific situation to accomplish a
goal.

Several theoretical views support this view of procedural
and declarative knowledge. Anderson and his colleagues
have proposed representations of declarative and procedural
knowledge and their corresponding memories (Anderson &
Lebiere, 1998). They note that declarative knowledge indi-
cates factual information and procedural knowledge indi-
cates knowledge representing our behavior.

Another terminology, “how-to-do-it” knowledge, has
been recognized in the literature (Kieras, 1997). A user per-
forming a task uses “how-to-do-it” knowledge that can be
typically modeled using production rules. This “how-to-do-
it” knowledge is also viewed as procedural knowledge
because it also describes our behavioral aspects of perform-
ance with goals, operators, methods, and selection rules.

Forgetting Procedural Skills

Humans acquire knowledge and skills from training. The
acquired knowledge and skills can be forgotten with the
passage of time. Forgetting can cause decreased
performance.

Particularly, procedural skills may not be always well
retained over time and they need to be. For example, non-
medical trainees on a space flight may need to rapidly
perform an advanced cardiac life support task during space
flight missions (Ramos & Chen, 1994). Cardiopulmonary
resuscitation (CPR) is an emergency medical procedure for
restoring normal heartbeat and breathing to victims of heart
failure. McKenna and Glendon (1985) studied skill retention
of CPR. They had 120 occupational first responders as
experimental subjects. They reported that less than a quarter
of their trained personnel were skillful at performing the
CPR task six months after training.

Interestingly, as shown in the study, procedural skills are
not always well retained. The CPR task is a procedural task
that includes several decision-making points as cognitive
tasks. Therefore, it is presumed that there may exist differ-

ent relationships of forgetting between different types of
knowledge and skills.

Hagman and Rose (1983) mentioned that the best predic-
tor of forgetting is the number of steps required in the pro-
cedural tasks. There is a supporting study of skill retention
by the US Army Research Institute during the mobilization
of the Individual Ready Reserve (Sabol & Wisher, 2001;
Wisher, Sabol, Sukenik, & Kern, 1991). However, it seems
that we rarely forget how to ride a bicycle or how to swim
after learning these skills. These are perceptual-motor
control skills. This aphorism and their investigations suggest
that procedural (discrete) skills might be forgotten much
more rapidly than perceptual-motor (continuous) skills.

A Way to Test Forgetting

Research of text editing skills has provided important find-
ings on human performance and information processing. For
example, Card, Moran, and Newell (1983) studied how a
user’s skills would interact with computer-based systems
focusing on text editing tasks. Singley and Anderson (1989)
investigated the transfer of cognitive skills in text editing
tasks by providing an in-depth theory of learning through
the ACT* architecture.

In our study, as an extension of text editing tasks, a set of
spreadsheet tasks were examined to measure degradation of
procedural knowledge and skills. A spreadsheet task pro-
vides cognition-demanding task characteristics for the
experimental study, and it can be modified to support differ-
ent types of inputs. It also provides a task with some eco-
logical validity. Our spreadsheet task is done with a tool
that allows us to examine two sets of knowledge and skills,
that is, procedural or declarative, and cognitive or percep-
tual-motor skills.

Can a Cognitive Model Predict a Forgetting
Curve?
Cognitive architectures provide a framework to build a
model. The architectures not only support but also confine
modeling capabilities to provide models that match possible
human behavior (Taatgen, Lebiere, & Anderson, 2006).

These architectures have started to be used to examine
forgetting. Pavlik and Anderson (2005) investigated the
spacing effects of a paired-associates memory and optimi-
zation of learning based on the ACT-R architecture (see
Anderson & Lebiere, 1998). ACT-R is a cognitive architec-
ture and has been validated to model human behavior and
learning in a variety of tasks (Anderson & Lebiere, 1998).

Chong (2004) stated that the existing set of mechanisms
from several architectures could not model forgetting
procedural skill. For example, EPIC does not provide a rule
learning mechanism. In Soar, as a rule learning mechanism,
chunking is used to model learning but not skill degradation.
ACT-R is limited to learning and forgetting of declarative
knowledge. Thus, it is worth exploring and extending the
existing architectural mechanisms to model procedural skill
degradation.

We are using ACT-R for this project. For the first step of
our investigation, we delved into the utility theory in ACT-
R 5 and report findings in this paper. In the meanwhile, the
current version of ACT-R 6 introduced a new utility
learning mechanism. The utilities of productions change in
terms of the rewards they receive based on the difference
learning equation. It is necessary to note that the current
version of ACT-R 6 no longer uses the PG-C formulation.

ACT-R 5 selects one production to fire among competing
productions, to achieve the model’s goal. The mechanism
allows a model to learn problem-solving strategies from
experience based on the probability of success and the
relative cost of different strategies in a production. Each
production rule is associated with a utility value indicating
how much the production is able to achieve the model’s
current goal (U

i
= P

i
G C

i
+). P

i
 is the expected probabil-

ity to successfully achieve the model’s current goal. The
probability is decomposed to q and r (P = qr , where q is
the probability that a production will achieve its intended
next state, and r is the probability that the production
achieves its goal when it arrives at the intended next state).
C
i
 is the expected cost to achieve the model’s objective. G

is the value of the goal. is noise.
The probability of success is calculated by the number of

successes divided by the number of successes and failures,
as shown in equation 1.

P = r(t) =
Successes(t)

Successes(t) + Failures(t)
, q = 1 (1)

This is the probability learning equation in ACT-R 5.
Lovett (1998, p. 265) proposed time-based decay in ACT-
R’s production parameter learning. This mechanism dis-
counts past experience and adjusts the timing of successes
and failures. Similar to the ACT-R’s base level activation,
each success and failure experience in a production is
decayed in terms of a power function.

Successes(t) = t
d (2)

Failures(t) = t d (3)

We simply applied the time-based decay mechanism of
ACT-R’s production parameter learning to modeling of skill
degradation. Successes can be considered as learning
sessions and failures can be knowledge retention without
learning. Figure 1 shows the probabilities (r(t)) of
achieving a goal over time using equations from Lovett
(1998). From Day 1 to 4, the probabilities increase
indicating learning. Then, without learning, the values of
r(t) decrease, and increase again with learning.

To test the general results of this theory (that knowledge
is learned and forgotten) and how a different interaction
modality may help decrease forgetting we trained and tested
learning and forgetting on a set of spreadsheet task with new
input modality, which we present next. We also found an
interesting effect in this aspect of ACT-R, which we will
need to take up in later work why the model predicts poorer
performance at day 22 than when it started.

Figure 1: Time-based decay of ACT-R’s production
parameter learning.

Method

Participants

Nineteen undergraduate and graduate students at Penn State
were recruited and completed the task. None had prior expe-
rience with the Dismal spreadsheet or using a vertical
mouse. They were randomly assigned to conditions.

Materials

The Dismal1 spreadsheet was implemented to gather and
analyze behavioral data (Ritter & Wood, 2005). Dismal
extends the GNU Emacs editor using its extension language,
Emacs Lisp. Dismal is useful here because it is novel to the
participants. Figure 3 shows an example Dismal spread-
sheet. We have used a vertical mouse, shown in Figure 2,
because it provides new motor skills to learn (and to forget).
The vertical mouse is ergonomically designed to reduce
stress on a user’s wrist. Instead of a palm-down position of a
regular mouse, this vertical mouse requires different hand
and forearm postures. None of the participants had used a
vertical mouse so we could minimize participants’ previous
knowledge and skills. Keystrokes, mouse clicks, mouse
movements, and task completion time were recorded by the
Recording User Input (RUI) system (Kukreja, Stevenson, &
Ritter, 2006).

Design

The experiment was constructed by two independent vari-
ables, modality and retention interval. Modality consists of
two levels including menu-based command users with a
vertical mouse (M) and key-based command users with a
keyboard (K), representing two different types of skills in
the task.

For the key-based command users, ten participants per-
formed the procedural spreadsheet task using only a key-
board (K). For instance, the key-based command for “Open
(or find) a file” is C-x C-f. (C indicates holding down the
control key while pressing x).

1 http://acs.ist.psu.edu/dismal/dismal.html

For the menu-based command users, nine participants
performed the same task using a vertical mouse (M). For
instance, to open a file, they moved the mouse pointer to
File on the menu bar, then clicked Open File.

Figure 2: A vertical mouse from the Evoluent company.

Figure 3: A screenshot of the spreadsheet task in Dismal.

Procedure

The experiment consisted of 115 sessions (76 for learning
and 39 to measure forgetting) with nineteen participants. A
learning session was constructed from a study and a test
task. A forgetting session was constructed only by a test. A
study task is when a participant uses the study booklet
(Users Guide for the Dismal Spreadsheet) to learn. Each
study task was limited to 30 minutes of study. A test task is
when participants perform the given tasks with the booklet
during learning sessions and without the booklet during
forgetting sessions.

In the first week, four consecutive learning sessions were
held. On Day 1, participants had a maximum of 30 minutes
to study the given spreadsheet task, and then performed the
task. On Days 2 to 4, participants were allowed to refresh
their acquired knowledge and skills from Day 1, using the
study booklet, and then performed the tasks.

After the four learning sessions in the first week, partici-
pants returned for forgetting sessions as part of one of two
types of retention interval. Retention interval (R) indicates a
time period of skill disuse.

Participants had a 6- or 18-day retention interval. For the
group with 6-day retention intervals (R6), participants
returned back to be measured every 6-days for three times
on Day 10, 16, and 22. For the group with an 18-day reten-
tion interval (R18), participants returned back to be meas-
ured 18 days after the learning session on Day 22.

Participants performed a set of two novel spreadsheet
tasks. The spreadsheet (Figure 3) consists of five columns

http://acs.ist.psu.edu/dismal/dismal.html

(A to E). Column A had ten different names of computer
commands. Column B had frequencies of each command
listed from row 1 to 5. Column C had normalized
frequencies listed in rows 6 to 10. There are five blank cells
in B and C columns (e.g., B6 to B10, and C1 to C5).
Column D and E had ten blank cells.

The set had 14 steps. First, they opened a Dismal
spreadsheet, saved the file as another name, and completed
the complex spreadsheet manipulation by calculating and
filling in the blank cells, basically using these two equations
with commands (e.g., summation or multiplication).

Normalization =
Frequency 100.0()
Total frequency

 (4)

Frequency =
Normalization Total freqeuency()

100.0
 (5)

The steps had multiple sub-steps, including five data
normalization calculations, five data frequency calculations,
ten calculations of length, ten calculations of total typed
characters, four summations of each column, and an inser-
tion of the current date using a Dismal command, (dis-cur-
rent-date).

Results
All nineteen participants that completed learning sessions
were able to complete forgetting sessions—one participant
could not complete the series due to a scheduling conflict
(i.e., job interview) that arose in the course of the
experiment. This resulted in a cell distribution of 5, 5, 4, and
5 participants. We report all these participants here. In the
R6 group, there were ten participants, five mouse users and
five keyboard users. In the R18 group, there were nine
participants, four mouse users and five keyboard users.

Figure 4: The log-log plot of learning curves for the four
groups in the learning sessions.

Learning Procedural Skills
Figure 4 shows the log-log plot of learning curves of the
four study sessions. This figure shows that the groups all
learned over the four learning sessions. They all performed
at pretty much the same level. Their average time to per-
form the set of tasks decreased from an average of 1,396 to
654 s for R6-Mouse, 1,549 to 680 s for R6-Keyboard, 1,690

to 791 s for R18-Mouse, and 1,504 to 625 s for R18-Key-
board. Independent samples t-tests were conducted for
mouse (M) and keyboard (K) users for each study session.
There were no significant differences, for all comparisons,
t(17) < 1.1, p .33. These results suggest that the
input/manipulation style factor, keystroke or mouse driven,
did not lead to significant differences in learning on this task
over this time range and for this population.

Power Law of Learning: Mouse vs. Keyboard
Figure 5 shows the average time for the two modalities (M
or K) over the four consecutive days of learning. The aver-
ages of the task completion time of the mouse (M) group
were 1,527+374 s on Day 1, 950+160 s on Day 2,
775+149 s on Day 3, and 714+135 s on Day 4. The aver-
ages of the task completion time of the keyboard (K) group
were 1,527+321 s on Day 1, 949+212 s on Day 2,
803+182 s on Day 3, and 653±132 s on Day 4. The learn-
ing curves of the mouse (M) and keyboard (K) groups
follow the Power law of learning:

y = 1477x 0.56 , R2 = 0.98 for the Mouse group

y = 1503x 0.59 , R2 = 0.99 for the Keyboard group

Figure 5: The Power curves of learning: M vs. K.

Forgetting Procedural Skills
Figure 6 shows overall performance on the spreadsheet task
over the learning and forgetting sessions. There are four
groups in terms of two retention intervals (R6 and R18) and
two modalities (M and K). All of four groups similarly
learned the spreadsheet task. However, participants in each
group forgot in a different manner.

Forgetting: 6-Day Retention Interval
Participants (n=5) using menu-based commands with 6-day
retention intervals (R6-M) showed a 42% increase in task
completion time at the first forgetting measure on Day 10.
The task completion time on Day 4 is 654±127 s. The task
completion time at the first return on Day 10 is 930±252 s.
However, paired samples t-test revealed that there is no
significant difference between Day 4 and Day 10 perform-
ance, t(4) = -1.77, p > 0.05.

Figure 6: Learning and forgetting curves of four different
groups, R6-M, R6-K, R18-M, and R18-K.

Participants (n=5) using key-based commands with 6-day
retention intervals (R6-K) showed a 5% increase in task
completion time at the first forgetting measure on Day 10.
The task completion time on Day 4 is 680±124 s. The task
completion time at the first return on Day 10 is 716±169 s.
Paired samples t-test revealed no significant performance
difference between on Days 4 and 10, t(4) = -.66, p > 0.05.

Forgetting: 18-Day Retention Interval
Participants (n=4) using menu-based commands with an 18-
day retention interval (R18-M) showed a 60% increase in
the task completion time at the first forgetting measure on
Day 22. The task completion time is 791±116 s on Day 4
and 1268±177 s on Day 22. Paired samples t-test revealed
that there is significant difference between Day 4 and Day
22 performance, t(3) = -3.60, p < 0.05.

Participants (n=5) using key-based commands with an 18-
day retention interval (R18-K) showed a 119% increase in
the task completion time at the first forgetting measure on
Day 22. The task completion time is 625±149 s on Day 4
and 1371±329 s on Day 22. Paired samples t-test revealed
that there is significant difference between Day 4 and Day
22 performance, t(3) = -4.30, p < 0.05.

Forgetting: Retention Interval and Modalities
It is of interest how much knowledge and skills can be
retained with respect to retention intervals (R6 and R18) and
modalities (M and K). We compared the two data points,
which are based on the last day of learning sessions and the
first return day after any given retention intervals. Table 1
provides the task completion time of those two data points.

Under a 6-day retention interval, participants in the menu-
based modality, M, took 276 s more to complete the task
after the retention interval. Participants in the key-based
modality, K, took 37 s more to complete the task after a 6-
day retention.

On the contrary, under an 18-day retention interval, par-
ticipants in the key-based modality, K, took 746 s more to
complete the task after the retention interval. Participants in
the menu-based modality, M, took 478 s more to complete
the task.

Table 1: Increase in task completion time

 Time
 Day 4 Day 10

Difference % Increase

M 654 s 930 s 276 s 42 % R6
K 680 s 716 s 37 s 5 %
 Day 4 Day 22

M 791 s 1268 s 478 s 60 % R18
K 625 s 1371 s 746 s 119 %

In this spreadsheet task, knowledge and skills in the
menu-based modality (M) are more susceptible to decay
than those of the key-based modality for a 6-day retention
interval. However, for longer retention interval (18-day),
knowledge and skills in the key-based modality (K) are
more susceptible to forgetting that those of the menu-based
modality (M), although these results are not yet statistically
reliable.

Discussion and Conclusions
We showed that the approach of using Dismal and RUI
supports exploring learning and forgetting in a procedural
task, an office work task that has some external validity.
Participants were able to learn it well in four learning
sessions of less then an hour each.

The results suggest that the learning curve applies to this
relatively large cognitive task (cf. Newell & Rosenbloom,
1981). The data in this study are very similar in how fast
each interaction style group learns and in how fast they per-
form the task during learning.

Two different retention intervals (R6 and R18) showed
clear effects. The 18-day retention interval was much worse
than the 6-day retention interval, and performance on Day
22 after an 18-day forgetting period is still better than Day 1
(cf. Figure 6).

This forgetting rate needs to be compared to the ACT-R
theory that has been started. In Figure 1, the probability that
a production achieves its goal increases and decreases in
terms of time and experience. For further work, this mecha-
nism is to be fixed to model forgetting over time. Also, it is
necessary to consider a new utility learning in ACT-R 6 to
study how it plays a role in modeling forgetting. It appears
that like many others we have found that forgetting is not a
linear function.

The effect of modifying the interface modality has pro-
duced some interesting effects. During learning the key-
stroke and mouse driven interfaces were equally easy to
learn and equally fast. This is slightly surprising, as many
interface designers have argued for the superiority of menu
driven interfaces over keyboard driven interfaces (e.g.,
Shneiderman, 1983). However, in this study, the two inter-
faces to the same task, one driven by keystrokes and one
driven by mouse movements, basically took the same time
to learn and the same time to perform. We are running fur-
ther participants to clarify this effect (or lack of it).

More interestingly, we see that there may be some differ-
ences between retention intervals and these skills. The data

in Figure 6 suggest that there may be a difference in the
forgetting curves of these two types of skills. More partici-
pants will have to be run before we can say more about this,
but it looks promising that there may be an interaction
between modalities on forgetting.

Further work remains. The number of participants in this
study is somewhat small, and some differences are perhaps
not emerging because of the small sample size. We will be
running more participants as time goes on. We will also
examine the missing retention interval of 12 days. This will
help explain how fast forgetting occurs and when it occurs.
On Day 10 we saw very little forgetting, and on Day 22 we
saw a lot of forgetting. The middle ground of Day 16 will
help fill in the curve.

In addition, we will investigate the knowledge attributes
of various subtasks in the set of tasks here to provide
implications on forgetting. For example, there could be
differences of learning and forgetting between the subtask
of calculations using a normalization equation and opening
a file. The former is more a cognition-demanding task than
the latter that is simple declarative knowledge retrieval.

Also, we will need to investigate how the keystroke and
mouse move times changed with forgetting. Did, for exam-
ple, the Fitts’ law constant change with forgetting? Did the
simple keystroke level times that can be derived from an
ACT-R model on this task increase with the forgetting
interval?

Acknowledgments
The College of IST provided partial support for participants’
compensation. Sue Kase provided helpful comments.

References
Anderson, J. R., & Lebiere, C. (1998). The atomic

components of thought. Mahwah, NJ: Erlbaum.
Card, S. K., Moran, T. P., & Newell, A. (1983). The

psychology of human-computer interaction. Hillsdale, NJ:
Erlbaum.

Chong, R. S. (2004). Architectural explorations for
modeling procedural skill decay. In Proceedings of the
Sixth International Conference on Cognitive Modeling,
Mahwah, NJ: Erlbaum.

Farr, M. J. (1987). The long-term retention of knowledge
and skills: A cognitive and instructional perspectives.
Arlington, VA: Springer.

Hagman, J. D., & Rose, A. M. (1983). Retention of military
tasks: A review. Human Factors, 25(2), 199-213.

Healy, A. F. (1995). Optimizing the long-term retention of
skills: structural and analytic approaches to skill
maintenance (ARI Research Note 95-16): The U.S. Army
Research Institute for the Behavioral and Social Sciences.

Kieras, D. E. (1997). A guide to GOMS model usability
evaluating using NGOMSL. In M. G. Helander, T. K.
Landauer & P. V. Prabhu (Eds.), Handbook of human-
computer interaction (2nd ed., pp. 733-766). Amsterdam:
North-Holland.

Konoske, P. J., & Ellis, J. A. (1991). Cognitive factors in
learning and retention of procedural tasks. In R. F. Dillon
& J. W. Pellegrino (Eds.), Instruction: Theoretical and
applied perspectives (pp. 47-70). New York: Praeger.

Kukreja, U., Stevenson, W. E., & Ritter, F. E. (2006). RUI:
Recording user input from interfaces under Window and
Mac OS X. Behavior Research Methods, 38(4), 656-659.

Lovett, M. (1998). Choice. In J. R. Anderson & C. Lebiere
(Eds.), The atomic components of thought (pp. 255-296).
Mahwah, NJ: Erlbaum.

McKenna, S., & Glendon, A. (1985). Occupational first aid
training: Decay in cardiopulmonary resuscitation (CPR)
skills. Journal of Occupational Psychology, 58, 109-117.

Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of
skill acquisition and the law of practice. In J. R. Anderson
(Ed.), Cognitive Skills and Their Acquisition (pp. 1-55).
Hillsdale, NJ: Erlbaum.

Pavlik, P. I., & Anderson, J. R. (2005). Practice and
forgetting effects on vocabulary memory: An activation-
based model of the spacing effect. Cognitive Science, 29,
559-586.

Ramos, M. A. G., & Chen, J. J. G. (1994). On the
integration of learning and forgetting curves for the
control of knowledge and skill acquisition for non-
repetitive task training and retraining. International
Journal of Industrial Engineering, 1(3), 233-242.

Ritter, F. E., & Wood, A. B. (2005). Dismal: A spreadsheet
for sequential data analysis and HCI experimentation.
Behavior Research Methods, 37(1), 71-81.

Sabol, M. A., & Wisher, R. A. (2001). Retention and
reacquisition of military skills. Military Operations
Research, 6(1), 59-80.

Shneiderman, B. (1983). Direct manipulation: A step
beyond programming languages. IEEE Computer, 16(8),
57-69.

Singley, M. K., & Anderson, J. R. (1989). The transfer of
cognitive skill. Cambridge, MA: Harvard.

Taatgen, N. A., Lebiere, C., & Anderson, J. R. (2006).
Modeling paradigms in ACT-R. In R. Sun (Ed.),
Cognition and Multi-Agent Interaction: From Cognitive
Modeling to Social Simulation. New York, NY:
Cambridge.

Tarr, R. (1986). Task analysis for training development. In
J. A. Ellis (Ed.), Military contributions to instructional
technology. New York: Praeger.

Wisher, R. A., Sabol, M. A., & Ellis, J. A. (1999). Staying
Sharp: Retention of Military Knowledge and Skills (ARI
Special Report 39): The U.S. Army Research Institute for
the Behavioral and Social Sciences.

Wisher, R. A., Sabol, M. A., Sukenik, H. K., & Kern, R. P.
(1991). Individual Ready Reserve (IRR) Call-Up: Skill
Decay (Research Report 1595): The U.S. Army Research
Institute for the Behavioral and Social Sciences.

Information Seeking in Complex Problem Solving

Xiaohui Kong (xik2@pitt.edu)
Intelligent Systems Program, University of Pittsburgh

Christian D. Schunn (schunn@pitt.edu)
Learning Research & Development Center, University of Pittsburgh

3939 O'Hara Street Pittsburgh, PA 15260 USA

Abstract

Information seeking behavior in human complex
problem solving has rarely been well studied. In this
paper we studied the information seeking behavior of
eye-movement during human complex problem solving
in the case of traveling salesman problem. A new model
of human TSP solving is proposed to explain the effect
of limited amount of visual working memory on the
trade-off between local/global information processing
and the human information seeking behavior in
complex problem solving.

Introduction

When solving problems, information seeking behavior
serves as an interface between the world (external
information) and cognition (internal information).
Hypotheses have been proposed and argued to explain
human information seeking behavior in problem solving
(Gray & Fu, 2005; Gray, Sims, & Fu 2006). However,
most of previous studies on information seeking behaviors
are based on experiments either with relatively simple
problems and/or with manifested high cost of information
seeking, because natural information seeking behavior is
hard to measure in the setting of complex problem solving.
A recent study in modeling the behavior of human traveling
salesman problem solving (Kong & Schunn, 2006) and
advanced eye-tracking technology, however, gave us an
opportunity to exam the information seeking behavior of
human complex problem solving in the case of the traveling
salesman problem solving.
The (Euclidean) traveling salesman problem is to find a

path of minimum Euclidean distance between points in a
plane, which includes each point exactly once and returns to
its starting point. As an NP-hard combinatory optimization
problem, the traveling salesman problem (TSP) is believed
to be “intractable” in computer science for large inputs as
long as exact optimal path is concerned.

Experiment
Participants
Six undergraduate students from University of Pittsburgh
participated in the experiment.

Materials and Methods

In this experiment, we used the same set of 20 TSP
problems as in the experiment described in Kong and
Schunn (2006). Ten of them are real world problems
borrowed from TSPLIB (http://elib.zib.de/pub/mp-
testdata/tsp/tsplib/tsplib.html) ranging in size from 16
points to 100 points. The remaining ten of them were
randomly pre-generated according to a uniform distribution
ranging in size from 10 points to 80 points. All participants
saw the exact same 20 TSP problems, which allow us to
examine how well the models predict the influence of
particular TSP problems rather than just general trends for
the effect of number of points. The experiment was
conducted on a Tobii 1750 eye-tracker with a 17” screen.
The resolution was set to 1024*768 pixels. During the
experiment, participants were 550 to 650 pixels away from
screen as recorded by the eye-tracker, measuring by the
corresponding screen size and resolution. Participants were
asked to find the shortest path possible by indicating the
path with mouse-clicks on the screen. A Matlab program
recorded all the click data and the eye-tracker recorded all the
eye-movement data. The participants were paid 5$~20$
based on their performance.

Results

Optimality of the solution is defined as our measurement of
performance. Optimality (OPT) of a solution is calculated as
the ratio of the optimal path length over the solution path
length. So the optimality is a value smaller or equal to 1.
The closer the value is to 1, the better performance the
participant makes. As figure 1 shows, all the participants
found close to optimal paths for all problems (OPT>0.8,
MEAN = 0.95, STD = 0.037).

Figure 1: Participants’ performance

http://elib.zib.de/pub/mptestdata/tsp/tsplib/tsplib.html

The eye-movement data recorded by the eye-tracker were
used to analyze the information seeking actions. Distance of
information seeking of each fixation was defined as the
minimum between the following two values:
1. The distance of the fixation to the last visited point
2. The distance of the fixation to the next point to be
visited.
The frequency of information seeking follows an exponential
distribution along the distance of information seeking
(R

2
= 0.989).

Figure 2: Frequency and distance of information seeking
behaviors

We define the global information seeking actions as
fixations whose information seeking distances are greater
than 200 pixels (about 18 degree of eye-movement in this
experiment setting). As an opposite to what was reported in
Best (2005), only 23 percent of all the global information
seeking actions were made in the beginning of the each trial
before 10 percent of points were connected. The rest global
fixations distributed through the entire problem solving
procedure as shown in figure 3.

Figure 3: Number of global fixations in each stage of
problem solving when part of the points had been connected

Discussion

It is not very surprising that global information seeking
actions are biased toward the beginning in the experiment
described in Best (2005), since the cost of information
seeking changed from low (eye-movement) to high (mouse-
movement) when the experiment stage transits. This could
be well explained by the soft-constraint hypothesis (Gray &
Fu, 2004). But in our experiment, the cost of the
information seeking had been low (eye-movement) through
the entire problem solving procedure, which we would argue
to be a more natural experiment setting. However, the
exponential distribution of the frequency vs. distance of
information seeking may not be easily explained by the soft-
constraint hypothesis as a tradeoff between information
seeking cost and its utility. First, the costs (measured by
time) by eye-movements of different distances are not
significantly different. Second, the utility of information is
hard to define in this scenario, since global and local
information must interplay with each other to generate a
good TSP solution (Kong & Schunn 2006). Our hypothesis
is that the limited size of the visual working memory
(VWM) could explain this pattern of information seeking
behavior. Our intuition is that people do not seek for more
global information than they could actually handle in visual
working memory. Since the amount of VWM is limited to
several chunks, the exponential pattern of information
seeking behavior helps to keep both the necessary global
and local information in VWM.

Our model

To support our hypothesis, we built a model to simulate
the human TSP solving and the information seeking
behavior during the process.
To account for the information seeking behavior of

human TSP solving, our VWM-Reference TSP model is
based on the following two hypotheses and consists of four
steps:
First, the VWM only contains a constant number of

chunks, which can be set as a parameter in the model.
Second, the model only makes constant (in average) number
of fixations near the centroids of clusters when they are
generated into the VWM to serve as reference points.

Step 1. Initialization
The current working set includes all points. The current
point is set to be the starting point.
Step 2. Information Seeking
Points in the current working set are grouped into K clusters
according to the K-Means clustering algorithm, (MacQueen,
1967) where K is the size of the VWM in the first iteration
and square root of the number of points in the current
working set afterwards. The K-Means Clustering Algorithm
clusters N data points into K disjoint subsets Sj containing
Nj data points so as to minimize the sum of squares
criterion:

J = | xn µ j |
2

n S jj=1

K

where xn is a vector representing the nth point and µ j is
the geometric centroid of the points in Sj. It is assumed that
people are capable of noticing clumps of points relatively
quickly and easily with their basic perceptual system. This
K-Means clustering algorithm is used to proximate the
cluster identification, because it is available in standard
programming tools and provides the centroids of the clusters
as a standard output.
All the centroids are added into the collection of reference

points, which was passed from previous iteration.
We then use a spline-curve to connect the current point

and all the reference points to sketch a path in a rough scale.
The spline-curve is hypothesized to be a general smooth
route through the centroids, which captures a general
tendency of a globally sketched path.
Step 3. Identify current cluster and refine local information
All the points in the current working cluster are projected

to its nearest points on the spline curve. If the number of
points projected onto the part of the spline curve between
the current point and the first reference point is more than 2,
let the current working set to be this set of points, then go
back to step 1 and the next iteration begins. When N is the
size of the VWM, only the first N reference points, sorted by
their projection order on the spline curve, are passed to the
next iteration. The rest of them are discarded.
Step 4. Move and rehearse global information
If the number of points projected between the current point

and the next reference point is less than two, move from
current point to those points according to the sequence they
projected onto the spline curve. Set the current working set
to be the points projected onto the part of spline between the
first and the second reference points. Discard the first
reference point from the VWM.
If the number of reference points in the VWM is less than

2, re-identify clusters at the most global level and bring in
those centroids back into the VWM.
Repeat this procedure until the number of unvisited points

is less than the size of the VWM. Then find the best path
for the rest few points.
Figures 4a-e illustrate the steps of our model when

solving a 70-points TSP.

Figure 4a: Original ETSP problem

Figure 4b: Seeking global information
‘+’s are the locations of the K-Means centroids which are
served as reference points in VWM, and the ‘*’ points are
those to be served as the current working set in the next

iteration

Figure 4c: As the local part of information is refined, some
information in global level is discarded. ‘+’s are the

reference points in VWM.

Figure 4d: When there is enough local information, make a
move and rehearse the global information

Figure 4e: The final path generated by the model

Model Evaluation and Comparison

Existing models of human TSP solving

Convex Hull
The next simplest model of TSP is the Convex Hull

model, which assumes that people compute a traversal
around the perimeter points, including inner points
opportunistically along the way using a minimal insertion
rule. The global information used by this model is the
Convex Hull contour, which may be rather complex, and
thus require significant working memory. The minimal
insertion rule is applied globally at each point during path
computation, and points that cause the smallest increase in
total path length are inserted. It is somewhat implausible
that people would be able to compute these minimal
insertions (a local processing task) at a global level.

Sequential Convex Hull Model
MacGregor et al. (2000) adapted the Convex Hull model

to a more plausible incremental local search version. This
adaptation was base on their finding that humans perform
better on problems with fewer interior points within the
convex hull (MacGregor & Ormerod, 1996). Second, their
experiments provided support for their hypothesis that
human participants are sensitive to global information
(Ormerod & Chronicle, 1999). We would call this model
sequential convex hull model. The outline of the model is as
follows (MacGregor et al., 2000):
1. Sketch the connections between adjacent boundary

points of the convex hull.
2. Select a starting point and a direction randomly.
3. If the starting point is on the boundary, the starting

node is the current node. The arc connecting the current
node to the adjacent boundary node in the direction of travel
is referred to as the current arc. Proceed to Step 4

immediately. If the starting point is not on the boundary,
apply the insertion rule to find the closest arc on the
boundary. Connect the starting point to the end node of the
closest arc, which is in the direction of travel. This node
becomes the current node.
4. Apply the insertion criterion to identify which

unconnected interior point is closest to the current arc.
Apply the insertion criterion to check whether the closest
node is closer to any other arc. If not, proceed to Step 5. If it
is, move to the end node of the current arc. This becomes
the current node. Repeat Step 4.
5. Insert the closest node. The connection between the

current node and the newly inserted node becomes the
current arc. Retaining the current node, return to Step 4 and
repeat Steps 4 and 5 until a complete tour is obtained.

Pyramid Model
Graham et al.’s model (2000) of traveling salesman

problem was inspired by a hierarchical architecture of
human visual and spatial perception. Their model first
Gaussian-blurs the original set of points into a variety of
degrees and stores those blurred images in different layers
of hierarchy with the most blurred image on the top. The
more blurred images serve as the global information for the
less blurred images. Each layer directly guides the next
layer below it each time the model develops a node into the
path. So layers in the hierarchy change in a repeatedly
cascaded process. The Pyramid model computes TSP
solutions in the following steps:
1. Gaussian-blur the original n-points TSP image into k-1

different degrees and store them in a k-layer pyramid with
the original TSP image on the bottom and the most blurred
image on the top.

2. Calculate Li modes of the image in each layer i.
Consider those modes in each layer as nodes in a reduce-
sized TSP problem. The top layer has 3 nodes and the
bottom layer has n nodes. Layer k has n /bk nodes. (The
parameter b is the reduction ratio. Bottom layer is layer 1.)
3. Layer n (top layer) has 3 nodes and forms a unique

tour.
4. Generate a tour of the TSP in each layer by inserting

them into the tour on the previously higher layer with the
following rules: (a) Sort the intensity level of the mode
locations in each layer. (b) Insert these modes into the tour
in descending order of their intensity, so as to produce the
minimum increase in tour length. Repeat step 4 until the
algorithm generates a tour in the bottom layer.

K-Means TSP model
The K-Means TSP model (Kong & Schunn, 2006) is

based on the following three steps:
1. Clusters are identified.
In this step, points are grouped according to visual

density. Points constructing a higher visual density are more
likely to be grouped together. K-Means clustering algorithm
was used to generate the 2 N clusters, where N is the
number of points in the problem.
2. A sketch of the path is conceived.

A spline-curve is drawn through all the centroids and
back to the start one.
3. Connect all the points along the sketched path.
All the points are projected to the nearest point on the

spline-curve. Then we construct the final solution by
connecting all the points in the same order as their
projection on the spline-curve.

Mean optimality

First we compared the performance of the VWM_TSP
model in term of solution optimality with human data and
some existing models of human TSP solving including:
Convex Hull, Pyramid (Graham, Joshi, & Pizlo 2000;
Pizlo, et al. 2006), Kmeans (Kong & Schunn 2006), CHSQ
(MacGregor, Ormerod, & Chronicle 2000). We set the size
of VWM to be 5 chunks in our VWM_TSP model for this
evaluation of optimality, based on existing VWM theories
(Pylyshyn, 1989).
The performance of models and human data were plotted

in figure 5. Pearson correlations and average signed errors
between models and human data were shown in table 1. The
VWM_TSP displayed a fairly good correlation and only
generated a small amount of error. Though, CHSQ has a
better fit to the performance data. VWM_TSP was built
under the constraint that the VWM is constant in size. This
constraint made our model more theoretically plausible,
where CHSQ could have arbitrarily many chunks (invisible
lines in its case) in VWM in the extreme case. (Kong &
Schunn 2007)

Table 1: Correlation and average signed error of model fits
to human accuracy performance

VWM

_TSP
NN

Convex

Hull
Pyramid Kmeans CHSQ

Correlation 0.62 0.37 -0.02 0.13 0.24 0.69

Ave

Signed

Error

-0.02 -0.13 0.01 -0.02 -0.03 0.00

Figure 5: Mean accuracy for models and humans

Number of information seeking actions

Assuming that the VWM_TSP model takes a constant

number of information seeking actions around each cluster

centroids to generate clusters, we plotted the histogram (# of

bins = 30, min = 15 pixs, max = 906 pixs) of VWM_TSP’s

information seeking distance in figure 6 when VWM size is

5.

Figure 6: VWM_TSP model’s information seek behavior

(VWM=5)

As we can see, the count of information seeking actions

decreases exponentially with the distance. To study the

effect of VWM size on the information seeking behavior,

we ran VWM_TSP model with different VWM size

parameters (VWMSize = 2,3,4,5,6,7,8,10,15) and plotted

the normalized histogram counts of each VWM size as

smoothed lines in figure 7. When VWM size is too small (2,

3), the model seeks for global information much more often.

