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Abstract 

Information seeking behavior in human complex 
problem solving has rarely been well studied. In this 
paper we studied the information seeking behavior of 
eye-movement during human complex problem solving 
in the case of traveling salesman problem. A new model 
of human TSP solving is proposed to explain the effect 
of limited amount of visual working memory on the 
trade-off between local/global information processing 
and the human information seeking behavior in 
complex problem solving.   

Introduction 
When solving problems, information seeking behavior 
serves as an interface between the world (external 
information) and cognition (internal information). 
Hypotheses have been proposed and argued to explain 
human information seeking behavior in problem solving 
(Gray & Fu, 2005; Gray, Sims, & Fu 2006). However, 
most of previous studies on information seeking behaviors 
are based on experiments either with relatively simple 
problems and/or with manifested high cost of information 
seeking, because natural information seeking behavior is 
hard to measure in the setting of complex problem solving. 
A recent study in modeling the behavior of human traveling 
salesman problem solving (Kong & Schunn, 2006) and 
advanced eye-tracking technology, however, gave us an 
opportunity to exam the information seeking behavior of 
human complex problem solving in the case of the traveling 
salesman problem solving.  

The (Euclidean) traveling salesman problem is to find a 
path of minimum Euclidean distance between points in a 
plane, which includes each point exactly once and returns to 
its starting point. As an NP-hard combinatory optimization 
problem, the traveling salesman problem (TSP) is believed 
to be “intractable” in computer science for large inputs as 
long as exact optimal path is concerned.  
 

Experiment 
Participants 
Six undergraduate students from University of Pittsburgh 
participated in the experiment. 

Materials and Methods 
In this experiment, we used the same set of 20 TSP 

problems as in the experiment described in Kong and 
Schunn (2006). Ten of them are real world problems 
borrowed from TSPLIB (http://elib.zib.de/pub/mp-
testdata/tsp/tsplib/tsplib.html) ranging in size from 16 
points to 100 points. The remaining ten of them were 
randomly pre-generated according to a uniform distribution 
ranging in size from 10 points to 80 points. All participants 
saw the exact same 20 TSP problems, which allow us to 
examine how well the models predict the influence of 
particular TSP problems rather than just general trends for 
the effect of number of points. The experiment was 
conducted on a Tobii 1750 eye-tracker with a 17” screen. 
The resolution was set to 1024*768 pixels. During the 
experiment, participants were 550 to 650 pixels away from 
screen as recorded by the eye-tracker, measuring by the 
corresponding screen size and resolution. Participants were 
asked to find the shortest path possible by indicating the 
path with mouse-clicks on the screen. A Matlab program 
recorded all the click data and the eye-tracker recorded all the 
eye-movement data. The participants were paid 5$~20$ 
based on their performance.  

Results 
Optimality of the solution is defined as our measurement of 
performance. Optimality (OPT) of a solution is calculated as 
the ratio of the optimal path length over the solution path 
length. So the optimality is a value smaller or equal to 1. 
The closer the value is to 1, the better performance the 
participant makes. As figure 1 shows, all the participants 
found close to optimal paths for all problems (OPT>0.8, 
MEAN = 0.95, STD = 0.037). 

 
Figure 1: Participants’ performance 
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The eye-movement data recorded by the eye-tracker were 
used to analyze the information seeking actions. Distance of 
information seeking of each fixation was defined as the 
minimum between the following two values: 
1. The distance of the fixation to the last visited point 
2. The distance of the fixation to the next point to be 
visited.  
The frequency of information seeking follows an exponential 
distribution along the distance of information seeking 
(

! 

R
2

= 0.989).  
 

 
Figure 2: Frequency and distance of information seeking 

behaviors  
 

We define the global information seeking actions as 
fixations whose information seeking distances are greater 
than 200 pixels (about 18 degree of eye-movement in this 
experiment setting). As an opposite to what was reported in 
Best (2005), only 23 percent of all the global information 
seeking actions were made in the beginning of the each trial 
before 10 percent of points were connected. The rest global 
fixations distributed through the entire problem solving 
procedure as shown in figure 3. 

