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Abstract 

Intelligent tutoring systems are no different from other 
knowledge based systems in that they are often plagued by 
brittleness. Intelligent tutoring systems for problem solving 
are typically loaded with problem scenarios for which specific 
solutions are constructed. Solutions presented by students, are 
compared against these specific solutions, which often leads 
to a narrow scope of reasoning, where students are confined to 
reason towards a specific solution. Student solutions that are 
different from the specific solution entertained by the system 
are rejected as being incorrect, even though they may be 
acceptable or close to acceptable. This leads to brittleness in 
tutoring systems in evaluating student solutions and returning 
appropriate feedback. In this paper we discuss a few human-
like attributes in the context of robustness that are desirable in 
knowledge based systems. We then present a model of 
reasoning through which a tutoring system for medical 
problem-based learning, can begin to exhibit human-like 
robust behavior in evaluating solutions in a broader context 
using UMLS, and respond with hints that are mindful of the 
partial correctness of the student solution. 

Introduction 
While traditional knowledge based systems often work well 
for narrowly defined tasks within specialized domains, they 
lack the meta-cognition and human-like common sense to 
deal with unforeseen situations. Many systems suffer from 
brittleness and they are often unaware of their own 
limitations (McCarthy, 1984). It is normal for a complex 
system to fail at some point, however what makes a system 
brittle is that it shows sudden failure beyond a certain point. 
Human beings also fail, however they are able to establish 
some self recovery before their failure leads to catastrophe 
(Nielsen et al., 2002). Thus the failure humans exhibit is 
often soft and gradual rather than being hard and sudden. 

The need to emulate human-like behavior in intelligent 
systems has often led to an examination of how the human 
mind works. Minsky (1986) describes a possible 
explanation of how in the event of damage to some parts of 
the brain, significant functionality is still maintained, by the 
delegation of tasks to other parts that have not suffered 
damage. In other words, the failure of some sub-systems 

leads to a task delegation to other sub-systems, thereby 
resulting in some degree of robustness.  

Sloman (1996) has argued that the human mind employs a 
combination of rule based and heuristic methods for 
reasoning, where rule-based methods are characterized as 
systematic and logical set of laws, while heuristic methods 
are based on principles of association, similarity and 
contiguity. Some researchers have advocated the use of 
heuristic methods as a solution to the problem of brittleness 
in knowledge based systems. Accurate results may not be 
achievable where factual knowledge is found to be 
insufficient or the knowledge base is known to contain gaps, 
in which case heuristic methods can be employed to achieve 
partially correct, if not fully accurate results (Paritosh, 
2006). These heuristic methods should be able to exploit the 
knowledge structure of the knowledge based system to 
provide reasonable answers. 

In the next few sections we describe how the issues of 
gradual failure, self analysis of limitations, self recovery, 
task delegation and the use of multiple modes of reasoning 
in the context of robustness, can be applied to an intelligent 
tutoring system for medical problem-based learning (PBL) 
using UMLS (U.S. National Library of Medicine, 2007), 
which is a collection of various medical ontologies. 

Robust Output Quality 
A knowledge based system is designed to respond to input 
which has a specific format and is confined to a certain 
scope of knowledge. If the input happens to fall outside this 
scope, the output quality is expected to deteriorate. Groot, 
Teiji & Harmelen (2005) describe how a quantitative 
analysis of the robustness of knowledge based systems can 
be achieved. They outline a few definitions of robustness, 
one of which is that the output quality of a knowledge based 
system should decrease monotonically with decrease in 
input quality. They mention that while this demand may be 
practically too strong, a system that exhibits somewhat 
monotonic output may be considered robust. They also 
argue that the rate of output quality change in a robust 
knowledge based system, should be slow. A knowledge 
based system that is brittle, will exhibit abrupt degradation 
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in its output quality as the input quality deteriorates beyond 
a certain point. However, a robust system will show a 
smooth degradation in its output quality as the input quality 
deteriorates beyond the edge of the system knowledge as 
shown in Figure 1. 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 1: Smooth vs. Abrupt Degradation 