In this setting, there wouldn’t be much room in VWM to

keep global information as soon as local information was

developed. So global information had to be re-attended
almost on each move. Figure 8 plotted each model setting’s

R
2 fits to exponential distribution. When VWM size is

around 5, the information seeking behavior demonstrated by

the model has the best fit to the exponential distribution.

When the VWM size is too small or too large, the model’s

information seeking distance distribution deviates from the

exponential distribution. This result is consistent with the

existing theories of working memory that the VWM size is

around 5 (Pylyshyn, 1989).
To further exam our model, we also looked at how

global information seeking behavior varies along time

during the problem solving procedure. In figure 9, we

plotted the frequency distribution of global information

seeking actions during each temporal phase of the problem

solving procedure, when part of the points were connected.

The model displayed a similar pattern with human data in

figure 3, which again supports our hypothesis.

Figure 7: VWM Size vs. Information Seeking Distance

Distribution

Figure 8: Effect of VWM size on model’s fit to exponential
distribution

Figure 9: Frequency of global information seeking in each

phase of problem solving

Conclusion

The new experimental evidence and simulation results
suggested while the cost of information seeking is low and
the information utility is hard to define, the limited size of

visual working memory plays an important role in the
information seeking behavior while solving complex
problems. Although the VWM is limited to only several
slots, by keeping a good ratio of global information and
local information in VWM, human is still capable in solving
complex problems to its near optimal solution. Our model
while having a good fit to the performance of human TSP
solving, also predicts the information seeking behavior
during the problem solving procedure. Our model also
explored on the question of how different VWM size affects
the information seeking behavior during problem solving.

References

Best, B. (2005). A model of fast human performance on a

computationally hard problem. Proceedings of the 27th

Annual Conference of the Cognitive Science Society.

Graham, S., Joshi, A., & Pizlo, Z. (2000). The traveling

salesman problem: A hierarchical model. Memory &

Cognition, 28(7), 1191-1204.

Gray, W. D., Sims, C. R., Fu, W.-T., & Schoelles, M. J. (2006).

The soft constraints hypothesis: A rational analysis

approach to resource allocation for interactive behavior.

Psychological Review, 113(3) 461-482.

Gray, W. D., & Fu, W.-t. (2004). Soft constraints in

interactive behavior: The case of ignoring perfect knowledge

in-the-world for imperfect knowledge in-the-head. Cognitive

Science, 28(3), 359-382.

Kong, X & Schunn, D. C. (2006). Global vs. Local

Information Processing in Problem Solving: A Study of the

Traveling Salesman Problem. Proceedings of 7th

International Conference on Cognitive Modeling

Kong, X & Schunn, D. C. (2007) Global vs. Local

Information Processing in Visual/Spatial Problem Solving:

The Case of the Traveling Salesman Problem. Accepted by

Cognitive Systems Research

MacGregor, J.N., Ormerod, T.C., & Chrinicle, E.P. (2000). A

model of human performance on the traveling salesperson

problem.Memory & Cognition, 28, 1183-1190.

MacQueen, J. B. (1967). Some Methods for classification and

Analysis of Multivariate Observations. In the Proceedings

of the 5th Berkeley Symposium on Mathematical Statistics

and Probability (pp. 281-297). Berkeley, CA: University of

California Press.

Newell, A., & Simon, H. A. (1972). Human problem solving.

Englewood Cliffs, NJ: Prentice-Hall.

Ormerod, T.C., & Chronicle, E.P. (1999). Global perceptual

processes in problem solving: The case of the traveling

salesperson. Perception & Psychophysics, 61, 1227-1238.

Pylyshyn, Z.W. (1989). The role of location indexes in spatial

perception: A sketch of the FINST spatial-index model.

Cognition, 32, 65-97.

Zygmunt Pizlo, Emil Stefanov, John Saalweachter, Zheng Li,

Yll Haxhimusa, and Walter G. Kropatsch (2006) Traveling

Salesman Problem: A Foveating Pyramid Model,

http://docs.lib.purdue.edu/jps/vol1/iss1/8.

http://docs.lib.purdue.edu/jps/vol1/iss1/8.

Modeling Memories of Large-scale Space
Using a Bimodal Cognitive Architecture

Unmesh Kurup (kurup@cse.ohio-state.edu)

B. Chandrasekaran (chandra@cse.ohio-state.edu)
Computer Science and Engineering, 2015 Neil Ave
The Ohio State University, Columbus, OH 43210

Abstract

We present an extension to biSoar, a bimodal version of the
cognitive architecture Soar, by adding a bimodal version of
chunking, Soar’s basic learning mechanism. We show how
this new biSoar is a useful tool in modeling cognitive
phenomena involving spatial or diagrammatic elements by
applying it to the modeling of problem solving involving
large-scale space, such as way-finding. We suggest how such
models can help in identifying variables to control for in
human subject experiments.

Introduction
Cognitive architectures are of central interest in cognitive
modeling since such architectures are directly useful in
building cognitive models. The advantages of a general
purpose architecture such as Soar or ACT-R to model and
explain a variety of cognitive phenomena are well-known.
However, these architectures are all based on a view of the
cognitive state being symbolic or more precisely, predicate-
symbolic. In this view, the agent’s knowledge, goals etc are
represented in terms of symbol structures that describe the
world of interest in terms of properties of and relations
between individuals in the world. We have argued that this
view of cognitive state is too restrictive and fails to take
adequate account of the role played by perceptual
representations in thinking (Chandrasekaran, 2006). We
have proposed that cognitive state should be viewed as
multi-modal where, in addition to the traditional symbolic
component, the cognitive state has several perceptual
components and a kinesthetic one. The multi-modal view
proposes a more involved role for perception where the
perceptual systems, in addition to their role as transducers,
also provides representations and processes to the cognitive
process. Such a multi-modal state can support an agent
experiencing the world multi-modally such as when having
mental images in one or more modalities. One of the tasks
of a research program that is based on this multi-modal view
is to explore the consequences of multi-modal cognitive
state for all components and mechanisms of a cognitive
architecture.

In particular, we need to examine the implications of
multi-modality for components such as working memory,
LTM and I/O and for control and learning mechanisms. As
a first step towards constructing such a multi-modal
architecture, we built biSoar (Kurup & Chandrasekaran,

2006), which is a bimodal augmentation of the Soar
architecture, where the two modes are the traditional
symbolic component and a visual (diagrammatic)
component. This limitation to bimodality has several
advantages. First, intuitions about various issues related to
multi-modality may be honed by investigating this limited
version. Second, in problem solving, the most common and
useful perceptual mode is the limited visual version
involving diagrams. Soar was chosen for reasons of
convenience but we think that many of the ideas in biSoar
can be extended to other symbolic architectures such as
ACT-R. However, Soar also has unique mechanisms such as
chunking as a core learning mechanism, an issue that will be
a focus of the current paper. As an aside, the visual
component does not represent all aspects of mental imagery
such as the visualization of faces but is restricted to
diagrams. In addition to diagrams being common in
problem solving, the focus on diagrams has the advantage of
simplicity while retaining several of the challenges of
bimodality that we wish to address.

Currently, both working and long term memories are
bimodal in biSoar. biSoar agents are able to create, modify
and delete diagrammatic objects from WM as well as extract
various relations that exist between objects in this memory.
However, among the issues not addressed is how
diagrammatic information gets into long term memory.
Phenomenologically, it seems clear that memory is capable
of recalling perceptual knowledge and experience to a more
or less degree of fidelity. It seems plausible that in the
course of learning, learning mechanisms transfer to long
term memory not only symbolic information from working
memory but diagrammatic information as well. In
traditional Soar, there is only one learning mechanism,
chunking. So it seemed natural to us to investigate how
chunking can be expanded to learn bimodally. An
empirically observed feature of many spatial memories is
that spatial details are often simplified (Tversky, 2000). So,
a challenge for bimodal chunking is the degree to which
such simplification is an intrinsic architectural feature.

A satisfactory account of bimodal learning could make an
architecture with such a capability an effective medium for
modeling cognitive phenomena involving spatial or
diagrammatic elements. We explore the possibilities of
biSoar for such modeling by applying it to the task of
modeling phenomena involving the representation of and

reasoning about large-scale space. We build biSoar models
of problem solving in two spatial reasoning tasks that have
been well studied: simplification in recalled routes and
distortions in geographic recall. Such modeling can be a
valuable tool for exploring the space of explanations for
spatial phenomena. For each task, we create multiple
models and describe how each one suggests a different
explanation for the observed phenomena. We indicate how a
candidate explanation can in turn suggest variables to
control for in human subject experiments.

Multi-modal Cognitive Architectures
The traditional approach to cognition and problem solving
can be best described “predicate-symbolic”; that is, the
knowledge and goals of an agent are represented as a set of
entities, and relations (predicates) that hold between these
entities. Problem solving proceeds by the application of
rules of inference to these predicates. The role of the
perceptual system is to give the agent information about the
external world, and the role of the action system is to make
changes to the world. The output of the perceptual systems,
in this view, is in the form of predicate-symbolic
representations. Our alternative proposal calls for a much
greater role for an agent’s perceptual system in cognition.
Here, the agent has representations and processes that are
characteristic to the individual modalities and cognition is
an activity that involves all of them. The perceptual system
as whole still give information about the external world, but
aspects of the system are part of central cognition,
independent of input from the external world.

To create biSoar (Kurup & Chandrasekaran, 2006), a
general-purpose cognitive architecture, Soar (Laird et al.,
1987) was augmented with the Diagrammatic Reasoning
System (DRS) (Chandrasekaran et al., 2004), a domain
independent system for representing diagrams. In DRS,
diagrams are represented as a configuration of points, curves
and regions. That points may refer to the location of cities or
that regions represent states in a map, is task-specific
knowledge that is part of Soar. This allows DRS to be used
in multiple task domains without any modifications. DRS
also provides a set of perceptual and action routines that
allows Soar to create, and modify a diagram and to extract
relations between diagrammatic objects from the diagram.
By the addition of the capabilities of DRS, Soar’s cognitive
state and long-term memory that were exclusively predicate-
symbolic, now become bimodal.

Cognitive State in Soar
Soar’s representations are predicate-symbolic. The cognitive
state in Soar is represented by the contents of Soar’s WM
and operator, if any, that has been selected. Fig 1(b) shows
Soar’s cognitive state representation of the blocks world
example in 1(a).

Cognitive State in biSoar
The cognitive state in biSoar is bimodal – it has both
symbolic and diagrammatic parts. Fig 2 shows the bimodal

representation of the world depicted in Fig 1(a). Working
memory is biSoar is represented as a quadruplet, with each
Identifier, Attribute, Value triplet augmented with a
diagrammatic component in DRS that represents the
visualization (metrical aspect) of the triplet. Since not all
triplets need to be (or can be) visualized, the diagrammatic
components are present only as needed. States represent the

current or potential future state of interest in the world and
the symbolic and the diagrammatic part may represent
related or distinct aspects of the world. However, the
diagrammatic representation is “complete” in a way that the
symbolic representation is not. For example, from the
symbolic representation alone it is not possible to say
without further inference whether A is above C. But the
same information is available for pick up in the diagram
with no extra inference required. This has advantages (for

instance in dealing with certain aspects of the Frame
Problem) and disadvantages (over-specificity).

From External Representation to Working
Memory

When an agent makes use of an external diagram, such
as a map, for a specific problem solving task, what he
attends to or observes is only relevant parts or aspects of the
diagrammatic elements. This selective attention results in
simplified versions of the corresponding diagrammatic
elements to be present in WM. The mechanism that
transforms an external diagrammatic element into a
simplified version in WM is part of human perceptual
machinery and is needed as an adjunct to biSoar as well. In
this paper, we refer to this attention-controlled mechanism
as the simplification mechanism. This mechanism is
implemented as an Attend method that is part of any routine
that interacts with an object in the external world. The
Attend method produces the equivalent of the product of
attention on aspects of the diagrammatic object. One way to
think of Attend is that it is as if parts of the diagrammatic
object on which attention is not focused is at a very low
resolution resulting in the loss of many of the finer details
while still preserving the general spatiality of the object. Fig

Working Memory:
Block (A), Block (B), Block
(C), On (A,B), On (B,C)

Selected Operator: None

(a) (b)

Fig 1: (a) Blocks World and (b) Soar’s representation of
the world in (a).

C
B
A

Working Memory:
Block (A), Block (B), Block
(C), On (A,B), On (B,C)

Selected Operator: None

Fig 2: biSoar representation of the world shown in 1(a)

3(b) is the output of the Attend operator on the curve in 3(a)
where the attention has been focused on just the beginning
and end points. Fig 3(d) is the result of Attend on Fig 3(c)
where the attention has been focused on the region’s broad
shape. The result of Attend does depend upon the
requirements of the task because that determines the aspects
to which attention was paid to in the diagram. But
simplification in this manner is architectural because it
happens irrespective of the task or the domain.

Bimodal LTM
There are two questions that have to be answered in an
implementation of Long Term Memory (LTM) – how are
elements put into LTM (i.e., learned) and how are elements
retrieved from LTM. In the case of Soar the answers to
these two questions are chunking for learning and a
matching process that matches the LHS of a LTM rule to
WM for retrieval.
Chunking - Chunking simply transfers the relevant contents
of WM to LTM. In the case of biSoar, chunking transfers to
LTM the simplified versions of the relevant external
diagrammatic elements present in WM.
Matching - In the case of Soar the retrieval process is
straightforward because matching (or even partial matching
when variables are present) symbols and symbol structures
to each other is an exact process; either they match or they
don’t. When the cognitive state is bimodal, WM has
metrical elements in addition to symbols. Matching metrical
elements to each other (say a curve to another curve) is not
an exact process since two metrical elements are unlikely to
be exactly the same. Matching metrical elements would
require a different approach like a non-exact process that
can match roughly similar elements in a domain-
independent manner (since the matching should be
architectural). It may also turn out that only calls to
perceptual routines are present in LTM while matching
metrical elements is a more low-level cognitive process
present only in stimulus-response behavior. For now we
take the latter approach where the LHS of biSoar rules
contain only perceptual calls to the DRS that return symbol
structures in addition to symbol structures. We think that
this approach can account for many of the diagrammatic
learning capabilities that are required in models of cognition
except in cases where goal specifications contain irreducible
spatial components, such as might be the case in the

problem solving of a sculptor. The RHS of a biSoar rule can
modify either symbolic or diagrammatic parts of WM.

Representation of Large-Scale Space
In 1948, Tolman (1948) proposed that animals have an
internal representation of large-scale space which he called
the cognitive map. In 1960, Lynch (1960) produced his
seminal study of the environment in which he identified
Landmarks, routes, nodes, districts and edges as the features
that are important in building a cognitive map. Since then
there have been a number of models, both computational
and cognitive, that have been proposed to account for a
number of phenomena associated with the representation of
space. A variety of behavioral/psychological studies have
also aided the development of these models by providing a
set of characteristics or behaviors that a model should
posses.

We believe the use of a general-purpose cognitive
architecture such as biSoar can be beneficial in the area of
modeling spatial phenomena for three reasons – First, it
restricts spatial information to be learned, represented and
used within the constraints of a general cognitive
architecture. Second, it allows the modeler to be flexible in
the strategies and knowledge that they use to model
phenomena. Third, it is easier to identify the nature of the
explanation (architectural vs. content) because these are
explicitly distinguished in such a framework. We use biSoar
to model two commonly observed phenomena in spatial
reasoning - simplification in recalled routes and distortions
in the recall of relations between geographic entities.

Sources of Map Knowledge
Knowledge of large-scale space can come from multiple
sources. The most common, of course, being personal
experience of navigation in space. We automatically build
representations of our environment as we traverse them. A
second, and important, source is maps. Our knowledge of
large environments, such as the spatial extent and
geographical locations of the fifty states, originated from
our use of maps. Representations, originating from either
source, are combined and modified in various ways during
problem solving for various purposes. In this paper, we
focus on phenomena involving maps.

The Space of Explanations
When models are implemented in a cognitive architecture as
possible explanations for a phenomenon, the behavior of
interest can arise from one, or a combination of, two
influences:– Architectural and Content where Content can
be further sub-divided into Strategy and Knowledge.

An architectural explanation appeals to the specifics of
the architecture of the agent to explain the phenomenon of
interest. The phenomenon is produced as the result of a
process that is automatic and arises out of the architecture,
not a deliberative decision by the agent. A phenomenon can
also emerge as a result of a particular strategy employed by
the agent to solve the given task. This is different from an

Fig 3: (b) and (d) show the result of applying the visualize
operator to (a) and (c) respectively

(a) (b)

(c) (d)

architectural explanation because the phenomenon is unique
to the current task. An agent’s behavior can also be seen as
arising from its knowledge (or lack thereof) of the task
domain and the world. During problem solving, an agent
may learn to solve the problem one way due to the
knowledge it has at the time. �iven more knowledge, the

agent might have learned to solve the problem in a different
way resulting in different observable phenomena.

In general, a phenomenon can have more than one
explanation and it is difficult for an outside observer to
decide if the reason for the phenomenon is architectural,
strategic or knowledge related without further
experimentation. Also, due to the number of free variables
and tunable parameters in cognitive architectures, and the
fact that they are essentially Turing machines, the ability (or
inability) to build a model in the architecture cannot be
taken as the final word on whether the explanation offered
by the model is correct (or incorrect). Under certain
circumstances, however, the inability to build a model in
this framework can be taken as a sign that the approach (or
strategy) is flawed. More importantly, building cognitive
models help us identify the possible sources of a
phenomenon. This can in turn be used to develop a series of
controlled experiments to decide between the sources.

Task 1 – Simplification in Route Recall
Curves recalled from spatial memories, whether they are
rivers in Paris or routes by cab drivers rarely preserve their

exact curvature or their orientation to each other and to
other landmarks (Tversky, 2000). Details in a curve such as
the actual angles at intersections are lost and route curvature
is usually straightened. In this paper, we refer to this
phenomenon as simplification. We explore how this
phenomenon can arise from the architectural features of
biSoar. In particular, we explore whether the chunking of
the simplified diagram in WM (represent only that to which
attention was paid) is enough to explain the emergence of
simplification in recalled maps.

Model 1
The agent (referred to as Simp1) is given the task of finding
various routes in the map shown in Fig 4. Fig 5 shows the
result of route-finding for certain locations from the map.
The route-finding strategy used is a simple one in which the
agent finds the routes on which the current point lies, finds
the next point along all possible directions, calculates the
Euclidean distance to the destination from each point and
picks the one with the lowest value. The critical step in the
strategy is the step where, once the next point has been
selected, the agent notes the route from the current point to
the selected next point paying attention to only the starting
and ending points of the route. This results in a
representation of the route that is simplified according to the
attentional demands of the task, in WM. When Soar’s
chunking mechanism learns from the resolution of the
sugboal, it learns this simplified representation from WM.

Model 2
A new agent (Simp2) is created and given the same task as
Simp1. Simp2’s strategy is the same as Simp1’s except that
Simp2 chooses to pay attention to only the locations of
important intersections and the names of the routes they lie
on. During recall, Simp2 recalls these locations and
connects them using straight lines. Fig 6 shows routes
recalled between the same locations as in Fig 5.

Discussion
The two models (represented by the two agents Simp1 and
Simp2) indicate two different explanations for the
simplification phenomenon. The simplified routes recalled
by Simp1 are the result of an architectural feature of biSoar
– bimodal chunking. Depending on which aspects of the
routes that attention was paid to, Simp1 chunks a simplified
version of the original route. Simp2 on the other hand, does
not even bother trying to chunk the spatiality of the routes.
Instead, it learns the locations of important intersections and
the routes they are on and connects them with straight lines
during recall. As mentioned before, the ability to create
these models does not automatically suggest that either (or
both) explanation is the definitive source of the
simplification phenomenon. There could be other as yet
unwritten models that might turn out to be, in fact, right.
However, these models do suggest that one variable to
control for is whether subjects are recalling only locations
or both locations and routes. One way to do this would be to

R3

R2

R1

R4 R5

Fig 4: The map for models Simp1 and Simp2. Routes are
found from P1 to P2, P4 to R1R3-1 and R1R4 to R1R5

R1
R2

R1

R4

R2

R5

R1

R2

Fig 5: Routes found by Simp1 from the map in Fig 4. (a) R1R4
to R1R5. (b) P4 to R1R3-1. (c) P1 to P2

(a) (b)

(c)

have a particularly attention grabbing feature on one of the
curves (maybe a loop or sudden change in direction).

Task 2 – Distortion in Geographic Recall
According to Stevens and Coupe (1978), when subjects
were asked about the relation between San-Diego and Reno,
most answered that San-Diego was to the west of Reno even
though in reality, Reno is west of San Diego. They go on to
suggest that this result indicated two things – one, that the
cognitive map was unlikely to be a faithful metrical
representation and two, that the representation was
hierarchical in nature, the hypothesis being that since the
subjects did not have any information about the relationship
between SD and Reno they went up the hierarchy and
compared the containing regions – California and Nevada.
Since California is to the West of Nevada, it followed that
SD was to the west of Reno.

We built three different models of problem solving for
this task. Model 1 is of an agent that has a single simplified
metrical representation of California and Nevada in LTM
(and WM) like in Fig 7 (a). In this particular example San
Diego to the West of Reno, but an agent that paid particular
attention to these cities may have a metrical representation
with the cities in their correct relationship to each other.
Model 2 has symbolic information in LTM that San Diego
is South of San Francisco and that Reno is East of San
Francisco. It constructs a diagram (Figure 7(b)) in WM
using this information and extracts the (wrong) answer from
the diagram. Model 3 has symbolic information in LTM that
San Diego is in California, Reno in Nevada and that
California is to the West of Nevada. This information is
used to construct a diagram (Figure 7(c)) and the (wrong)
answer extracted from it.

Discussion
The variety of models in Task 2 exhibit biSoar’s flexibility
in modeling spatial phenomena. Each model provides a
different explanation and, in essence, suggests a separate
control variable. For example, in Model 2, the explanation is
that subjects use a specific strategy – that of comparing the
location of the target cities to a common city and inferring
the relationship from that knowledge. This strategy can be
controlled for by using artificial maps (as Stevens and

Coupe do in their original paper) that do not provide this
extra information. Thus, models in biSoar have a
straightforward mapping to issues to control for and
building these models provides a natural way of discovering

these issues. Of course, the experimenter is free to simply
think of various explanations without modeling in biSoar,
but the advantage is that it provides additional constraints
and restricts the experimenter to those explanations that are
cognitively possible. The disadvantage is that we do not
know of any systematic way of generating these
models/variables. Certain heuristics such as “look for at
least one explanation from each possibility in the
explanation space” can suggest lines along which the model
builder/experimenter may approach the problem.

Related Work
Soar – Lathrop and Laird (2006) report on progress in their
work on expanding Soar to include a perceptual
representation and reasoning system. There is at least one
important theoretical distinction between their work and
ours. Our work is based on the assumption that all aspects of
the agent’s architecture including the cognitive state,
memory, learning etc, are multi-modal and that during
problem solving Soar can seamlessly access representations
across all modalities. Lathrop and Laird take a different
approach, one in which the perceptual system is part of the
total cognitive system, but outside of high-level cognition.
This means that perceptual representations can be accessed
only through the input/output system and access to them is
restricted to the input and output phases of Soar’s decision
cycle. In practice, the implementations are very similar and
we believe their system can model most of what we do,
including the visualization of information and subsequent
extraction of the desired spatial relationship as in Model 3.
However, they do not as yet have a theory of automatic
learning (what we refer to as bimodal chunking) for the
visual part, which provides the basis for an architectural
explanation of phenomena such as simplification.
ACT-R – ACT-R or Adaptive Control of Thought –
Rational (Anderson et al., 2004) is a general cognitive
architecture whose goal is to model all aspects of high-level

Fig 6: Routes found by Simp2 from the map in Fig 4. (a)
R1R4 to R1R5. (b) P4 to R1R3-1. (c) P1 to P2

R4

R2

R5

R1
R2

R1

R2
R1 (a) (b)

(c)
San-Diego

RenoC
N

Fig 7:(a) Map of SW U.S. in LTM (& WM) of Model 1. (b)
& (c) are diagrams in WM constructed by Models 2 & 3

(a) (b)

(c)

human cognitive activity. However, there are no reports on
any work in augmenting ACT-R’s cognitive state to be
multi-modal. Certain related work such as ACT-R/S (S for
spatial) (Harrison & Schunn, 2002) augment ACT-R with
representations for immediate space and object shapes for
manipulation but there is no claim to a diagrammatic
component that unifies experience whether from memory or
perception.
Other Work – There have been a number of non-cognitive
architecture oriented proposals for spatial representation and
learning, notably the Spatial Semantic Hierarchy or SSH
(Kuipers, 2000). The SSH is a multi-layered theory, that
represents its knowledge of space at multiple levels –
control, causal, topological and metrical, with the
information at one level building on what was learned at the
next lower level (except in the case of the metrical level.) In
its current avatar, biSoar encompasses the topological and
metrical levels of SSH. The representational and problem
solving capabilities of biSoar and SSH with regards to
topological information are similar. The real difference is at
the metrical level. SSH proposes a few ways in which 2-D
metric information may be represented but biSoar, and in
particular, DRS provide a concrete representational format
for metric information. Further, biSoar creates, modifies and
inspects this information during problem solving making
DRS an integral part of the problem solving process.

Other models include Absolute Space Representation
(ASR) (Jefferies & Yeap, 2001) and MIRA�E (Barkowsky,
2001). Both combine models of representation with a
metrical representation that has aspects of DRS.

Since SSH, ASR and MIRA�E are all intended to model
spatial representation and reasoning, they lack the flexibility
of a general cognitive architecture that biSoar provides.

Concluding Remarks
We have presented a proposal for bimodal learning within
the existing learning mechanism in Soar, chunking, and
shown how building models of spatial representation and
reasoning within this architecture can help in the design of
experiments. We believe that a bimodal architecture
augmented with bimodal chunking can be an useful vehicle
in exploring the nature of the human cognitive map.

Two additional details need to be satisfactorily addressed
for a measure of closure in this direction of research. The
first relates to biSoar's rule matching process mentioned
earlier, where elements in LTM rules are matched against
structures in WM. It is not yet clear how to match diagrams
on the LHS of rules to the diagrammatic part of WM.
Second, the processes involved in composing diagrammatic
elements from different LTM rules in WM according to the
needs of the current goal. For example, subjects may
remember the border of Texas using multiple diagrams -
one consisting of a simplified overall view, another
representing the "top hat" part and a third representing the
coastline. During recall, the diagram is constructed by
integrating these overlapping or locally inconsistent images
with the aid of task-specific knowledge.

We believe that the idea of simplification that is
presented extends naturally to other memories such as
semantic and episodic memories. Further, even though it is
presented in the context of Soar, the general ideas are likely
to be applicable to other symbolic architectures like ACT-R.

Acknowledgements
Advanced Decision Architectures Collaborative Technology
Alliance sponsored by the U.S. Army Research Laboratory
under Cooperative Agreement DAAD19-01-2-0009

References
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,

Lebiere, C., & Qin, Y. (2004). An integrated theory of the
mind. Psychological Review, 111(4), 1036-1060.

Barkowsky, T. (2001). Mental processing of geographic
knowledge. In D. R. Montello (Ed.), Spatial information
theory - foundations of geographic information science
(pp. 371-386). Berlin: Springer.

Chandrasekaran, B. (2006). Multimodal cognitive
architecture: Making perception more central to
intelligent behavior. Paper presented at the 21st National
Conference on Artificial Intelligence, California.

Chandrasekaran, B., Kurup, U., Banerjee, B., Josephson, J.
R., & Winkler, R. (2004). An architecture for problem
solving with diagrams. Paper presented at the
Diagrammatic Representation and Inference conference.

Harrison, A. M., & Schunn, C. D. (2002). Act-r/s: A
computational and neurologically inspired model of
spatial reasoning. Paper presented at the 24th Annual
Meeting of the Cognitive Science Society, Fairfax, VA.

Jefferies, M. E., & Yeap, W. K. (2001). The unity of global
representations in a cognitive map. Paper presented at the
International Conference on Spatial Information Theory:
Foundations of �eographic Information Science.

Kuipers, B. J. (2000). The spatial semantic hierarchy.
Artificial Intelligence, 119, 191-233.

Kurup, U., & Chandrasekaran, B. (2006). Multi-modal
cognitive architectures: A partial solution to the frame
problem. Paper presented at the 28th Annual Conference
of the Cognitive Science Society, Vancouver.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar:
An architecture for general intelligence. Artificial
Intelligence, 33(1), 1-64.

Lathrop, S., & Laird, J. E. (2006). Incorporating visual
imagery into a cognitive architecture: An initial theory,
design and implementation (No. CCA-TR-2006-01).

Lynch, K. (1960). The image of the city. Cambridge: MIT
Press.

Stevens, A., & Coupe, P. (1978). Distortions in judged
spatial relations. Cognitive Psychology, 10, 422-437.

Tolman, E. C. (1948). Cognitive maps in rats and man.
Psychological Review, 55, 189-208.

Tversky, B. (2000). Levels and structure of spatial
knowledge. In R. Kitchin & S. Freundschuh (Eds.),
Cognitive mapping: Past, present, and future (1 ed., pp.
24-43): Routledge.

Learning and Decision Model Selection for a Class of Complex Adaptive Systems
Tei Laine(tei@iki.fi)

Department of Computer Science
P.O.Box 68 (Gustaf Hällströmin katu 2b)
00014 University of Helsinki FINLAND

Abstract

Computer modeling is gaining popularity in the study of sys-
tems whose underlying processes are difficult to observe and
measure directly, or their controlled experimentation is not an
option. Since real-world phenomena, for instance psychologi-
cal or ecological, are often hugely complicated, and the models
trying to capture their essence relatively complex, validation of
the models and selection among the candidates is a challenge.
Furthermore, not all computer models are used merely for ex-
planatory purposes or to test theories, but some are used to sup-
port decision making. Therefore, it is critical which model the
decision makers put their confidence on. In this article I dis-
cuss a pragmatic method for selecting between classes of mod-
els that are designed to increase understanding in the most sig-
nificant single factor behind the global climate change, namely
human land-use. My focus is on agent-based land-use and
land-cover change models, and particularly models of learn-
ing and decision making. The proposed method fills the void
left by traditional statistical model selection methods that are
not applicable due to the nature of the model class of interest.
Keywords: Agent-based modeling; model selection; mini-
mum description length principle; decision making.

Introduction
These days Earth’s land-cover is going through changes at
faster pace than ever, and most of these changes are hu-
man initiated. Pervasive land-use and consequent land-cover
changes, occurring in different time scales and spatial extent,
have had and continually have adverse impact on local, re-
gional and global level by destroying natural ecosystems and
causing irreversible changes in global climate. In order to
understand the impact land-use change has on ecological sys-
tems, not only its consequences but also the underlying mech-
anisms and forces driving land-use decisions need to be ex-
plained.

Empirical measurements are not sufficient to understand
the combination of the factors behind the change (Parker,
Manson, Janssen, Hoffman, & Deadman, 2003). On the
other hand, experimental manipulation of landscapes is of-
ten impractical if not impossible (Baker, 1989). Combined
with other methods, for instance household surveys and anal-
ysis of census data, computer models offer a relatively ef-
fortless method for testing alternative theories and formulat-
ing new hypotheses, analyzing implications of environmen-
tal policies, predicting changes and exploring interactions be-
tween, for instance, social, psychological, economical, bio-
ecological, and even political and historical factors behind
land-use.

A number of different techniques have been used in mod-
eling the land-use and land-cover change (LUCC) (Parker
et al., 2003), for instance equation-based models, logistic
regression models based on suitability maps (Schneider &

Pontius, 2001), system dynamic models, statistical methods,
symbolic or rule-based systems combined with qualitative ex-
pert knowledge, and evolutionary models, such as genetic al-
gorithms. Perhaps perhaps the most common methods are
cellular automata (CA) and Markov chain (MC) models, or
combinations of them (Brown, Riolo, Robinson, North, &
Rand, 2005; Jenerette & Wu, 2001; Parker et al., 2003).

Most of the early modeling efforts have concentrated in
biophysical processes rather than human actions (Itami &
Gimblett, 2001), even if the majority of the land-use change
is initiated by humans. On the other hand, mathematical and
statistical methods ignore the spatial aspect of LUCC (Man-
son, 2000). Therefore, in this article I consider a type of
models that still is an emerging approach, namely a combi-
nation of a cellular model representing the biophysical land-
scape, and an agent-based component representing the de-
cision makers, either individuals, households or institutions.
Land-use is then what links the agent to the landscape (Parker
et al., 2003; Evans, Sun, & Kelley, 2006).

Since computer models are often used to inform decision
makers in the process of designing environmental programs
and policies, and the direct or indirect consequences of these
decisions may be consequential, models’ plausibility and ad-
equacy to the task needs to be rigorously assessed, i.e., it is
pivotal to have a right model to the task. Models may generate
seemingly plausible outcomes even if the generating mecha-
nism is quite arbitrary. On the other hand, proper tweaking
of parameter values may make them produce any results the
decision maker would like to see. The lack of adequate tools
often makes it difficult to compare and choose between al-
ternative models on a fair basis without relying on their face
value, i.e., how well the model behavior confirms to the deci-
sion maker’s ideals. Therefore, it is important that the choice
of the model that decision makers put their confidence on is
based on sound principles. In other words, the evaluation,
validation and selection methods are as crucial as the models
themselves.

Several different model selection methods, such as
Akaike’s Information Criterion (AIC) (Akaike, 1973),
Bayesian Information Criterion (BIC) (Schwarz, 1978),
and the Minimum Description Length (MDL) principle
(Grünwald, 1998), particularly its enhanced version Nor-
malized Maximum Likelihood (NML) distribution (Rissanen,
1999), apply to probabilistic model classes. However, LUCC
models do not lend themselves easily to probabilistic inter-
pretation but can be best characterized as complex adaptive
systems (CAS). Moreover, land-use change data is not al-
ways readily available in quantities warranting use of cross-

validation or bootstrap methods (Lendasse, Wertz, & Verley-
sen, 2003).

In this article I study a model selection method based on
a practical interpretation of the MDL principle. In the next
chapter I review the agent-based framework for LUCC mod-
eling. Discussion on the model selection criterion follows.
The criterion was originally introduced and extensively eval-
uated with a set of artificial data in Laine (2006). Here its
properties are addressed in the context of real-world data.

Agent-based Models of Land-use and
Land-cover Change

Two fundamental ideas behind agent-based models (ABMs)
are: first, the decision making is distributed among au-
tonomous actors, which either operate individually or may
communicate and cooperate, and secondly, the heterogeneity
of actors is captured by characteristics that may be unique or
shared by agents. The focus is on the macro-level patterns in
collective behavior emerging from agents’ individual charac-
teristics and micro-level phenomena, such as local behavior
and interaction between agents.

ABMs come in multiple disguises but here I am particu-
larly interested in models in which agents inhabit a simulated
environment, so that they are ‘physically’ tied to a specific
location and have a fixed neighborhood. The models of land-
use and land-cover change fall into this category of models.

The agent-based approach has been used to study various
land cover change related processes in several areas of the
world: for instance agricultural land-use decision making by
colonist households in Brazilian Amazon (Deadman, Robin-
son, Moran, & Brondizio, 2004), migration and deforestation
in Philippines (Huigen, 2004), agricultural household land-
use decision making in the US Midwest (Evans & Kelley,
2004; Laine & Busemeyer, 2004), reforestation in the Yu-
catan peninsula of Mexico (Manson, 2000), and ex-urban de-
velopment in Maryland, US (Irwin & Bockstael, 2002).

Land-use Framework
The conceptual assumptions behind the land-use framework
were adapted from Cioffi-Revilla & Gotts (2003). The most
important ones are listed below:

1. The landscape is an abstract rectangular area divided into
cells of equal size, which serve as the decision-making
units.

2. Each cell has various biophysical properties that remain
constant over time.

3. The main actors in the model are autonomous agents. They
have a potentially infinite existence, although they can per-
ish. All agents are of the same type (e.g., households), but
their individual characteristics may vary.

4. Agents control a region, called parcel, which is a set of
adjacent cells on the two-dimensional landscape. Agents

Figure 1: Main components of the land-use framework.

have exclusive access to this region, and there is no prop-
erty exchange between the agents.

5. Agents make resource allocation decisions on their parcel
in order to satisfy their goals. Agents have a limited set
of available actions, i.e., options to which to allocate their
resources. Agent actions change the use of the cells on
their parcel.

6. All agents have the same learning and decision strategy.

7. The global environment consists of external conditions that
are common to all parcels. These conditions may change
over time.

The architecture of the system is depicted in Figure 1.

Decision Models
At each decision round agents observe the state of their land,
and make a decision about its use in the next round. They
make the decision for each cell separately; they either decide
to keep the old use or select another use from the given alter-
natives. After making the decision for each cell, they observe
the payoff earned from different uses. This payoff is then
used as a basis for the next decision.

