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Abstract

Information seeking behavior in human complex
problem solving has rarely been well studied. In this
paper we studied the information seeking behavior of
eye-movement during human complex problem solving
in the case of traveling salesman problem. A new model
of human TSP solving is proposed to explain the effect
of limited amount of visual working memory on the
trade-off between local/global information processing
and the human information seeking behavior in
complex problem solving.

Introduction

When solving problems, information seeking behavior
serves as an interface between the world (external
information) and cognition (internal information).
Hypotheses have been proposed and argued to explain
human information seeking behavior in problem solving
(Gray & Fu, 2005; Gray, Sims, & Fu 2006). However,
most of previous studies on information seeking behaviors
are based on experiments either with relatively simple
problems and/or with manifested high cost of information
seeking, because natural information seeking behavior is
hard to measure in the setting of complex problem solving.
A recent study in modeling the behavior of human traveling
salesman problem solving (Kong & Schunn, 2006) and
advanced eye-tracking technology, however, gave us an
opportunity to exam the information seeking behavior of
human complex problem solving in the case of the traveling
salesman problem solving.

The (Euclidean) traveling salesman problem is to find a
path of minimum Euclidean distance between points in a
plane, which includes each point exactly once and returns to
its starting point. As an NP-hard combinatory optimization
problem, the traveling salesman problem (TSP) is believed
to be “intractable” in computer science for large inputs as
long as exact optimal path is concerned.

Experiment
Participants
Six undergraduate students from University of Pittsburgh
participated in the experiment.

Materials and Methods

In this experiment, we used the same set of 20 TSP
problems as in the experiment described in Kong and
Schunn (2006). Ten of them are real world problems
borrowed from TSPLIB (http://elib.zib.de/pub/mp-
testdata/tsp/tsplib/tsplib.html) ranging in size from 16
points to 100 points. The remaining ten of them were
randomly pre-generated according to a uniform distribution
ranging in size from 10 points to 80 points. All participants
saw the exact same 20 TSP problems, which allow us to
examine how well the models predict the influence of
particular TSP problems rather than just general trends for
the effect of number of points. The experiment was
conducted on a Tobii 1750 eye-tracker with a 17” screen.
The resolution was set to 1024*768 pixels. During the
experiment, participants were 550 to 650 pixels away from
screen as recorded by the eye-tracker, measuring by the
corresponding screen size and resolution. Participants were
asked to find the shortest path possible by indicating the
path with mouse-clicks on the screen. A Matlab program
recorded all the click data and the eye-tracker recorded all the
eye-movement data. The participants were paid 5$~20%
based on their performance.

Results

Optimality of the solution is defined as our measurement of
performance. Optimality (OPT) of a solution is calculated as
the ratio of the optimal path length over the solution path
length. So the optimality is a value smaller or equal to 1.
The closer the value is to 1, the better performance the
participant makes. As figure 1 shows, all the participants
found close to optimal paths for all problems (OPT>0.8,
MEAN = 0.95, STD = 0.037).
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Figure 1: Participants’ performance



The eye-movement data recorded by the eye-tracker were
used to analyze the information seeking actions. Distance of
information seeking of each fixation was defined as the
minimum between the following two values:

1. The distance of the fixation to the last visited point

2. The distance of the fixation to the next point to be
visited.

The frequency of information seeking follows an exponential

distribution along the distance of information seeking
(R* =0.989).
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Figure 2: Frequency and distance of information seeking
behaviors

We define the global information seeking actions as
fixations whose information seeking distances are greater
than 200 pixels (about 18 degree of eye-movement in this
experiment setting). As an opposite to what was reported in
Best (2005), only 23 percent of all the global information
seeking actions were made in the beginning of the each trial
before 10 percent of points were connected. The rest global
fixations distributed through the entire problem solving
procedure as shown in figure 3.
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Figure 3: Number of global fixations in each stage of
problem solving when part of the points had been connected