 
Figure 3: Number of global fixations in each stage of 

problem solving when part of the points had been connected 
 

Discussion 
It is not very surprising that global information seeking 
actions are biased toward the beginning in the experiment 
described in Best (2005), since the cost of information 
seeking changed from low (eye-movement) to high (mouse-
movement) when the experiment stage transits. This could 
be well explained by the soft-constraint hypothesis (Gray & 
Fu, 2004). But in our experiment, the cost of the 
information seeking had been low (eye-movement) through 
the entire problem solving procedure, which we would argue 
to be a more natural experiment setting. However, the 
exponential distribution of the frequency vs. distance of 
information seeking may not be easily explained by the soft-
constraint hypothesis as a tradeoff between information 
seeking cost and its utility. First, the costs (measured by 
time) by eye-movements of different distances are not 
significantly different. Second, the utility of information is 
hard to define in this scenario, since global and local 
information must interplay with each other to generate a 
good TSP solution (Kong & Schunn 2006). Our hypothesis 
is that the limited size of the visual working memory 
(VWM) could explain this pattern of information seeking 
behavior. Our intuition is that people do not seek for more 
global information than they could actually handle in visual 
working memory. Since the amount of VWM is limited to 
several chunks, the exponential pattern of information 
seeking behavior helps to keep both the necessary global 
and local information in VWM.  

Our model 
To support our hypothesis, we built a model to simulate 
the human TSP solving and the information seeking 
behavior during the process.  
    To account for the information seeking behavior of 
human TSP solving, our VWM-Reference TSP model is 
based on the following two hypotheses and consists of four 
steps: 

First, the VWM only contains a constant number of 
chunks, which can be set as a parameter in the model. 
Second, the model only makes constant (in average) number 
of fixations near the centroids of clusters when they are 
generated into the VWM to serve as reference points.  

 
Step 1. Initialization  
The current working set includes all points. The current 
point is set to be the starting point. 
Step 2. Information Seeking 
Points in the current working set are grouped into K clusters 
according to the K-Means clustering algorithm, (MacQueen, 
1967) where K is the size of the VWM in the first iteration 
and square root of the number of points in the current 
working set afterwards. The K-Means Clustering Algorithm 
clusters N data points into K disjoint subsets Sj containing 
Nj data points so as to minimize the sum of squares 
criterion: 
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where

! 

x
n
 is a vector representing the nth point and 

! 

µ j  is 
the geometric centroid of the points in Sj. It is assumed that 
people are capable of noticing clumps of points relatively 
quickly and easily with their basic perceptual system. This 
K-Means clustering algorithm is used to proximate the 
cluster identification, because it is available in standard 
programming tools and provides the centroids of the clusters 
as a standard output.   

All the centroids are added into the collection of reference 
points, which was passed from previous iteration.  

We then use a spline-curve to connect the current point 
and all the reference points to sketch a path in a rough scale. 
The spline-curve is hypothesized to be a general smooth 
route through the centroids, which captures a general 
tendency of a globally sketched path.  
Step 3. Identify current cluster and refine local information  

All the points in the current working cluster are projected 
to its nearest points on the spline curve. If the number of 
points projected onto the part of the spline curve between 
the current point and the first reference point is more than 2, 
let the current working set to be this set of points, then go 
back to step 1 and the next iteration begins. When N is the 
size of the VWM, only the first N reference points, sorted by 
their projection order on the spline curve, are passed to the 
next iteration. The rest of them are discarded.  
Step 4. Move and rehearse global information 

If the number of points projected between the current point 
and the next reference point is less than two, move from 
current point to those points according to the sequence they 
projected onto the spline curve. Set the current working set 
to be the points projected onto the part of spline between the 
first and the second reference points. Discard the first 
reference point from the VWM.  

If the number of reference points in the VWM is less than 
2, re-identify clusters at the most global level and bring in 
those centroids back into the VWM.   

Repeat this procedure until the number of unvisited points 
is less than the size of the VWM. Then find the best path 
for the rest few points. 

Figures 4a-e illustrate the steps of our model when 
solving a 70-points TSP. 
 
 

 
Figure 4a: Original ETSP problem 

 
Figure 4b: Seeking global information 

‘+’s are the locations of the K-Means centroids which are 
served as reference points in VWM, and the ‘*’ points are 
those to be served as the current working set in the next 

iteration 

 
Figure 4c: As the local part of information is refined, some 

information in global level is discarded. ‘+’s are the 
reference points in VWM. 