In this study I am primarily interested in agents’ learning
and decision processes. Thus, the alternative model classes in
selection consist of different decision and learning strategies.
In addition to a random and a null model (which never makes
any changes), other model classes chosen for the study con-
stitute a set of relatively straightforward reinforcement-based
strategies, familiar from psychology and economics litera-
ture. These are a model that makes locally greedy changes,
Q-learner (Watkins & Dayan, 1992), and two versions of
the experience-weighted attraction (EWA) model (Camerer
& Ho, 1999): one that only considers its individual payoff

(iEWA), and one that also takes its neighbors’ payoff into ac-
count (sEWA).

Model Selection Framework
Characteristic to the class of LUCC models, as opposed to
more traditional cognitive models, is that they are often vali-
dated against land-use data instead of comparing the model’s
behavior to experimental human data. The modeling task then
is to find out what kind of decision processes may have gen-
erated the observed land-use change patterns. This indirect
derivation of agent behavior from the landscape poses another
range of challenges to the validation process. Yet another val-
idation technique emerging in LUCC modeling is field exper-
iments, in which the researcher takes her laboratory to the
stakeholders and makes them play a role game that mimics
the real-world decision making context (Olivier Barreteau &
Attonaty, 2001; Carpenter, Harrison, & List, 2005).

Challenges to the Model Selection Criterion
So, which method should be used to select between agent-
based LUCC models? There is no straightforward answer,
but several inherent characteristics of the modeling domain
needs to be taken into consideration. These challenges, more
thoroughly discussed in Laine (2006), are reviewed next.

First, with the exception of some simple cases1, it is dan-
gerous to assume that some ‘true’ model exists, and design a
system so that it tries to approximate this ‘truth’. After all,
model parameters and functions are not inherent properties
of the system we want to model but theoretical constructs we
use to describe the system. We impose the properties to the
system. Again, there is no way to verify that a ‘true model’
exists, and consequently the task of estimating something that
does not exist becomes quite impossible.

Secondly, existing model selection methods most com-
monly penalize for model complexity2, i.e., its propensity
to overfit, by taking the number of free parameters into ac-
count. A typical LUCC model is a collection of multiple au-
tonomous components and processes that interact at multiple
spatial levels and temporal scales. Thus, free parameters are
not equally easy to identify in this class of models as they are
in probabilistic or polynomial model classes.

Thirdly, the data available for the validation of CAS are not
plenty and always not random samples. Sometimes it is even
hard to make a distinction between the data and the model.

These considerations make it particularly clear that most
of existing model selection methods, for instance penalized
maximum likelihood methods, such as AIC or BIC, are inap-
plicable. Nevertheless, the MDL principle, and especially its
refined formulation, the NML distribution, have some nice

1Simple cases such as the model of the average height of six
graders, or presidential candidate’s approval rate.

2Following the terminology adopted in Laine (2006), I substitute
the term ‘flexibility’ for ‘complexity’ for two reasons; first, the latter
is heavily burdened, meaning different things for different people,
and secondly, the LUCC model class and the modeled domain are
inherently complex systems, so it would be misleading to imply that
complexity is necessarily problematic.

theoretical properties, but for many practically interesting
model classes they cannot be calculated (Rissanen, 1999). Fi-
nally, in many cases the scarcity of data does not allow for
adequate generalization tests.

Normalized Minimum Error Principle
Here I propose a selection criterion that overcomes some of
these challenges. It makes the following assumptions:

• No ‘true’ model exists.

• Measure of flexibility is based on the model’s performance
with respect to data, not some predetermined structural
property.

• A model itself does not determine its fit to data, but an error
function is required.

While the last two points address the trade-off between
goodness-of-fit and the model class flexibility, the first one
takes a more ideological standpoint on what is tried to achieve
with the model selection criterion, namely that the goal is to
find the best model to explain the data rather than a model that
approximates some ‘true’ state of the world. We need to esti-
mate the model’s fit in order to quantify how well it captures
the essential properties of the data.

The fit is not enough, since too flexible model is prone
to overfit. Two-part code, also called a crude version of
the MDL principle trades off flexibility to superior fit by
choosing the model H in class Mi that minimizes the sum
L(D|H,Mi)+ L(H|Mi), where L(·) is the description length
in bits. The underlying idea is that regularities in the data
can be used to compress it, and the best model to explain
the data is one that compresses the data most efficiently. In
other words, the model using the least number of bits in de-
scribing the data most likely captures its underlying regulari-
ties. These regularities can then be used to gain insight on the
structures and processes that generated the data.

The two-part code formulation still uses the maximum like-
lihood parameters to account for the model class flexibility
(the second term in equation). We are not interested in the
best-fitting model, but a well-fitting model in a class that is
not overly flexible. In other words, we want to find a model
that can reveal interesting patterns in the data, not a model
that captures mere noise. This is where the error function
comes into play. Next, I will present a method how to treat
the trade-off between fit and flexibility adequately using er-
rors.

If we want to explain an observed data sample xn from the
set of all data samples Xn with the help of the model class Mi,
ideally we want Mi to

1. contain a model H that makes a small error on xn, and

2. contain models H ′ that do not make small errors on most
yn belonging to Xn.

This can be achieved by minimizing the following ratio,
called Normalized Minimum Error (NME) (Laine, 2006):

NME(xn,Mi) =
ER(xn|θ̂(xn,Mi)

∑yn∈X n ER(yn|θ̂(yn,Mi))
,

where ER(·) is the error model class Mi makes on xn using
the parameter values θ̂(xn) that minimize the error, and yn are
‘all possible data samples’. By normalizing each error this
way we obtain a relative measure for fit and flexibility, which
we can use as a model selection criterion.

The MDL principle is a general method of doing inductive
inference, and the NME criterion is one way of implement-
ing it. Yet another interpretation of the principle is the NML
distribution, which selects a model class Mi whose universal
model H, not necessarily in Mi, minimizes the worst case re-
gret. Regret of model H with respect to class Mi is the extra
number of bits that are required to describe the data sample xn

using H instead of using xn’s maximum likelihood model in
Mi. H is called a universal model, since it tries to mimic all
models in the class Mi. It has been proved (Rissanen, 1999)
that the NML criterion defines a unique model that minimizes
the maximum regret.

The NME criterion uses errors as measure of fit, whereas
the NML criterion uses probabilities. The term in the denom-
inator is the most crucial aspect of both criteria, since it ac-
counts for their ability to penalize for excess flexibility. The
relationship between these two was demonstrated in Laine
(2006).

Evaluation of the Criterion
The proposed criterion has been extensively tested with artifi-
cially generated data in Laine (2006). In this section I discuss
some of its properties in the light of a representative case of
real land-cover change data.

Review of Experiments with Artificial Data
Acquisition of multiple samples of accurate land-cover data
with a good resolution is difficult or at least time consuming.
Therefore, the preliminary experiments were conducted with
data generated by an artificial system, i.e., the same model
classes that were used as candidate models were also used
as data generating classes. This is a common practice when
comparing multiple model selection methods (Busemeyer &
Wang, 2000; Pitt, Myung, & Zhang, 2002). The experiments
were run in several conditions by varying the biophysical and
agent characteristics, and the error function.

The main findings in the first set of experiments are:

1. The criterion tends to select the generating class if it is
among the candidates.

2. The criterion predominantly selects model classes with
fewer free parameters, and never chooses a class more flex-
ible than the generating class.

3. For no data set it strongly prefers any single class, but the
selected model depends on the error function.

Case-study
The data used in the second set of experiments comes from
the state of Indiana in the Midwestern United States. The for-
est cover of the state of Indiana has undergone drastic changes
during the last couple of hundred years; from almost 100%
of the state being forest before the first settlers entered and
cleared the land for agricultural production, down to 5-10%
in the early 1900’s, and then up to the current day’s 20%,
which mostly resides on the rolling hills of the South-central
part of the state.

This study concentrates on deforestation and reforestation
between 1940 and 1998 in two rural townships, Indian Creek
and Van Buren, both about 10km× 10km in size. The avail-
able data indicates that the forest cover has undergone a sig-
nificant increase within the first 15 years of the study period
and after that a modest but gradual increase. The overall in-
crease of forest cover is around 20% in both townships. The
change has not been unidirectional nor uniform; for instance,
both deforestation and afforestation can be seen in the both
townships, as pictured in Figure 2.

Data
Data used in these experiments consists of land-cover maps
covering the study period, slope and soil data, and ownership
data. In addition to these, economic data (prices and wages),
and forest growth data were imported as exogenous forces.
The land-cover is represented as a grid of cells of size 50m×
50m that records the land-use for each cell. Ownership, slope,
and soil data is recorded per cell in similar grids.

Experimental Conditions
The experiments were divided into a number of conditions by
varying:

1. Agent characteristics Homogeneous vs. heterogeneous
agents by household size, initial wealth and the number of
neighbors.

2. Fitting method Landscape level vs. individual parcel level
fit of parameters.

3. Error function (1) Mean absolute difference, (2) composi-
tion, (3) edge length, and (4) mean patch size. The first one
measures the point by point difference between two land-
scapes, whereas the latter three calculate a squared differ-
ence between forest percentages, forest border lengths or
mean forest patch sizes of two landscapes.

Results
The proposed model selection criterion cannot be analyzed
in isolation of the error function it uses. The current study
uses four different error functions three of which are so called
summary statistics; they characterize a single aspect of the
land-cover, whereas the fourth one, mean absolute difference,
is a location by location measure. This metric uses more in-
formation of the landscapes than the other three that do not
consider location.

Figure 2: Deforestation, afforestation and stable forest cover in Indian Creek (left) and Van Buren (right) townships from 1940
to 1998.

Indian Creek Van Buren
Error: Selected NME (µ) Selected NME (µ)

(1) sEWA (c) .25 (.413) random .499 (.588)
(2) iEWA (c) .05 (.415) Q (c) .12 (.585)
(3) sEWA (i) .35 (.463) sEWA (c) .05 (.537)
(4) sEWA (c) .103 (.406) iEWA (c) .49 (.594)

Table 1: Selected model classes and their NME scores for
homogeneous agents with landscape level fit (mean scores in
parenthesis, c=collectively fitted, i=individually fitted).

Summary statistics are supposedly easier to fit, since there
are several possible ways to get them right, for instance, sev-
eral different land-cover configurations may have the same
composition. Consequently, there are fewer ways of getting
them wrong, too. However, there are very few ways, actually
only one, of getting the location-by-location comparison cor-
rect, and a considerable number of ways of getting it wrong.

The selected models together with the respective NME
scores and their means are presented in Tables 1 and 2 for
homogeneous and heterogeneous agents, respectively, using
different error functions. The number of decimal points is
determined by how many decimals are needed to distinguish
between the NME scores.

For homogeneous agents only one time out of eight is the
individually fitted model class selected, whereas for hetero-
geneous agents three times out of eight. This is roughly what
can be expected; when there is more variation in the agent
population, there is potentially something to be gained by fit-
ting the agents individually. In other words, the benefit at-
tained in better fit outweighs the cost in extra flexibility.

In general, the selection criterion selects simpler mod-
els, i.e., collectively fitted classes, for homogeneous agents
with both landscapes. However, with heterogeneous agents
it predominantly selects individually fitted classes for Indian

Indian Creek Van Buren
Error: Selected NME (µ) Selected NME (µ)

(1) sEWA (i) .193 (.249) iEWA (c) .59 (.752)
(2) greedy (c) .04 (.180) Q (c) .39 (.820)
(3) Q (i) .154 (.205) sEWA (c) .67 (.795)
(4) greedy (i) .674 (.778) Q (c) .03 (.222)

Table 2: Selected model classes and their NME scores for het-
erogeneous agents with parcel level fit (mean scores in paren-
thesis, c=collectively fitted, i=individually fitted)).

Creek, but collectively fitted for Van Buren. This indicates
that either agent heterogeneity plays a bigger role in Indian
Creek and some of the models classes are able to capture it,
or the larger number of agents in Van Buren is hard to fit,
and the selection criterion resorts to making a safe decision
of selecting simpler model classes.

Finally, null and random model classes are seldom se-
lected. This supports the fact that the real landscapes are dy-
namic, and undergo very characteristic changes which cannot
be captured either by a chaotic or a stationary process.

Discussion and Future Work
The literature provides us with evidence that, somewhat
counter-intuitively, location-by-location comparison is not
that difficult after all. Pontius et al. (2004) argue that not
a single model has been reported that is able to predict the
location of land-cover changes better than a null model, a
model that predicts no change. The proposed selection cri-
terion is looking for a model class that is simple and contains
a model that fits the data well. Since the changes over time
in the real landscapes are usually small, a model that predicts
few changes should perform well. Why does not the NME
criterion select the null model?

In the current experiments ‘all possible data’ was replaced

by ‘all available data’ for practical reasons. This decision has
detrimental consequences. For instance, even if both Indiana
landscapes exhibit some idiosyncrasies, nevertheless they can
be assumed to be generated by ‘the same process’; they are
physically linked, subject to the same weather conditions and
under the same county rules.

However, the NME criterion penalizes a model class, pos-
sibly the null model class, that fits well both of these data
samples, as if it fitted ‘all data’ well, and never chooses the
same model class for both landscapes. There is no outstand-
ing solution to this dilemma yet. Thus, the very first theo-
retical and practical challenge is to circumscribe the actual
meaning of ‘all possible data’ in order to fully understand the
relation between theoretical underpinnings of the proposed
criterion and the underlying practical issues inherent to the
modeled domain.

Finally, although a common agreement in the field of
LUCC modeling is that model validation is crucial, this study
represents one of the first attempts to introduce model selec-
tion methodology to this complex spatial domain. The goal of
model selection is to find a model that helps us gain insight
into the processes underlying the — natural, psychological
or economic — phenomenon of interest. Although the pro-
posed criterion penalizes for excess complexity, simplicity is
not the end in itself, but prevents us from becoming overcon-
fident in more complex models when there is not enough data
to support them. On the other hand, a considerable reflection
should be involved when choosing the candidate models: too
simplistic models to start with do not bring us any closer to
understanding complex natural phenomena.

Acknowledgments
This study was funded by the Biocomplexity grant (NSF
SES0083511) for the Center for the Study of Institutions,
Population, and Environmental Change (CIPEC) at Indiana
University, and was also supported in part by the IST Pro-
gramme of the European Community, under the PASCAL
Network of Excellence, IST-2002-506778.

References
Akaike, H. (1973). Information theory and an extension of the max-

imum likelihood principle. In B. Petrox & F. Caski (Eds.),
Second International Symposium on Information Theory (p.
267-281). Akademiai Kiado, Budapest, Hungary.

Baker, W. L. (1989). A review of models of landscape change.
Landscape Ecology, 2(2), 111-133.

Brown, D. G., Page, S., Riolo, R., Zellner, M., & Rand, W. (2005).
Path dependence and the validation of agent-based spatial
models of land use. International Journal of Geographical
Information Science, 19(2), 153-174.

Brown, D. G., Riolo, R., Robinson, D. T., North, M., & Rand, W.
(2005). Spatial process and data models: Toward integration
of agent-based models and GIS. Journal of Geographical
Systems, 7, 25-47.

Busemeyer, J. R., & Wang, Y.-M. (2000). Model comparisons and
model selections based on generalization criterion methodol-
ogy. Journal of Mathematical Psychology, 44, 171-189.

Camerer, C., & Ho, T.-H. (1999). Experience-weighted attraction
learning in normal form games. Econometrica, 67(4), 827-
874.

Carpenter, J. P., Harrison, G. W., & List, J. A. (Eds.). (2005). Field
experiments in economics (Vol. 10). Elsevier.

Cioffi-Revilla, C., & Gotts, N. M. (2003). Comparative analysis
of agent-based social simulations: Geosim and FEARLUS
models. Journal of Artificial Societies and Social Simulation,
6(4).

Deadman, P., Robinson, D., Moran, E., & Brondizio, E. (2004).
Colonist household decisionmaking and land-use change in
the Amazon rainforest: An agent-based simulation. Environ-
ment and Planning: Planning and Design, 31, 693-709.

Evans, T., & Kelley, H. (2004). Multi-scale analysis of a house-
hold level agent-based model of landcover change. Journal
of Environmental Management, 72, 57-72.

Evans, T., Sun, W., & Kelley, H. (2006). Spatially explicit exper-
iments for the exploration of land-use decision-making dy-
namics. International Journal of Geographical Information
Science, 20(9), 1013-1037.

Grünwald, P. (1998). The minimum description length principle and
reasoning under uncertainty. Doctoral dissertation, Univer-
sity of Amsterdam.

Huigen, M. G. A. (2004). First principles of the MameLuke multi-
actor modelling framework for land-use change, illustrated
with a Philippine case study. Journal of Environmental Man-
agement, 72, 5-12.

Irwin, E. G., & Bockstael, N. E. (2002). Interacting agents, spatial
externalities and the evolution of residential land use patterns.
Journal of Economic Geography, 2, 31-54.

Itami, R., & Gimblett, H. (2001). Intelligent recreation agents in a
virtual GIS world. Complexity International Journal, 08.

Jenerette, G. D., & Wu, J. (2001). Analysis and simulation of land-
use change in the central Arizona - Phoenix region, USA.
Landscape Ecology, 16, 611-626.

Laine, T. (2006). Agent-based model selection framework for com-
plex adaptive systems. Doctoral dissertation, Indiana Univer-
sity.

Laine, T., & Busemeyer, J. (2004). Comparing agent-based learn-
ing models of land-use decision making. In C. L. Mar-
sha Lovett Christian Schunn & P. Munro (Eds.), Proceedings
of the Sixth International Conference on Cognitive Modeling
(p. 142-147). Lawrence Erlbaum Associates.

Lendasse, A., Wertz, V., & Verleysen, M. (2003). Model selection
with cross-validation and bootstraps — application to time
series prediction with RBFN models. In (p. 573-580). Berlin,
Germany: Springer-Verlag.

Manson, S. M. (2000). Agent-based dynamic spatial simulation
of land-use/cover change in the Yucatan peninsula, Mexico.
In 4th International Conference on Integrating GIS and En-
vironmental Modeling (GIS/EM4): Problems, Prospects and
Research Needs. Banff, Alberta, Canada.

Olivier Barreteau, F. B., & Attonaty, J.-M. (2001). Role-playing
games for opening the black box of multi-agent systems:
method and lessons of its application to senegal river valley
irrigated systems. Journal of Artificial Societies and Social
Simulation, 4(2).

Parker, D. C., Manson, S., Janssen, M., Hoffman, M., & Deadman,
P. (2003). Multi-agent system models for the simulation of
land-use and land-cover change: A review. Annals of the
Association of American Geographers, 93(2), 316-340.

Pitt, M. A., Myung, I. J., & Zhang, S. (2002). Toward a method of
selecting among computational models of cognition. Psycho-
logical Review, 109(3), 472-491.

Pontius, R. G., Huffaker, D., & Denman, K. (2004). Useful tech-
niques of validation for spatially explicit land-change models.
Ecological Modelling, 79, 445-461.

Rissanen, J. (1999). Hypothesis selection and testing by the MDL
principle. The Computer Journal, 42(4), 260-269.

Schneider, L. C., & Pontius, R. G. (2001). Modeling land-use
change in the Ipswich watershed, Massachusetts, USA. Agri-
culture, Ecosystems and Environment, 85, 85-94.

Schwarz, G. (1978). Estimating the dimension of the model. The
Annals of Statistics, 6, 461-464.

Watkins, C., & Dayan, P. (1992). Q-learning. Machine Learning,
8(3/4), 279-292.

Be Wary of What Your Computer Reads:

The Effects of Corpus Selection on Measuring Semantic Relatedness

Robert Lindsey Vladislav D. Veksler Alex Grintsvayg Wayne D. Gray
(lindsr@rpi.edu) (vekslv@rpi.edu) (grinta@rpi.edu) (grayw@rpi.edu)

Rensselaer Polytechnic Institute, 110 8th Street

Troy, NY 12180 USA

Abstract

Measures of Semantic Relatedness (MSRs) provide models of

human semantic associations and, as such, have been applied

to predict human text comprehension (Lemaire, Denhiere,

Bellissens, & Jhean-Iarose, 2006). In addition, MSRs form

key components in more integrated cognitive modeling such

as models that perform information search on the World Wide

Web (WWW) (Pirolli, 2005). However, the effectiveness of

an MSR depends on the algorithm it uses as well as the text

corpus on which it is trained. In this paper, we examine the

impact of corpus selection on the performance of two popular

MSRs, Pointwise Mutual Information and Normalised Google

Distance. We tested these measures with corpora derived

from the WWW, books, news articles, emails, web-forums,

and encyclopedia. Results indicate that for the tested MSRs,

the traditionally employed books and WWW-based corpora

are less than optimal, and that using a corpus based on the

New York Times news articles best predicts human behavior.

Keywords: Measures of Semantic Relatedness, semantic

similarity, training corpus, corpus comparison, Pointwise

Mutual Information, PMI, Normalised Google Distance,

NGD, computational linguistics, natural language processing.

Introduction

Adding a text-comprehension component to cognitive

models is a worthy goal, but it is a goal with many obstacles

standing in its way. Although grammar parsing is still a

major problem in computational linguistics, we are close to

being able to accurately approximate relative meanings of

words and documents. Using statistical techniques known as

Measures of Semantic Relatedness (MSRs), we can

automatically extract word definitions and relationships

from large text corpora.

MSRs have been used in modeling language acquisition

(Landauer & Dumais, 1997), human web-browsing behavior

(Fu & Pirolli, 2007), text comprehension (Lemaire et al.,

2006), semantic maps (Veksler & Gray, 2007) and many

other modeling applications. In more applied domains,

MSRs have been used to develop a wide variety of

applications such as augmented search engine technology

(Dumais, 2003) and automated essay-grading algorithms for

the Educational Testing Service (Landauer & Dumais,

1997). MSRs have a wide range of practical applications

and are potentially useful to any cognitive model or AI

agent dealing with text (Veksler, Grintsvayg, Lindsey, &

Gray, Submitted).

MSR performance depends on the corpus on which it is

trained. Imagine if a child learning the English language

were only allowed to read Shakespeare. Although the child

would certainly learn English, he or she would undoubtedly

encounter a number of communications problems. A

conversation with this child would be difficult because they

learned a very out-of-style form of English. Many of the

words in the text the child learned from are used less often

nowadays, some of those words are used more often, and

some maybe not at all. Moreover, many of the words would

have acquired new meanings, or would be used in different

contexts than in Shakespeare’s day. In addition, a child

exposed exclusively to Shakespeare might be able to

converse about love and war, but not about how to hail a

taxi or how to reboot a computer. All in all, the choice of a

set of learning material, or text corpora, for children has a

profound impact on how well they comprehend English.

The same concept applies to MSRs.

MSRs try to learn word relations the same way children

do (Landauer & Dumais, 1997; Newport & Aslin, 2004;

Newport, Hauser, Spaepen, & Aslin, 2004), and

consequently their effectiveness is dependent on the text

corpus from which they glean information. Whereas

children’s exposure to speech and text may, to some degree,

be considered open to many sources, MSRs are strictly

bound by their training corpora. MSRs calculate the

probability of the co-occurrence of two query words in order

to ascertain their semantic relatedness value. This

probability varies greatly from one corpus to another, so the

output of MSRs trained on different text corpora also varies

greatly. There are many corpora commonly used to train

MSRs and each produces different semantic relatedness

values.

Landauer and Dumais (1997) claim that because children

do not hear most of their lexicon, they must gain their

vocabulary through books. Consequently, MSRs are often

trained on books in the hopes of gaining knowledge from

the same source as children. To our knowledge, this corpus

choice has never been objectively validated and rigorously

examined in comparison with other corpus types.

Certain MSRs may take as their corpus the entire World

Wide Web (Turney, 2001). A naive assumption might be

that such an overwhelmingly large amount of text will result

in properly trained MSRs, and that although some web

pages will not accurately represent the semantic relations of

our language, those few unhelpful websites are statistically

insignificant. To our knowledge, the use of the World Wide

Web as a training corpus is just as unfounded as the use of

any given corpus of books.

Using books, the internet, or any other text corpus that has

not been studied rigorously for its effect on the performance

of MSRs may seriously compromise MSR-based

applications. Just as children must be trained on proper

material, an MSR must likewise be trained on the proper

corpus in order to accurately model human lexical

knowledge. In this paper, we examine the impact of corpus

selection on the performance of two popular MSRs,

Pointwise Mutual Information and Normalised Google

Distance. We tested these measures in combinations with

WWW, books, news articles, emails, web-forums, and

encyclopedia-like corpora. All MSR-corpus pairs were

evaluated as to their ability to represent human lexical

knowledge based on data from a large-scale free-association

psychological study (Nelson, McEvoy, & Schreiber, 1998).

The Evaluation Challenge

Deciding how to evaluate the goodness of MSRs presents a

daunting challenge. First, there are at least a dozen MSRs in

the published literature and more are being invented each

year. Second, as we will show, the goodness of an MSR

depends at least partially on the corpus on which it is

trained. Third, it may well be that different MSRs capture

human semantic relatedness more so in some tasks (e.g.,

deciding what link to click on next) than in others (e.g.,

deciding if the content of a paragraph provides the answer to

a sought-after question).

Clearly, we do not have room in this small paper to

exhaustively explore the problem space implied by the

combination of these three factors. Rather, as discussed

below, we choose two MSRs, a small set of large corpora,

and one criteria task on which reliable and valid measures of

human performance exist. However, our work is ongoing,

and we intend this paper to be an exemplar, not an

exhaustive, evaluation of MSRs.

Measures of Semantic Relatedness

MSRs give computers the ability to quantify the meaning of

text. MSRs define words in terms of their connection

strengths to other words, and they define connection

strengths in terms of word co-occurrence. In other words,

two terms are related if they often occur in the same

contexts. Two terms are synonymous if their contexts are

identical.

Pointwise Mutual Information (PMI)

PMI is a well-established and successful measure for
approximating human semantics (Turney, 2001). PMI is
based on the probability of finding two terms of interest (t1
and t2) within the same window of text versus the
probabilities of finding each of those terms separately:

where P(t1) and P(t2) are the probabilities of finding a

window of text in the corpus containing the term t1 or t2

respectively; and P(t1,t2) is the probability of finding a

window of text in the corpus containing both t1 and t2.

Please see Turney (2001) for a more expanded discussion of

PMI.

Window-size is a free parameter in PMI and most-all

other MSRs. For web-based corpora window size is

typically set to be a webpage; however, it can also be any

grouping of text – a sentence, an email, a webpage, or some

other organizational group.

Normalised Google Distance (NGD)

NGD is another popular MSR (Cilibrasi & Vitanyi, 2007)
that measures the similarity between two terms by using the
probability of co-occurrences as demonstrated by the
following equation:

where M is the total number of searchable Google pages,
and f(x) is the number of pages that a Google search for x
returns.

Although NGD was originally based on the Google search

engine, this formula may be used in combination with other

text corpora just as well. That Google's entire document-

base is a better text corpus for this MSR is exactly the

premise that we wish to challenge in the current work.

In order to use NGD as a relatedness measure, rather than

a measure of distance, we convert NGD scores into

similarity scores by subtracting NGD from 1 (1 being the

maximum NGD score). From this point forth we will refer

to the similarity score based on the NGD formula as the

Normalized Similarity Score (NSS).

Corpus Issues

A text corpus used to train an MSR may suffer from a
variety of problems that impair its effectiveness. The
content may be too old to accurately represent the semantic
relatedness of words, as modern language uses words more
or less frequently than in the past. Thus, classic literature
may not be the ideal training corpus for MSRs.

Text corpora may also be too biased to be useful. For

example, a corpus comprised of writings from a single

political party will likely lead an MSR to calculate an overly

strong relatedness between words like “axis” and “evil”.

Likewise, a biased corpus may calculate a weak relatedness

between words in situations where it should be higher. We

may find that the internet has a commercial (or some other)

bias and thus will not make a good overall training corpus.

Additionally, text corpora may be too impoverished or

contain bad examples of language. A log of instant

messaging conversations, for example, may provide a poor

source of the English language. Using poorly written text as
PMI(t1,t2) = log2

P(t1,t2)

P(t1) P(t2)

NGD(t1,t2) =
max{log f (t1),log f (t2)} log f (t1,t2)

logM min{log f (t1),log f (t2)}

the training material would be similar to learning English

from someone who does not speak English.

Text corpora may be too structured. For example, a

dictionary or an encyclopedia may turn out to be a poor

training source for MSRs.

By the same token, text corpora may be too unstructured.

We presume that web forums contain conversational

English and would thus make a great MSR training source,

but the lack of structure in such corpora may make these

suboptimal, as well.

Additionally, a text corpus may be computationally

expensive to use. If it is excessively large, many MSRs will

take a long time to produce a result, and some MSRs will

not be able to produce the result at all.

Corpus Evaluation

In order to select an optimal training corpus for an MSR,

many corpora must be tested and have their performances

compared. We studied two MSRs, PMI and NSS, and

evaluated their performance on six unique corpora. The

following sections describe the method by which we

performed our evaluations.

MSRs

PMI and NSS were the two MSRs used in this study. These
are two popular MSRs that can handle all of the corpus
types that we were considering in our research. Other
MSRs, e.g. LSA (Landauer & Dumais, 1997), GLSA
(Matveeva, Levow, Farahat, & Royer, 2005), ICAN
(Lemaire & Denhiére, 2004), simply cannot handle large
corpuses (e.g. WWW).

For five of the corpora the text-window size was a

webpage. For the sixth corpus, the Enron Email Corpus, the

text-window size was an email.

Corpora

Google Corpus

This corpus is an extremely large collection of text (the

World Wide Web), and is a popular choice for a training

corpus. One major advantage of this corpus is that MSRs

run extremely fast on it. Counting the number of hits

returned by a search takes an inconsequential length of time.

Wikipedia Corpus

Wikipedia is the largest, free-content encyclopedia on the

internet. We chose to study this corpus because it represents

a great wealth of human knowledge. In order to use this

corpus, we count the hits returned by a Google search for

the terms after restricting our results to "site:wikipedia.org".

New York Times Corpus

New York Times is a news source that we chose to study as

a corpus because of their large collection of online articles.

We access this corpus the same way we access Wikipedia,

by restricting Google searches to "site:nytimes.com".

Project Gutenberg Corpus

Books make a popular choice as an MSR training corpus

(e.g. Landauer & Dumais, 1997). Project Gutenberg is an

online collection of over 20,000 books. This corpus

represents one of the largest online collections of books

available. In order to use this corpus, we count the hits

returned by Google searches restricted to

"site:gutenberg.org/files".

Google Groups Corpus

Google Groups is a subdivision of Google’s website that

hosts online discussions and forums. This corpus was

chosen because it represents a large collection of informal

conversational language. We use this corpus in the same

way we use Wikipedia, New York Times, and Project

Gutenberg – by restricting our searches on Google to

"site:groups.google.com".

Enron Email Corpus

Some time ago, a large collection of emails from Enron

Corporation’s top management personnel was released to

public-domain. We chose to study this collection of emails

as a training corpus because it is one of the largest

collections of emails available. The hypothesis is that emails

may make for an excellent corpus choice because they

contain modern conversational language. In order to use this

corpus, we imported all email bodies into a database, and

ran queries on this database to find out the

probability/frequency information for each PMI/NSS

request.

Limitations

Each of the corpora we chose represents a sampling from

the set of all possible corpora. It is unclear to us how

representative or non-representative our selection is of this

larger set. Indeed, it is unclear to us how to formally

characterize our selected corpora or the larger set of corpora

so as to answer this question. Hence, our only claim for our

current work is that we compare each of our two selected

MSRs on each of our six corpora. These comparisons

should allow us to begin to characterize the ways in which

these two MSRs predict human performance when provided

with equal training. (We view our effort as the first study of

its kind, not the last.)

Evaluation

Our evaluation method is based on a comparison between
the performance of an MSR trained on particular text corpus
and semantic relatedness data collected from a large-scale
free-association experiment (Nelson et al., 1998). In this
experiment, subjects were given a stimulus word, cue, and
were then asked what word first came to mind, target. The
target word that first came to mind is considered to be the
most semantically related word for that cue, for that
participant. More than 6,000 participants produced nearly
three-quarters of a million responses to 5,019 cue words.

In order to find out whether the MSRs, trained on the six

provided corpora, agreed with human judgments of word

relatedness, we checked that the MSRs picked target words

for each cue as more relevant to that cue than other random

words. To do this, we added a list of n random nouns to the

list of n target words for each cue, resulting in a list of 2n

words (n was limited to a maximum of 5 for cue words that

were associated with more than 5 targets); this list of words

was then sorted by MSRs according to word-cue

relatedness. If a given MSR perfectly agreed with human

judgments, the top n words in the sorted list would be all of

the human-picked targets for that cue. If half of the targets

were found by the MSR to be less relevant to the cue than

half of the random words, the MSR performance on that cue

would be considered 50%. The average percentage of

targets found in the top n MSR-sorted words was used as

the overall MSR performance score.

Results & Discussion

We evaluated PMI and NSS on the following corpora:

Project Gutenberg, Google Groups, Google, Enron,

Wikipedia, and New York Times. PMI performed best on

the New York Times corpus with an average score of

67.3%. PMI performed the worst on the Project Gutenberg

corpus, the massive online collection of books, with an

average score of 43.2%. NSS performed best on the

Wikipedia corpus with an average score of 65.4%. NSS

performed worst on the Project Gutenberg corpus with an

average score of 54.2%. A two-factor ANOVA revealed a

significant main effect of Corpus, F(5,25080) = 824.45, p <

.001, a significant main effect of MSR, F(1,5016) =

1094.67, p < .001, and a significant effect of the Corpus by

MSR interaction, F(5,25080) = 229.80, p < .001. PMI’s

performance showed a high dependence on the text corpus

used, while NSS varied less from corpus to corpus.

NSS performed better than PMI on all but the New York

Times corpus (mean NSS performance = 60.2%; mean PMI

performance = 55.0%), and the overall performances of the

two MSRs were highly correlated across the six corpuses (r-

square = .82).

Figure 1. Corpus comparison for PMI and NSS. Standard

error bars are too small to be displayed.

We were surprised that the New York Times corpus

performed the best out of all the corpora we tested on PMI.

It is not nearly as extensive as the Google corpus, nor as

structured as Wikipedia, nor does it contain as much

conversational English as the Enron Email Corpus or

Google Groups. Yet it clearly had the highest score. Also

surprisingly, Project Gutenberg, which is a large collection

of online books, was the worst of these corpora. These

findings have serious implications for the significant portion

of MSR research and applications using books as the

training corpus.

Our results show that corpus selection has a significant

impact on an MSR’s performance. One need look no further

than at the difference in average scores between PMI using

the Project Gutenberg corpus and PMI using New York

Times corpus to see this fact. The fact that NSS scores do

not vary nearly as much as PMI across different corpus

selections indicates the presence of an MSR by corpus

interaction effect. Further evidence of this effect lies in the

fact that the New York Times corpus, our best corpus for

PMI, did not perform as expected on NSS, our best-

performing MSR. This MSR by corpus interaction effect is

something in need of further investigation.

Another question that inevitably arises is why the Google

corpus, which gives access to the World Wide Web as a

corpus, is a suboptimal choice. Both of the MSRs that we

tested, PMI and especially NSS, were designed to account

for the format of the World Wide Web, and rely on its

abundance of information (Cilibrasi & Vitanyi, 2007;

Turney, 2001). According to our results, however, it appears

that both PMI and NSS may be better served by a smaller

corpus.

Summary & Conclusions

How “good” a text corpus is for an MSR is not an intuitive
matter. We found that the Project Gutenberg corpus, a large
collection of books, did a poor job of modeling the human
lexicon. Had we been intending to use PMI or NSS in an
application such as a cognitive model and had chosen the
Project Gutenberg corpus, we would have selected the worst
choice possible and our cognitive model’s ability to
understand text as humans do would have been seriously
impaired.

Our study is still ongoing. Rather than evaluating just one

or two MSRs trained on a variety of corpora, we would like

to test many more MSRs, on many more corpora, using

various evaluation techniques (Veksler & Gray, 2006).

Ultimately, we would like to find a text corpus that would

be the optimal choice for all MSRs. If we knew the optimal

choice for a text corpus, when using a semantic relatedness

component in ACT-R (Anderson et al., 2004), C-I (Kintsch,

1988), or some other cognitive architecture, we could tell

researchers exactly what corpus to train their MSR on.

Researchers could rest easy knowing that their semantic

relatedness component was performing at the highest level

possible. Rather than worrying about the details of their

MSR, we hope to allow researchers to be able to focus their

attention on the actual MSR-based applications and

cognitive models.

Acknowledgments

We would like to thank Stephane Gamard for his
contributions to our research. We would also like to thank
Dr. Wallace of RPI for providing with the Enron email
corpus. The work was supported in part by the Disruptive

Technology Office, ARIVA contract N61339-06-C-0139
issued by PEO STRI. The views and conclusions are those
of the authors, not of the U.S. Government or its agencies.

References

Anderson, J. R., Bothell, D., Byrne, M. D., Douglas, S.,
Lebiere, C., & Quin, Y. (2004). An integrated theory of
the mind. Psychological Review, 111(4), 1036-1060.