Discussion

It is not very surprising that global information seeking
actions are biased toward the beginning in the experiment
described in Best (2005), since the cost of information
seeking changed from low (eye-movement) to high (mouse-
movement) when the experiment stage transits. This could
be well explained by the soft-constraint hypothesis (Gray &
Fu, 2004). But in our experiment, the cost of the
information seeking had been low (eye-movement) through
the entire problem solving procedure, which we would argue
to be a more natural experiment setting. However, the
exponential distribution of the frequency vs. distance of
information seeking may not be easily explained by the soft-
constraint hypothesis as a tradeoff between information
seeking cost and its utility. First, the costs (measured by
time) by eye-movements of different distances are not
significantly different. Second, the utility of information is
hard to define in this scenario, since global and local
information must interplay with each other to generate a
good TSP solution (Kong & Schunn 2006). Our hypothesis
is that the limited size of the visual working memory
(VWM) could explain this pattern of information seeking
behavior. Our intuition is that people do not seek for more
global information than they could actually handle in visual
working memory. Since the amount of VWM is limited to
several chunks, the exponential pattern of information
seeking behavior helps to keep both the necessary global
and local information in VWM.

Our model

To support our hypothesis, we built a model to simulate
the human TSP solving and the information seeking
behavior during the process.

To account for the information seeking behavior of
human TSP solving, our VWM-Reference TSP model is
based on the following two hypotheses and consists of four
steps:

First, the VWM only contains a constant number of
chunks, which can be set as a parameter in the model.
Second, the model only makes constant (in average) number
of fixations near the centroids of clusters when they are
generated into the VWM to serve as reference points.

Step 1. Initialization

The current working set includes all points. The current
point is set to be the starting point.

Step 2. Information Seeking

Points in the current working set are grouped into K clusters
according to the K-Means clustering algorithm, (MacQueen,
1967) where K is the size of the VWM in the first iteration
and square root of the number of points in the current
working set afterwards. The K-Means Clustering Algorithm
clusters N data points into K disjoint subsets Sj containing
Nj data points so as to minimize the sum of squares

criterion:
K
T=> Dix,-u, P

J=1n€s;



where X, is a vector representing the nth point and U ; is
the geometric centroid of the points in Sj. It is assumed that
people are capable of noticing clumps of points relatively
quickly and easily with their basic perceptual system. This
K-Means clustering algorithm is used to proximate the
cluster identification, because it is available in standard
programming tools and provides the centroids of the clusters
as a standard output.

All the centroids are added into the collection of reference
points, which was passed from previous iteration.

We then use a spline-curve to connect the current point
and all the reference points to sketch a path in a rough scale.
The spline-curve is hypothesized to be a general smooth
route through the centroids, which captures a general
tendency of a globally sketched path.

Step 3. Identify current cluster and refine local information

All the points in the current working cluster are projected
to its nearest points on the spline curve. If the number of
points projected onto the part of the spline curve between
the current point and the first reference point is more than 2,
let the current working set to be this set of points, then go
back to step 1 and the next iteration begins. When N is the
size of the VWM, only the first N reference points, sorted by
their projection order on the spline curve, are passed to the
next iteration. The rest of them are discarded.

Step 4. Move and rehearse global information

If the number of points projected between the current point
and the next reference point is less than two, move from
current point to those points according to the sequence they
projected onto the spline curve. Set the current working set
to be the points projected onto the part of spline between the
first and the second reference points. Discard the first
reference point from the VWM.

If the number of reference points in the VWM is less than
2, re-identify clusters at the most global level and bring in
those centroids back into the VWM.

Repeat this procedure until the number of unvisited points
is less than the size of the VWM. Then find the best path
for the rest few points.