Reasoning Scope in Medical Tutoring Systems 
Intelligent tutoring systems can be considered knowledge 
based systems whose problem solving activity is to evaluate 
student solutions to a posed problem and provide feedback 
to the students in the form of hints. The task of generating 
intelligent hints that are suited to the knowledge level of the 
student, is addressed in many tutoring systems (Kabassi, 
Virvou & Tsihrintzis, 2006; Suebnukarn & Haddawy, 2006) 
as part of student modeling. However the task of evaluating 
student solutions in a broad scope of reasoning is yet to be 
addressed in sufficient depth. Tutoring systems that offer 
some latitude in accepting differing solutions often confine 
students to a narrow scope of solution representation. 
Crowley & Medvedeva, (2006) accept a broad range of 
solutions for a given problem, but students are restricted to a 
local and customized ontology for choosing their solution 
concepts. Lulis, Michaels & Evens, (2004) emphasize the 
need for qualitative reasoning in tutoring systems and 
provide a mechanism through which students are able to 
present qualitative responses, however the response is only 
confined to assigning values to a small set of variables. The 
COMET system (Suebnukarn & Haddawy, 2006) provides 
an interface through which students can construct their 
hypothesis (solution) in the form of a directed acyclic graph. 
It evaluates a student hypothesis by comparing it against a 
specific expert solution. Nodes in the hypothesis that are not 
found in the expert solution are simply deflected and the 
system responds with the hint “<Node> is beyond the scope 
of this problem”. 

The responses of such tutoring systems in unanticipated 
situations are quite contradictory to how a human tutor 
would normally respond. If the student response happens to 
fall outside the scope of the tutoring system’s knowledge, 
the system responds with a premeditated hint that is often 
oblivious of the partial correctness of the student response. 
At the same time these tutoring systems are devoid of the 
meta-cognitive ability to assess their own capability in order 
to inform the student of the system’s limitations or to 
attempt self recovery. 

This motivates the need to have a medical tutoring system 
that offers students a broad scope of hypothesis 
representation and at the same time offers an assessment of 
the student hypothesis that describes the quality or degree of 
correctness. The tutoring system should be able to respond 
with certainty when the knowledge base is found to be 
sufficient. However when the knowledge base is not found 
to be sufficient, the system should be able to exploit its 
knowledge structure to achieve partial if not complete 
results. Thus the system should exhibit a gradual 
deterioration in quality when its knowledge limit is reached. 
Such a tutoring system should also have the ability to assess 
its own limitations and be able to inform the students about 
these limitations, which can help the students to reason 
accordingly. 

Robustness Vis-à-Vis Tutoring Systems 
The proposed tutoring system is designed to cover PBL in 
the medical domain. A PBL session typically comprises of a 
group of 6-8 students, who are given a problem to solve 
within a period of about two hours. Based on the description 
of the problem scenario posed to the students, they are 
expected to form their solution in the form of a hypothesis 
graph, where graph nodes represent medical concepts and 
directed edges indicate the cause effect relationships 
between respective nodes.  
 

 
Figure 2: System Prototype 

 
We have developed a system prototype using java. The 

problem representation in our system is the same as that in 
COMET (Suebnukarn et al., 2006) of a directed acyclic 
graph to describe a hypothesis. The hypothesis graph is 
based on the Illness Script (Feltovich & Barrows, 1984), 
where nodes are enabling conditions, faults or 
consequences. The knowledge base of our system is formed 
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by combining UMLS tables with an additional table that 
represents causal links between concepts. The system 
interface provides students with a workspace as a hypothesis 
board to form their hypothesis, along with a text chat pane 
through which the system returns feedback in the form of 
hints, as shown in Figure 2. For purposes of forming their 
hypothesis, students choose concepts from the diverse and 
widely available UMLS Metathesaurus (U.S. National 
Library of Medicine, 2007), as hypothesis nodes. For 
example, students are presented a problem scenario related 
to diabetes: 