Cilibrasi, R., & Vitanyi, P. M. B. (2007). The Google
similarity distance. Ieee Transactions on Knowledge and
Data Engineering, 19(3), 370-383.

Dumais, S. (2003). Data-driven approaches to information
access. Cognitive Science, 27(3), 491-524.

Fu, W.-T., & Pirolli, P. (2007). SNIF-ACT: A cognitive
model of user navigation on the World Wide Web.
Human-Computer Interaction, in press.

Kintsch, W. (1988). The role of knowledge in discourse
comprehension: A construction-integration model.
Psychological Review, 95, 163–182.

Landauer, T. K., & Dumais, S. T. (1997). A solution to
Plato's problem: The latent semantic analysis theory of
acquisition, induction, and representation of knowledge.
Psychological Review, 104(2), 211-240.

Lemaire, B., & Denhiére, G. (2004). Incremental
construction of an associative network from a corpus. In
K. D. Forbus, D. Gentner & T. Regier (Eds.), 26th Annual
Meeting of the Cognitive Science Society, CogSci2004.
Hillsdale, NJ: Lawrence Erlbaum Publisher.

Lemaire, B., Denhiere, G., Bellissens, C., & Jhean-Iarose, S.
(2006). A computational model for simulating text
comprehension. Behavior Research Methods, 38(4), 628-
637.

Matveeva, I., Levow, G., Farahat, A., & Royer, C. (2005).
Term representation with generalized latent semantic
analysis. Paper presented at the 2005 Conference on
Recent Advances in Natural Language Processing.

Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (1998).
The University of South Florida word association, rhyme,
and word fragment norms. :
http://www.usf.edu/FreeAssociation/.

Newport, E. L., & Aslin, R. N. (2004). Learning at a
distance I. Statistical learning of non-adjacent
dependencies. Cognitive Psychology, 48(2), 127-162.

Newport, E. L., Hauser, M. D., Spaepen, G., & Aslin, R. N.
(2004). Learning at a distance - II. Statistical learning of
non-adjacent dependencies in a non-human primate.
Cognitive Psychology, 49(2), 85-117.

Pirolli, P. (2005). Rational analyses of information foraging
on the Web. Cognitive Science, 29(3), 343-373.

Turney, P. (2001). Mining the Web for Synonyms: PMI-IR
versus LSA on TOEFL. In L. De Raedt & P. Flach (Eds.),
Proceedings of the Twelfth European Conference on
Machine Learning (ECML-2001) (pp. 491-502). Freiburg,
Germany.

Veksler, V. D., & Gray, W. D. (2006). Test case selection
for evaluating measures of semantic distance. Paper
presented at the 28th Annual Meeting of the Cognitive
Science Society, Vacouver, BC.

Veksler, V. D., & Gray, W. D. (2007). Mapping semantic
relevancy of information displays. Paper presented at the
CHI 2007, San Jose, CA.

Veksler, V. D., Grintsvayg, A., Lindsey, R., & Gray, W. D.
(Submitted). A proxy for all your semantic needs.

http://www.usf.edu/FreeAssociation/

Queueing Network Modeling of
Mental Architecture, Response Time, and Response Accuracy:

Reflected Multidimensional Diffusions

Yili Liu (yililiu@umich.edu)
Department of Industrial and Operations Engineering, University of Michigan

1205 Beal Avenue, Ann Arbor, MI USA

Abstract

Response time (RT) and response accuracy are two of the
most commonly used performance measures in cognitive
psychology and studies of cognitive architecture. This paper
examines the relationship and establishes a bridge between
two currently separated groups of mathematical models of
RT: models of RT and mental architecture and models of RT
and accuracy. The bridge, called QN-RMD, is established by
extending the queueing network (QN) architecture model of
RT (Liu, 1996), which has successfully integrated a large
number of RT-architecture models as special cases, and by
representing the state changes in a mental QN as Reflected
Multidimensional Diffusions (RMD). More specifically, the
“state” of a K-server QN mental architecture is represented as
a reflected diffusion space of K dimensions, in which
“reflecting barriers” represent and reveal architectural
constraints, while “absorbing barriers” represent accuracy-
related response criteria, analogous to diffusion models of RT.
This approach moves beyond the current 1-D diffusion
models that have successfully accounted for but are limited to
single-stage fast responses. 1-D diffusions can only represent
the “state” of a single server system in stochastic information
accumulation, not multi-server architectures. This approach
extends the architectural RT models to account for accuracy,
brings the diffusion/accumulator models to the architectural
domain, and unifies RT/accuracy/mental architecture
modeling in a larger framework.

Introduction
Response time (RT) is arguably the most commonly used
performance measure in cognitive psychology research; it is
regarded as a reflection of the dynamic activities of an
underlying mental architecture that transforms stimulus into
response; and it is known to have a close relationship with
response accuracy.

The large majority of existing mathematical models of RT
can be classified into two groups—models of RT and
mental architecture and models of RT and response
accuracy. The first group of models (called RT-architecture
models in this paper) focuses on using RT to infer the
possible temporal and architectural structures of the
underlying mental system that transforms stimulus into
response. This paper uses “architecture” to refer to “macro-
architecture” of processing stages. “Micro-architecture”
neural network models are important but beyond of the
scope of this paper. The second group of models (the large
majority of which belong to the family of sequential
sampling or stochastic information accumulation models)
focuses on modeling the relationship between RT and

accuracy. Each group has made great progress in modeling
the aspects of RT it focuses on. There is, however, a
substantial gap between the two groups of RT models. The
architectural models have not made great progress in
revealing and modeling the intrinsic relationship between
RT and accuracy, while the sequential sampling models
have been relatively silent about the architecture of the
cognitive “black/mystery box” in which the samplings (such
as random walks or diffusions) occur.

This paper describes our research that (1) extends the
queueing network (QN) architectural model of RT to cover
accuracy; (2) establishes a natural link between the QN and
the sequential sampling/diffusion models through a
modeling approach called Reflected Multidimensional
Diffusions (RMD); (3) develops QN and RMD methods to
use RT and accuracy together for revealing mental
architecture. In short, mental architecture is represented as a
QN, whose state changes can be analyzed as a RMD. More
specifically, the “state” of a K-server queueing network of
mental architecture is represented as a reflected diffusion
space of K dimensions, in which “reflecting barriers”
represent and reveal architectural constraints, while
“absorbing barriers” represent accuracy-related subject-
adopted response criteria, similar to diffusion models. This
approach moves beyond the current 1-D diffusion models
that have successfully accounted for but are limited to
single-stage fast responses. 1-D diffusions can only
represent the state of information accumulation of a single
server, not multi-server architectures.

Mathematical Models of RT and Mental
Architecture

As shown on the left side of Figure 1, RT/architecture
models have focused on two issues that are central to RT
modeling and theory in cognitive psychology. One is a
temporal dimension distinguishing discrete from continuous
information transmission models, and the other is an
architectural arrangement dimension distinguishing serial
stage models from network models. All of the models
assume that the psychological activity that transforms
stimulus into response is composed of a system of mental
processes. Discrete information transmission models assume
that a mental process transmits its processing output in an
indivisible unit and will not make its output available to
other processes until it is completed. Therefore, a process
cannot begin until all of its preceding processes are

Mathematical Models of RT and Mental Structure Classified Mathematical Models of RT
in terms of Discrete versus Continuous Information Transmission and Response Accuracy
and Serial versus Network Architecture (sequential sampling models)

(from Liu, 1996, “Queueing network modeling of
elementary mental processes,” Psychological Review,
103(1), pp. 116-136).

--- --------------------------------
 Architectural arrangement
 of mental processes

Temporal Serial Network State
Transmission Stages Configurations Transitions
--- -------------------------------

Discrete Subtractive Critical Path Network Counter/accumulator
Additive factors Random-walk
General Gamma

 Accumulator
Continuous Cascade Diffusion
 Queueing series Queueing Network (QN) Reflected Multidimensional Diffusions

(RMD for state of QN)
--

Figure 1: Mathematical Models of RT and Mental Architecture (left side) and
Mathematical Models of RT and Response Accuracy (right side)

completed. Continuous information transmission models,
in contrast, assume that each process transmits it s partial
output to other processes continuously as soon as they are
available rather than waiting for the full completion of
processing, and thus a process can begin even though its
preceding processes are still active. Serial stage models
assume a serial arrangement of mental processes, whereas
network models assume a network configuration. The two
dimensions jointly define four classes of models as shown
on the left side of Figure 1 (Liu, 1996). As described in
detailed in Liu (1996), a class of queuing network models
for RT and mental architecture was proposed which, in its
most general form, represents continuous-transmission-
network models and they include the existing models in
the other three cells as special cases, and thus unify them
in a larger modeling framework. Liu (1996) also
reexamined the logic and conclusions of the previous
models. It turns out that many of the conclusions based
on the previous models are open to alternative
explanations. All the QN models in Liu (1996) were
discussed in relation to empirical data. Furthermore, it
was shown that QN models allow us to cover a broader
range of possible mental structures that mental system
might assume but had not been modeled by previous
models, such as feedback or non-unidirectional
information flow, information “overtaking and
bypassing”, and process dependencies or non-selective
influence of factor effects, and can be subjected to well-

defined empirical tests. The QN approach to RT
modeling published in Liu (1996) focuses on the use of
RT to infer mental architecture and is able to broaden the
scope of thinking about the possible configurations of
mental systems and the possible causes for certain RT
phenomena. However, some important questions
remained open including how the QN models deal with
response accuracy and what their relation is to the
sequential sampling models described below.

Mathematical Models of RT and Accuracy
The importance of examining RT and accuracy together
in RT analysis and modeling has been emphasized by
many researchers (e.g., Audley, 1960; Corbett and
Wickelgren, 1977; Dosher, 1979; Meyer et al., 1988;
Pachella, 1976; Pew, 1969; Ratcliff, 1978; Wickelgren,
1977). A crucial requirement is that they both arise
naturally from common processing mechanisms (Ratcliff,
1978; 1985). The class of mathematical models that have
achieved the greatest success in this regard is the class of
sequential sampling (also called stochastic information
accumulation) models, including random-walk models
and related diffusion models, and counter or accumulator
models. Sequential sampling models have been applied
most extensively to model RT and accuracy data in choice
RT experiments (e.g., Audley, 1960; Audley and Pike,
1965; Ashby, 1983; Edwards, 1965; Gronlund and
Ratcliff, 1991; Heath, 1981; Laberge, 1962; Laming,

1968; Link and Heath, 1975; Pike, 1966; Ratcliff, 1978,
1981, 1985, 1988; Ratcliff and McKoon, 1982; Ratcliff
and Rouder, 1998,2000; Ratcliff, Van Zandt, and
McKoon, 1999; Stone, 1960; Van Zandt, Colonius, and
Proctor, 2000; and Vickers, 1970). They have also been
applied to model simple RT data patterns (e.g., Diederich,
1995; Schwarz, 1994; Smith, 1995), and recently, in
modeling decision making (Aschenbrenner, Albert, and
Schmalhofer, 1984; Busemeyer and Townsend, 1993;
Busemeyer and Diederich, 2002; Diederich, 1995, 1997,
2003a, 2003b; Diederich and Busemeyer, 2003; Roe,
Busemeyer, and Townsend, 2001) and classification
(Ashby, 2000; Cohen and Nosofsky, 2003; Nosofsky and
Palmeri, 1997). All sequential sampling models share the
notion that the human information processing system
accumulates information over time until a preset response
criterion is reached and this accumulation process evolves
stochastically.

The random walk models assume that in a two-choice
response situation, the information accumulation process
“randomly walks” in discrete steps between two decision
boundaries (also called “absorbing barriers”) based on the
value of a cumulative evidence variable, each boundary
representing one of the two choices. The process
generally walks to the positive or the negative boundary
depending on whether the value of the evidence variable
is positive or negative. The time for the process to reach
one of the two boundaries for the first time (immediately
terminating the process) is called the first passage time,
which determines RT. The probability that the process
terminates at one or the other boundary is called first
passage probability, which determines the probability of
the associated response. The continuous versions of the
random walk models are called diffusion models, which
assume that the corresponding stochastic process drifts
continuously toward the positive or the negative
boundary, depending on whether the mean rate of
information accumulation is positive or negative.

The term “counter models” has been used to refer to
models that assume discrete counting increments, while
“accumulator models” are used broadly to refer to both
discrete and continuous evidence accumulation. The idea
of using a counter to model RT can be traced back to
McGill (1963, 1967), Laberge (1962), and Audley and
Pike (1965). Usher and McClelland’s (2001) leaky,
competing accumulator model represents the state of the
art in accumulator modeling.

These sequential sampling models are very successful
in modeling RT-accuracy relations for single stage fast
binary responses, but relatively silent on multistage
architecture issues. The challenge is to bridge the gap
between the two groups of models summarized above.

Queueing Network Modeling of Mental
Architecture, RT, and Accuracy: Reflected

Multidimensional Diffusions

The QN architecture model of RT presented in Liu (1996)
adopts the following assumptions similar to those

commonly made in the RT literature: A stimulus is
composed of several types of stimulus components (called
customers), who arrive at various nodes of the processing
network to request for service and that the sequence of
customer arrival times, the sequence of customer service
times, and the sequence of customer departure times are
all stochastic processes. Presently, similar to all major RT
models, QN models for RT assume that there is a separate
response unit at the end of the processing network (after
the “last” or the “exit” node), which is responsible for the
actual response. QN models assume that a response is
made when the response unit has accumulated N signal
components, delivered from the “exit” node. RT is
defined and determined by the network sojourn time of
the Nth signal customer who completes all its network
service requests and departs from the network.

To extend the 1996 QN-RT model to cover response
accuracy, the QN-RMD research makes two extensions to
the 1996 QN definition of RT: First, we assume that RT is
defined and determined by the Nth “response activating”
customer (rather than solely by the Nth “signal customer”
in the 1996 model, which only elicits a correct response).
In a binary RT task (e.g., Yes or No), the Nth response
activating customer is the Nth Yes customer for a Yes
response or the Nth No customer for a No response. In a
RT task involving K alternatives, the Nth response
activating customer refers to the Nth i-type customer for a
trial with an i-type response. Second, we treat N as a
parameter that is analogous to the setting of “counts” in
accumulator models and the setting of boundary positions
in random walk or diffusion models. A larger N is
analogous to a higher preset count or wider boundary. The
largest useful N could mean the “limit on the number of
useful observations” (Swensson, 1972; p. 30; also in
Usher and McClelland, 2001; p. 551-552).

In QN-RMD, the relationship between RT, accuracy,
and mental architecture is studied by analyzing the
departure process at the network exit node (again, its Nth
departure is the Nth accumulation at the “dummy”
response node) and examining how this departure process
is affected by network architecture and subject-adopted
response criterion. We adopt the common assumption that
the departure process at each QN node i, Di(t), is a
continuous stochastic process that has independent and
stationary increments. Mathematically, this is equivalent
to assume, Di(t1) – Di(t0), …, Di(tn) – Di(tn-1) are
independent for any n 1 and 0 t0 ... tn and the
distribution of Di(t) – Di(s) depends only on t-s, for all i.
This assumption is the most commonly made in the QN
literature. Formal mathematical limit theorems that justify
the use of these assumptions for analyzing various types
of queueing systems and thus the use of Brownian
approximations have been proved for various types of
flow system models (see e.g., Chen, 1996; Williams,
1998). The K-vector departure process of a K-server
queueing network of mental architecture, D(t) = [Di(t),
i=1,…, K], can be represented as a Reflected Diffusion in
K dimensions, in which “reflecting barriers” represent and
reveal architectural constraints, while “absorbing barriers”
represent accuracy-related response criteria. Informally,

“reflecting barriers” define the space in which the
diffusions can occur. Diffusion occurs “normally,” in the
interior of the space, but is instantaneously “pushed back”
into the space when it hits one of the reflecting barriers.
The reason “reflecting barriers” exist for QN is because
departure processes cannot take on any arbitrary values.
For example, in a 2-node serial QN system, if K1 is in
front of K2, we must have D1(t) D2(t) (all departures at
K2 must have departed from K1 first). Thus, the diffusion
of the 2-vectored process [D1(t), D2(t)] can only occur in
the region in which D1(t) D2(t) (i.e., a reflecting barrier
exists at D1(t) = D2(t), with a reflecting direction pointing
toward the allowed region). Reflecting barriers can be
defined similarly if K2 is in front of K1, or for other
situations. Thus reflecting barriers reveal the architectural
arrangement of the mental system. “Absorbing barriers”
are defined in the same sense as current diffusion models
of RT, such as those of Ratcliff. Due to space limit, this
paper chooses two representative cases as illustrations.

1. Single–server QN for binary responses
The simplest case of a QN is a single server system. The
binary response case called binary, single-step responses,
has been modeled most extensively and successfully by
existing diffusion RT models. “The diffusion model was
designed to explain fast, single step, as opposed to
multistep, decision processes, …” (Ratcliff, et al., 1999;
p. 262.). This case serves two purposes: important by
itself to show a concrete link between QN and
RW/diffusion models, and as the base or starting point for
modeling more complex architectures. In this QN, binary
response (Yes/No) are triggered by two types of
customers, A and B, who arrive at the server with arrival
rates of a and b, respectively, in accordance with a
renewal process having an arbitrary interarrival
distribution and are served by the server with service rates
of µa and µb, respectively.

This method assumes that each type-A customer
departing from the server carries an information amount
of +1, while each type-B departing customer carries -1.
This assumption is similar to, e.g., the classical RT
diffusion models of Ratcliff et al., (1999) and the “two-
barrier single channel model” of Smith (2000). In the
following I show how this single server QN is
mathematically identical to the classical RT diffusion
models, but it offers a QN interpretation to it. Let Sn
denote the total amount of information carried by the first

N departing customers. We have, Sn =
1

N

i
i

X , i 1;

where Xi=1 for a departing customer of type A and Xi = -
1 for a departing customer of type B.

Clearly this departure process Sn is a random walk (RW),
and its relation to existing RW models of binary RT
becomes at least intuitively apparent. If we speed up the
departure process by considering smaller and smaller time
intervals and letting t go to 0, then the total amount of
information carried by all departed customers by time t,

D(t), follows a diffusion process. In fact, this comes
naturally also as a consequence of our general assumption
of independent stationary increments mentioned earlier.
In the queueing literature it is commonly regarded as a
harmless assumption to treat fast discrete customer
departures as a continuous flow (see, e.g., Harrison,
1985).Mathematically, D(t) can be characterized with the
Kolmogorov backward equation, as follows:

),,()
2
1(),,(2

2
2 yxtp

xx
yxtp

t
where p(t, x, y) is the transition density, x is the starting
state, y is the ending state, of time period t. This equation
is called the Kolmogorov backward equation because the
differentiation is with respect to the backward variable
(the initial state) x on the right side of the equation above.
This equation is identical to Ratcliff et al’s (1999, p.299)
diffusion equation, with difference only in the notations.

When µ 0 (diffusion with a drift), then as shown in
Harrison (1985) in his analysis of diffusion approximation
of stochastic flows in queueing systems, we have,
Px{Xt=b}, the probability that the process first crosses the
barrier b before crossing the barrier at 0, when the starting

position is at x, as ,
(b)-1
(x)-1b}{XP tx 0 x b,

 where (z) exp(2
2 z

)

This result is the same as that in Ratcliff et al (1999,
p.299), who presented Px{Xt=0}, the probability that the
process first crosses the absorbing barrier 0 before
crossing the barrier at b: Px{Xt=0} = 1 - Px{Xt=b} = 1-

(b)-1
(x)-1

 =
1-(b)
(x)-(b)

This is identical to Ratcliff et al (1999, p299), with the
difference found only in the symbol notations.

The convergence of the results of the queueing
literature and the RT-diffusion models shown above
offers a queueing architectural explanation to the RT
diffusion modeling. Since our diffusion representation of
the departure process of the single-server queueing
system has converged precisely with the diffusion model
of Ratcliff, all the related results of Ratcliff apply. One
intuitive interpretation of the diffusion parameters with
the QN parameters is: The mean drift rate, µ, is
determined by the difference between the two mean
arrival rates (a- b). This is intuitive, since an RT trial
with stimulus A would carry more customers (features) of
A, thus produce a greater arrival rate of type A customers
than a B-type RT trial. This is similar in spirit to, e.g.,
Ratcliff’s (1978) work of using stimulus relatedness to
decide drift rate. The boundary positions can be
interpreted as the minimum amount of total positive or
negative information carried by all the departed customer
to elicit an A or B response, respectively (as in Ratcliff,
we will also use b and 0 as the two boundaries). The
starting point is the subject’s response bias, which can be

 K1

D1

a). A tandem two-server system with two types of
customers: type A (“triangles”) and type B (“circles”)

K2

D2

D1(t)

D2(t)0

a b

d

e

c
c’

b’

assumed as “preloaded departures” or “information
preloaded in the system”—thus called a “bias.” A
discussion of the relationship between this single server 1-
D diffusion model and the corresponding accumulator
model can be found in Liu (2005). Due to space limit, we
elect to discuss 2-D cases next to illustrate how to
consider architecture issues in this QN-RMD framework.

2. A tandem 2-Server QN for binary responses

A basic, fundamental, and illustrative case involving all
three issues: RT, accuracy, and architecture is a tandem 2-
server QN as shown in Figure 2, which goes beyond
single-stage RT-accuracy modeling and demonstrates the
importance of considering “reflecting” barriers, in
addition to “absorbing” barriers of the conventional 1-D
diffusion models.

Figure 2 A tandem 2-Server QN and its Reflected
Diffusion Space

In this tandem 2-server QN shown in Figure 2, we
consider a pair of 2-vectored departure processes, {D1A(t),
D2A(t)} and {D1B(t), D2B(t)}, corresponding to the type-A
and type-B departures from K1 and K2, respectively.
Similar to the diffusion cases for a single server, we
assume each customer departing at K2 carries the same
amount of information to contribute to its type of
response only. A response is made when D2A(t) or D2B(t)
first reaches its criterion value. Let us consider two cases,
corresponding to the debates between discrete and
continuous information transmission between stages.

Case A. A series of 2 discrete processing stages
corresponds to a sequence of 2 1-d diffusions

The mental architecture theories of discrete processing
series (e.g., Donders’ and Sternberg’s theories, upper-left
cell of Figure 1) assume that K1 must complete all its
work before K2 can start. In other words, all departures
from K1 must complete before K2 starts its departure
process, i.e., D1(t) must complete before D2(t) starts. In
Figure 2, this can be visualized as a sequence of two 1-d
diffusions for each type of customers, first along the line
from 0 to a for D1(t), and then along the line from a to b
for D2(t). For the simplest case of “no bias” RT tasks,
both types of customers go through the same diffusion
sequence (first 0-to-a, and then a-to-b).

Case B. A continuous-flow 2-server queue-series
corresponds to a reflected 2-d diffusion.

The mental architecture assumption of continuous flow
(e.g., McClelland’s Cascade, Miller’s and Liu’s queue
series, lower-left cell of Figure 1) does not require K1 to
complete its processing before K2 can start. In other
words, D1(t) and D2(t) may occur concurrently, subject to
certain constraints in a queueing system. Specifically, the
joint distribution of D1(t) and D2(t) can be characterized
as a reflected 2-d diffusion: If K1 is in front of K2, then
diffusion occurs in the upper region above the reflecting
barrier shown as the diagonal line (0—b) in panel b of
Figure 2. If K2 has finite waiting space, s, (in front of
K2), then diffusion is further bounded by a reflecting
barrier shown as line (d—e), whose vertical distance to
line 0—b is s. A reflecting barrier (line a—b) exists if D1
has an upper limit. Absorbing barrier is shown as line b—
c. For simplicity of presentation and analysis, we continue
to focus on the no-bias RT situation for now, meaning
that the two types of customers “race in the same
diffusion space,” shown as a pair of trajectories (a solid
and a dotted curve, where the solid one wins in this
illustration) in panel b of Figure 2. Several testable
performance predictions can be made with regard to RT-
accuracy relation in this situation, including:

b). For customers’ departure processes D1(t) and D2(t), if K1
and K2 form a discrete processing series, then we have two
1-d diffusions in a row, first along the border from 0 to a,
then along the border from a to b. If K1 and K2 form a
continuous-flow series, then we have one 2-d reflected
diffusion. See text for more details.

1). When K1’s service rate is much larger than K2 (e.g.,
K1 is a super fast perceptual server) and K2 has unlimited
waiting space (i.e., s=), then the probability is almost 1
that D1 is much greater than D2, thus the probability of
hitting the reflecting barrier at (0—b) is almost 0. In this
situation, in terms of its effect on RT/accuracy, the 2-d
diffusion would behave as if it is a 1-d diffusion of D2(t)
along the line of (0—c), similar to the classical diffusion
RT models and to the single server case discussed earlier.
Informally, if K1 is so powerful, we don’t have to worry
about it; we just need to consider K2.

2). When K1 is not a super fast server or when an
experimental factor increases the sojourn time at K1 (thus
decreases the departure rate at K1), RT/accuracy will not
show the same type of exponential relationship predicted

by classical RT-diffusion models or single-server QN
models, since now we have a true 2-d reflected diffusion,
bound by the reflecting barriers, whose effect can not be
ignored. Quantitatively, it would take a longer time to
achieve the same level of accuracy obtained in the 1-d
diffusion case.

3). Further, when there is a very low limit in the departure
process of K1 (e.g., in the so-called data-limited tasks in
which impoverished or significantly degraded stimuli are
used), RT/accuracy will not show the same type of
exponential relationship predicted by classical RT-
diffusion models or single-server QN models. This can be
visualized in panel b of Figure 2: when a is smaller than b
(slide the line a-b downward to, say, d-b’), the 2-d
diffusion will never be able to reach the absorbing barrier
b-c (i.e., subject never responds) UNLESS the subject
reduces the absorbing barrier, by moving it to the left to
b’c’, by willing to make less accurate responses. This
offers an alternative explanation to the classical “infinite-
RT” problem (Ashby, 1982).

4). The order of server arrangement is an architectural
research question itself. The analysis above assumes K1 is
in front of K2. When K2 is in fact in front of K1,
diffusions would occur in the lower region. Thus, a
method of using RT/accuracy together to reveal the order
of K1 and K2 is to see whether an upper- or a lower-
region diffusion best fits the data.

3. Other network cases

The single-server and the 2-server QNs and their diffusion
representations described above are the simplest network
cases. Concrete testable predictions can also be made
about more complex network arrangements. Two
examples are listed below:

1). A series of K discrete processing stages correspond to
a series of K 1-d diffusions. This is an extension of Case
A of the 2-server QN to a general series of discrete stages.

2). A series of K continuous flow servers correspond to a
reflected K-d diffusion with a “lower-triangular reflection
matrix.” Characteristics of this reflection matrix reveal the
layout of the series. This is an extension of Case B of the
2-server QN to a general queueing series.

Additional network cases and related discussions can be
found in Liu (2005).

In summary, the QN-RMD (Queuing Network-Reflected
Multidimensional Diffusions) represents mental
architecture as a QN, whose state of operation can be
represented as a multidimensional diffusion space. QN-
RMD extends the QN architectural RT models to account
for accuracy, brings the Random Walk/diffusion models

of RT and accuracy to the multi-server architectural
domain, and unifies the two currently separated schools of
approaches in a larger framework. The work helps reduce
the “fragmentary nature of the results” (Luce, 1986, p.
491), by “synthesizing what we know” (Newell, 1990; p.
16).

Sample References
Audley, R. J., and Pike, A. R. (1965). Some stochastic

models of choice. British Journal of Mathematical and
Statistical Psychology, 18, 207-225.

Busemeyer, J. R., and Townsend, J. T. (1993). Decision
field theory: A dynamic-cognitive approach to
decisions making in an uncertain environment.
Psychological Review, 100(3), 432-459.

Cohen, A. L., and Nosofsky, R. M. (2003). An extension
of the exemplar-based random-walk model to
separable-dimension stimuli. Journal of Mathematical
Psychology, 47, 150-165.

Dai, J.G., and Harrison, J. M. (1992). Reflected Brownian
motion in an orthant: Numerical methods for steady-
state analysis, Annals of Applied Probability, 2(1), 65-
86.

Harrison, J. M. (1985). Brownian motion and stochastic
flow systems. New York: Wiley.

Liu, Y. (1996). Queueing network modeling of
elementary mental processes. Psychological Review,
103(1), 116-136.

Liu, Y. (2005). Queuing network modeling of mental
architecture, response time, and response accuracy:
Reflected multidimensional diffusions. Tech Report 05-
11 of the Dept of Industrial and Operations
Engineering, University of Michigan.

Luce, R. (1986). Response Times: Their role in inferring
elementary mental organization. New York: Oxford
University Press.

Newell, A. (1990). Unified theories of cognition. Harvard
University Press.

Ratcliff, R. (1985). Theoretical interpretations of speed
and accuracy of positive and negative responses.
Psychological Review, 92, 212-225.

Ratcliff, R., and McKoon, G. (1997). A counter model for
implicit priming in perceptual word identification.
Psychological Review, 104, 319-343.

Ratcliff, R., Van Zandt, T., and McKoon, G. (1999).
Connectionist and diffusion models of reaction time.
Psychological Review, 106(2), 261-300.

Smith, P. L. (2000). Stochastic dynamic models of
response time and accuracy: A foundational primer.
Journal of Mathematical Psychology, 44, 408-463.

Townsend, J. T., & Ashby, F. (1983). The Stochastic
Modeling of Elementary Psychological Processes.
Cambridge: Cambridge University Press.

Usher, M., and McClelland, J. L. (2001). The time course
of perceptual choice: The leaky, competing
accumulator model. Psychological Review, 108(3), 550-
592.

Are Simpler Strategies less Error-prone in Inference from Memory?

Rui Mata (ruimata@umich.edu)
University of Michigan, Dept. of Psychology, 530 Church Street

Ann Arbor, MI 48109 USA

Inferences from Givens vs. Memory
The adaptive toolbox approach to decision-making holds
that people possess a repertoire of strategies and that they
adapt to the characteristics of the task environment by
selecting the appropriate one from that repertoire
(Gigerenzer, Todd, & the ABC Research Group, 1999). For
example, Gigerenzer et al. have suggested that people rely
on simpler strategies when cognitive costs of information
search are high. Bröder and Schiffer (2003) tested this
hypothesis by observing people’s strategy selection in a
condition in which people could search for information on a
computerized display, information from givens, or
alternatively had to retrieve information from memory –
inference from memory. Bröder and Schiffer found more
participants relied on the simpler, noncompensatory strategy
Take the Best (TTB; Gigerenzer et al., 1999) compared to
other more information-intensive strategies in the inference
from memory compared to inference from givens condition.
Bröder and Schiffer argued that given “the assumption that
retrieving pieces of information sequentially from memory
causes cognitive costs in terms of time, effort, and error

proneness, the tendency to use noncompensatory heuristics
like TTB seems fairly adaptive” (emphasis added; p. 289).
The present work aims to test the assumption that the simple
TTB is less error-prone compared to more information-
intensive strategies when used in inference from memory.

Simulation
I used the elementary information process (EIP) framework
(Payne, Bettman, & Johnson, 1993) to model two simple
inference strategies, TTB and Tally (Gigerenzer et al.,
1999). The EIP framework is a production-system theory
which allows constructing different strategies using the
same basic EIP building blocks, such as READ (read a
value of an option into working-memory), COMPARE
(compare the values of two options in working-memory),
ADD (add a value to a tally concerning an option), and
DECIDE (choose an option). The rationale for using this
framework is it allows changing the efficiency of basic
decision components independent of differences between
strategies. The two strategies combine EIPs differently. For
each decision, TTB searches for information on the options
concerning the most valid cue (READ), compares the
options on that cue (COMPARE), and chooses the option
for which the cue speaks (DECISION). If the cue does not
discriminate the process is repeated with the second most
valid cue, and so on until a decision is made. Tally looks up
information on each cue (READ) and computes a tally for

each option (ADD), it then compares the two tallies
(COMPARE) and makes a decision (DECISION).

I modelled the effect of making inferences from memory
by increasing the error in EIPs shared by TTB and Tally:
READ and COMPARE. The rationale underlying this
manipulation is that retrieving information from memory
may lead to failed retrievals (READ) or errors in comparing
cues in working-memory (COMPARE). I simulated 1000
decisions of TTB and Tally between all paired-comparisons
of 16 options possessing 4 binary cues. The average results
can be observed in Figure 1. The manipulation of errors in
READ suggests Tally is a more robust strategy particularly
for large proportions of error. However, the opposite
prediction resulted from the manipulation of COMPARE.
An empirical study asking participants to execute TTB and
Tally in givens and memory conditions is currently under
way to test these predictions.

Figure 1: Proportion of errors of TTB and Tally as a
function of errors in EIP (READ, COMPARE).

References
Bröder, A. & Schiffer, S. (2003). "Take The Best" versus

simultaneous feature matching: Probabilistic
inferences from memory and effects of representation
format. Journal of Experimental Psychology:

General, 132, 277-293.
Gigerenzer, G., Todd, P. M., & the ABC Research Group.

(1999). Simple heuristics that make us smart. New
York: Oxford University Press.

Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The

adaptive decision maker. Cambrige, UK: Cambridge
University Press.

The RecMap Model of Active Recognition Based on Analogical Mapping

Georgi Petkov (gpetkov@cogs.nbu.bg)
Central and East European Center for Cognitive Science,

New Bulgarian University
21 Montevideo Str., Sofia 1618, Bulgaria

Luiza Shahbazyan (ltsavak@abv.bg)
Central and East European Center for Cognitive Science,

New Bulgarian University
21 Montevideo Str., Sofia 1618, Bulgaria

Abstract

We propose an object recognition model based on analogical
mapping and transfer. The objective of our model is to be
able to generate and bind structural representations; and to
recognize objects from a small set of primitives. The input is
mapped to the associative memory and activation is spread
upwards. Anticipations are generated through local mappings
and transferred to be tested serially in the order of their
relevance. Due to these mechanisms, our model is able to
simulate phenomena such as object priming and global
precedence effect. Additionally, it provides a framework for
integrating visual perception and other higher-order cognitive
processes.

Keywords: Recognition, Analogy-making, Anticipation,
Attention, Binding.

Theoretical Framework
It is a textbook assumption that object recognition is a
heuristic process. Rather than passive recipients of sensory
data, we actively form hypotheses and make anticipations.
Fortunately, we are provided with memory and rich
environmental context, which constrain the number of
plausible anticipations, thus enabling the fast and reliable
recognition of virtually infinite number of objects, people,
and events. Committed to these beliefs, we started
developing a model of object recognition based on the
cognitive architecture DUAL (Kokinov, 1994a). There are
several premises fundamental to this model: (i) recognition
is a heuristic process constructing structural representations,
(ii) anticipations are generated by analogy, (iii) context
supports (and sometimes hinders) recognition. These
assumptions, as well as their empirical support and
computational implementations, will be discussed in details
in the following sections.

Object recognition is one of the most rigorously debated
topics in the field of vision sciences. Although the issue has
been approached from numerous paradigms and theoretical
perspectives, the task of understanding and modeling vision
is still far from being accomplished (see Peissig & Tarr,
2007 for a recent review). A central question is what are that
type of representations on which recognition operates. There
are two basic approaches: view-based and object-based
theories and respectively, models. The basic idea behind the
view-based approach is that there is a stored template for

each of the previously seen visual patterns. Recognition
involves matching the stimulus input to an existing
template. Most of these models implement some kind of
normalization process in order to reduce the number of the
necessary templates (Poggio & Edelman, 1990).There are
plenty of computational models committed to this paradigm
and they are capable of simulating a vast range of
psychological phenomena. However, they show weak
performance in some domains such as class-level
recognition, matching known to unknown viewing
conditions as well as generalization (Tarr & Bulthoff, 1998).

In contrast, object-centered theories assume that
recognition involves matching of view-point independent
descriptions of spatial arrangements among parts of the
object (Marr & Nishihara, 1978; Biederman, 1987). A
classic example of this type is the recognition-by-
components theory (RBC; Biederman, 1987). Its core
premise is that recognition consists of extracting invariant
structural representation of the object in terms of spatial
relationships among basic shapes or components, the so-
called geons, which are then matched to stored object
representations. Furthermore, Biederman and Gerhardstein
(1993; 1995) argue that all perceptual objects are
decomposable and each object has a unique configuration of
parts. Structural computational models were developed by
Hummel and Biederman (1992) and Hummel and
Stankiewicz (1996).

One question that is still open is how spatial inter-part
relations originate. Because such relations are present at
linguistic level, they can be readily available in the memory
storage. So, the possibility remains that these relations are
actively participating in object recognition through top-
down mediation of the binding process. Nevertheless, it is
not clear how this process is realized.