Figures 4a-e illustrate the steps of our model when
solving a 70-points TSP.
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Figure 4a: Original ETSP problem
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Figure 4b: Seeking global information
‘+’s are the locations of the K-Means centroids which are
served as reference points in VWM, and the ‘*’ points are
those to be served as the current working set in the next
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Figure 4c: As the local part of information is refined, some
information in global level is discarded. ‘+’s are the
reference points in VWM.
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Figure 4d: When there is enough local information, make a
move and rehearse the global information
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Figure 4e: The final path generated by the model

Model Evaluation and Comparison

Existing models of human TSP solving

Convex Hull

The next simplest model of TSP is the Convex Hull
model, which assumes that people compute a traversal
around the perimeter points, including inner points
opportunistically along the way using a minimal insertion
rule. The global information used by this model is the
Convex Hull contour, which may be rather complex, and
thus require significant working memory. The minimal
insertion rule is applied globally at each point during path
computation, and points that cause the smallest increase in
total path length are inserted. It is somewhat implausible
that people would be able to compute these minimal
insertions (a local processing task) at a global level.

Sequential Convex Hull Model

MacGregor et al. (2000) adapted the Convex Hull model
to a more plausible incremental local search version. This
adaptation was base on their finding that humans perform
better on problems with fewer interior points within the
convex hull (MacGregor & Ormerod, 1996). Second, their
experiments provided support for their hypothesis that
human participants are sensitive to global information
(Ormerod & Chronicle, 1999). We would call this model
sequential convex hull model. The outline of the model is as
follows (MacGregor et al., 2000):

1. Sketch the connections between adjacent boundary
points of the convex hull.

2. Select a starting point and a direction randomly.

3. If the starting point is on the boundary, the starting
node is the current node. The arc connecting the current
node to the adjacent boundary node in the direction of travel
is referred to as the current arc. Proceed to Step 4

immediately. If the starting point is not on the boundary,
apply the insertion rule to find the closest arc on the
boundary. Connect the starting point to the end node of the
closest arc, which is in the direction of travel. This node
becomes the current node.

4. Apply the insertion criterion to identify which
unconnected interior point is closest to the current arc.
Apply the insertion criterion to check whether the closest
node is closer to any other arc. If not, proceed to Step 5. If it
is, move to the end node of the current arc. This becomes
the current node. Repeat Step 4.

5. Insert the closest node. The connection between the
current node and the newly inserted node becomes the
current arc. Retaining the current node, return to Step 4 and
repeat Steps 4 and 5 until a complete tour is obtained.

Pyramid Model

Graham et al.’s model (2000) of traveling salesman
problem was inspired by a hierarchical architecture of
human visual and spatial perception. Their model first
Gaussian-blurs the original set of points into a variety of
degrees and stores those blurred images in different layers
of hierarchy with the most blurred image on the top. The
more blurred images serve as the global information for the
less blurred images. Each layer directly guides the next
layer below it each time the model develops a node into the
path. So layers in the hierarchy change in a repeatedly
cascaded process. The Pyramid model computes TSP
solutions in the following steps:

1. Gaussian-blur the original n-points TSP image into k-1
different degrees and store them in a k-layer pyramid with
the original TSP image on the bottom and the most blurred
image on the top.

2. Calculate 1, modes of the image in each layer i.
Consider those modes in each layer as nodes in a reduce-
sized TSP problem. The top layer has 3 nodes and the
bottom layer has n nodes. Layer k has »/b* nodes. (The
parameter b is the reduction ratio. Bottom layer is layer 1.)

3. Layer n (top layer) has 3 nodes and forms a unique
tour.

4. Generate a tour of the TSP in each layer by inserting
them into the tour on the previously higher layer with the
following rules: (a) Sort the intensity level of the mode
locations in each layer. (b) Insert these modes into the tour
in descending order of their intensity, so as to produce the
minimum increase in tour length. Repeat step 4 until the
algorithm generates a tour in the bottom layer.

K-Means TSP model

The K-Means TSP model (Kong & Schunn, 2006) is
based on the following three steps:

1. Clusters are identified.

In this step, points are grouped according to visual
density. Points constructing a higher visual density are more
likely to be grouped together. K-Means clustering algorithm
was used to generate the 2 x+/N clusters, where N is the
number of points in the problem.