“A 45-year-old woman came to the clinic with 
following symptoms: tiredness, always thirsty, voided 
frequently with large amount of urine for 4-5 months. 
She voided approximately 10 times during the day and 
4-5 times during the night. She was hungry quite often 
but lost 5 kgs body weight during the past 4 months. 
She also had numbness, leukorrhea and delayed wound 
healing”. 
A student hypothesizes that hyperglycemia is a cause of 

diabetic neuropathy which is shown to be a cause of 
numbness, in Figure 2.  
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Figure 3: Desired Degradation Curve 

 
Each hypothesis causal link drawn by the students needs 

to be evaluated against the knowledge base to determine 
whether the link drawn by the student should be accepted or 
rejected along with a hint to provide feedback. The output 

quality of an intelligent tutoring system is essentially 
comprised of two main components: evaluating student 
hypothesis and returning intelligent feedback as in the form 
of hints.  

A causal link that is considered by a human tutor to be 
correct is henceforth referred to as a true link, whereas a 
causal link considered by a human tutor to be incorrect, is 
referred to as a false link. For all links that lie beyond the 
edge of the system knowledge, the output quality will be 
high if a true link is accepted or a false link is rejected by the 
system, as shown in Figure 3. However, if a false link is 
accepted without reservation or a true link is rejected 
without suggestive feedback that recognizes the partial 
correctness of the link, the output quality will be very low, 
as shown in Figure 3. Thus the output quality, without 
reservation or suggestive feedback in the hints, will be 
marked by fluctuating highs and lows. A system which 
produces fluctuating output quality as a result of 
deteriorating input quality is less predictable (Groot et al., 
2005) and is considered less robust.  

Therefore, for all hypothesis links that lie beyond the edge 
of the system knowledge, accepted links need to be 
supported with hints that show some form of reservation and 
suggest improvement to the causal link. Likewise rejected 
links need to be supported with suggestive hints that 
acknowledge partial correctness of the link or the closeness 
of the link to a true causal link, to result in somewhat 
smooth degradation as shown in Figure 3. The exact 
gradient of the curve shown in Figure 3 will be dictated by 
the nature of hints, as they vary from one situation to 
another. 

Three Tier Model for Robustness 
Robustness in our system is made possible through the use 
of a broad and widely available medical knowledge source 
such as the UMLS. The system design towards maintaining 
human-like robustness comprises of a three tier model, as 
shown in Figure 4. The tiers are successively applied in 
order of necessity. The first tier is a rule-based expert 
knowledge base, while the second tier is a heuristic method 
of computing semantic distance using knowledge structure 
within UMLS, whereas the third tier is based on a 
probabilistic Bayesian model.  
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Figure 4: Three Tiers of Robust Reasoning 
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The system makes it a matter of priority to first employ 
the rule-based tier which contains sure knowledge for 
reasoning purposes. If the first tier fails to deliver, the 
system employs the heuristic mechanism in the second tier. 
If the second tier fails too, the system uses the robust but not 
so accurate, third tier of probabilistic Bayesian model. Thus 
the system applies a step wise fallback approach of 
employing multiple modes of reasoning that are designed to 
provide self recovery and smooth degradation in output 
quality with deteriorating input quality. 

Rule-Based Expert Knowledge Base 
This knowledge base is in the form of a database table that 
comprises of sure knowledge which contains causal links 
such as: 

Diabetes  Hyperglycemia 
Hypoinsulinism  Hyperglycemia 
Glucose Metabolism Disorder  Hyperglycemia 
Hyperglycemia  Diabetic Neuropathy 
Diabetic Neuropathy  Numbness 
This knowledge base is formed through the collation of 

causal links found in expert solutions to various problems, 
and the causal links found in student solutions that are 
certified by the domain experts to be correct.  

While evaluating a causal link between two concepts in 
the student hypothesis, the system first attempts to find the 
respective link in this knowledge base, as an attempt to use 
rule based certain knowledge. If the system finds the 
hypothesis link in this knowledge base, the link is accepted, 
knowing that this comes from part of the system’s rule-
based certain knowledge. Additionally, the system also 
checks to see if an indirect link between the two concepts is 
found or if there is a reverse link that exists between the 
respective concepts. However, if the link is not found in this 
knowledge base, the system resorts to the heuristic method 
in an attempt to achieve a partial if not completely accurate 
assessment of the link under evaluation. 