One plausible mechanism is analogy making, in particular
mapping, which has already been granted the status of core
principle for many cognitive processes (Gentner, Holyoak,
& Kokinov, 2001). Several analogy-making computational
models exist: COPYCAT (Hofstadter, 1984), ACME
(Holyoak & Thagard, 1989), SME (Falkenhainer, Forbus, &
Gentner, 1990), TABLETOP (French & Hofstadter, 1991),
LISA (Hummel & Holyoak, 1997, 2003), AMBR (Kokinov
& Petrov, 2001; Kokinov, 1994b) among others. Besides
simulating analogy-making, these models demonstrate

excellent performance in modeling a number of other
cognitive processes such as memory retrieval (Forbus,
Gentner, & Law, 1994), judgment (Petkov, 2006), and
infant categorization (Kuehne, Gertner, & Forbus, 2000).
Although the incorporation of perception and high-order
cognition is not a new idea (Chalmers, French, &
Hofstadter, 1992), none of the models, which pursues this
endeavor, explores the possibility that the mapping of
objects in two domains, based on the relational structure,
which serves other cognitive processes, can readily account
for the top-down influence of these relational structures on
the binding of sensory information.

More specifically, we propose that the visual information
is mapped to the information stored in memory. By analogy,
anticipations are generated about the spatial relations
between the elements at the input and how they can be bind
to each other. Later, these anticipations are transferred and
verified with the actual data. The implementation of this
mechanism has one additional implication: the generated
anticipations refer to all levels of the semantic hierarchy, so
that binding and recognition of a higher level can precede
the recognition of the lower level if the level of activation of
these anticipations is higher. The global precedence
phenomenon has been extensively documented (Navon,
1977; Kimchi, 1992), but it poses difficulty for the
structural theories, which argue for part-base recognition
(Biederman, 1987). Although our model is intrinsically
structural, it overcomes this limitation due the specificity of
its architecture. When the activation from the target spreads,
it propagates upwards to the superordinate levels of the
semantic network allowing anticipation formation at any
level. As a result, the level of recognition in not fixed to a
particular location within the hierarchy either.

Another important factor in object recognition is the
available contextual information. Recognition performance
is more accurate when the object is primed with consistent
scene and dropped when the prime is inconsistent (Palmer,
1975). In addition, object detection is more accurate and
naming is facilitated when the object appears in a consistent
setting (Biederman, Mezzanotte, & Rabinowitz, 1982;
Boyce & Pollatsek, 1992). Our model is context sensitive
because the activation level of a particular bit of information
basically represents its relevance to the current context.
More active elements are anticipated more rigorously and
verified with priority, thus speeding up their recognition

Major advantage of the proposed models is its potential
for integration of visual perception with other cognitive
processes such as reasoning on the basis of common
mechanism, that is, mapping. Similar principle has been
incorporated in COPYCAT (Hofstadter, 1994), although it
focuses on higher-order perception of events and analogical
reasoning. Our task is to determine the potential of mapping
ability to support the cognitive system from the very
beginning of visual processing, through fast, implicit
recognition, to relatively slower, explicit analogy making.

RecMap Model of Active Recognition Based on
Analogical Mapping

In RecMap model, the recognition involves (i) mapping of
limited input information onto structurally organized
memory traces; (ii) creation of anticipations on the basis of
these mappings; (iii) sequential checking of the
anticipations. The model is based on the cognitive
architecture DUAL (Kokinov, 1994a), and builds up on the
AMBR model (Kokinov & Petrov, 2001, Kokinov, 1994b)
The RecMap model uses all mechanisms of AMBR and
proposes new mechanisms for anticipation-forming,
binding, and recognition, which are integrated with the old
ones, thus allowing the mapping process to guide
recognition as well.

The AMBR Model
AMBR model consists of a huge number of interacting with
each other hybrid micro-agents with symbolic and
connectionist part. The permanent agents (concepts and
some of the instances) constitute the system’s long-term
memory, a semantic network with merged representation of
the declarative and episodic knowledge. Each agent
represents bits of information, but even small pieces of
knowledge are represented by a coalition of many agents. At
the same time, each agent has an activation level depending
on its relevance to the ongoing context, and only active
agents participate in symbolic operations.

The AMBR agents that represent the environment (source
node) and the task (goal node) serve as a source of
activation, which spreads with decay. Each active instance-
agent emits a marker. This marker is sent to its parent
concept-agent (representing type) and then upwards in the
class hierarchy. When two markers meet, a hypothesis-agent
for correspondence between the two marker-origins is
created. The structural correspondence mechanism in turn
creates new hypotheses on the basis of old ones. For
example, if two relations are analogical, their respective
arguments should also be analogical, etc. Thus,
dynamically, a constraint satisfaction network of
interconnected, competing with each other hypotheses
emerges. Once a hypothesis maintains leading activity long
enough and reaches a critical value, it is promoted to a
winner, representing the analogy performed by the model.

In AMBR, the process of analogy-making is not separated
into sub-processes - retrieval and mapping overlap and
interact with each other. As a result, the structural
constraints, crucial for the mapping process, influence the
retrieval as well.

Innovations
In comparison to AMBR, RecMap is equipped with several
new mechanisms. These are the creation and maintenance of
hypotheses for recognition, anticipatory mechanism, and
attention.

After a correspondence hypothesis emerges, a structural
correspondence mechanism creates a hypothesis for

recognition. For example, suppose that a certain line from
the environment happens to be mapped to a particular line
from memory. If the second line is a part of a square, then a
recognition-hypothesis that the first line is also a part of a
square emerges.

Simultaneously, the anticipatory mechanism (Petkov,
Naydenov, Grinberg, & Kokinov, 2006) is operating. The
memorized instance-agents inform the relevant relations in
which they participate for all their hypotheses. If a certain
relation collects the hypotheses for all its arguments, it
creates an anticipation-agent, representing the expectation
that the same relation is present in the environment. The
anticipation-agents are copies of their mentor-relations but
all their arguments are replaced with the respective
analogical elements from the target situation.

The attention mechanism monitors all anticipation-agents,
sorts them by their activation (i.e. relevance), and at fixed
time intervals asks a simulated perceptual system to check
the relation represented by the most active one. In the
current version of the model the perceptual system is just a
pre-defined list of the relations, which are currently present.
Another role of attention is to bind together the hypotheses
for recognition for the respective relation and their
arguments. For example, because all operations are
performed locally, the relational arguments may have
hypothesis that are parts of a wall, but not necessarily one
and the same wall. So, the binding mechanism is
responsible to bind all hypothesized walls into one.

Thus, various hypotheses for recognition emerge locally,
support or suppress each other, and are merged by the
attentional binding mechanism. The recognition hypotheses
in turn emit markers upwards in the conceptual system,
participate in new hypotheses and anticipations, and create
even more abstract recognition hypotheses. As a result of
the relaxation of the network of hypotheses, the most active
of them are promoted to winners.

Experimental Simulations
The domain for these simulations is hierarchical objects
consisting of vertical or slopped lines and ovals, organized
by spatial relations in figures (see Figure 1).

There are several concepts in the long-term memory,
named ‘house’, ‘lorry’, ‘tree’1, etc., as well as their parts,
and the parts of these parts and so on. For example, a
particular instance-agent for a house is linked to its parts –
‘roof’, ‘wall’, and to the relation ‘above’ between them. In
turn, the agent ‘wall’ is represented with a head-agent,
linked to four lines, two of them horizontal, two vertical, as
well as to several relations between these lines. The ‘roof’
consists of one horizontal, one left-right slopped, and one
right-left slopped line, etc. When a target object is given to

1 All names, used in the simulations are arbitrary. The model

would work as well if the agents were named ag01, ag02… The
choice of the set of primitives is also arbitrary, without any
psychological validation.

the model, it is represented only by these lines (called
primitives), without any relations between them.

The model’s task is to organize the square and the
triangle2 through the anticipatory and attentional
mechanisms, and to create hypotheses that the square and
triangle are respectively wall and roof (in competition with
many other hypotheses), to anticipate possible relations
between the square and the triangle, to organize them in a

‘house’ ‘lorry’ ‘tree’

Figure 1: Example of the objects used in the simulations.

single object, and finally to recognize the house. Note that
these processes overlap and the given order is very rough.

There are several instances for each concept from the
long-term memory, and each concept is randomly linked to
some of these instances, thus ensuring that the activation
would propagate from the semantic (conceptual) to episodic
(concrete instances) memory.

In a series of five simulations the main properties of the
model are demonstrated. In the first simulation, a single
object is recognized, thus the integrated work of all
mechanisms is tested. In the second simulation, an object
that shares all but one relation with the first one is
recognized. In the third simulation, various priming effects
are simulated. In the fourth and fifth simulations, the ability
of the model to deal with more complex scenes and
situations is tested.

Simulation 1: Recognition of a House
The task of the model in the first simulation was to
recognize a single object – a ‘house’. There are only seven
primitives on the input, representing the straight contours –
three horizontal lines, two vertical, one left-to-right slopped,
and one right-to-left slopped.

The activation spreads from these primitives to the parent
concepts of these lines and then back to some of their
instances. Many hypotheses for correspondence emerge. For
example, each of the horizontal lines creates its own
hypotheses with various horizontal lines, which participate
in various objects. In turn, these correspondences create
hypotheses for recognition. For example, if ‘line-b1’ is a
part of a wall, and the target ‘line-1’ is analogical to ‘line-
b1’, then the respective correspondence creates and supports
a hypothesis for recognition that ‘line-1’ is also a part of a
wall.

The more instances of a particular concept are relevant,
the more support the hypotheses for recognition about the

2 Note, there are not any squares or triangles in the memory. The
objects are organized as hypotheses for recognition as ‘wall’,
‘cabin’ (of a lorry), etc. The terms square and triangle are used
only for better description.

respective concept would receive. Thus the pressure for top-
down priming influence is presented. Note, however, that
because of the pressure for one-to-one mapping, the
hypotheses for correspondence between the target line and
the stored lines inhibit each other. Thus, the contextual top-
down influence is limited.

gure 2: The hypothesis for correspondence H2 creates
t

 At the same time, numerous anticipations about possible

w agents (hypotheses and anticipations)
in

 the simulation, at time 59.24

Figure 3: If the anticipation ‘angle-90’ is confirmed, it is

Simulation 2: Recognition of a Lorry
as the same,

bin’

Simulation 3: Priming
n was to simulate the impact

the higher activation of the
in

t the first run, RecMap recognized ‘lorry’ at time

Fi
he recognition-hypothesis ‘square-2’. Independently, H3
creates ‘square-3’. In turn, the anticipation ‘angle-90’ is
created because each of the arguments of the memorized
relation ‘angle-90’ has hypotheses for correspondence.

relations between the target lines are created (see Figure 2
for an example).

In turn, the ne
fluence the spread of activation making some elements

more relevant than others. The attention mechanism checks
sequentially the anticipations. If certain anticipation is
rejected, it just ‘died’. If it is confirmed, the respective
anticipation turns into an instance-agent. Thus, the
description of the scene is enriched a bit. At the same time,
the hypotheses for recognition of the relational arguments
are bound with each other (see Figure 3). Thus, new
relations are involved in the competition between the
recognition-hypotheses.
Results As a result of
(hundreds cycles of the program) a recognition-hypothesis
‘house’ becomes a winner; recognition-hypotheses for
‘roof’ and ‘wall’ become winners respectively at times
99.84 and 104.96. Interestingly, the whole object was
recognized before its parts consistent with the global
precedence effect demonstrated by Navon (1977). Actually,
before the whole object is recognized, there is no reason to
recognize the square as a wall or as a cabin for example.
The resolve of the puzzle starts after confirming the

anticipation ‘above’ with the two parts as arguments. Thus,
the already created instance-agent ‘above’ add the decisive
support for the ‘house’ and later on, the parts of the house
are recognized as well.

Line-1

Line-2

Bottom-line

Left-line

H

H

Angle
900

TARGET (SCENE)

Angle
900

BASE (MEMORY)

 Square

Part-of Part-ofSquare-2
(recognition)

Line-1

Line-2

Bottom-line

Left-line

H

H

Angle
900

TARGET (SCENE)

Angle-900

(anticipation)

BASE (MEMORY)

 Square

Part-of Part-ofSquare-1
(recognition)

Square-2
(recognition) transformed into an instance-agent. At the same time, the

recognition-hypotheses of its arguments are bound to each
other (compare to Figure 2).

Everything, including the seven input lines, w
as in the first simulation except that in the list of predefined
relations the relation ‘above’ is replaced with ‘in-touch’,
thus the correct response of the model was ‘lorry’.
Results At time 60.20 a ‘lorry’ was recognized; a ‘ca
and a ‘trailer’ were recognized respectively at time 107.66
and 110.32.

The role of the third simulatio
of context priming on the recognition process.. Actually,
simulation 3 consists of three separate runs of the program.
In all three runs, the model’s task is to recognize a single
lorry (the simulation 2 is repeated). However, at the first
run, additional instance of a ‘road’, associatively linked to
‘lorry’ is attached to the input, thus supplying the concept
‘lorry’ with extra activation.

The prediction was that
stances of ‘lorry’ would facilitate the recognition process.

In the second run, the concept ‘fence’, associated with
‘house’ is activated, expecting to hinder the recognition.
Finally, it the third run, again ‘fence’ is pre-activated but
with extremely high stimulation, thus simulating abnormal
fixation.
Results A
58.92; ‘cabin’ at time 86.58; ‘trailer’ at time 94.08, thus
fully confirmed our expectations (compare with the
respective results without priming from the Simulation 2 –

60.20, 107.6,6 and 110.32). At the second run the respective
times were 62.22, 11.508, and 130.72. At the third run the
model made wrong recognition – at time 103.12 a ‘roof’
was recognized, at time 139.28 – a ‘house, at time 178.34 –
a ‘cabin’.

These results in agreement with the effects of consistent
an

Simulation 4: Recognition of Two Objects
e attached

l in

Results The overall recognition time was slowed down but

Simulation 5: Integration of Recognition and

e episode was added to the long-term

e house and

r ‘house’, ‘lorry’, and ‘tree’ are
su

Conclusions
The RecMap model for recognition, based on the DUAL
architecture and the AMBR model for analogy-making is

presented. The main e model are that the

ALOGY: Humans
– the Analogy-Making Species, financed by the FP6 NEST
Programme of t on. (Contr. No

d inconsistent contextual priming demonstrated in the
psychological literature (Palmer, 1975, Biederman, et al.,
1982).

In the fourth simulation 14, instead of 7 lines wer
to the input of the model. A situation with two different
objects was simulated (see Figure 4, left panel). There were
not any relations between parts or primitives of different
objects (i.e. anticipations for such relations were created but
later rejected).

Figure 4: Left panel: Stimuli, presented to the mode
simulation 4. Right panel: The base situation, used in

simulation 5.

not considerably. The times for recognition of a ‘lorry’,
‘cabin’, ‘trailer’, ‘house’, roof’, ‘wall’ were 58.98, 69.38,
93.04, 97.56, 122.38, 136.14, respectively. This is evidence
that the model can operate on more complex scenes with a
little increase of computational resources. Thus, the model’s
ability to scale up is demonstrated.

Analogy-making
Finally, a whole bas
memory and the capability of the RecMap model to perform
the whole cycle from perception to complex analogy was
tested. The base situation consists of two trees with a
relation ‘left-of’ between them (see Figure 4).
Results The model successfully recognized th
the lorry (just as in the Simulation 4) and continued with the
analogy-making process.

Because all concepts fo
b-classes of the superordinate concept ‘neighborhood’, the

respective markers from the target and base objects cross,
and new hypotheses for correspondence between the target
objects and the trees are created. In turn, the RecMap
mechanisms created anticipations that the lorry is in left of
the house, and vice versa. The former anticipation is
rejected, the latter one is confirmed, and thus the right
spatial analogy was settled.

assumptions of th
analogy-making is very basic human ability, and that the
recognition is an active process of dynamical creation and
verification of various hypotheses and anticipations. The
model is based on an associative organization of the
memory; on high context sensitivity; on basic mechanisms
for analogy-making and hypotheses creation; on
anticipatory behavior; and on attentional mechanism for
sequential testing of anticipations.

Our model was successful at stimulating several effects
that are considered characteristic for human object
recognition. To begin with, the model manages to anticipate,
verify, and construct hierarchical structural representations
of objects by analogy, which reveals the potential of this
mechanism to support low as well as high-level recognition.
Even more, it is able to recognize as different two objects
that share all but one relation.

However, structural does not always mean part-based as
we demonstrated. The recognition may start from the whole
and then proceed to the parts of the objects. Even more
interesting is the chronology of events when the model is
presented with two objects. When the recognition began
with a particular object, it continued with its parts only on
the basis of the competition between the active
anticipations.

Furthermore, we showed that the influence of context in
the priming simulations can be modeled in an ecological
manner. The model is not only able to simulate facilitative
effects when the priming is consistent, but also slows down
and is prone to mistakes when the context is leading.

Finally, we demonstrated that our model is able not only
to bind objects and recognize them, but also to perform
analogical reasoning. The novel in our approach is that all
processes are guided by one and the same underlying
principle - the ability of analogical mapping.

Nevertheless, there are several limitations of the current
model. Although we assumed some kind of attentional
mechanism, future work is needed to develop one with
higher psychological plausibility. Another shortcoming is
the type of the information that is used. Although the top-
down construction of structural descriptions is important, it
is unlikely that it is the sole pressure in recognition.
Continuous metric information should be added as well as
other bottom-up pressures such as salience. Finally, the
model’s ability to recognize and reason about more variable
and complex objects and events should be tested.

The greatest future challenge is to implement the same
principles of binding on more realistic stimuli and to use
both structural and metric information.

Acknowledgments
This work is supported by the Project AN

he European Commissi
029088).

References
Biederman, I. (1987). Recognition-by-components: A

theory of human i nding. Psychological
Review, 94, 115–147

int invariance. Journal of

B

Journal of Experimental

B

elational violations. Cognitive Psychology,

B

al of Experimental Psychology: Learning,

C

dology. Journal of

F

1-205.

of the 13th Annual Conference of the

G

ambridge, MA: MIT Press

rtificial Intelligence

H

H Biederman, I. (1992). Dynamic binding in

gical Review, 104, 427–466.

VI:

K
og

Eleventh European Conference on

K

ol. 2.

K

acMillan.

K

the Twenty-second Annual

M

 of

N

ter for Annual Review of Psychology ,58, 75-96

th
,

P .

06, 29th German Conference

P

T ased object

mage understa
.

Biederman, I., & Gerhardstein, P. C. (1993). Recognizing
depth-rotated objects: Evidence and conditions for three-
dimensional viewpo
Experimental Psychology: Human Perception and
Performance, 19, 1162–1182.
iederman, I., & Gerhardstein, P. C. (1995). Viewpoint-
dependent mechanisms in visual object recognition: Reply
to Tarr and Bülthoff (1995).
Psychology: Human Perception and Performance, 21,
1506–1514.
iederman, I., Mezzanotte, R. J., & Rabinowitz, J.C.
(1982). Scene perception: Detecting and judging objects
undergoing r
14, 143–177.
oyce, S. J., & Pollatsek, A. (1992). Identification of
objects in scenes: The role of scene background in object
naming. Journ
Memory, and Cognition, 18, 531–543.
halmers, D. J., French, R. M., & Hofstadter, D. R. (1992).
High-level perception, representation, and analogy: a
critique of artificial intelligence metho
Experimental and Theoretical Artificial Intelligence, 4,
185-211.

alkenhainer, B., Forbus, K. D., and Gentner, D. (1990).
The structure-mapping engine. Artificial Intelligence, 41,
1-63.

Forbus, K. D., Gentner, D., & Law, K. (1994). MAC/FAC:
A model of similarity-based retrieval. Cognitive Science,
19, 14

French, R. M., & Hofstadter, D. R. (1991). Tabletop: A
stochastic, emergent model of analogy-making.
Proceedings
Cognitive Science Society. Hillsdale, NJ: Lawrence
Erlbaum.
entner, D., Holyoak, & K., Kokinov, B. (Eds.). (2001).
The analogical mind: Perspectives from cognitive
science. C

Hofstadter, D. R. (1984). The Copycat project: An
experiment in nondeterminism and creative analogies. AI
Memo 755, Cambridge, MA: MIT A
Laboratory.
olyoak, K. J. & Thagard, P. (1989). Analogical mapping
by constraint satisfaction. Cognitive Science, 13, 295-355.
ummel, J. E., &
a neural network for shape recognition. Psychological
Review, 99, 480–517.

Hummel, J. E., & Holyoak, K. J. (1997). Distributed
representations of structure: A theory of analogical access
and mapping. Psycholo

Hummel, J. E., & Holyoak, K. J. (2003). A symbolic-
connectionist theory of relational inference and
generalization. Psychological Review, 110, 220–264.

Hummel, J. E., & Stankiewicz, B. J. (1996). An architecture
for rapid, hierarchical structural description. In T. Inui &
J. McClelland (Eds.), Attention and performance X
Information integration in perception and
communication. Cambridge, MA: MIT Press.
imchi, R. (1992). Primacy of wholistic processing and
global/local paradigm: A critical review. Psychol ical
Bulletin, 112, 24-38.

Kokinov, B. (1994a). The DUAL cognitive architecture: A
hybrid multi-agent approach. In A. Cohn (Ed.),
Proceedings of the
Artificial Intelligence. London: John Wiley & Sons
okinov, B. (1994b). A hybrid model of reasoning by
analogy. In K. Holyoak & J. Barnden (Eds.), Advances in
connectionist and neural computation theory: V
Analogical connections. Norwood, NJ: Ablex
okinov, B., & French, R. M. (2003). Computational
models of analogy making. In L. Nadel (Ed.),
Encyclopedia of Cognitive Science. London: M

Kokinov, B., & Petrov, A. (2001). Integration of Memory
and Reasoning in Analogy-Making: The AMBR Model.
In D. Gentner, K. J. Holyoak, & B. Kokinov (Eds.), The
analogical mind: Perspectives from cognitive science.
Cambridge, MA: MIT Press.
uehne, S. E., Gentner, D. & Forbus, K. D. (2000).
Modeling infant learning via symbolic structural
alignment. Proceedings of
Conference of the Cognitive Science Society, 286-291.
arr, D., & Nishihara, H. K. (1978). Representation and
recognition of the spatial organisation of three
dimensional structure. Proceedings of the Royal Society
London, Series B (Biological Sciences), 200, 269–294.
avon, D. (1977). Forest before trees: The precedence of
global features in visual perception. Cognitive
Psychology, 9, 353-383.

Palmer, S. E. (1975). The effects of contextual scenes on the
identification of objects. Memory & Cognition, 3, 519-
526

Peissig, J. J. & Tarr, M. J. (2007). Object recognition: Do
we know more today than we did twenty years ago?
Chap

Petkov, G. (2006). Modeling Analogy-Making, Judgment,
and Choice with Same Basic Mechanisms. In D. Fum, F,
Missier, & A, Stocco (Eds.), Proceedings of the Seven
International Conference on Cognitive Modeling. Trieste
Italy: Edizioni Goliardiche.

etkov, G., Naydenov, Ch., Grinberg, M., & Kokinov B
(2006). Building robots with analogy-based anticipation.
In: Proceedings of the KI 20
on Artificial Intelligence, Bremen, in press.

oggio, T., & Edelman, S. (1990). A network that learns to
recognize 3-dimensional objects. Nature, 343, 263–266.

arr, M. J., & Bülthoff, H. H. (1999). Image-b
recognition in man, monkey and machine. In M. J. Tarr &
H. H. Bülthoff, Object recognition in man, monkey and
machine. Cambridge, MA: MIT Press.

Modeling the Range of Performance on the Serial Subtraction Task

Frank E. Ritter
1 (frank.ritter@psu.edu),Michael Schoelles3,

Laura Cousino Klein
2
, and Sue E. Kase

1

1
College of Information Sciences and Technology, and

2
Biobehavioral Health Department

The Pennsylvania State University, University Park, PA 16802 USA
3
Cognitive Science Department, Rensselaer Polytechnic Institute, Troy, NY 12180 USA

Abstract

We present a model of serial subtraction, a task
where subjects repeatedly subtract a 1- or 2-digit
number from a 4-digit number. The model per-
forms 4 min. blocks of these subtractions like
subjects do. The current model replicates part of
the pace and % correct for group data. Because
performance on this task varies widely between

subjects, we explore what it means to match the
data distribution. We find that our model repre-
sents individual subjects better than group means.
We can start to model a distribution of perform-
ance and illustrate some of what this approach
will entail.

Introduction

Serial subtraction, repeatedly subtracting a 1- or

2-digit number from a 4 digit number is part of

the Trier Social Stressor Task (TSST, Kirsch-

baum, Pirke, & Hellhammer, 1993). This is an

interesting task for two reasons. One reason is
that it has been used over 100 times in published

articles to study the effects of stress on physiol-

ogy (e.g., Kudlielka, Buske-Kirschbaum, Hell-

hammer, & Kirschbaum, 2004; Nater et al.,

2006; Taylor et al., 2006; Tomaka, Blascovich,

Kelsey, & Leitten, 1993). It is a cognitive task

used to cause stress, but we don’t know how it’s

performed—there is only one report on how well

it is performed (Tomaka, Blascovich, Kelsey, &

Leitten, 1993), and this report only provides data

on one 4-min. block.

The second reason it is interesting is that sub-
traction is an interesting task in its own right and

as a component task to many other tasks. It in-

volves many cognitive mechanisms making it a

good task to study cognition, not just the biobe-

havioral effects of laboratory stress. Real world

tasks that use subtraction include air traffic con-

trol, navigation, and piloting the wide range of

vehicles that use angular directions.

It would be useful to have a cognitively plau-

sible model of performance of subtraction. This

model would serve as an explanation and sum-
mary of task performance, helping to summarize

regularities, and a model would also be the

starting point of a theory of how cognition

changes with stress. Because the task requires
not only executive control and memory but inter-

action with the verbal system as well, a model

will be able to quantify the constraints that these

subsystems of cognition impose on the task.

These requirements suggest that the model be

constructed on an embodied cognitive architec-

ture (Anderson, in press).

Previous work with an earlier model has

shown that the general pattern of high level re-

sults (i.e., number of attempts per 4-min. block

and percent correct) with serial subtraction can

be predicted (Ritter, Reifers, Klein, Quigley, &
Schoelles, 2004), and we have used this

approach to describe how popular theories of

stress could influence performance on this task

(Ritter, Reifers, Schoelles, & Klein, 2007). The

next steps, presented here, are to create more de-

tailed predictions of performance and compare

these predictions to more detailed subtraction

performance data than has been previously pre-

sented.

The remainder of this paper presents a serial

subtraction experiment, the architecture and
model, subtraction data, and a comparison of the

model with human data. The model’s predic-

tions match the individual data fairly well, and

provide lessons for understanding how serial

subtraction is performed. The model-data com-

parison also makes suggestions for the further

development of cognitive architectures.

The Serial Subtraction Experimental Data

As part of a larger project on the biobehavioral

effects of stress in men and women, serial sub-

traction was administered as part of the TSST.

Several aspects of serial subtraction performance

were recorded. We present several of them here

as an initial summary of performance on serial

subtraction. They are taken from a more com-
plete report (Ritter, Bennett, & Klein, 2006).

Subjects

Thirty-six healthy women and 20 men, 18-30

years of age (µ=21.1) were recruited to partici-

pate in a study examining hormonal responses to

stress.

Method

All subjects participated in the same protocol,

which consisted of a baseline rest period, the

TSST challenge period (approximately 30 min.),

and a recovery period.

Following informed consent and a baseline

rest period, participants were asked to complete
the TSST which consisted of: (a) preparing a

3.5-min. speech on a personal failure, which they

were told would be recorded for later observa-

tion, and then (b) completing two blocks of serial

subtraction across a 15-min. period. The first

subtraction set required counting backwards

from a 4-digit number by 7’s; the second set re-

quired counting backwards by 13’s.

Subjects’ serial subtraction answers were cor-

rected against a list of answers from the starting

4-digit number. When an incorrect answer was
given, the subject was told to “Start over at <the

last correct number>”. At 2 min. into each 4-

min. session, subjects were told that “2-minutes

remain, you need to hurry up”.

Performance on the first block of 7’s and first

block of 13’s were recorded on the experi-

menter’s scoring sheets. Part way through the

study a mark to indicate where the 2-min. warn-

ing occurred was added to measure pace of the

subtractions. Subjects were paid $30 for their

time at the end of the study.

Results

All 56 subjects completed the task. Table 1

shows the subtraction rates. Overall performance

was generally accurate. The proportion correct

was not different across problem types

(t(56)=1.7, ns).

Table 1. Serial subtraction performance on 4-min.
blocks of 7’s and 13’s, means, (SD), and [ranges].

(N=56) 7’s 13’s

Attempts 47.0 (17.1) [8-106] 36.3 (15.1) [9-78]
%Correct 82% (14) [43-100] 78%(17) [31-100]

These results are fairly comparable to Tomaka

et al.’s (1993) data of 61 attempts per block of

7’s for their subjects that saw the task as
challenging and 46 for their subjects who saw

the task as threatening. While we do not know

the variance in Tomaka’s data, we can compare

it to this data assuming that the variance in each

case is equivalent. If we do so, for number of

attempts and number correct there is not a reli-

able difference between this data and Tomaka et

al.’s (1994) threatened condition t(36)<1,

however, there is a reliable difference between
this data and his challenged condition t(36) > 4,

p<0.05. There is also a reliable difference for

proportion correct, with Tomaka’s subjects being

correct more often (91% and 92% correct,

respectively).

A wide range of performance is found. Figure

1 shows that for the first block of 7’s the number

of attempts ranged from 8 to 106 attempts, and

the number correct and error rates had similar

variance. The second block, the 13’s, had similar

variance. The range of these scores suggests

more individual variability than implied by
Tomaka et al.’s values or the means in Table 1.

Error rates by sub-blocks were computed for

subjects where the scoring sheet was marked

with the location of the 2-min. warning. These

scores are shown in Table 2. Line 3 in the table

shows that subjects made many more errors in

the second half of the experiment than in the first

half (e.g., 6% of the 7’s errors were in the first

half, 94% in the second). This trend appeared to

be consistent across problem types: On the 7’s

problems, 33 of the 34 subjects increased their
errors in the second sub-block; on the 13’s, 30

subjects increased their errors.

Figure 1. Histogram of attempts and errors for
the 7’s block.

Table 2. Serial subtraction performance before
and after the 2-min. warning.

7’s 13’s

(N=34) Pre-2-

min.

Post-2-

min.

Pre-2-

min.

Post-2-

min.

Errors 0.94 (1.3) 6.65 (3.7) 1.15 (1.9) 6.58 (4.1)
Min/max 0/5 1/20 0/8 1/26
Error % 6 (12) 94 13 (21) 87

These errors could have occurred either be-

cause of fatigue, the cumulative effects of stress,

memory effects such as proactive interference, or

perhaps due to the interruption. Or, it could be

due to a combination of these effects. This effect

is not surprising, in that many theories of stress
predict that one starts out good and gets worse as

time progresses (Ritter et al., 2007). More fine-

grained human data, which we are preparing

from another study, will be required to see where

and how the increase in errors occurs.

Summary of Study

The data from this study extend the details of

how serial subtraction is performed. We provide

further details on this task, including means,

SDs, and ranges on subtraction attempts, correct

subtractions, and errors by sub-block. This study

also provided data on another problem size

(13’s). The 13’s problems appear to be slightly

more difficult than the 7’s, which might be

expected (13’s problems have about 38% more

simple subtractions, and this ratio here is 30%).

The results confirm the rate of subtractions by

7’s for 4-min. blocks previously found, but the
rates found here are slightly slower than Tomaka

et al. (1993, exp. 2) found. There may be several

reasons for the lower number of subtractions per

4-min. block here than in the Tomaka et al.

study. The subjects in this study may have been

in a more threatening condition. While Tomaka

et al.’s subjects were connected to an EKG,

subjects in this study were connected to a blood

pressure machine, had an indwelling catheter in

their arm, and their subtraction attempts were

preceded by a talk to a video camera on “an
embarrassing incident.” Tomaka’s subjects had

a longer and more relaxing break between

sessions than did these subjects (5 min. rest vs. a

word problem set that took about 4 min.).

The results show a trend to increasing errors

with time. Nearly all subjects made most of their

errors in the second half of the tasks. While we

cannot see exactly where the errors occurred, it

does appear that either the warning or the time

on task eventually leads to errors.

The Serial Subtraction Model

ACT-R 6.0 (Anderson et al., 2004) is a useful

architecture to model this task for three reasons:

(a) It provides a subsymbolic level to implement

changes in processing; (b) it permits the parallel
execution of the verbal system with the control

and memory systems, which appears to be im-

portant for this task; and (c) ACT-R has been

used for other models of addition and subtraction

developed by other researchers. Therefore, the

representation of integers and mathematical rules

can be transferred from these to other math

models.

Overview of ACT-R

ACT-R is a two layer modular architecture based

on the production system framework. One layer

contains symbolic representations and has a

serial flow in that only one production can fire at

a time. The second layer is a sub-symbolic layer

with numeric quantities as representations that

are the result of computations performed as if

they were executed in parallel.

Figure 2 shows ACT-R’s modular architecture.

The ACT-R modules communicate through buff-

ers, which can hold a single copy of a declarative
memory chunk. The default set of modules can

be partitioned into Perceptual, Motor, Control,

Memory and Representation Modules. The

model presented in this paper exercises the

Declarative, Procedural, Goal, Imaginal, and

Speech modules. This section describes the

details of these modules at the level necessary

for understanding our model.

Figure 2. The ACT-R 6 Architecture.

The Declarative Module and the Retrieval

buffer make up the declarative memory process.

Declarative Memory contains chunks that are

typed slot-value objects representing facts. At

the sub-symbolic level chunks have a numerical

activation value, which quantifies memory

operations. Activation in this model is
determined by the recency and frequency of use

of the chunk plus a component that reflects

retrieval system noise. Productions request the

retrieval of the chunk from Declarative Memory

that has the highest activation among all chunks

that match a specified retrieval pattern above a

retrieval threshold. Activation represents the

degree to which the chunks have been learned

and decays over time. Chunks are either created

initially or are created during processing. For

initially created chunks, the activation can be set

as if the chunk had been created at some date in

the past and had been previously used. Chunks

created during processing are created with a

specified base level of activation.
The Procedural Module contains Procedural

Memory that consists of condition-action rules

(productions). The productions represent proce-

dural knowledge. At each cycle, the conditional

constraints specified in the productions are

matched against the contents of the buffers. All

matching productions are entered into the

Conflict Set. The production to execute is deter-

mined at the sub-symbolic level by calculating a

utility value for each matched production. The

production with the highest utility is executed,

which consists of performing the operations
specified in its actions.

The Imaginal Module buffer implements a

problem representation capability. In the Serial

Subtraction Model the Imaginal Buffer holds the

current 4-digit number being operated on (i.e.,

the minuend) and the subtrahend. The Goal

module and goal buffer implement control of

task execution by manipulation of a state slot.

The Speech Module and Buffer speak the re-

sult of each subtraction. The rate of speech is a

parameter that specifies the rate in seconds per
syllable.

The model

Our model of serial subtraction described starts

with a main goal to perform a subtraction and a

borrow goal to perform the borrow operation

when needed. Both types of goal chunks contain
a state slot, the current column indicator, and the

current subtrahend (i.e., the number being sub-

tracted). The current problem is maintained in

the Imaginal Buffer. This buffer is updated as the

subtraction is being performed.

The model starts out with an integer minuend

(i.e., the number being subtracted from) of 4-

digits. All numbers in the model are chunks of

type integer with a slot that holds the number.

The model also contains subtraction and addition

fact chunks whose slots are the integer chunks
described above. This representation of the inte-

gers and arithmetic facts has been used in many

ACT-R arithmetic models and therefore is a

good example of reuse.

The model outputs the answer by speaking the

4-digit result. It has two strategies for answering.

The calc-and-speak strategy speaks the result in

parallel with the calculation of the answer. That

is, if the current problem is subtract 7 from 8195

the model would have the speech module speak

“eighty one” while the operation of subtracting

chunk seven from chunk five was being

performed. The other strategy is a basic strategy

where the answer is spoken only after the entire
subtraction has been performed. All results here

are obtained using the calc-and-speak strategy.

The model determines if a borrow operation is

required by trying to retrieve a comparison fact

that has two slots, a greater slot containing the

minuend and a lesser slot containing the subtra-

hend. If the fact is successfully retrieved then no

borrow is necessary, otherwise a borrow subgoal

is created and executed.

Borrowing is performed by retrieving the addi-

tion fact that represents adding ten to the minu-

end. The subtraction fact with the larger minuend
is retrieved. The model then moves right one

column by retrieving a next-column fact using

the current column value as the cue. If this

retrieval fails then there are no more columns so

the borrow subgoal returns back to the main task

goal. If there is a next column and its value is not

zero then one is subtracted from it by retrieval of

a subtraction fact. If the value was 0 then the

problem is rewritten in the Imaginal Buffer with

a 9 and the model moves to the next column and

repeats the steps discussed above, returning to
the main task when there are no more columns.