 
Figure 4d: When there is enough local information, make a 

move and rehearse the global information 
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Figure 4e: The final path generated by the model 

 
 

 

Model Evaluation and Comparison 

Existing models of human TSP solving 
Convex Hull 
The next simplest model of TSP is the Convex Hull 

model, which assumes that people compute a traversal 
around the perimeter points, including inner points 
opportunistically along the way using a minimal insertion 
rule. The global information used by this model is the 
Convex Hull contour, which may be rather complex, and 
thus require significant working memory. The minimal 
insertion rule is applied globally at each point during path 
computation, and points that cause the smallest increase in 
total path length are inserted. It is somewhat implausible 
that people would be able to compute these minimal 
insertions (a local processing task) at a global level.   

 
Sequential Convex Hull Model 
MacGregor et al. (2000) adapted the Convex Hull model 

to a more plausible incremental local search version.  This 
adaptation was base on their finding that humans perform 
better on problems with fewer interior points within the 
convex hull (MacGregor & Ormerod, 1996). Second, their 
experiments provided support for their hypothesis that 
human participants are sensitive to global information 
(Ormerod & Chronicle, 1999). We would call this model 
sequential convex hull model. The outline of the model is as 
follows (MacGregor et al., 2000): 

1. Sketch the connections between adjacent boundary 
points of the convex hull. 

2. Select a starting point and a direction randomly. 
3. If the starting point is on the boundary, the starting 

node is the current node. The arc connecting the current 
node to the adjacent boundary node in the direction of travel 
is referred to as the current arc. Proceed to Step 4 

immediately. If the starting point is not on the boundary, 
apply the insertion rule to find the closest arc on the 
boundary. Connect the starting point to the end node of the 
closest arc, which is in the direction of travel. This node 
becomes the current node. 

4. Apply the insertion criterion to identify which 
unconnected interior point is closest to the current arc. 
Apply the insertion criterion to check whether the closest 
node is closer to any other arc. If not, proceed to Step 5. If it 
is, move to the end node of the current arc. This becomes 
the current node. Repeat Step 4. 

5. Insert the closest node. The connection between the 
current node and the newly inserted node becomes the 
current arc. Retaining the current node, return to Step 4 and 
repeat Steps 4 and 5 until a complete tour is obtained. 

 
Pyramid Model 
Graham et al.’s model (2000) of traveling salesman 

problem was inspired by a hierarchical architecture of 
human visual and spatial perception. Their model first 
Gaussian-blurs the original set of points into a variety of 
degrees and stores those blurred images in different layers 
of hierarchy with the most blurred image on the top. The 
more blurred images serve as the global information for the 
less blurred images. Each layer directly guides the next 
layer below it each time the model develops a node into the 
path. So layers in the hierarchy change in a repeatedly 
cascaded process. The Pyramid model computes TSP 
solutions in the following steps: 

1. Gaussian-blur the original n-points TSP image into k-1 
different degrees and store them in a k-layer pyramid with 
the original TSP image on the bottom and the most blurred 
image on the top. 

2. Calculate 

! 

L
i
 modes of the image in each layer i. 

Consider those modes in each layer as nodes in a reduce-
sized TSP problem. The top layer has 3 nodes and the 
bottom layer has n nodes. Layer k has 

! 

n /b
k  nodes. (The 

parameter b is the reduction ratio. Bottom layer is layer 1.) 
3. Layer n (top layer) has 3 nodes and forms a unique 

tour. 
4. Generate a tour of the TSP in each layer by inserting 

them into the tour on the previously higher layer with the 
following rules: (a) Sort the intensity level of the mode 
locations in each layer. (b) Insert these modes into the tour 
in descending order of their intensity, so as to produce the 
minimum increase in tour length. Repeat step 4 until the 
algorithm generates a tour in the bottom layer. 

 
K-Means TSP model 
The K-Means TSP model (Kong & Schunn, 2006) is 

based on the following three steps: 
1. Clusters are identified.  
In this step, points are grouped according to visual 

density. Points constructing a higher visual density are more 
likely to be grouped together. K-Means clustering algorithm 
was used to generate the 

! 