Heuristic Measure of Partial Correctness Using 
Semantic Distance 
In this mode of reasoning, the system exploits the 
knowledge structure within UMLS to evaluate partial 
correctness of the causal link under evaluation, thereby 
attaining some degree of robustness. The node, from which 
the causal edge in the student hypothesis is emanating, is 
henceforth referred to as the source node, whereas the node, 
towards which the causal edge is leading to, is referred to as 
the target node. The system checks if either the target node 
or source node is found in any of the acceptable solutions to 
the given problem. If the target node is found, the system 
measures the semantic distance between the source node 
and each of the nodes that are known to cause the target 
node. Thus the system measures the closeness of the source 
node to nodes that are known to cause the target node, 
thereby obtaining a measure of partial correctness of the 
hypothesis link under evaluation. 

The semantic distance is measured by employing a 
modified version of the method described by Al-Mubaid & 

Nguyen (2006). Parent-child relationships from the UMLS 
Metathesaurus are used to construct the parental hierarchy 
of both nodes between which semantic distance is to be 
measured. An appropriate hint indicating the partial 
correctness or the closeness of the link to a plausible one is 
returned to the students. 

However, if the target node is not found in the acceptable 
solutions, the system checks if the source node is found, in 
which case the comparison is made between the target node 
and each of the nodes that are known to be caused by the 
source node. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: Parental Trees of Two Concepts 

 
The semantic distance is only computable if the parental 

trees of both concepts, between which distance is to be 
measured, are actually connected. For example, based on the 
connected parental trees of hyperlipidemia and glucose 
metabolism disorder (GMD) shown in Figure 5, the 
semantic distance between GMD and hyperlipidemia is 
2.83, whereas the semantic distance between GMD and 
metabolic diseases is 1.09. However, if the parental trees 
from both concepts happen to be disjoint, semantic distance 
is not computable. In this situation, the system resorts to the 
method of estimating likelihood of the source node causing 
the target node through the Bayesian model. 

Bayesian Model of Causal Links 
Work done in extracting causal relationships between 
medical concepts in UMLS (Burgun & Bodenreider, 2001; 
Mendonca & Cimino, 2000) inspires us to use the Bayesian 
Network shown in Figure 6. This Bayesian network is used 
to determine the likelihood of a causal relation between 
nodes representing concepts A and B. Causal Relation is a 
Boolean node, where a true value indicates causal relation 
between nodes A and B, while a false value indicates the 
lack of a causal link between the respective nodes. Semantic 
Type A is the semantic type of concept A as defined in 
UMLS, and Semantic Type B is the semantic type of concept 
B. Each concept in the UMLS Metathesaurus is categorized 
under at least one semantic type from a list of 135 semantic 
types in the UMLS semantic network (U.S. National Library 
of Medicine, 2007). Co-Occurrence Frequency gives the 
frequency with which the two concepts are known to have 
co-occurred in medline citations, and is extracted from the 
UMLS table mrcoc. Co-Relation Radius is the radius 
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distance within which concept A is known to be related to 
concept B. Co-Relation Radius is assigned a value of zero if 
the concepts are found to be directly related in the UMLS 
Metathesaurus, one if there is one intermediate node 
between A and B, and two if the relation radius is greater 
than one or if the concepts are not related at all. 

 
 
 
 
 
 
 
 
 

 
 

Figure 6: Bayesian Network for Causal Relationship 
 

In order to estimate the likelihood of the causal link 
between two concepts A and B, the semantic types of both 
concepts, their co-occurrence frequency, and their relation 
radius is fed to the Bayesian network as evidence. The 
updated belief for true value of Causal Relation is examined 
to get the probability of causal relation between A and B. 
Based on the retrieved probability value, appropriate hints 
are returned to the student. 

Examples of Pedagogical Strategy Based on 
Step-Wise Fallback 

While evaluating hypothesis links, only those links that are 
found in the expert knowledge base are accepted without 
any kind of feedback, explanation, or reservation. Links, for 
which the semantic distance is found to be below a certain 
threshold, are accepted with reservation. All other links are 
rejected, and appropriate feedback is returned based on the 
reasoning tier that was applied.  