If the answer is incorrect, the problem is reset to

the last correct answer.

In the main task when the subtraction is com-

plete, the problem is rewritten in the Imaginal

buffer and the model speaks the answer using

one of the speaking strategies.

There appear to be three important parameters

for this model. The rate that the model speaks is

controlled by the syllables-per-second parameter

(SYL). The retrieval time is controlled by the

base level constant (BLC) and decay parameters.
The error rate for retrievals in this model is due

to the activation noise parameter (ANS). In

collecting the model data these parameters

(except the decay parameter) were varied to pro-

duce outcomes discussed in the results section.

The Model and Data: Matching the

Range of Human Performance

The model’s average performance with values of

SYL=0.15 s/syllable (ACT-R default), ANS=0.1,

and BLC=1 (ACT-R default) was 77 attempts

with 83% correct, with no values below 68

attempts. This does not match the distribution of

human data. Thus, we started to search for

parameter values and parameter value sets to

match our subjects’ performance.

Figure 3 shows a summary of a parameter

sweep on these parameters (ANS: 0.01 to 0.71

by 0.035, SYL: 0.01 to 0.68 by 0.035, and BLC:

1 to 1.95 by 0.05, 1 run/value, 8,000 total runs).
The plot shows, for ranges of parameter values,

how many runs (across the sets of other

parameter values) were within the range of

subject performance for number of attempts and

% correct. The lines on the left are for SYL and

ANS. These lines show that very fast speaking

rates are too fast, but otherwise there appear to

be a relatively wide range of acceptable values.

The other line shows that as ANS increases, the

percentage of runs that are within the range of

human performance increases as well, and then

drops off. The line to the far right is for BLC. It
shows that BLC=1.6 (and 1.85) led to a local

maximum number of runs that were within our

subject range. (The percentages of useful model

runs in Figure 3 appear to be somewhat low

because, for example, the point at 1.5=BLC

contains all the values for SYL and ANS,

including quite poor combinations.)

Table 3 and Figure 4 thus show the distribu-

tion of performance with the peaks of the pa-

rameters tested in Figure 3 (SYL=0.15,

ANS=0.38, BLC=1.6 and 1.85). These two
distributions have more runs that are within the

range of performance by the subjects (which is

shown in Figure 3), but the resulting

distributions of performance shown in Figure 4

are less like the subjects’ performance than the

default parameters.

Figure 4 suggests that a distribution of

parameters is likely to be more representative of

the range of subject performance. The settings

of the model shown in Figure 4 appear to match

individual subjects (or small sets of subjects)

much better than they match the whole
distribution. We believe this is because the

subjects have different speaking rates, different

resources (e.g., working memory and

knowledge), different appraisals of the task (and

thus different noise and anxiety settings), or

other differences we have not yet explored.

Table 3. Performance by the model on 4-min.
blocks of 7’s and 13’s, with SD and ranges for
SYL=0.15, ANS=0.38, and BLC=1.85).

(N=100) 7’s 13’s
Attempts 58.3 (2.2) [56-68] 44.3 (1.95)[39-50]
%Correct 65.7 (21.5) [2-84] 85.3 (13.1) [27-98]

Figure 3. Summary of performance within the
range of subject perfoff rmance (foff r attempts and %
correct) foff r 7’s problems. (Each point is 400 runs.)

Figure 4. Distribution of attempts (errors not
shown) for the 7’s problems for the model with
better settings and the human data distribution.

Discussion and Conclusion

The default settings for ACT-R lead the model’s

performance to match only part of the human

data. Examining performance with a wider

range of parameter settings suggests that individ-

ual differences are what give rise to the distri-

bution that is observed. This is an interesting

result, as it suggests ACT-R 6 produces peaked
distributions of performance for each setting of

parameters. This indicates that we may be able

to fit to the average subject, but to fit the sub-

jects’ distribution we will have to use a set of

parameter settings—the fit is not likely to be a

single number, but will be matching of the

distribution of individual differences.

Implications for Serial Subtraction

The analysis here confirm that utterance rate,

noise, and base level activation are important in

this task. In particular, the development of output

mechanisms (speech rate) for architectures is

important but somewhat unexplored.

There are a few further measures that would be

useful for characterizing behavior on serial sub-

traction. For example, it would be interesting to

know how the pace of subtractions, not just

errors, changes over time. Do subjects get faster

or slower over time? The error rate could in-
crease because they are performing more sub-

tractions, or it could be that they are performing

them more poorly over time. Similarly, it would

be interesting to know what errors subjects are

making. Are they misretrieving the sub-answers,

or are they forgetting to carry or to decrement?

How does vocalizing while you are doing

subtractions interfere with serial subtraction?

We are working on these questions.

Implications for Architectures

This model and comparison show that distribu-

tion of response times and performance variables

provide an additional useful, free, inexpensive,

and strong constraint—on individuals and on

population predictions.

The model was designed to exploit the inte-

grated cognitive systems approach that lies at the

core of ACT-R 6. The model performing the
whole task including speaking illustrates this

theoretical stance that is an important topic in

current cognitive architecture research (Gray,

2007). Finally, we are also closer to a position to

apply a set of theories of stress implemented as

overlays to ACT-R (Ritter et al., 2007) to a

sample data set to test the theories of stress on a

task with detailed human data.

Acknowledgements

This project was supported by ONR

(N000140310248, FER & LCK), the National

Science Foundation (SBR 9905157, LCK), and

from the Penn State University College of Health

and Human Development (223 15 3605; LCK).

The services provided by the GCRC of The

Pennsylvania State University are appreciated

(NIH Grant M01 RR 10732). We appreciate the
dedicated assistance of E. Corwin and M. Stine

in completing this project, as well as the research

assistants in the Biobehavioral Health Studies

Laboratory for subject recruitment, data entry,

and data cleaning. Mark Cohen and three

anonymous reviewers provided good comments.

References

Anderson, J. R. (in press). How can the human

mind exist in the physical universe? New

York, NY: OUP.

Anderson, J. R., Bothell, D., Byrne, M. D.,

Douglass, S., Lebiere, C., & Qin, Y. (2004).

An integrated theory of the mind. Psychologi-

cal Review, 111(4), 1036-1060.

Gray, W. D. (Ed.). (2007). Integrated models of

cognitive systems. New York: OUP.
Kirschbaum, C., Pirke, K.-M., & Hellhammer,

D. H. (1993). The Trier Social Stress Test—A

tool for investigating psychobiological stress

responses in a laboratory setting. Neuropsy-

chobiology, 28, 76-81.

Kudlielka, B. M., Buske-Kirschbaum, A., Hell-

hammer, O. H., & Kirschbaum, C. (2004).

HPA axis responses to laboratory psychosocial

stress in healthy elderly adults, younger adults,

and children: Impact of age and gender. Psy-

choneuroendocrinology, 29, 83-98.

Nater, U. M., La Marca, R., Florin, L., Moses,
A., Langhans, W., Koller, M. M., & Ehlert, U.

(2006). Stress-induced changes in human sali-

vary alpha-amylase activity—associations

with adrenergic activity. Psychoneuroendocri-

nology, 31(1), 49-58.

Ritter, F. E., Bennett, J., & Klein, L. C. (2006).

Serial subtraction performance in the cycling

study (Tech. Report No. 2006-1): ACS Lab,

College of IST, Penn State.

Ritter, F. E., Reifers, A., Klein, L. C., Quigley,

K., & Schoelles, M. (2004). Using cognitive
modeling to study behavior moderators: Pre-

task appraisal and anxiety. In Proceedings of

the Human Factors and Ergonomics Society,

2121-2125. Santa Monica, CA: HFES.

Ritter, F. E., Reifers, A. L., Schoelles, M., &

Klein, L. C. (2007). Lessons from defining

theories of stress for architectures. In W. Gray

(Ed.), Integrated models of cognitive systems

(pp. 254-262). New York, NY: OUP.

Taylor, S. E., Gonzaga, G. C., Klein, L. C., Hu,

P., Greendale, G. A., & Seeman, T. E. (2006).

Relation of oxytocin to psychological stress
responses and hypothalamic-pituitary-adreno-

cortical axis activity in older women. Psycho-

somatic Medicine, 68, 238-245.

Tomaka, J., Blascovich, J., Kelsey, R. M., &

Leitten, C. L. (1993). Subjective, physiologi-

cal, and behavioral effects of threat and chal-

lenge appraisal. Journal of Personality and

Social Psychology, 65(2), 248-260.

Prototypical Relations for Cortex-Inspired Semantic Representations

Florian Röhrbein (florian.roehrbein@honda-ri.de)
Julian Eggert (julian.eggert@honda-ri.de)

Edgar Körner (edgar.koerner@honda-ri.de)

HONDA Research Institute Europe GmbH, Carl-Legien-Str. 30
63071 Offenbach am Main, Germany

Abstract
Cognitive systems for the representation of declarative
knowledge like semantic networks and other graph-based
systems are widely unrelated to characteristic neurobiological
mechanisms in the brain. In this contribution we report on our
efforts in bridging the gap between typical semantic relations
like “is part of”, “has property” etc. and the laminar wiring
pattern of the neocortex. Central to our approach is the
identification of the cortical column as a basic building block
within the relational network. These columns are typically
sectioned into subsystems which comprise different horizontal
layers and thereby provide different links for forward,
backward and lateral processing. We show how these inter-
columnar connections can be related to semantic links, which
reflect hierarchical knowledge, temporal ordering and
ontological relationship. These dimensions are of outstanding
interest for most cognitive tasks. But also arbitrary n-ary
relationships can be build by representing the relations as
nodes and using only the proposed basic link types. As
inference mechanism, a simple locally controlled activation
spread was applied. It results directly from the intra-columnar
connectivity which is uniform for all nodes. We tested the
system with large commonsense databases and obtained
promising results including predictions, context influences
and feature inheritance.

Keywords: cortical column; knowledge representation;
relational structures

Introduction
For the representation of relational knowledge in a graph-
based model we have developed a neural-symbolic network
which combines ideas from classical semantic networks and
recent findings of the neocortical wiring. It consists of
columnar-like nodes as uniform entities for the
representation of all concepts of the domain, including
sensory measurements, motor actions, instances and
categories. The nodes are connected by a set of directed
links, which can be related to columnar subsystem, as we
will argue in the next section.

Semantic relations and columnar connections
The biological entity, which in our approach corresponds to
a network node, is the cortical column. The column is well
known as the basic computational unit in the brain and its
six-layered architecture has been addressed by several
researchers to unravel the functional role (Raizada &
Grossberg, 2003; Lücke & von der Malsburg, 2004; Kupper
et al., 2006). Here we concentrate on a network build out of

columnar-like nodes and do not target at a biologically
detailed modeling of the single cortical column. The
columns are typically sectioned into subsystems (see Fig. 1)
which comprise different horizontal layers and thereby
provide different links for bottom-up (BU), top-down (TD)
and lateral processing.
We refer to a schema described in (Körner, Tsujino &
Masutaki, 1997) which assumes six distinct systems, which
we will only briefly sketch here: Subsystem A1 receives
input from lower cortical areas, subsystems A2 and B2
project to areas higher in the cortical hierarchy, thus
establishing together a bottom-up processing stream. Top-
down processing is realized via subsystem C2, which
projects to lower areas, targeting in cortical layer I (since
there are no neurons in this layer, it is not called a
subsystem). The two remaining systems are for lateral
processing (B1), which comprises many different cell types
and can be subdivided further, and a system which sends
primarily motor information to subcortical structures (C1).

Figure 1: Sketch of the major pathways connecting cortical
columns. Shown are cytoarchitecturally defined cortical

layers (I-VI, left) and proposed functional subunits
(A1 etc., right) with shadings referenced in Fig. 7.

The relevant question in this context now is how semantic
links can be ascribed to these pathways which originate
from distinct subsystems. A good point to start with will be
to look at those semantic relations which seem to be of

I

I

I

V

B2

B1

A1

C1

C2

A2

I

II

III

IV

V

VI

BU

BU

BU

TD

TD

motor

lateral

ubiquitous importance. Indeed, there seem to be very few
basic relations which are relevant for concepts on all layers
of abstraction, independent of the actual knowledge domain
and these might be grouped according the three dimension
of hierarchy, sequence and relationship.
Hierarchies are used all over the neocortex as the core
organization principle to deal with the nested structure of
the surrounding world. Along this dimension of knowledge
chunks the notions of BU and TD processing apply.
Knowledge about hierarchical relationships is usually
expressed in meronymies and holonymies, but also in
relations like “is located in” or in the temporal domain
(“happens during” etc). In our system three link types are
used to build the chunking hierarchy and, following the
basic cortical processing streams, columnar subsystems are
assigned to each of them (Fig. 1, for details see e.g.
Thomson & Bannister, 2003): A “has component” link,
which originates in C2 and projects to layer I of nodes on a
lower level (top-down). Two “is component of” links stem
from different cortical layers (A2, B2) but terminate both in
input layer A1. Together they serve for bottom-up
information flow, and just differ in the granularity of
transmitted information. Note, that an increased level of
detail leads to a hierarchy, in which subclasses are
represented above superclasses and instances are
represented above categories (see e.g. Quian Quiroga et al.,
2005), generating a reversed ontological hierarchy.
Sequential information is essential, especially for prediction.
We associate corresponding semantic links with the
columnar subsystem C1 (compare Lomber & Payne, 2000),
but will not make use of it in the work presented here.
Instead, we concentrate on ontological knowledge which is
expressed in hyponyms and hypernyms. For this dimension
(coined “relationship” above) six link types are used: has
property / is property of, has subclass / is subclass of and
has role / is role of. A suitable columnar subsystem for these
connections seems to be B1 because of the existence of
distinct functional subsystems within upper layer III
(Yoshimura, Dantzker & Callaway, 2005) and the
characteristic dense wiring pattern with horizontal
connections of different ranges (e.g. Hirsch & Gilbert,
1991). In this line, links denoting subclass relationships
connect columns within one level (e.g. within one cortical
area), whereas property and role links make inter-area
connections, since they connect conceptual representations
with more perceptually based ones. Summarizing, we have
the following set of link types

• has component / is component of
• has consequence / is consequence of
• has property / is property of
• has subclass / is subclass of
• has role / is role of

All network links proposed here differ in two important
aspects to common semantic network links: First, we only
use a very restricted set of basic link types, which are
biologically justified, since they can be associated with
specific neuronal source and target populations each within
a specific columnar layer. Second, these links do not vary

from node to node, but are common to all nodes. Not all
links, of cause, are used by every node, but there are no
links which are available only for certain nodes. The
motivation for this homogenous layout is that the basic
structure of the biological column is widely independent of
the cortical site.
In the following the focus will be only on the lateral
connections originating and targeting in subpopulations of
B1. For details on link types associated with the other
subsystems for semantic relations about temporal and
spatial ordering, see (Röhrbein, Eggert & Körner, 2007). To
motivate the link types associated with B1, we start with
quite general considerations concerning the coding of
relational structures.

Representation of arbitrary relations
How can arbitrary relations be expressed within a graph-
based framework? The common way to represent facts like
“John loves Mary” is to have nodes for the concepts
involved (“John”, “Mary”) and a directed link between
them. The link is typically labeled with the relation, which
holds between the connecting concepts (“loves”).
Unfortunately, this works only for dyadic relations: As soon
as a third concept is involved, like in “Mary gives John a
cookie”, the scheme has to be revised.
One option here is to extend the directed links towards
“hyperarcs” (see e.g. Harel, 1988). These are either
conceptualized as n-ended arcs and then solve only half of
the problem, because still only 2 roles are possible. Cases
where directed hyperarcs are sufficient are quite restricted,
e.g. for relations like lies-between(X,Y,Z,…) which can be
represented by setting head H={X} and tail T={Y,Z,…}.
Others, e.g. Boley (1992) in his "directed recursive
labelnode hypergraphs" propose links which start at the
relation node, cut n-1 argument nodes and end at the nth
node of the n-ary relation. He criticizes approaches which
introduce additional nodes, because they add “pseudo-
entities”, but this holds only as long if they cannot be given
a reasonable interpretation.
Another solution to handle relations with arity greater than 2
is to have an extra node pointing the all involved concepts
(e.g. used in SNePS). The links have to be labeled,
otherwise one could not differentiate between the statements
“Mary gives John a cookie” and “John gives Mary a
cookie”. But here the labels do not reflect the type of
relation as for binary relations; rather they specify roles like
“giver”, “recipient” and “object”. More as a side effect, in
doing so the “artificial” node becomes to represent the
whole relation. The provision of labels is a general problem.
They are unsatisfactory for several reasons, most
importantly for us because biology does not allow for
arbitrary link types.
A variant of this approach would be to chunk information
into a node which then comes to represent a part of the
whole statement like “Mary gives John”. This is useful for
computational reasons, since reasoning with nodes of arity
beyond 3 have proven to be intractable. Conceptually there

is no further gain in representing parts of a statement, since
it makes no sense to dispense completely with separate
concepts for both “Mary” and “John”, and the semantic of
the link becomes even more obscure.
For a solution without arbitrary link types, two aspects of a
“standard link” have to be considered: First, the link has
only two ends, and second, there are only two different
“values” for the endpoints: “arrow tail” and “arrowhead”,
usually associated with an “ingoing” and “outgoing”
semantic. For a true extension therefore, a graphical
notation is needed based on that depicted in Fig. 2 (b) for a
ternary relation. Here the link is allowed to have more than
two connecting points and at the same time more than two
possible values. For a biological interpretation such a graph-
based approach still causes a problem, since there are no
different connection endings for neurons that can be
associated with arbitrary roles. (In fact, there seem to be
different link types and associated with them, different
roles, but these are not arbitrarily definable, see above.)

Figure 2: Graphical representations for binary relations (a)
have to be extended in two ways to deal with n-ary

relations: The number and the type of terminal points.
Sketched in (b) is a graphical notation for n=3.

Here we present a very straight-forward solution to this by
proposing an additional node for each role. A ternary
relation is now represented as sketched in Fig. 3 (b) with
new intermediate nodes labeled with digits. This schema
can easily be extended for relation with greater arity (c) and
is also valid for binary relations (b), thus avoiding any
discontinuity. The new nodes have a clear interpretation:
For the statement “Mary gives John a cookie” with
X=Mary, Y=John and Z=cookie, node 1 represents “Mary
acting as giver”, node 2 “John acting as receiver” and node
3 “cookie as a gift”. These nodes can participate in other
relational statements, e.g. the node 2, if it is to be expressed
that Mary gives some things to some other people. Of
course, the same holds for concepts, since these usually
participate in different situations having different roles (see
simple example below). Fig. 3 (d) shows how the fact “a
can is made of aluminum” is represented and indicates the
embedding in our columnar framework with links of type
has-role / is-role-of (depicted now as solid bidirectional
links).
On the conceptual side, the advantage of the proposed
schema lies in the uniform treatment of arbitrary n-ary
relations. This is opposed to standard semantic networks
which show a tendency to binarize not only relations with
more than two roles, but also monadic relations like “has

property”. E.g., typical KL-ONE representations are
restricted to unary and binary predicates. This is not an
inherent restriction and n-ary description logics have been
proposed (e.g. Schmolze, 1989), but nevertheless n-tuples
for n>2 are usually represented indirectly by reification.
There are also technical advantages, since the modeling of
relations as nodes allow for inheritance, activation spread
etc., which we will elaborate on shortly in the next section.

Figure 3: Proposed pattern for representing n-ary relations
(a-c, n=2,3,4). The dyadic relation in (d) is represented with

5 nodes connected with has-role / is-role-of links.

Relational prototypes
For every relation which can be expressed in our framework
(like “gives”, “made of” etc.) there is a so-called relational
prototype, which functions as a template and which is
connected with all relations of that type. An example is
given in Fig. 4 for the relation “made of”. There are two
instances of this relation involving three concepts in the
same manner as in Fig. 3 (d), but additionally nodes which
code the relation are connected (dashed arrows) with
corresponding nodes of the relational prototype. These links
are of type has-subclass / subclass-of and thus allow for the
inheritance of properties (not included in the figure). The
nodes constituting the relational prototype (within the gray
oval) get their meaning via their connection to all instances
of these nodes.

Figure 4: Relational prototypes (grey oval) are
component-wise connected with all instances thereof via

has-subclass / is-subclass-of links (dashed arrows).

can
aluminum

“can acting
as object” “aluminum

acting as material”

YX 21 r

(a)
Z

X
Y

1
2

3

r

(b)

X

W Z

Y
1

2

34

r

(c)

made of

(d)

concept-2

concept-3

OBJECT
MATERIAL

“concept-2
acting as
object”

“concept-3 acting
as material”

concept-1

“concept-1
acting as
object”

MADE OF

made-of-2

made-of-1

Y
X

Z

X Y

(a) (b)

Note that also the cortex seems to build separate
representations for different tasks. For spatial cognition
tasks e.g. knowledge about spatial relations has to be
provided and all the nodes representing instances of these
relations should be arranged in neighbored representations.
There is also a psycholinguistic justification of treating
relations as abstract concepts, which comes from work of
Chaffin and Herrmann (1988). They found basic
characteristics, which are known to hold for objects, also for
relations. These include decomposability, typicality,
codability, multiple inheritance and compositionalibility.

Activation spread
The activation spread results from intra- and inter-columnar
connectivity patterns. Internally each node has an activity
vector with one entry for each subsystem. The connections
between nodes depend on the represented knowledge and
follow the rules outlined above. In the current version of the
system, we use the simplest rule for intercolumnar
connections without weighting and thresholds: The
incoming activation aj of a specific subsystem xin equals the
sum of the activations of the corresponding outgoing
subsystems of all those nodes i, which are connected to
node j:

=
i

outijiinj xawxa)()(

The processing within a node depends on the intra-columnar
wiring, which is handcrafted, but identical for all nodes in
the network. We omit here all definitions except those
which are made use of in the example which follows in the
next section, i.e. we focus on the subsystems marked in grey
in Fig. 5.

Figure 5: Columnar network nodes are subdivided into
functional subsystems and associated semantic link types.

In this report the focus is mainly on the shaded parts of B1.

The intra-columnar propagation rules for the activities
aj(xout) of a node j are defined in the following for the
subsystems xout of B1. We use the abbreviations B1a, …,
B1f given in Fig. 5.
has subclass:

)1(*2)1()1()1(

)1(

injinjjinj

outj

fBacBaAabBa
cBa

+++=

is subclass of:

)1()()1(

)1(

injjinj

outj

dBalayerIaaBa
dBa

++=
has role:

)1()(*5.0

)1(

injj

outj

eBalayerIa
eBa

+=
is role of:

)1(*)1(*3)1(
)1(

injinjinj

outj

fBacBaeBa
fBa

+=
Note, that in all cases the activity vector remains
unchanged, unless the incoming activity changes, i.e. there
is no automatic fading away.

Toy example

Network
We tested our network with large knowledge databases, i.e.,
all relations are extensionally defined. In the following we
demonstrate the behavior with a toy example consisting of
four pieces of relational knowledge, which are fed into the
system:

can is-made-of aluminum
can is-used-for drinking
can is-used-for gaming
car is-used-for driving

A representation of these statements involves six concepts
(for can, car, aluminum etc.) and two relational prototypes
(is-made-of and is-used-for). All nodes and relations
necessary for representing the knowledge are generated
automatically resulting in the network shown in Fig. 6.
This example requires the use of only two different link
types: has-role / is-role-of links (depicted as solid
bidirectional arrows) and has-subclass / is-subclass-of links
(dashed bidirectional arrows). Note that role nodes can be
part of more than one relational statement (here node “tool-
can”).

Task
Let’s assume that an object has been presented to the
system, which was identified as a can. This successful
recognition leads to an activation of the column representing
“can”`. In the next time step one might wish to ask the
system about the usage of this object. This situation can be
directly expressed in our network through the activation of
two nodes: Node “can” receives top-down input via layer I
which activates neurons in subsystem C2 and parts of
subsystem B1. We choose an activity value of 1 and set:

1)(=layerIacan

C2

B2

A2

A1

B1

C1

has property
is property of

has role
is role of

has subclass
is subclass of

node

b
a

c
d
e
f

Node “usage” is activated bottom-up leading to a firing of
neurons in subsystem A1. For simplicity, the same activity
value is assumed here:

1)1(=Aausage

Starting at these two nodes, the activation spreads according
to the proposed intra-columnar wiring and according to the
connections between nodes specified by entries of the
knowledge base.

Figure 6: Example network with representations for
relations made-of and used-for. See text for details.

Result
In Fig. 6 all nodes which receive activation are colored: The
nodes which received input, several nodes coding the
relation and two nodes which represent a concept:
“drinking” and “gaming”. This highly selective activation of
relevant nodes becomes even more important if we consider
realistic knowledge networks like that one we obtained by
using freely-available ontological and commonsense
databases (see Röhrbein et al., 2007). They typically
comprise hundreds of instances for one relational prototype,
but the only relational structures which get completely
activated are those matching with the concepts contained in
the “question”, in this example “can” and “USAGE”. As can
be seen from the propagation rules defined above, this is
due to the nonlinearity for the is-role-of activity, which
leads to the desired gating behavior.
For a quantitative comparison the contribution of the
different subsystems to the total node activity can be found
in Fig. 7. The depicted activity vectors of all involved nodes
show the highest activation for nodes “drinking” and
“gaming”. Clearly, the gained sum activity scales with the
provided input values, which were here set to 1, but the
different subsystems’ contributions depend on the

weightings in the definitions above. Moreover, it is not quite
clear what should be taken as the “sum activity” of a
column (see e.g. measurements by Staiger et al., 2000). On
the other hand, the provision of an “answer” as system
output, which might consist of a short list of top-ranked
nodes, is considered rather as a side effect. The more
important result in our view lies in the selective activation
of relevant substructures which can be used for subsequent
processing steps.

Figure 7: Activity vectors resulting from C2 activation of
“can” and A1 activation of “USAGE”. Shading styles refer

to columnar subsystems in Fig. 1.

Discussion
A similar node-based representation is used in LISA (e.g.
Hummel & Holyoak, 2003), in which a form of symbolic
connectionism is proposed which also avoids labeled links
for the representation of relational structures. Hummel and
Holyoak argue for a 4-tired hierarchical schema comprising
“propositional units”, “role-binding units”, “token units”
and “semantic units”. These nodes roughly correspond to
neurons, whereas in our approach only one uniform unit is
assumed which is related to a larger biological entity, the
cortical column. This enables us to differentiate e.g.
between superclasses and properties which are treated
uniformly in LISA as features at the level of “semantic
units”. Related constructs can also be found in connectionist
modeling approaches of linguistic aspects. E.g., Hadley and
Cardei (1999) introduced p-nodes, which are clusters
consisting of a core node connecting sequence nodes with
role nodes. Quite similarly to our approach, these role nodes
are for the binding of concepts to appropriate roles, but here
the possible roles are restricted to a predefined and fixed set
of only three role nodes: concepts can be linked either to an

0

1

2

3

4

5

6

ca
n

ob
je

ct
-c

an

re
la

tio
n-

1
m

at
er

ia
l-a

lu
m

in
iu

m

U
SA

G
E

to
ol

-c
an

re

la
tio

n-
2

us
a g

e-
dr

in
ki

ng
dr

in
ki

n g
re

la
tio

n-
3

us
ag

e-
ga

m
in

g
ga

m
in

g
us

ag
e-

dr
iv

in
g

B2 B1

A1C2
A2

activation

can

aluminum

drinking

gaming

TOOL USAGE

OBJECT MATERIAL

car
driving

object-can material-aluminumrelation-1

tool-can

relation-2

relation-3
usage-gaming

usage-driving

usage-drinking

MADE-OF

USED-FOR

node

“agent role”, an “action role” or a “patient role”. In
SHRUTI (Shastri, 1999), "focal-clusters" represent n-ary
relations and contain beside n role nodes also a number of
special-purpose nodes like enablers and collectors. Shastri
does not relate this unit to biological mechanisms like the
cortical column, but it might be worthwhile to pursue that
direction.
In general, the coding of higher-valence relations by
introducing additional nodes has already been recommended
by Levesque, Brachman (1984) and is proposed also in
recent approaches (e.g. Schultheis, Barkowsky & Bertel,
2006), but without considering the need for having role
nodes. Another example would be the “relational element
theory” put forward by Chaffin and Herrmann (1988). In
their investigation on analytical vs. unitary approaches to
semantic relations they also propose a decomposition into
relational elements (like “agent” and “instrument”), but
these are more like properties of relations, e.g. “dimension”,
“discrete” etc. than role nodes proper. Furthermore they
consider only binary relations.
A final note should be made with respect to the postulation
of Firstness, Secondness and Thirdness as the fundamental
ontological entities (see Sowa, 2000). This trichotomy has
not always been interpreted uniformly, but it seems to fit to
our graphical representation, where 1st-ness corresponds to
the objects per se, 2nd-ness to the properties of an objects
and 3rd-ness to the relation between objects (see Fig. 8).

Figure 8: Peircean notions of Firstness, Secondness and
Thirdness as major ontological distinctions might be related

to network patterns which emerge from our approach.

References
Boley, H. (1992). Declarative Operations on Nets. In Fritz

Lehmann, editor, Semantic Networks in Artificial
Intelligence, 23, 601-637.

Chaffin, R., & Herrmann, D.J. (1988). The nature of
semantic relations: a comparison of two approaches. In:
Evens, M.W. (ed.) Relational models of the lexicon:
Representing knowledge in semantic networks.
Cambridge University Press, 289-334.

Hadley, R.F. & Cardei, V.C. (1999). Language acquisition
from sparse input without error feedback. Neural
Networks, 12, 217-235.

Harel, D. (1988). On visual formalisms. Communications of
the ACM, 31, 514-530.

Hirsch, J.A. & Gilbert, C.D. (1991). Synaptic physiology of
horizontal connections in the cat's visual cortex. The
Journal of Neuroscience, 11, 1800-1809.

Hummel, J.E. & Holyoak, K.J. (2003). A Symbolic-
Connectionist Theory of Relational Inference and
Generalization. Psychological Review, 110, 220-264.

Körner, E., Tsujino, H. & Masutani, T. (1997). A cortical-
type modular neural network for hypothetical reasoning.
Neural Networks, 10, 791-814.

Kupper, R., Knoblauch, A., Gewaltig, M.-C., Körner, U. &
Körner, E. (2006). Simulations of signal flow in a
functional model of the cortical column. Neurocomputing,
doi:10.1016/j.neucom.2006.10.085.

Levesque, H.J. & Brachman, R.J. (1984). A fundamental
tradeoff in knowledge representation languages. In
Brachman, R.J. & Levesque, H.J. (eds.), Readings in
Knowledge Representation. Morgan Kaufmann, Los
Altos, California, 41-70.

Lomber, S.G. & Payne, B.R. (2000) Translaminar
differentiation of visually guided behaviors revealed by
restricted cerebral cooling deactivation. Cerebral Cortex,
10, 1066-1077.

Lücke, J & von der Malsburg, C. (2004). Rapid Processing
and Unsupervised Learning in a Model of the Cortical
Macrocolumn. Neural Computation, 16, 501-533.

Quian Quiroga, R., Reddy, L., Kreiman, G., Koch, C. &
Fried, I (2005). Invariant visual representation by single-
neurons in the human brain. Nature, 435. 1102-1107.

Raizada, R. & Grossberg, S. (2003). Towards a theory of the
laminar architecture of cerebral cortex: Computational
clues from the visual system. Cerebral Cortex, 13, 100-
113.

Röhrbein, F., Eggert, J. & Körner, E. (2007). A Cortex-
Inspired Neural-Symbolic Network for Knowledge
Representation. In: Proceedings of the IJCAI-07
Workshop on Neural-Symbolic Learning and Reasoning
(NeSy-07). CEUR Workshop Proceedings.

Schmolze, J.G. (1989). Terminological Knowledge
Representation Systems Supporting N-ary Terms. In:
Brachman, R.J., Levesque, H.J., Reiter, R. (Eds.):
Proceedings of the 1st International Conference on
Principles of Knowledge Representation and Reasoning.
Morgan Kaufmann: 432-443.

Schultheis, H., Barkowsky, T. & Bertel, S. (2006). LTM-C:
An Improved Long-Term Memory for Cognitive
Architectures. Proceedings of the 7th International
Conference on Cognitive Modeling ICCM 2006: 274-279.

Shastri, L. (1999). Advances in SHRUTI - A neurally
motivated model of relational knowledge representation
and rapid inference using temporal synchrony. Applied
Intelligence., 11, 79-108.

Sowa, J.F. (2000). Knowledge Representation: Logical,
Philosophical, and Computational Foundations, Brooks
Cole Publishing Co., Pacific Grove, CA.

Staiger, J.F., Kötter, R., Zilles, K., Luhmann, H.J. (2000).
Laminar characteristics of functional connectivity in rat
barrel cortex revealed by stimulation with caged-
glutamate. Neuroscience Research, 37, 49–58.

Thomson, A.M. & Bannister, A.P. (2003). Interlaminar
connections in the neocortex. Cerebral Cortex, 13, 5-14.

Yoshimura, Y., Dantzker, J.L. & Callaway, E.M. (2005).
Excitatory cortical neurons form fine-scale functional
networks. Nature, 433, 868-873.

object
object

property

object
object

relation
role

role

Fast Learning in a Simple Probabilistic Visual Environment:
A Comparison of ACT-R’s Old PG-C and New Reinforcement Learning Algorithms

Franklin P. Tamborello, II (tambo@rice.edu)
Michael D. Byrne (byrne@rice.edu)

Department of Psychology, 6100 S. Main, MS-25
Houston, TX 77005, USA

Abstract

A visual search task used red highlighting to cue the location
of the target with varying degrees of probability. The
probability that the cue was a valid indicator of target location
on any given trial changed during the course of the
experiment, and human subjects adapted to this change very
rapidly. ACT-R models using the old PG-C and the new
reinforcement learning algorithm matched human data from a
previous experiment in this paradigm quite well, but only the
model that learned by reinforcement mimicked human
performance in a new experiment with dynamic highlighting
validity.

Introduction
Life is full of environments and tasks people must interact
with, and usually they are not perfectly predictable. How do
people learn and behave in simple probabilistic
environments? Previous research using a simple visual
search task included a cue, red highlighting, that had some
probability of indicating the location of a target or a
distractor, termed “validity” (Fisher & Tan, 1989;
Tamborello & Byrne, in press). In brief, the Fisher and Tan
task consisted of finding one of four possible targets in a
small array of distractors, where the highlighting validity
was manipulated as a between-subjects factor. This task is
interesting because trials in this task typically take less than
one second to complete: will humans be sensitive enough to
the probabilistic nature of this rapid environment to adapt
their behavior toward efficiency, or will the time-scales
involved be too minute for humans to detect? People do
appear to optimize a at this level in deterministic
environments (Gray & Boehm-Davis, 2000), but it is
unclear whether they do so in probabilistic ones.

Tamborello and Byrne found that a cognitive model
implemented in the ACT-R cognitive architecture (Anderson
et al., 2004) must learn the utility of each and every move of
visual attention in the task in order to simulate the
differential use of highlighting (termed “sensitivity”) to aid
visual search. Sensitivity is the response time for trials with
invalid highlighting minus the response time for trials with
valid highlighting. This quantity is useful as a measure of
relative use of highlighting. Tamborello and Byrne’s study
implemented an ACT-R model that used a learning
mechanism, “PG-C” (Anderson et al., 2004), that has since
been replaced with a reinforcement learning algorithm
(Anderson, 2007; see also ACT-R Research Group, 2007).
In brief, ACT-R fires a series of production rules, which are
IF-THEN rules stating under what conditions they match,

and when they match, what the model does. When multiple
production rules match a set of circumstances, they
compete. ACT-R resolves the competition by selecting the
rule with the highest estimated utility. PG-C estimated a
production rule’s utility by multiplying the estimated
probability (P) of a achieving a goal if that production fires
by the value of the goal (G, in seconds), and then
subtracting the cost (C, in seconds) of firing that production.

The reinforcement utility learning mechanism now used
in ACT-R instead calculates the current production rule’s
utility as a function of the amount of reward propagated to
that production rule. Over many applications the production
rule’s utility converges on the average amount of reward it
receives. Others (e.g., Gray et al., 2006) have claimed that
reinforcement learning algorithms work much better than
PG-C in certain probabilistic environments, particularly
those with costs and rewards at small time scales, such as
the Fisher and Tan task. Indeed, Tamborello and Byrne (in
press) speculated that this may be why their PG-C model
failed to fit their human data very well at low validities. Part
of the motivation for this study was to determine whether
the reinforcement learning algorithm could do better with
low validity highlighting than the PG-C algorithm.
Additionally, a new experiment examined human ability to
cope with changing environmental probabilities. Could a
model built for Tamborello and Byrne’s experiment
generalize to the new one? Any model that hopes to explain
how people behave in probabilistic environments of small
time-scales will need to capture major effects from both
studies.