2. A sketch of the path is conceived.



A spline-curve is drawn through all the centroids and
back to the start one.

3. Connect all the points along the sketched path.

All the points are projected to the nearest point on the
spline-curve. Then we construct the final solution by
connecting all the points in the same order as their
projection on the spline-curve.

Mean optimality

First we compared the performance of the VWM_TSP
model in term of solution optimality with human data and
some existing models of human TSP solving including:
Convex Hull, Pyramid (Graham, Joshi, & Pizlo 2000;
Pizlo, et al. 2006), Kmeans (Kong & Schunn 2006), CHSQ
(MacGregor, Ormerod, & Chronicle 2000). We set the size
of VWM to be 5 chunks in our VWM_ TSP model for this
evaluation of optimality, based on existing VWM theories
(Pylyshyn, 1989).

The performance of models and human data were plotted
in figure 5. Pearson correlations and average signed errors
between models and human data were shown in table 1. The
VWM. _TSP displayed a fairly good correlation and only
generated a small amount of error. Though, CHSQ has a
better fit to the performance data. VWM _TSP was built
under the constraint that the VWM is constant in size. This
constraint made our model more theoretically plausible,
where CHSQ could have arbitrarily many chunks (invisible
lines in its case) in VWM in the extreme case. (Kong &
Schunn 2007)

Table 1: Correlation and average signed error of model fits
to human accuracy performance

VWM Convex

TSP NN Hull Pyramid Kmeans CHSQ
Correlation 0.62 0.37 -0.02 0.13 0.24 0.69
Ave
Signed -0.02 -0.13  0.01 -0.02 -0.03 0.00
Error
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Figure 5: Mean accuracy for models and humans

Number of information seeking actions

Assuming that the VWM_TSP model takes a constant
number of information seeking actions around each cluster
centroids to generate clusters, we plotted the histogram (# of
bins = 30, min = 15 pixs, max = 906 pixs) of VWM _TSP’s
information seeking distance in figure 6 when VWM size is
5.

Information Seeking Action Counts
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Figure 6: VWM_TSP model’s information seek behavior
(VWM=5)

As we can see, the count of information seeking actions
decreases exponentially with the distance. To study the
effect of VWM size on the information seeking behavior,
we ran VWM_TSP model with different VWM size
parameters (VWMSize = 2,3,4,5,6,7,8,10,15) and plotted
the normalized histogram counts of each VWM size as
smoothed lines in figure 7. When VWM size is too small (2,
3), the model seeks for global information much more often.
In this setting, there wouldn’t be much room in VWM to
keep global information as soon as local information was
developed. So global information had to be re-attended
almost on each move. Figure 8 plotted each model setting’s
R? fits to exponential distribution. When VWM size is
around 5, the information seeking behavior demonstrated by
the model has the best fit to the exponential distribution.
When the VWM size is too small or too large, the model’s
information seeking distance distribution deviates from the
exponential distribution. This result is consistent with the
existing theories of working memory that the VWM size is
around 5 (Pylyshyn, 1989).

To further exam our model, we also looked at how
global information seeking behavior varies along time
during the problem solving procedure. In figure 9, we
plotted the frequency distribution of global information
seeking actions during each temporal phase of the problem
solving procedure, when part of the points were connected.
The model displayed a similar pattern with human data in
figure 3, which again supports our hypothesis.
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Figure 9: Frequency of global information seeking in each
phase of problem solving

Conclusion

The new experimental evidence and simulation results
suggested while the cost of information seeking is low and
the information utility is hard to define, the limited size of

visual working memory plays an important role in the
information seeking behavior while solving complex
problems. Although the VWM is limited to only several
slots, by keeping a good ratio of global information and
local information in VWM, human is still capable in solving
complex problems to its near optimal solution. Our model
while having a good fit to the performance of human TSP
solving, also predicts the information seeking behavior
during the problem solving procedure. Our model also
explored on the question of how different VWM size affects
the information seeking behavior during problem solving.
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