For purposes of illustration, we present a few examples of 
how the three tiers are applied in a step-wise fallback 
fashion while evaluating hypothesis links and how the tutor 
responds with appropriate hints. Consider the problem 
scenario described earlier of a patient with diabetic 
symptoms. While solving the case, the student draws causal 
links between various concepts and receives corresponding 
feedback from the tutoring system. 
 
 
 

 
 

Figure 7: Student Hypothesis Link 
 
For the hypothesis link in Figure 7, the system detects an 

indirect link, rejects this link and responds with the hint: 
“Think of the underlying mechanism why hyperglycemia 
causes numbness”. However if the student tries to draw a 
link from numbness to hyperglycemia, the system detects a 

reverse link and responds with the hint: “On the contrary, 
think of hyperglycemia as a cause of numbness”. 

 
 
 

 
 

Figure 8: Student Hypothesis Link 
 
For the hypothesis link in Figure 8, the system does not 

find a corresponding link in the knowledge base, so it 
checks the semantic distance between hyperlipidemia and 
GMD, rejects the link, and responds with the hint: 
“Hyperlipidemia is fairly close to a known cause of 
hyperglycemia. Instead of hyperlipidemia, think more 
specifically about other metabolic diseases”. 

 
 
 

 
 

Figure 9: Student Hypothesis Link 
 
For the hypothesis link in Figure 9, the system does not 

find a corresponding link in the knowledge base, but since 
the semantic distance between metabolic diseases and GMD 
is found to be very small, it accepts the link with reservation 
and responds with the hint: “Metabolic diseases is very 
close to a known cause of hyperglycemia. Metabolic 
diseases may be acceptable. However, think more 
specifically about kinds of metabolic diseases”. 

 
 
 

 
 

Figure 10: Student Hypothesis Link 
 

For the hypothesis link in Figure 10, the system does not 
find the link in the knowledge base, and semantic distance is 
not computable. The system rejects the link and responds 
with the hint: “Diabetic retinopathy is not known to be a 
cause of numbness. Likelihood of causal relation between 
diabetic retinopathy and numbness is very low”. 

 
 
 

 
 

Figure 11: Student Hypothesis Link 
 

For the hypothesis link in Figure 11, the system does not 
find the link in the knowledge base, and semantic distance is 
not computable, so the system rejects the link. However, 
since the Bayesian likelihood is high, the system responds 
with the hint: “There may be a causal relation between nerve 
degeneration and numbness”. 
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As shown above, the hints inform the student about the 
closeness of the hypothesis link to a plausible link. If this 
information is not available, the system provides 
information about the likelihood of the causal link. At the 
same time, the language of the hints generated by the 
system, informs the student of the tutor’s reasoning 
limitations, which is likely to lead to improved reflective 
thinking and hence better learning. 

Initial Evaluation 
The initial evaluation of our system was based on the 
agreement ratings of a collection of 15 causal links along 
with their respective hints, which were presented to an 
experienced human medical tutor at Thammasat University. 
The causal links comprised of five links each from three 
cases, for which we have already collected human expert 
solutions. The three cases are based on disorders such as 
diabetes, heart attack and pneumonia. On an agreement 
scale ranging from 1 (Strongly Disagree) to 5 (Strongly 
Agree), the human tutor was asked to rate various hints for 
each causal link. The average score of hints based on our 
measure of partial correctness and causal likelihood was 
4.13, whereas the average score of the hints without the 
partial correctness and causal likelihood feedback was 2.13. 

Conclusions 
In this paper we have described a multi tier approach in an 
intelligent tutoring system towards exhibiting human-like 
robust behavior in evaluating student hypotheses and 
responding in the form of hints. We have also discussed 
how the notion of gradual and smooth degradation in the 
output quality as a result of deteriorating input quality, 
applies to intelligent tutoring systems. Our approach 
towards incorporating robustness is innovative in employing 
a combination of rule-based, heuristic and probabilistic 
approaches applied successively in order of necessity, 
incorporating the notions of self recovery and task 
delegation. We have presented illustrative examples of how 
such human-like gradually deteriorating output quality can 
be observed in the responses of a medical tutoring system 
for PBL. 