The ACT-R Models: Static Validity
Two ACT-R models simulated runs on the current dynamic
validity experiment as well as the static validity experiment
from Tamborello and Byrne (in press). The previous
experiment was identical to the current study’s except that
highlighting validity remained static throughout the
experiment and a wider range of validity conditions were
run. In the static validity experiment, highlighting validity
was set as a between-subjects factor at increments of 12.5%
all the way from 0% to 100%. The same models were run on
both the static and dynamic validity experiments.

The models were identical except for which utility
learning algorithm they used, PG-C or reinforcement. On
any given highlighted trial, the red item was set as the
default visual location. For all trials, the default hand
location was set to left hand with index finger on “4.” With
every move of attention, two productions competed:

“attend-red” and “avoid-red.” Attend-red requested a move
of visual attention to the red item, or else avoid-red
requested the location of an unattended black item. If the
attended item was red and the target (a “valid” trial), the
model could press the appropriate key after a single shift of
visual attention. If the attended item was red and a distractor
(an “invalid” trial), the reinforcement model propagated a
reward of -0.2 (the PG-C model marked a failure) and
attended the nearest unattended black item until the target
was found. If the model had initially avoided the red item, it
could still choose to attend it at any time. This is also a
crucial production conflict point because in the case of a
standard trial, the models simply moved attention to the
nearest unattended item until the target was found. The
reinforcement model began a simulation run with a prior
utility of 0.01 for the production that would find the red
item after the black distractor had been attended. The PG-C
model had 75 successes and 25 failures for this same
production’s priors.

Results and Discussion
Both models fit data from the static highlighting study (the
original Tamborello and Byrne experiment) fairly well. The
reinforcement model correlated 0.91 (mean deviation 115
ms) with the human data, while the PG-C model correlated
0.89 (mean deviation 110 ms). Figure 1 depicts mean

response times (RTs) on valid and invalid trials for the
human data, the reinforcement model, and the PG-C model.

There is a particular difficulty for the models in the
previous experiment. Assuming subjects really did keep
their fingers on the 1–4 number keys, and that the location
of the red item was immediately available at trial onset,
ACT-R predicts they should take about 300 ms to complete
a validly highlighted trial when they initially attend to the
highlighted item: 50 ms to decide to attend to the red item,
85 ms to move visual attention, 50 ms to decide to press the
appropriate key, then 120 ms to complete the motor
movement. Yet in the study reported by Tamborello and
Byrne (in press), humans averaged 602 ms to complete
highlighted trials when highlighting was 100% valid. That
is, given that half of all trials have no highlighting at all, the
other half have valid highlighting, and no trials ever have
invalid highlighting, people take twice as long on average to
complete valid trials as ACT-R’s action latencies predict.

To average 600 ms on a trial that should take 300 ms in a
best-case scenario, in the wort case subjects must be taking
approximately 900 ms to complete the trial, which is about
as long as it would take to search the entire five-item
display. Were people really avoiding highlighting as often as
using it even when it is always valid? Can either the
reinforcement or PG-C model capture that effect, or are
people perhaps engaging in some action not captured by the
models? Humans averaged 602 ms to complete highlighted
trials at 100% validity, whereas the reinforcement model
averaged 454 ms and the PG-C model averaged 409 ms.

Figure 1. Mean response times of the human data,
reinforcement model, and PG-C model for valid and invalid

trial types for Tamborello and Byrne (in press) data.

Figure 2. Mean sensitivity per validity condition for
humans, the reinforcement model, and the PG-C model for

Tamborello and Byrne (in press) data

12.5% 25.0% 37.5% 50.0% 62.7% 75.0% 87.5%
0

50

100

150

200

250

300

350

400

450

M
e
a
n
 S

e
n
s
it
iv

it
y
 (

m
s
)

Highlighting Validity Condition

Human Reinforcement PG-C

0.0% 12.5% 25.0% 37.5% 50.0% 62.7% 75.0% 87.5% 100.0%
400

450

500

550

600

650

700

750

800

850

900

M
e
a
n
 R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Validity Condition

Human Valid

Human Invalid

Reinforcement Valid

Reinforcement Invalid

PG-C Valid

PG-C Invalid

Figure 2 shows the sensitivity exhibited both by humans
and the two models as a function of validity condition.
Clearly the reinforcement model does a better job in terms
of absolute fit, though the slopes generated by the two
models were about equally off (reinforcement model
correlation was 0.56; PG-C was 0.53). Interestingly, the PG-
C model generated a function which was too steep, and the
reinforcement learning model a somewhat too shallow
slope.

The Dynamic Validity Experiment

Method
The dynamic validity experiment replicated Tamborello and
Byrne’s (in press) static validity experiment, except that the
validity levels changed during the experiment.

Participants. One hundred nine Rice University
undergraduates participated to fulfill experiment
participation requirements for their psychology classes.

Design. The experiment incorporated a mixed design
utilizing two within-subjects variables, block and trial type
(standard, meaning no highlighting; valid, the target was
highlighted; and invalid, a distractor was highlighted), and
three between-subjects variables: magnitude of validity
change, direction of validity change, and change onset
timing. Magnitude of validity change refers to by how many
percentage points the highlighting validity proportion
changed, either 34% or 68%. Direction of validity change
refers to whether the highlighting became more valid or less
valid. Finally, the experiment was divided into six blocks,
affording short rest periods for the subjects between each
block. The change in validity occurred at the beginning of

either block three (termed “early”) or block five (“late”).
Thus the total number of between-subjects conditions was
eight.

Procedure. Subjects were instructed to place the fingers
of their dominant hand on the 1, 2, 3, and 4 keys of the
number row at the beginning of the trials and to keep them
there throughout the experiment. At the start of a trial,
subjects viewed crosshairs for 500 ms at the intended
fixation point, in the center of the computer screen. This
was then replaced by a horizontal array of five different
numerals. The numerals were printed in black 14-point
Times New Roman font on a 17-inch CRT computer
monitor at a resolution of 1024 by 768 pixels. The
highlighting simply used red text. One numeral from the
potential target set, {1 2 3 4} was chosen at random, while
four distractors from the distractor set {5 6 7 8 9} were also
chosen at random. The target and distractors were sorted
randomly. The subjects’ task was to find the number in the
display that was less than five and immediately press the
corresponding key on the number row at the top of the
keyboard. Subjects were instructed to respond as quickly as
possible without making any mistakes. The array
disappeared upon the subject’s key press, and one second
later the next trial began. In the event of an incorrect
response, the computer beeped and paused the experiment
for two seconds. This time penalty discouraged simple
guessing.

Depending upon which condition a subject was assigned
to, the initial validity they encountered was 16%, 34%, 68%,
or 84%. Blocks consisted of 60 trials, and with the onset of
the third or fifth block the validity level changed. Subjects
assigned to the 16% initial validity condition then received
84% validity, and vice versa. Similarly, subjects assigned to

Figure 3. Mean human sensitivities for large change
conditions.

Figure 4. Mean human sensitivities for small change
conditions.

1 2 3 4 5 6
0

50

100

150

200

250

300

350

M
e
a
n
 S

e
n
s
it
iv

it
y
 (

m
s
)

Experiment Block

Large Increase Early

Large Increase Late

Large Decrease Early

Large Decrease Late

1 2 3 4 5 6
0

50

100

150

200

250

300

350

M
e
a
n
 S

e
n
s
it
iv

it
y
 (

m
s
)

Experiment Block

Small Increase Early

Small Increase Late

Small Decrease Early

Small Decrease Late

the 34% initial validity condition then received 68%
validity, and vice versa. The experiment required a little less
than 30 minutes for subjects to complete. Instructions did
not indicate that the highlighting validity rate would change
during the course of the experiment. In many real-world
tasks of searching some visual display, such as a web page,
the user is not informed a priori about how useful visual
cues will be.

Since subjects’ sensitivity to changes in validity was
assessed by changes in response times, we attempted to
avoid confounding with practice effects. Therefore, subjects
had a full block of 60 practice trials before beginning the
actual experiment. The important task components to
practice were searching the field to find the target and
pressing the appropriate button in response. Allowing
subjects to acclimatize to whatever level of highlighting
validity they were assigned to before response times are
actually recorded might prove detrimental to the attempt to
assess their sensitivity to the highlighting validity.
Therefore, practice trials were all of the standard type (no
highlighting at all).

Results and Discussion
Outliers were removed prior to statistical analysis. This was
done both for single trials and entire subjects. An outlier
trial was defined as a trial in which the response time was
more than three standard deviations from the subject’s
overall mean. Those response times were replaced with the
subject’s mean response time. Each subject’s mean response
time per condition was similarly screened against the mean
response time for all subjects, per condition. Any subject
whose mean response time was more than three standard
deviations from the mean response time for all subjects in

more than one condition was considered an outlier subject.
Two such subjects were found, and their data were removed
from further analysis. Figure 3 depicts the mean sensitivity
for each of the four conditions with large validity proportion
changes while Figure 4 depicts those means for the four
conditions with small validity proportion changes.

The slopes of the change in sensitivity for the block
preceding change onset, the block of the change onset, and
the block after the change onset were examined. These three
blocks represent prior sensitivity, sensitivity under
adjustment, and posterior sensitivity, respectively, and were
therefore of most interest for analyzing changing sensitivity
in subjects as they adjusted to new highlighting validity
proportions. Among the factors size of change, direction of
change, and onset of change, only direction had any
significant effect on slope, F(1,98) = 56.13, p < 0.01. There
was also a reliable interaction of size with direction, F(1,
98) = 13.62, p < 0.01. All other F’s < 2, p’s 0.17. The
direction by size interaction coupled with the main effect of
direction means that change direction matters, but it matters
more when the change is large than small.

Did subjects in the decreasing validity conditions change
their sensitivity faster in response to the changing validity
than did subjects in the increasing validity conditions?
Presumably subjects would notice a drop in highlighting
validity faster than they would notice an increase in validity
because of their greater attention paid to a higher prior level
of validity. In fact the mean absolute slope for the increase
conditions was 56.8 ms per block, and 82.6 for the decrease
conditions. A t-test of the absolute slope for the two groups
failed to yield a reliable difference in degree of sensitivity
response to the changing validity in the two groups, t(104) =
1.92, p = 0.58. The observed effect size in this analysis was

Figure 6. Mean reinforcement model sensitivities for
small change conditions.

Figure 5. Mean reinforcement model sensitivities for large
change conditions.

1 2 3 4 5 6
0

50

100

150

200

250

300

350

M
e
a
n
 S

e
n
s
it
iv

it
y
 (

m
s
)

Experiment Block

Large Increase Early

Large Increase Late

Large Decrease Early

Large Decrease Late

1 2 3 4 5 6
0

50

100

150

200

250

300

350

M
e
a
n
 S

e
n
s
it
iv

it
y
 (

m
s
)

Experiment Block

Small Increase Early

Small Increase Late

Small Decrease Early

Small Decrease Late

medium-small, Cohen’s d = 0.38, and the power to detect an
effect of that size was 0.48. The current evidence is
therefore inconclusive as to whether the absolute rate of
change in sensitivity was different depending upon whether
subjects experienced increasing or decreasing validity.

We were also surprised by the lack of reliable effect of
late vs. early change; That is, it did not seem matter how
much prior experience subjects had with a particular level of
validity. Subjects adapted equally well with two additional
blocks of experience in a particular validity condition.

The ACT-R Models: Dynamic Validity
As for the dynamic highlighting task, the reinforcement

model correlated 0.64 with the human data (mean deviation
= 115 ms), while the PG-C model correlated 0.75 (mean
deviation = 110 ms). Figures 5 through 8 plot mean
sensitivity for the reinforcement and PG-C models.
Compare these with Figures 1 and 2. Note how the
reinforcement model generally shows the same qualitative
trends in its sensitivity functions as do humans. The PG-C
model has some hint of those trends, but while the effect
size for the large decrease conditions is on the order of 200
ms for the humans and 100 ms for the reinforcement model,
it only approximately 50 ms for the PG-C model. Note also
how the overall size of the sensitivities keeps increasing
throughout the duration of the experiment for the PG-C
model (linear F (1, 7) = 29.11, p = 0.001), but not the
human data (linear F (1, 7) = 0.88, p = 0.38) nor the
reinforcement model (linear F (1, 7) = 0.04, p = 0.84)
(Figure 9). The sensitivity function of the reinforcement
model generated a slope more closely resembling that of

humans (r = 0.86, p = 0.007) than did the PG-C model (r =
0.25, p = 0.55) (Figure 10).

The generally better qualitative fit of the reinforcement
model over the PG-C model suggests that learning in a
domain like the present study’s experiment, a dynamic,
probabilistic one of small scale, probably requires a flexible
strategy that is more strongly influenced by recent
experience than more distantly past experience. One major
difference between the standard PG-C algorithm and the
reinforcement algorithm is that the reinforcement algorithm
uses the last reward propagated to the currently rewarded
production to compute the current reward. That last reward,
of course, included its previous reward, and so on. However,
the PG-C algorithm weighted all past events the same.
Lovett (1998) implemented a model of a probabilistic task
using a variant of the PG-C utility learning algorithm that
incorporated a decay mechanism, though unfortunately this
algorithm is computationally expensive. It may be that the
need for a decay mechanism to model a probabilistic task
indicated the necessity for a fundamental change to ACT-R’s
utility learning algorithm that would discount distally past
experience.

On a side note, a crucial factor in generating reasonable
fits to the human data was the degree of prior utility
advantage for the production that would seek the red item
after a black distractor had been fixated. Models which set
this prior too low actually exhibited strong, negative initial
sensitivity. We were surprised by how unstable the model’s
performance was as a function of this single prior utility,
which again suggests the critical importance of small time
advantages.

Finally, the astute reader will have noticed that the models
either attend to the highlighting or avoid it, with no strategy

Figure 8. Mean PG-C model sensitivities for small change
conditions.

Figure 7. Mean PG-C model sensitivities for large change
conditions.

1 2 3 4 5 6
200

250

300

350

400

450

500

550

M
e
a
n
 S

e
n
s
it
iv

it
y
 (

m
s
)

Experiment Block

Large Increase Early

Large Increase Late

Large Decrease Early

Large Decrease Late

1 2 3 4 5 6
200

250

300

350

400

450

500

550

M
e
a
n
 S

e
n
s
it
iv

it
y
 (

m
s
)

Experiment Block

Small Increase Early

Small Increase Late

Small Decrease Early

Small Decrease Late

that simply ignores the highlighting. We did this because the
highlighting provides information about probable target
location as long as validity is not equal to random chance of
any one item being the target. When validity is low, one can
use highlighting to rule out one search location, and thus by
avoiding that location stand to gain approximately 200 ms
over a strategy that simply ignores the information provided
by highlighting. Gray et al. (2006) demonstrated that people
do tend to be efficient in tasks that take place at small time
scales. If Gray et al.'s findings generalize to the Fisher &
Tan task, then it stands to reason that people will take
advantage of information at their disposal for the sake of
speed. However, it would still be desirable to actually test
this assumption in the future with models that can ignore
highlighting rather than or in addition to avoiding it so that
such a possibility could be ruled out by data that speak
directly to the matter rather than by assumptions based on
prior evidence.

References
ACT-R Research Group. (2007). Unit 6: Selecting

Productions on the Basis of Their Utilities and Learning
these Utilities. Accessed on January 31, 2007 from http://
act-r/psy.cmu.edu/

Anderson, J. R. (2007). How can the human mind occur in
the physical universe? New York: Oxford.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, C., & Quin, Y. (2004). An integrated theory of
the mind. Psychological Review, 111, 1036-1060.

Fisher, D.L., & Tan, K.C. (1989). Visual displays: The
highlighting paradox. Human Factors, 31(1), 17 – 30.

Gray, W. D., & Boehm-Davis, D. A. (2000). Milliseconds
matter: An introduction to microstrategies and to their use

in describing and predicting interactive behavior. Journal
of Experimental Psychology: Applied, 6, 322-335.

Gray, W. D., Sims, C. R., Fu, W. T., & Schoelles, M. J.
(2006). The soft constraints hypothesis: A rational
analysis approach to resource allocation for interactive
behavior. Psychological Review, 113(3), 461 – 482.

Lovett, M. (1998). Choice. In J. R. Anderson & C. Lebiere,
The atomic components of thought. Mahwah, NJ:
Erlbaum.

Tamborello, F. P., II, & Byrne, M. D. (in press). Adaptive
but non-optimal visual search behavior in highlighted
displays. Journal of Cognitive Systems Research.

Figure 10. Slope of sensitivity functions, collapsed across
timing conditions. Error bars indicate standard error of the
mean. Note the interaction of change size and direction in

the human and reinforcement model data.Figure 9. Sensitivity across experiment blocks.

large increase large decrease small increase small decrease
-150

-100

-50

0

50

100

M
e
a
n
 S

e
n
s
it
iv

it
y
 S

lo
p
e
 (

m
s
/b

lo
c
k
)

Experiment Condition, Collapsed Across Timing

Human PG-C Reinforcement

1 2 3 4 5 6
100

150

200

250

300

350

400

450

M
e
a
n
 S

e
n
s
it
iv

it
y
 (

m
s
)

Experiment Block

Human PG-C Reinforcement

http://

Towards a Complete, Multi-level Cognitive Architecture

Robert Wray1 (wray@soartech.com), Christian Lebiere2 (cl@cmu.edu), Peter Weinstein3

(peter.weinstein@altarum.org), Krishna Jha4 (kjha@atl.lmco.com), Jonathan Springer5

(springer@reservoir.com), Ted Belding6 (ted.belding@newvectors.net), Bradley Best7

(bradjbest@gmail.com) & Van Parunak6 (van.parunak@newvectors.net)
1Soar Technology, Inc., 3600 Green Court Suite 600, Ann Arbor, MI 48105

2Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA 15213
3Altarum Institute, 3520 Green Court Suite 300, Ann Arbor, MI 48105

4Lockheed Martin Advanced Technology Labs, 3 Executive Campus, Cherry Hill, NJ 08002
5Reservoir Labs, 632 Broadway Suite 803, New York, NY 10012
6NewVectors, 3520 Green Court Suite 250, Ann Arbor, MI 48105

7Adaptive Cognitive Systems LLC, 1709 Alpine Avenue, Boulder, CO 80304

Abstract

The paper describes a novel approach to cognitive
architecture exploration in which multiple cognitive
architectures are integrated in their entirety. The goal is to
increase significantly the application breadth and utility of
cognitive architectures generally. The resulting architecture
favors a breadth-first rather than depth-first approach to
cognitive modeling by focusing on matching the broad power
of human cognition rather than any specific data set. It uses
human cognition as a functional blueprint for meeting the
requirements for general intelligence. For example, a chief
design principle is inspired by the power of human perception
and memory to reduce the effective complexity of problem
solving. Such complexity reduction is reflected in an
emphasis on integrating subsymbolic and statistical
mechanisms with symbolic ones. The architecture realizes a
“cognitive pyramid” in which the scale and complexity of a
problem is successively reduced via three computational
layers: Proto-cognition (information filtering and clustering),
Micro-cognition (memory retrieval modulated by expertise)
and Macro-cognition (knowledge-based reasoning). The
consequence of this design is that knowledge-based reasoning
is used primarily for non-routine, novel situations; more
familiar situations are handled by experience-based memory
retrieval. Filtering and clustering improve overall scalability
by reducing the elements to be considered by higher levels.
The paper describes the design of the architecture, two
prototype explorations, and evaluation and limitations.

Introduction
Cognitive architecture research seeks to define a collection
of integrated processes and knowledge representations that
provide a general foundation for intelligent behavior across
an increasingly broad spectrum of problems. While most
cognitive architectures seek to cover the requirements for
general intelligence, all today fall far short of that goal.
They represent “works in progress” that tend to have niche
strengths in a few problem domains.

Investigations of human psychology suggest that human
behavior derives from the integration of three mechanisms:
1) powerful perceptual and “pre-cognitive” processing; 2)
memory, along with processes that contextualize and
generalize experience to make it readily applicable in future

situations; and 3) satisficing (“good enough”) reasoning. As
an example, Best (2005) found that humans generate
reasonably good solutions to the NP-complete traveling
salesman problem (TSP) in nearly linear time for problems
up to about 40 cities. Humans accomplish this via parallel
perceptual processes that group cities by proximity,
evaluation of goodness of path (dependent on experience
and memory), and a localized, serial search process. We
introduce C3I1 (“three cognitions, one intelligence.”) a
novel cognitive architecture that integrates three cognitive-
architecture-level approaches, each targeted to one of these
distinguishing human capacities.

Our approach is similar to the common approach to
cognitive architecture development, which adapts and
incorporates existing algorithms into an architecture.
Cassimatis (2006) and Chong and Wray (2005) offer recent
examples of the typical approach. Our approach is different
primarily in terms of scale: rather than integrating individual
algorithms, we map three cognitive-architecture-level
systems to each of the three functionalities outlined above.
The methodological hypothesis motivating this approach is
that by integrating these complete, relatively mature
approaches, we can enable faster exploration of alternatives
in design space than approaches that integrate sub-
components of existing cognitive architectures. If true, this
will enable more rapid and thorough evaluation of the three-
level architecture than constructing de novo a new
architecture designed around the functional capabilities.

An obvious potential drawback is the potential
redundancy in functional capability at each level, with
consequences for software engineering complexity and run-
time performance. The architecture reported in this paper is
not the end-goal, but rather a description of the results of
our experiences along this methodological path. The results
suggest that even the superficial integrations we report here
have significant functional value. However, long-term, our
goal is to refine and deepen the initial integrations described
here, based on lessons learned from the explorations.

This paper reports the initial progress and lessons learned
in terms of evaluating the methodological hypothesis. We
report progress toward three goals: 1) defining the
functional requirements for each level of the architecture, 2)

evaluating the utility of the general design pattern via
prototype implementations, and 3) identifying functional
synergies that could result long-term in tighter integration.
In order to explore design consequences empirically, we
have chosen specific candidate systems for each level of the
system. Pre-cognitive processing, or Proto-cognition, is
accomplished via configurations of swarming algorithms.
ACT-R is used for memory formation and expertise-based
retrieval (Micro-cognition), serving as a bridge between the
sub-symbolic Proto-cognitive component and a symbolic
Macro-cognitive layer. Macro-cognition, the locus of
symbolic reasoning and explicit knowledge, is realized via
Soar. Each instantiation was chosen because of its maturity
and capability with respect to the practical realization of the
target functionality, rather than any regard to cognitive
plausibility or a definite commitment to a particular choice
of method for any level. Other approaches to the same
functionality could be substituted, allowing for an
evaluation of the properties of constituent mechanisms.

Design Principles
The design of C3I1 is inspired by two principles particularly
important in the human cognitive architecture: progressive
filtering and structuring of perception (“cognitive pyramid”)
and tight integration of functionalities and modalities.

The Cognitive Pyramid
There is a computational trade-off between the quantity of
data that can be processed at any one time and the
sophistication of reasoning applied to that data. The human
cognitive architecture solves this problem by collapsing and
integrating large volumes of perceptual information into
more abstract aggregates that can then be stored, retrieved,
manipulated and composed more tractably. We refer to this
volume-complexity tradeoff as a “cognitive pyramid”.
When the volume of incoming data is high, the architecture
applies local processing to the data, the function of which is
to aggregate and filter. At progressively higher levels in the
architecture, because total data volume is reduced, more
computationally expensive methods (such as symbolic
reasoning) can be brought to bear tractably.

While this principle has been laid out in purely
computational terms, the architecture of the human brain
follows similar principles for information processing. When
information reaches the brain, it is first processed by the
sensory cortex. Subsequent rapid processing greatly
reduces the complexity of the data into increasingly abstract
representations. Quick reaction can be obtained by
comparing that abstracted information to stored patterns in
massively parallel procedural and declarative information
stores hypothesized to be located in the basal ganglia and
neocortex, respectively. If more sophisticated processing is
required such as reasoning or planning, relatively slow,
sequential processing occurs, controlled by contextual
structures in the prefrontal cortex. While we do not equate
the three cognitive levels with specific brain structures, nor
argue for the neural plausibility of our algorithms, the
organizing principles bear substantial similarities.

Tight Integration
A second architectural principle for C3I1 is tight
integration: fine-grained, full-spectrum interaction between
the cognitive levels. Tight integration may seem like an
unintuitive requirement, given the components to be
integrated. However, both Soar and ACT-R suggest that
tight integration results in better leveraging of the inherent
power of individual components (Anderson et al. 2004;
Jones and Wray 2006). With loose integration, information
about the situation becomes “trapped” inside subsystems
and cannot be efficiently communicated. In a tightly
integrated approach, all cognitive components will share a
common memory, integrated control process, and a shared
language for communication with individual components.

The neurological architecture of human cognition is
characterized by both forward and reverse projections from
interconnected areas. This observation inspired a design
choice that each information flow between cognitive layers
would have a reverse learning flow. For example, even in
the prototype we describe, Proto-cognition’s filtering and
clustering are modulated by signals from Micro-cognition
indicating goodness-of-fit and applicability of high salience
clusters to on-going problem solving. This allows the
architecture to adapt and optimize itself to the nature of its
processing and the structure of its environment. In this
paper, we focus on describing the implemented and tested
version of the architecture. This prototype currently falls far
short of a tightly integrated architecture, but suggests
specific opportunities for beneficial, synergistic integrations
as discussed in the conclusions.

C3I1 Implementation
This section outlines the role of the three primary
components of the architecture. Importantly, the individual
architectures proposed for each level are not unique choices;
other architectures or methods likely could have been
applied at each level. The focus instead concerns how these
more general systems have been applied to the specific role
proposed for each level in the architecture.

Proto-cognition
The primary role of Proto-cognition (“Proto”) in the
architecture is to reduce the scale of raw input data. This
general goal may be accomplished in a variety of ways; the
current design envisions two functions: 1) organizing data
into structured, hierarchical representations and 2) providing
skeletal subsolutions for the higher layers. These processes
reduce the effective search space for other layers. Currently,
we have explored two specific swarming-based mechanisms
for Proto: SODAS (decentralized hierarchical clustering)
and marker-based stigmergy (topological sorting).

SODAS (Parunak et al. 2006) implements dynamic
decentralized hierarchical clustering via swarming. In
SODAS, nodes represent either data nodes or summaries of
subtrees of nodes; links represent parent-child relationships,
so that the network forms a hierarchical tree of data clusters.
SODAS’ merge operator is identical to classical
agglomerative hierarchical clustering, providing a fully
general hierarchical clustering method. SODAS’ promote

operator provides SODAS with the additional ability to
reorganize and improve existing cluster trees, making it
arguably more general than most other clustering methods.

Marker-based stigmergy depends on special-purpose
information (“pheromones”) that agents deposit in the
environment to support coordination. An example in nature
is ant foraging, where ants that have found food leave
pheromones as they return to the nest, which attract other
ants to the food source. In the context of C3I1, it is used to
provide skeletal solution frameworks to the higher layers for
such problems as topological sorting. Here, the nodes are
spatial locations, place agents, and each node has links to
each of its spatial neighbors (for instance in a 2D lattice).
Swarming agents roam over this spatial topology, reacting
to pheromone concentrations and other agents, and
depositing their own pheromones.

Micro-cognition
The role of Micro-cognition (“Micro”) is to store and deploy
problem-solving expertise. A key part of the ability to solve
complex problems efficiently is in learning from experience
and then deploying that knowledge as a substitute for the
time-intensive reasoning processes by which it was
accumulated. One can view the process as a space-time
tradeoff, where the system trades increased storage space for
expertise in exchange for reduced processing time in finding
an expert-level solution. This approach relies on the
engineering assumption that storage is increasingly less
expensive and that special-purpose hardware can provide
storage with the right properties (robust associative content-
based retrieval, constant time access, etc.); response time is
usually a less negotiable constraint. The C3I1 prototype
uses ACT-R (Anderson and Lebiere 1998) for the Micro-
cognitive layer. ACT-R includes functionality for
generalizing patterns that take the form of either declarative
knowledge, capturing a solution to various sub-problems, or
procedural skills, resulting in more efficient execution.

Micro is defined by sequential cognition that relies on a
hybrid mix of symbolic and statistical knowledge, such as
applying a set of patterns to the current situation to make the
best guess under tight computational constraints. The
computation is a mix of sequential and parallel, similarity-
and history-based processes and bottom-up and top-down
constraints. Key operations include retrieving declarative
knowledge from long-term memory and selecting the most
promising rule from the procedural skill set. These
operations are implemented by a combination of symbolic
pattern-matching and subsymbolic processes:

Partial matching compares stored memories to the
current problem to determine the closest-matching pattern.
A current problem will seldom exactly match previous
experience. Partial matching uses similarity-based
generalization similar to that of neural networks to find the
closest match to an item in memory. While the pattern is
described symbolically, the internal mechanism generalizing
that pattern is statistical.

Bayesian learning operates at the subsymbolic level of
declarative memory. Its role is to guide the retrieval process
to the most likely pieces of relevant information. It
combines parameters derived from computations at the

Proto level that reflect factors such as the compatibility
between problem and solution, together .with quantities
learned at the Micro level that capture environmental
heuristics such as recency and frequency of use.

Reinforcement Learning controls and tunes procedural
skill acquisition, using successes and failures as input.
Subsymbolic utilities are associated with skills to control
selection and application and learned using online
reinforcement learning algorithms. RL alone typically
scales poorly in combinatorial state spaces, but using RL
with general production rules instead of discrete,
combinatorial states significantly improves efficiency.

Macro-cognition
The primary task of Macro-cognition (“Macro”) in C3I1 is
to perform a deliberate "problem search" to solve a specific
(sub)problem initiated by Micro. In essence, Macro brings
knowledge to bear in deliberating over non-routine, novel
tasks. Soar (Newell, 1990) is used for Macro-cognition.

Problem search is potentially expensive. In order to
reduce the cost of problem search, Macro should ensure
responsiveness to the current problem (not waste cycles
working on an out-dated problem), support multiple
methods of reasoning (apply the most appropriate reasoning
to the problem), support efficient knowledge search
(minimize the cost of bringing knowledge to bear) and
improve performance with experience. Soar implements
and integrates a number of influential ideas and algorithms
that support these requirements, including:

Efficient, pattern-directed control: The flow of control
in Macro is determined by context and the associations it
triggers. Macro requires least commitment representation;
there should be no fixed, design-time mapping between the
justifications for an activity and its implementation. This
distinction supports multimethod reasoning because the
approach to some specific activity (e.g., resolving a request
from Micro) can be pursued in multiple different ways.

Reason maintenance: Reason maintenance ensures that
Macro is responsive to the environment. It embeds
dynamics of belief change directly in the architecture. This
facilitates multimethod reasoning because reason
maintenance is implemented consistently across any
reasoning method.

Meta-reasoning: Macro can recognize when it has no
available options or has conflicting information about its
options and, in response, creates a goal to resolve this
“impasse.” This process facilitates multimethod reasoning,
because different approaches (e.g., reasoning by analogy vs.
lookahead planning) can be identified and brought to bear to
attempt to resolve individual subgoals.

Knowledge compilation: Macro should improve with
experience, converting the results of reasoning to new
knowledge representations that summarize reasoning. This
allows the system to skip reasoning steps when a similar
situation is later encountered, improving responsiveness.

Memory and Control
In addition to the individual components, the architecture
requires memory store(s), a control process, and a message
passing language and infrastructure.

Unified Memory A significant design decision was
whether to create a single memory, shared by each of the
three layers, or to use the individual memory systems
available within each of the existing components. A unified
memory would be more efficient than passing partial results,
especially given high volumes of data (e.g., Proto passing
up clustering results). A shared memory also ensures
consistency by making sure that all cognitions work from
the same problem state. While, in theory, separate
memories for each cognition could be synchronized, in
practice, resolving synchronization issues (such as race
conditions) is oftentimes difficult and labor-intensive. On
the other hand, the three cognitions currently have
significantly different memory models. A common memory
model might be inefficient for the operations of individual
cognitions. For instance, memory organized for Soar and
ACT-R might not be a practical organization for use by
swarming. As well, reimplementation costs are significant.
While the various cognitions are somewhat modular,
changes to their memory systems would have broad
repercussions throughout their implementations. We used
the distinct memories of the individual cognitions in the
prototype, but are also pursuing unified memory integration.

Integrated Control Explicit control is needed to
coordinate the three cognitions. Integrated control would
mean a single process that would invoke the primitives
provided by the three cognitions. Integrated control would
also enable it to be more adaptive and generally more
sensitive to the operations of the cognitions than control
structures located within each cognition or outside of the
cognitions entirely. The prototype assumes a simple up-
and-down data flow: Proto computes a first pass, Micro
attempts to apply its knowledge to some subproblem, and
Macro is called upon if Micro’s expertise is insufficient for
the problem. Results then flow down to Micro and Proto
and the cycle repeats. In parallel, there are reverse flows for
each information flow, providing modulation and feedback.
We also developed explicit control strategies for each
prototype application. This approach is not an appropriate
long-term solution, but it allowed an exploration of the
requirements and implications of integrated control.

Inter-cognition Communication & Control: In order to
communicate with other components, and with external
systems that present “problems” to the architecture, we
developed a XML-schema-based language. Message types
are organized into three categories:
Knowledge management. Messages (e.g., AddChunk,
RemoveChunk) allow management of problem data and
general domain knowledge. For example, any of the
cognitions could send an AddChunk message when a new
inference or cluster was created, which would then be
communicated to the other cognitions.
Cognition invocations & responses. Messages such as
MicroRequestInference encode requests between
cognitive components and corresponding responses (e.g.,
MacroRespondInference).

Operational protocols. Protocols specify how to declare
problems to C3I1 and how to deliver solutions.

The set of messages is fixed and general across problem
domains. We developed functions within Swarming, ACT-
R, and Soar to interpret the messages in a domain-general
manner. The types of data contained in the messages are
problem-specific. For example, the AddChunk message is
always used to add data, but the structure of the data added
will be different for different applications. Thus the
language is modular; there is a generic part into which
domain-specific parts can be inserted. XMLBlaster is used
to transmit messages between cognitions, facilitating a
distributed, flexible experimentation environment.

Prototype Explorations
In order to elicit requirements and empirically explore
implications of C3I1, we built prototypes for two very
different application domains: evidence marshalling and
unmanned-aerial vehicle (UAV) route planning.

Evidence Marshalling
Evidence marshalling is the process of collecting and
organizing information (evidence) to support a hypothesis.
We used a simple but realistic data set used to train
intelligence analysts. In this scenario, many distinct reports
provide hints about a possible coordinated terrorist attack in
three different cities. We applied C3I1 to uncovering
specific connections in this dataset (after hand-encoding
facts from the reports into C3I1 assertions). Proto-cognition
uses SODAS to cluster similar facts together. Micro applies
its expertise to “link” facts and clusters and infer new
conclusions. When it lacks knowledge to make a link,
Micro calls Macro. Macro, using ontologies and domain
knowledge, searches for a link between facts of interest.

The primary lesson learned from this prototype was that
the basic functional roles we had defined in the design
demonstrated utility in application. It also allowed us to
define and implement the initial version of the interaction
language and give the cognitions the ability to pass
messages. However, we also quickly recognized that
evidence marshalling was a poor prototyping domain: there
would be significant expense to encode a very large
database of facts, but a large store of facts was needed to
demonstrate the power of Proto’s clustering. The example
problem was small enough (< 1000 assertions) that the
problem could be readily addressed within ACT-R or Soar.

Route Planning for Unmanned Aerial Vehicles
The application, a simplified representation of the routing of
an unmanned aerial vehicle (UAV), includes these elements:
• Terrain: The scenario was defined to take place on a 2D
terrain overlaid with a 100x100 coordinate grid. Positions of
other components were specified in terms of this grid.
• Targets: A set of target locations on the map. The UAV
had to visit all targets, in an order of its choosing.
• Threats: A set of threat locations was defined on the map,
each with a threat radius. The UAV had to complete its tour
without entering any threat radius.

We defined this scenario to be very similar to the
Traveling Salesman Problem (TSP). However, threats and
dynamic (“pop-up”) locations were included in the
scenarios, which give the problem more realistic
requirements. Figure 1 illustrates the basic solution
developed, drawing heavily from the aforementioned model
of Best (2005). Proto both clusters target points (in 1a) via
SODAS and produces, via marker-based stigmergy, a
skeletal solution (in 1b) representing possible routes
between targets in a particular cluster. Although not shown
in the figure, Proto performs these functions in a space
warped by threats, so that simple Euclidean distance is not
sufficient for producing “good” potential routes.

While Proto continues to cluster targets (and clusters of
targets), Micro attempts to match groups of clusters against
prior routes stored in memory. Initially, it will have no
matching routes; Macro is invoked to find a routing between
clusters. Because the number of clusters at the highest level
is small, the routing was determined via a straightforward
implementation of a TSP solution (in 1c), using distance
measures between targets as computed by Proto (in 1b). We
also explored the use of heuristic planning within Macro,
using categorizations of rough route geometries (arcs, lines,
and loops, e.g.,) to simplify route planning. However, in
practice, Proto reduced the number of targets sufficiently
that Macro could easily compute an analytic solution.

Once Macro finds a routing, it provides the route to
Micro, which stores the route in memory. As Micro gains
experience, it will increasingly be able to retrieve route
segments from its memory (in 1d), without recourse to
Macro. A hardware support strategy has been developed for
this memory, based on an understanding of the functionality
of the human visual system and strategies that are used for
visual search (Pederson et al. 2006).

Once a route is computed between clusters, the system
recursively develops routes within the targets (and/or
subclusters) within each of the clusters in the evolving
route. This approach also has the desired property that pop-
up targets and pop-up threats typically introduce local
changes, requiring only new routing within a cluster, rather
than a high-level reconsideration of the overall route. We
did explore tunings of SODAS clustering so that it would
prefer making minimal changes to existing clusters when
dynamic locations or threats were presented.

The approach we have taken does not guarantee a solution
in linear time but is, on average, much less expensive than
an analytic solution. The routes resulting from this
decomposition are obviously also not always optimal but are
generally close to it. We have observed some cases in
which poor routes are generated and are investigating using
Macro as a “critic” to recognize these situations and repair
them. This additional functionality may represent a meta-
cognitive role for Macro-cognition in the future.

Evaluation & Conclusions
We proposed C3I1 to address a greater range and scale of
problems with an architecture. We explored two different
applications domains to evaluate the extent to which these
goals are being achieved. We consider three general

Figure 1: Operation of C3I1 on route planning example

dimensions of evaluation: generality, taskability, and
efficiency. While these criteria appear purely functional,
they are similar to proposed tests for a theory of cognition
(Anderson & Lebiere, 2003) such as behaving arbitrarily as
a function of the environment and operating in real time.
Generality: C3I1 seeks to provide a very general
computational cognitive substrate, enabling both high
degrees of applicability and robustness. As a general
architecture, C3I1 shows promise. The same core
mechanisms and design demonstrated value in the highly
symbolic, knowledge-intensive evidence marshalling
domain, as well as in the more algorithmic, more dynamic
routing problem. However, special-purpose mechanisms
were developed within each layer for each application (e.g.,
in routing, threat-warped clustering, topologically-oriented
memory retrieval, and the TSP sorting heuristics). Our
investigations, however, suggest a fixed, domain-
independent set of mechanisms for Proto is feasible.
Taskability: C3I1 should not only apply to a broad range of
problems, but it should do so without requiring extensive
developer modification and have inherent ability to adapt to
the requirements and constraints of particular problems.
Taskability includes the ability to handle novel variations of
problems and improve with experience. It also includes

(a) Proto, via SODAS, hierarchically clusters target locations,
modulated by threat locations.

(b) Proto, via marker-based stigmergy, creates plausible
routes between nodes and clusters.

(c) Macro, via a simple planning algorithm, chooses
orderings of clusters and nodes.

Best
Match
Best

Match

(d) With experience, Micro is able to generalize previous
routes to current problems without invoking Macro.

extensibility: the architecture should require small (and
increasingly smaller) human effort to achieve good results
in different applications. The taskability of C3I1 is both
less clearly encouraging and more tentative. In the near-
term, significant developer involvement will be needed in
each layer; essentially, the approach requires a manual
decomposition and mapping of the problem to the
functionality of the three layers. Over time, we believe that
tighter integration of the mechanisms will improve
taskability, as a more constrained architecture will guide
solutions more explicitly.
Efficiency: General, architectural solutions are always
likely to be less efficient than special-purpose ones. To
compensate, overall efficiency of C3I1, especially in the
core loops of processing, is critical. Efficiency includes
responsiveness to specific situations, overall resource
management, and scalability across problems of increasing
complexity. We have evaluated the computational bounds
at each level. While presentation of this analysis is not
possible in this brief paper, in terms of worst-case
performance, the architecture should perform acceptably
well, assuming specialized, parallel hardware for Proto and
Micro. A key assumption is that Proto will reduce the
overall scale of the problem by several orders of magnitude,
in order to make Macro problem search generally tractable.
Our initial explorations suggest Proto can accomplish a
level filtering and aggregation that greatly reduces the raw
scale of reasoning problems, but it is an open, empirical
question how generally this power can be realized across
domains and applications.

In terms of the methodological hypothesis, the
explorations did identify potential opportunities for much
tighter, more synergistic integrations of the components.
Integration between swarming and ACT-R will focus on
unifying the ACT-R activation calculus and the swarming
output, including devising methods for learning within
ACT-R to influence Swarming. Integration between ACT-
R and Soar based on the pattern of usage in the prototypes
would center on impasses and chunking. ACT-R currently
calls upon Soar when no relevant knowledge exists to apply
directly, which is a concept very similar to the Soar impasse
mechanism, but not a process directly supported in ACT-R.
The information returned by Soar is a summary of the result
of its reasoning. Thus, this process is functionally identical
to Soar’s chunking and makes it a good candidate for the
focus of integration for Soar and ACT-R.

As mentioned, other alternatives are possible for the
cognitions of C3I1. For example, neurologically-inspired
clustering might be appropriate for perceptually-dominated
domains. These observations point to the question of
whether C3I1 is an architecture, making specific
commitments to particular mechanisms, or a framework,
representing a design pattern for building general, intelligent
systems but not making specific commitments to
representations and algorithms. While our intention is to
follow up the promise observed in the prototypes by
investigating more fine-grained integration of the current

technologies, it would also be equally valid to explore and
evaluate alternative technologies. Similarly, the C3I1
decomposition also serves as a suggestive guide for
developing less brittle and more scalable solutions to
specific classes of domain problems (such as route
planning), where the goal is a point solution. All of these
options point to the value of considering existing cognitive
architectures as computational primitives for integration into
larger and increasingly capable intelligent systems.

Acknowledgments
The research reported in this paper was performed via the
support of the DARPA Architectures for Cognition
Information Processing (ACIP) program, contract FA8750-
04-C-0266, administered by the US Air Force Research
Laboratory. The authors would like to thank program
managers Robert Graybill and William Harrod for the
support of this research. DARPA Distribution Statement A
(Approved for Public Release, Distribution Unlimited),
DISTAR Case #8726, 3/28/2007.

References
Anderson, J. R., and Lebiere, C. (1998). The Atomic

Components of Thought. Mahwah, NJ: Erlbaum.
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,

Lebiere, C., and Qin, Y. (2004). An integrated theory of
the mind. Psychological Review, 111(4), 1036-1060.

Anderson, J. R. & Lebiere, C. (2003). The Newell test for a
theory of cognition. Beh. & Brain Sciences 26, 587-637.

Best, B. J. (2005) A Model of Fast Human Performance on
a Computationally Hard Problem. Proceedings of the 27th
Annual Conference of the Cognitive Science Society.

Brueckner, S. A., and Parunak, H. V. D. (2002) Swarming
Agents for Distributed Pattern Detection and
Classification. AAMAS Workshop on Ubiquitous
Computing. Bologna, Italy.

Cassimatis, N. L. (2006). A Cognitive Substrate for
Human-Level Intelligence. AI Magazine, 27(2).

Chong, R. S., and Wray, R. E. (2005). Constraints on
Architectural Models: Elements of ACT-R, Soar and
EPIC in Human Learning and Performance. In Modeling
Human Behavior with Integrated Cognitive Architectures,
Gluck, K. and Pew R., eds., Erlbaum, 237-304.

Jones, R. M., and Wray, R. E. (2006). Comparative
Analysis of Frameworks for Knowledge-Intensive
Intelligent Agents. AI Magazine, 27, 57-70.

Newell, A. (1990). Unified Theories of Cognition.
Cambridge, MA: Harvard University Press.

Parunak, H. V. D., Rohwer, R., Belding, T. C., and
Brueckner, S. A. (2006) Dynamic Decentralized Any-
Time Hierarchical Clustering. Fourth International
Workshop on Engineering Self-Organizing Systems.

Pederson, K., Lethin, R., Springer, J., Manohar, R., and
Melhem, R. (2006) Enabling Cognitive Architectures for
UAV Mission Planning. 10th Annual Workshop High
Performance Embedded Computing (HPEC 2006).

Scheduling of Eye Movements and Manual Responses in Performing
a Sequence of Choice Responses: Empirical Data and Model

Shu-Chieh Wu (scwu@mail.arc.nasa.gov)
San Jose State University and NASA Ames Research Center, Mail Stop 262-4, Moffett Field, CA 94035 USA

Roger W. Remington (R.Remington@psy.uq.edu.au)
School of Psychology, University of Queensland, St Lucia, QLD 4072 AUSTRALIA

Harold Pashler (hpashler@ucsd.edu)
Department of Psychology, University of California, San Diego, La Jolla, CA 92093 USA

Abstract

The seamless and effortless integration between eye
movements and cognitive functions signifies tight
coordination between eye movement control and the
underlying perceptual, cognitive, and motor processes. In this
paper we aim to deconstruct the coordination between eye
movements and manual responses exhibited in performing a
sequence of choice responses through a combination of
experimental and modeling methods.

Introduction
Eye movements are integral to human cognition. The
seamless and effortless integration between eye movements
and cognitive functions signifies tight coordination between
eye movement control and the underlying perceptual,
cognitive, and motor processes. As the front end of
cognitive functions, how the eyes move must bear
constraints imposed by the mechanics of the oculomotor
system as well as the demand of information processing.
But do the eyes fixate and move simply to fulfill the need
for information acquisition, or are there other factors
involved in determining the scheduling of eye movements?
In this paper we aim to shed light on this question by
examining the timing of eye movements in performing a
sequence of choice responses using a combination of
experimental and modeling methods.

A great majority of research on the coordination between
eye movements and cognitive functions focuses on eye
movements that occur during reading. In reading, when and
where the eyes move are shown to be determined by
oculomotor control as well as to a larger extent by visual
inputs (i.e., words), in terms of both their physical and
linguistic properties (for a review, see Reichle, Rayner, &
Pollatsek, 2003). However, most cognitive functions
performed in daily life involve not only eye movements but
also manual responses or limb movements. Does the need to
produce overt manual responses in natural behavior impose
further constraints on the scheduling of eye movements?

Efforts to characterize eye movements that occur in
natural behavior have focused on activities with well-
defined scripts, such as golf putting, driving, tea making,
and block-copying (for a review, see Hayhoe & Ballard,
20005). It has been found that in these activities the eyes
often move in anticipation of upcoming actions. More
fascinating is the tactical timing of anticipatory eye

movements. The eyes appear to move to acquire
information just prior to when the information is needed in
the action (Johansson et al., 2001). This just-in-time
characteristic of eye movement control (cf. Ballard et al.,
1995) exemplifies the type of additional constraints imposed
by the process of producing manual responses.

As a foray into modeling eye-hand coordination observed
in natural behavior, we devised a task complex enough to
capture many of the same elements found in natural
behavior but simple enough so that its underlying processes
can be readily identified (Wu & Remington, 2004). The task
was a typing-like task modeled after Pashler (1994).
Participants viewed a row of five letters sequentially and
responded to each individually. The letters were small and
distributed widely so that moving the eyes to fixate each
was necessary to performing the task. We evaluated the
coordination between eye movements and manual responses
through the timing of eye movements, the timing of manual
responses, and three derived eye-hand measures: 1) eye-
hand span (EHS), which represents the elapsed time
between the initial fixation on a particular stimulus to the
moment when the corresponding manual response is
generated; 2) dwell time, which represents the duration for
which fixation is maintained on a particular stimulus; and 3)
release-hand span (RHS), which represents the elapsed time
between the end of fixation on a particular stimulus to the
moment when the manual response is generated. Dwell
times and release-hand spans make up eye-hand spans.

Using this simple task we found patterns of anticipatory
eye movements commonly seen in natural behavior (Wu &
Remington, 2004). Figure 1 shows the pattern of observable
events in one experiment that manipulated letter luminance,
along with the key dependent measures (Wu & Remington,
2004). The stimuli are listed in the order in which they were
responded from top (leftmost) to bottom (rightmost).
Horizontal bars reflect the time from fixation to response for
each stimulus (S1-S5). RT1 refers to the response time to
the first letter (S1). IRI (Inter-Response Interval) is the time
between the overt manual responses for each pair of
successive stimuli. Fixations are represented by the shaded
portion of the bars. Anticipatory eye movements were
evident by the fact that the response to a given item was
made during fixation on the next item.

Results from this task also revealed emergent properties

difficult to account for by concatenating processes
underlying the constituent discrete responses. Figure 2 plots
the results of RT1, IRIs, EHS, and Dwell times measured on
each of the five stimuli from the same experiment (Wu &
Remington, 2004). As each of the choice response was
thought to include identical processes, EHS should remain
constant across the series. The empirically observed EHS
however decreased across the series. That is, there was a
decoupling between eye movement and manual response
timing. While the eyes moved across the series at a constant
pace, indicated by mostly constant dwell times between S1-
S4, manual responses were not produced at a constant rate
(with IRI averaged around 450 ms) until after an
exceedingly long delay on RT1.

The pattern of regularity in the timing of manual
responses (i.e., constant IRIs) was first reported by Pashler
(1994), who interpreted it in terms of the central bottleneck

stage theory. Each choice response is thought to comprise
three sequential stages: Stimulus Encoding (SE), Response
Selection (RS), and Response Execution (RE). He posited
that RS operations on the current item can proceed
concurrently with SE operations on subsequent items, and
that RE on the current item can proceed in parallel with RS
on the subsequent items. RS is the rate limiting operation,
and the duration of IRI is a direct measure of the duration of
the central RS stage.

The bottleneck theory however could not account for the
substantial elevation of RT1. One possible explanation is
that RT1 included a cost for performing the sequence that
only affects the initial responses and dissipates over time.
As the regularity of eye movements appeared to be
established from the very beginning, this suggests that eye
movements and manual responses could become coupled
once the initial preparation cost has completely dissipated.
We tested this hypothesis in the present research by
examining the effects of sequence length.

Experiment
Experiment investigates the timing of eye movements and
manual responses in sequences of differing length. This
would allow us to determine if they eventually appear
coupled in a longer sequence of responses. It also will allow
us to see if the preparation time, reflected in RT1 elevation,
is a function of sequence length.

Method

Participants Sixteen undergraduate students recruited from
local colleges near NASA-Ames participated in the
experiment for course credits.

Apparatus The experiment was carried out on a Pentium 4
PC with a 21-inch monitor. Participants were seated about
28 inches from the monitor. Responses were made using a
PC keyboard with fingers of their right hand. Eye
movements were monitored using a head-mounted high-
speed eye tracker (Applied Sciences Laboratory, Model
501) with eye-head integration function, sampling at 120Hz.

Stimuli and Display The primary stimulus display
consisted of a row of nine letters (0.13˚ x 0.26˚)
approximately 3.20˚ apart and centered around the middle of
the display. The stimulus letters on each trial were aligned
with the leftmost position, with the rest of the positions
occupied by small filled squares.

Design and Procedure There were three sequence length
conditions (3, 5, and 9). Trials of different sequence length
conditions were intermixed. There were a total of 180 trials,
60 in each condition. The trials were administered in 3
blocks of 60. Prior to the experiment participants received
24 practice trials of all sequence length conditions.

Each trial began with the presentation of a fixation cross
in the center of the display for 1 second. Then the fixation
was erased and a small filled square appeared at the leftmost

Figure 1. The time lines of fixations and manual responses in
Dim and Bright luminance conditions (based on the data from
Wu & Remington, 2004)

S1 S2 S3 S4 S5

T
im

e
(m

s)

400

600

800

1000

1200

1400 Dim
Bright

S1 S2 S3 S4 S5

Dim
Bright
Dim
Bright

Dwell time

Eye-hand span

RT1/IRIs

Figure 2. Patterns of RT, EHS, and Dwell results from Wu
& Remington (2004)

Dim

Bright
10005000 1500 2000 2500 3000 3500 4000

10005000 1500 2000 2500 3000 3500 4000

Time (ms)

S1

S2

S3

S4

S5

S1

S2

S3

S4

S5

RT1 IRI

DwellEHS RHS

stimulus position. Participants were instructed to move their
eyes to fixate the small square when it appeared and
maintain fixation at that location. The small square
remained for 500 ms, followed by a blank interval of 500
ms. Then 3, 5, or 9 letters appeared simultaneously aligned
to the leftmost position, with the rest of the positions
occupied by small filled squares. Participants were asked to
look at the letters one at a time, decide what they were, and
make responses accordingly. They were advised to respond
as fast as possible but avoid making errors, and to not group
responses. The letters were erased after the participant had
responded to all of the letters on a trial. The next trial
followed immediately.

Results and Discussion
Figure 3 shows the manual response results in the three
sequence length conditions. One striking feature was the
perfectly aligned results from the three conditions, which all
showed the typical pattern of RT1 elevation followed by
short and relatively constant IRIs. In addition, in previous
experiments IRIs have been found to show moderate
increase over the series, with a peak on S4 when the
sequence length was 5. It appeared that with extended
sequence length IRIs appeared to increase slowly to a new
level after every 3 items. It is not clear what caused the
pattern of increase.

Figure 4 shows the results of EHS, RHS, and Dwell times
in the three conditions. Because results from Sequence 3
and 5 conditions were perfectly aligned with those from
Sequence 9 condition, for simplicity only the results from
Sequence 9 are plotted. With an extended sequence length,
EHS again decreased from the beginning but leveled out
after S3, while dwell times stayed relatively constant across
the series. RHS also decreased during the first few stimuli
and level out after S5. Collectively, the results showed that
after three responses, the timing of eye movements and
manual responses appeared to be coupled, producing a
constant EHS at around 800 ms.

Model
Previously we reported a model that produced good fits to
the data shown in Figure 2 (Remington, Lewis, & Wu,
2006). Here we extend that same model (basic components
illustrated in Figure 5) to see how it handles the present
data. Here we highlight some basics of the models. A more
detailed description can be found in Remington et al., 2006.

Assumptions The model made three key assumptions.
First, RS is the rate limiting stage, following the central
bottleneck theory. Second, the eyes remain fixated on the
current stimulus until SE is complete. Third, the timing of
the eye movement is strategically chosen so that SE of the
next stimulus is completed at the same time as RS on the
current stimulus is completed. We referred to this as the
“just-in-time” assumption, since it attempts to minimize
wait states in central processing by assuring that perceptual
processing is complete as close as possible to when the
central processor becomes free.

Model construction The timing of eye movements and
manual responses was constructed separately based on their
respective hypothesized underlying components. Figure 5
presents the task model of producing a manual choice
response. The timing of eye movements was governed by a
separate control process that included stages necessary to
initiate a saccade (I, denoting Init operator) and to maintain
fixation for stimulus encoding (SE) (Figure 6). The

Figure 3. RT1 and IRI results from the present experiment

Observed EH-Span, RH-Span, & Dwell

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9
Stimuli

T
im

e
(m

s)

EH-Span

RH-Span

Dwell Time

Figure 4. EHS, RHS and Dwell results from the Sequence
9 condition of the present experiment

Observed RT1/IRIs

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9
Stimuli

T
im

e
(m

s)

Seq9

Seq5

Seq3

Figure 5. Task model. Processing of each stimulus consists
of stimulus encoding (SE, 100 ms), response selection
(RS), response execution (RE, 150 ms), and preceded by
an eye movement (E, 30 ms). E and RE are preceded by
Init operators (I, 50 ms). Dwell, RHS, and IRI are
indicated (not to scale)

RS

RS

SEEI I RE

SEEI I RE

Dwell RH-Span

IRIRS

RS

SEEI I RE

SEEI I RE

Dwell RH-Span

IRI

correspondence between eye movements and manual choice
response processing was borne by a Lag parameter that
extends fixation beyond what is necessary for stimulus
processing to realize just-in-time scheduling. Modeling eye
movement timing using a separate control process fulfills
the contention that these movements were generated by a
lower-level open-loop process not entirely dependent on
choice response processes.

Parameters Numerical parameter estimates for several
necessary parameters were assigned values consistent with
existing literature (e.g., Vera et al., 2005), described in the
caption of Figures 5 and 6 . The durations for some internal,
unobservable states were estimated from data based on
theorized processes of the task. For example, RS duration
was estimated using averaged IRIs (524 ms). Lag was
estimated by first estimating dwell time on a single
stimulus, which was estimated by first estimating the total
time involved in completing processes on the critical path of
the first 8 items, based on the assumption that the eyes
remain fixated until the central processor is about to be free.
An initial preparation cost was added to RT1, which was
derived based the observed RT1 and estimated durations of
stages involved in making the choice response.

Simulation Results The model was implemented and
Monte Carlo simulations run in the statistical package of R.
Model predictions, shown in Figures 7 and 8, were averaged
results from 1000 runs. To a large extent, the model again
captured the signature pattern of the data. However, the
model did not produce the coupling between the timing of
eye movements and manual responses found in the observed
data between S3-S7, indicated by constant EH-Spans.

General Discussion
The present experiments examined the effects of sequence

length on the timing of eye movements and manual
responses. Three key findings have direct implications for
models of the underlying cognitive mechanisms. First was
the striking lack of any sequence length effects on RT1
elevation. This clearly indicates that whatever preparation or
start-up costs are reflected in RT1 elevation, they did not
accrue from an item-by-item evaluation. That is, if this cost
reflects motor planning then the plan is established without
consideration of all the items.

Second, sequence length had no effect on asymptotic
levels of IRI or dwell time. Again, this suggests that for

these regular sequences a simple move-and-respond plan
was implemented without examining all items in advance
and iterated over items without incurring an item by item
cost. It is important to note the simplicity and regularity of
our sequences, which may have made these two outcomes
possible. It remains to be seen whether the same patterns
would be in evidence in visual search with heterogeneous
and irregularly dispersed items.

The third outcome of particular importance is the apparent
convergence of eye movements and manual responses to a
regular tightly coupled phase. This is shown in the EHS
curve of Figure 4. The flattening of the EHS after S3
indicates convergence on a more or less constant rhythmic
execution of saccades and manual responses. The
decoupling of eye and hand responses seen in previous
experiments appears to be confined to early portions of the
sequence. Indeed, this raises the possibility that the intended
strategy in planning to perform the sequence is to achieve
this regular rhythmic execution of eye movements and
manual responses. The strategy is not reflected in the first
few items because of the RT1 elevation, which requires
about three items to dissipate. It is this added RT1
processing component that produces the large initial EHS
and subsequent decrease that suggested that the eyes and

Simulated RT1 & IRI

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9

Stimuli

T
im

e
(m

s)

Simulated EH-Span, RH-Span, & Dwell

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9

Stimuli

T
im

e
(m

s)

EH-Span

RH-Span

Dwell Time

Figure 7. Model predictions for RT1 and IRIs

Figure 8. Model predictions for EH-Span, RH-
Span, and Dwell time

RSSE

Dwell

SE ILag

RSSE

Dwell

SE ILag

Figure 6. Task model for processes underlying fixations.
SE (150 ms) represented the period of time during which
the eyes remained fixated for stimulus processing. Each
fixation ended with an Init operator (50 ms) that programs
the next saccade.

hands were decoupled. The new empirical evidence instead
suggests the possibility that the scheduling of eye
movements is constrained not only by visual stimulus
processing but also response production. By having
participants perform choice responses of various sequence
length, we showed that the degree of coordination evolved
with the sequence. Coupled eye-hand responses were only
found in extended sequences after the initial cost
diminishes.

The model that we previously developed to fit the results
from 5-item sequences had only moderate success in
accounting for the results from 9-item sequences.
Specifically, the model continued to predict a decreasing
EHS even after 9 items consistent with the decoupled timing
of eye movements and manual responses. In addition, the
observed data also presented a challenge to the parameter
estimates used in the model. Between S3-S7, EH-Spans
were about 800 ms when IRIs were about 600 ms. If the
duration of IRIs indeed represents the duration of RS, that
leaves about 200 ms stimulus encoding, response initiation
and execution, which according to model parameters should
take 300 ms altogether (100 ms for SE, 50 ms for Init, 150
ms for RE). As it appears that observed IRIs increased with
sequence length, it is possible that processes other than RS
were involved in determining the timing of manual
responses. In future revisions of the model we will explore
the possibility that subjects plan the sequence with the goal
of maintaining a constant EHS.

The way in which the model accomplishes eye movement
scheduling must also be reexamined. Currently, the model
estimates the saccade lag parameter by considering the total
fixation time on an entire trial. Saccade lag is the parameter
that delays the onset of the saccade to attempt to align the
end of stimulus encoding on N+1 with the end of response
selection on N. Since the total time includes preparatory
operations that give rise to RT1 elevation, the estimates of
dwell time assume that people consider this when
programming sequences and retain these estimates long
after the preparatory effects dissipate. In future versions of
the model we will explore the consequences of estimating
eye movement timing using the average parameter values
rather than the total estimated time.

We have described the model as implementing a just-in-
time assumption. It is true that the model adjusts saccade lag
with the explicit just-in-time goal of having response
selection free right when stimulus encoding completes.
Because of the RT1 elevation and stochastic stages, just-in-
time performance is not achieved in model simulation
results. Estimation of the saccade lag directly from average
durations of response selection, stimulus encoding, and eye
movement latencies may insure better just-in-time
performance in practice. Then again, explorations of
alternative strategies, such as the eye-hand coupling
discussed above, may produce good performance without
such an assumption.

 To guarantee a just-in-time schedule in model simulation
results would require a very different modeling approach.

Our model uses global estimates to set up eye movement
timing routines. This contrasts closed-loop control models
in which some explicit model construct monitors the
momentary progress of cognitive processing and bases the
decision to move on the completion of underlying
operations (see Reichle, Rayner, & Pollatsek, 2003 for a
recent review of modeling approaches to reading). In
principle such closed-loop control could achieve more
precise timing as eye movement initiation could be adjusted
with variations in completion. However, it is unclear
whether this would obtain in actual behavior, as the
demands of monitoring and deciding on the adjustment
could conceivably place increased demands on cognitive
processing, interfering with task operations. It may well be
that optimal performance is achieved not by precise timing,
but by good enough timing done without drawing on central
limited capacity resources for either evaluation or execution.

Acknowledgments
This research was supported by grant #FA9550-06-1-0219
form the Air Force Office of Scientific Research, and by
grant #DP0666772 from the Australian Research Council.

References
Ballard, D. H., Hayhoe, M. M., & Pelz, J. B. (1995).

Memory representation in natural tasks. Journal of
Cognitive Neuroscience, 7, 66-80.

Hayhoe, M. M., & Ballard, D. (2005). Eye movements in
natural behavior. Trends in Cognitive Sciences, 9, 189-
194).

Johansson, R. S., Westling, G., Bäckström, A., & Flanagan,
J. R. (2001). Eye-hand coordination in object
manipulation. Journal of Neuroscience, 21, 6917-6932.

Pashler, H. (1994). Overlapping mental operations in serial
performance with preview. Quarterly Journal of
Experimental Psychology Section A-Human Experimental
Psychology, 47, 161-191.

Reichle, E. D., Rayner, K., & Pollatsek, A. (2003). The E-Z
Reader model of eye-movement control in reading:
Comparisons to other models. Behavioral and Brain
Sciences, 26, 445-526.

Remington, R. W., Lewis, R., & Wu, S.-C. (2006).
Scheduling mental operations in a multiple-response
sequence: Modeling the effects of a strategy to minimize
variance in the timing of saccades. In D. Fum, F. del
Missier, & A. Stocco (Eds.), Proceedings of the 7th

International Conference on Cognitive Modeling.
Vera, A., John, B. E., Remington, R. W., Matessa, M.,

Freed, M. A. (2005). Automating human-performance
modeling at the millisecond level. Human-Computer
Interaction, 20, 225-265. Vickers, J. N. 1992. Gaze
control in putting. Perception, 21, 117-132.

Wu, S.-C., & Remington, R. W. (2004). Coordination of
component mental operations in a multiple-response task.
In S.N. Spencer (Ed.), Proceedings of the Eye Tracking
Research and Applications Symposium 2004. New York:
ACM SIGGRAPH.

Author index

Archer, R. 55–60

Ball, J.T 163–168, 233–234
Belding, T. 325–330
Bellet, T. 43–48
Bello, P. 169–174
Berman, M.G. 175–180
Best, B. 325–330
Bignoli, P. 169–174
Borst, J. 133–138
Bosse, T. 181–186, 187–192, 193–198, 241–246
Both, F. 199–204
Brudzinski, M.E. 139–144
Brumby, D.P. 121–126
Byrne, M.D. 319–324

Cassimatis, N. 169–174
Chandrasekaran, B. 205–210, 267–272
Chartier, S. 97–102
Chen, P.-C. 145–150
Choi, D. 115–120
Chu, A. 31–36
Cohen, M.A. 157–162
Crossman, J.A. 49–54
Czechowski, K. 211–216

Dickison, D. 79–84
Dye, H.A. 217–218

Eggert, J. 307–312

Fan, X. 145–150
Ferguson, R.W. 211–216
Freudenthal, D. 109–114, 219–224

Georgeon, O. 43–48
Gerritsen, C. 181–186
Giguère, G. 97–102
Gobet, F. 109–114, 219–224
Gonzalez, C. 61–66, 67–72
Gorski, N.A. 225–230
Gray, W.D. 127–132, 231–232, 279–283
Grintsvayg, A. 231–232, 279–283

Haddawy, P. 247–252
Harris, J. 233–234
Haynes, S.R. 157–162
Heiberg, A. 163–168, 233–234

Henning, M.J. 43–48
Herd, S. 91–96
Heuvelink, A. 199–204, 235–240
Hoogendoorn, M. 241–246
Howes, A. 31–36, 121–126

Jha, K. 325–330
Jilk, D. 91–96
Jones, R.M. 49–54
Jonker, C.M. 241–246
Juvina, I. 73–79, 91–96

Kase, S.E. 299–304
Kazi, H. 247–252
Kennedy, W.G. 253–254
Kim, J.W. 255–260
Klien, L.C. 299–304
Koedinger, K. 37–42
Kong, X. 261–266
König, T. 115–120
Körner, E. 307–312
Koubek, R.J. 255–260
Kurup, U. 267–272

Laine, T. 273–278
Laird, J.E. 25–30, 85–90, 225–230
Langley, P. 115–120
Lathrop, S.D. 25–30
Lebiere, C. 49–54, 67–72, 325–330
LeFevre, J. 7–12
Lewis, R.L. 31–36, 225–230
Lina, J.-M. 97–102
Lindsey, R. 231–232, 279–283
Liu, Y. 175–180, 285–290

Mappus, R.L., IV. 211–216
Martens, S. 91–96
Martin, M. 67–72
Mata, R. 291
Matessa, M. 55–60
Memon, Z.A. 193–198
Mille, A. 43–48
Mui, R. 55–60

Nejati, N. 115–120
Newman, L.I. 103–108

Park, C. 115–120
Parunak, V. 325–330
Pashler, H. 331–335

Pavlik, P.I., Jr. 37–42
Pearson, D. 225–230
Petkov, G. 293–298
Pine, J.M. 109–114, 219–224
Polk, T. 103–108
Pontier, M. 187–192
Presson, N. 37–42
Proulx, R. 97–102
Pyke, A. 7–12

Ratwani, R.M. 139–144
Remington, R.W. 331–335
Ritter, F.E. 157–162, 255–260, 299–304
Robare, R.J. 305–306
Röhrbein, F. 307–312

Salvucci, D.D. 121–126
Sama, R. 151–156
Schoelles, M.J. 127–132, 299–304
Schultheis, H. 19–24
Schunn, C.D. 261–266
Shahbazyan, L. 293–298
Silber, R. 163–168
Springer, J. 325–330
Stewart, T.C. 313–317
Suebnukarn, S. 247–252

Taatgen, N.A. 13–18, 73–79, 79–84, 91–96, 133–138
Tamborello, F.P., II. 319–324
Trafton, J.G. 139–144, 253–254
Treur, J. 181–186, 187–192, 193–198, 241–246

Upal, M.A. 151–156

Van Maanen, L. 1–6
Van Rijn, H. 1–6, 13–18
Veksler, B.Z. 127–132, 231–232, 279–283

Wang, Y. 85–90
Weinstein, P. 325–330
West, R.L. 7–12, 313–317
Wray, R. 325–330
Wu, C. 175–180
Wu, S. 331–335

Yen, J. 145–150
Yovtchev, T. 205–210

	8th International Conference on Cognitive Modeling
	Contents
	About ICCM
	Sponsors
	Committees
	Session 1: Basic Mechanisms
	Accounting for Subliminal Priming in ACT-R
	How Readers Retrieve Referents for Nouns in Real Time: A Memory-based Model of Context Effects on Referent Accessibility
	A Model of Parallel Time Estimation
	A Control Perspective on Imaginal Perspective Taking
	Towards Incorporating Visual Imagery into a Cognitive Architecture

	Session 2: Methodology and Applications
	Evaluating the Performance of Optimizing Constraint Satisfaction Techniques for Cognitive Constraint Modeling
	Optimizing Knowledge Component Learning Using a Dynamic Structural Model of Practice
	Creating Cognitive Models from Activity Analysis: A Knowledge Engineering Approach to Car Driver Modeling
	Comparing Modeling Idioms in ACT-R and Soar
	Dynamic Spatial Reasoning Capability in a Graphical Interface Evaluation Tool

	Session 3: Adaptive Control
	Learning to Control a Dynamic Task: A System Dynamics Cognitive Model of the Slope Effect
	Instance-Based Decision Making Model of Repeated Binary Choice
	Modeling Control Strategies in the N-Back Task
	ACT-R Models of Cognitive Control in the Abstract Decision Making Task
	The Importance of Action History in Decision Making and Reinforcement Learning
	Attentional Blink: An Internal Traffic Jam?

	Session 4: Learning and Memory
	Category Development and Reorganization Using a Bidirectional Associative Memory-inspired Architecture
	The Emergence of Semantic Topography in a Neurally-Inspired Computational Model
	Simulating the Noun-Verb Asymmetry in the Productivity of Children’s Speech
	Structural Transfer of Cognitive Skills

	Session 5: Multitasking
	Dialing while Driving? A Bounded Rational Analysis of Concurrent Multi-task Behavior
	From 1000ms to 650ms: Why Interleaving, Soft Constraints, and Milliseconds Matter
	The Costs of Multitasking in Threaded Cognition
	Goal and Spatial Memory Following Interruption

	Session 6: Multiagent Interaction
	Learning Cognitive Load Models for Developing Team Shared Mental Models
	Effect of Communication on Belief Dynamics in Multi-Agent Systems
	Using Reflective Learning to Master Opponent Strategy in Competitive Environment

	Posters
	Toward a Large-Scale Model of Language Comprehension in ACT-R 6
	Attention and Association Explain the Emergence of Reasoning About False Belief in Young Children
	A 3-node Queuing Network Template of Cognitive and Neural Differences As Induced by Gray and White Matter Changes
	Integrating Rational Choice and Subjective Biological and Psychological Factors in Criminal Behaviour Models
	A Dynamical System Modelling Approach to Gross’ Model of Emotion Regulation
	Modelling Animal Behaviour Based on Interpretation of Another Animal’s Behaviour
	From a Formal Cognitive Task Model to an Implemented ACT-R Model
	A Qualitative GOMS Approach to Evaluating Diagrammatic Interfaces
	The First Second of Symmetry: Towards a Model of Visual Search during Symmetry Verification
	Diagrammatic Reasoning: Route Planning on Maps with ACT-RH
	Meter based Omission of Function Words in MOSAIC
	Storm: A Framework for Biologically-Inspired Cognitive Architecture Research
	Vector Generation of an Explicitly-defined Multidimensional Semantic Space
	Dynamic Visualization of ACT-R Declarative Memory Structure
	A Belief Framework for Modeling Cognitive Agents
	A Formal Empirical Analysis Method for Human Reasoning and Interpretation
	Towards Human-Like Robustness in an Intelligent Tutoring System
	Using Simulations to Model Shared Mental Models
	Investigation of Procedural Skills Degradation from Different Modalities
	Information Seeking in Complex Problem Solving
	Modeling Memories of Large-scale Space Using a Bimodal Cognitive Architecture
	Learning and Decision Model Selection for a Class of Complex Adaptive Systems
	Be Wary of What Your Computer Reads: The Effects of Corpus Selection on Measuring Semantic Relatedness
	Queueing Network Modeling of Mental Architecture, Response Time, and Response Accuracy: Reflected Multidimensional Diffusions
	Are Simpler Strategies Less Error-prone in Inference from Memory?
	The RecMap Model of Active Recognition Based on Analogical Mapping
	Modeling the Range of Performance on the Serial Subtraction Task
	Interactions Between Data Labeling and Ratio of Hebbian to Error-Driven Learning in Mixed-Model Networks
	Prototypical Relations for Cortex-Inspired Semantic Representations
	Cognitive Redeployment in ACT-R: Salience, Vision, and Memory
	Fast Learning in a Simple Probabilistic Visual Environment: A Comparison of ACT-R’s Old PG-C and New Reinforcement Learning Algorithms
	Towards a Complete, Multi-level Cognitive Architecture
	Scheduling of Eye Movements and Manual Responses in Performing a Sequence of Choice Responses: Empirical Data and Model

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