The initial assessment of our approach and feedback from 
human domain experts seems to indicate that the proposed 
methods can be useful in helping medical students acquire 
clinical reasoning skills. We have started to collect samples 
of student hypotheses for three different problem scenarios 
covering diseases and disorders such as diabetes, heart 
attack and pneumonia. We intend to conduct sub-system 
evaluations of the method of computing semantic distance 
and the method of estimating likelihood of a causal link 
between two concepts using the Bayesian model. Finally, 
we plan to measure the effectiveness of our generated hints 
compared with human tutors and perform quantitative 
evaluations of the pedagogical strategy incorporated in our 
system. 

References 
Al-Mubaid, H., & Nguyen, H. A. (2006). A Cluster Based 

Approach for Semantic Similarity in the Biomedical 
Domain. Proceedings of the 28th IEEE EMBS Annual 
International Conference, New York, USA, Aug 30-Sept. 
3, 2006. 

Burgun, A., & Bodenreider, O. (2001). Methods for 
exploring the semantics of the relationships between co-
occurring UMLS concepts. MedInfo, 2001, 10(Pt 1), 171-
175. 

Crowley, R., & Medvedeva, O. (2006). An Intelligent 
Tutoring System for Visual Classification Problem 
Solving. Artificial Intelligence in Medicine, 2006, 36 (1), 
85-117. 

Feltovich, P. J., & Barrows, H. S. (1984). Issues of 
generality in medical problem solving. In H. G. Schmidt 
and M. L. De Volder (Eds.) Tutorials in problem-based 
learning: A new direction in teaching the health 
professions. The Netherlands: Van Gorcum. 

Groot, P., Teije, A. T., & Harmelen, F. V. (2005). A 
Quantitative Analysis of the Robustness of Knowledge-
Based Systems Through Degradation Studies. Knowledge 
and Information Systems,  7 (2), 224-245. 

Kabassi, K., Virvou, M., & Tsihrintzis, G. A. (2006). 
Requirements Capture for a Personalized Medical Tutor. 
Proceedings of International Special Topic Conference on 
Information Technology in Biomedicine, Ioannina, 
Greece, October 26-28, 2006. 

Lulis, E., Michael, J., & Evens, M. (2004). Using 
Qualitative Reasoning in the Classroom and in Electronic 
Teaching Systems. Proceedings of the 18th International 
Workshop on Qualitative Reasoning, Northwestern 
University, Evanston, IL August. 

McCarthy, J. (1984). Some expert systems need common 
sense. In H. Pagels (ed.), Computer Culture: The 
Scientific, Intellectual, and Social Impact of the 
Computer. Annals of the New York Academy of 
Sciences, Vol. 426, 129-137. 

Mendonca, E. A., & Cimino, J. J. (2000). Automated 
Knowledge Extraction from MEDLINE Citations. 
Proceedings of AMIA 2000 Fall Symposium, 575-579. 

Minsky, M. (1986). The Society of Mind. New York: Simon 
& Schuster. 

Nielsen, P., Beard, J., Kiessel, J., & Beisaw, J. (2002). 
Robustness in Modeling Behavior Overview. Proceedings 
of 11th CGF-BR Conference, May, 2002. 

Paritosh, P. K. (2006). The Heuristic Reasoning Manifesto. 
Proceedings of QR’06, Hanover, New Hampshire, July 
10-12, 2006. 

Sloman, S. A. (1996). The empirical case for two systems of 
reasoning. Psychological Bulletin, 119, 3-22 

Suebnukarn, S., & Haddawy, P. (2006). Modeling 
individual and collaborative problem-solving in medical 
problem-based learning. User Modeling and User 
Adapted Interaction, 16 (3), 211-248. 

U.S. National Library of Medicine, (2007). 2007AA 
Introduction. Retrieved April 19, 2007 from the World 
Wide Web:  

http://www.nlm.nih.gov/research/umls/umlsdoc_intro.html 

66