2 " N clusters, where N is the 
number of points in the problem.  

2. A sketch of the path is conceived.  
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A spline-curve is drawn through all the centroids and 
back to the start one.  

3. Connect all the points along the sketched path. 
All the points are projected to the nearest point on the 

spline-curve. Then we construct the final solution by 
connecting all the points in the same order as their 
projection on the spline-curve. 

Mean optimality 
First we compared the performance of the VWM_TSP 

model in term of solution optimality with human data and 
some existing models of human TSP solving including: 
Convex Hull, Pyramid (Graham, Joshi, & Pizlo 2000; 
Pizlo, et al. 2006), Kmeans (Kong & Schunn 2006), CHSQ 
(MacGregor, Ormerod, & Chronicle 2000). We set the size 
of VWM to be 5 chunks in our VWM_TSP model for this 
evaluation of optimality, based on existing VWM theories 
(Pylyshyn, 1989).  
    The performance of models and human data were plotted 
in figure 5. Pearson correlations and average signed errors 
between models and human data were shown in table 1. The 
VWM_TSP displayed a fairly good correlation and only 
generated a small amount of error. Though, CHSQ has a 
better fit to the performance data. VWM_TSP was built 
under the constraint that the VWM is constant in size. This 
constraint made our model more theoretically plausible, 
where CHSQ could have arbitrarily many chunks (invisible 
lines in its case) in VWM in the extreme case. (Kong & 
Schunn 2007) 
 
Table 1: Correlation and average signed error of model fits 

to human accuracy performance 
 

 VWM 
_TSP NN Convex 

Hull Pyramid Kmeans CHSQ 

Correlation 0.62 0.37 -0.02 0.13 0.24 0.69 
Ave 
Signed 
Error 

-0.02 -0.13 0.01 -0.02 -0.03 0.00 

 
 

 
 

Figure 5: Mean accuracy for models and humans 

Number of information seeking actions 
Assuming that the VWM_TSP model takes a constant 
number of information seeking actions around each cluster 
centroids to generate clusters, we plotted the histogram (# of 
bins = 30, min = 15 pixs, max = 906 pixs) of VWM_TSP’s 
information seeking distance in figure 6 when VWM size is 
5. 

  
Figure 6: VWM_TSP model’s information seek behavior 

(VWM=5) 
 

As we can see, the count of information seeking actions 
decreases exponentially with the distance. To study the 
effect of VWM size on the information seeking behavior, 
we ran VWM_TSP model with different VWM size 
parameters (VWMSize = 2,3,4,5,6,7,8,10,15) and plotted 
the normalized histogram counts of each VWM size as 
smoothed lines in figure 7. When VWM size is too small (2, 
3), the model seeks for global information much more often. 
In this setting, there wouldn’t be much room in VWM to 
keep global information as soon as local information was 
developed. So global information had to be re-attended 
almost on each move. Figure 8 plotted each model setting’s 

! 

R
2 fits to exponential distribution. When VWM size is 

around 5, the information seeking behavior demonstrated by 
the model has the best fit to the exponential distribution. 
When the VWM size is too small or too large, the model’s 
information seeking distance distribution deviates from the 
exponential distribution. This result is consistent with the 
existing theories of working memory that the VWM size is 
around 5 (Pylyshyn, 1989). 
       To further exam our model, we also looked at how 
global information seeking behavior varies along time 
during the problem solving procedure. In figure 9, we 
plotted the frequency distribution of global information 
seeking actions during each temporal phase of the problem 
solving procedure, when part of the points were connected. 
The model displayed a similar pattern with human data in 
figure 3, which again supports our hypothesis. 
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Figure 7: VWM Size vs. Information Seeking Distance 

Distribution 
 

 
Figure 8: Effect of VWM size on model’s fit to exponential 

distribution 
 

 
Figure 9: Frequency of global information seeking in each 

phase of problem solving 
 
 

Conclusion  

The new experimental evidence and simulation results 
suggested while the cost of information seeking is low and 
the information utility is hard to define, the limited size of 

visual working memory plays an important role in the 
information seeking behavior while solving complex 
problems. Although the VWM is limited to only several 
slots, by keeping a good ratio of global information and 
local information in VWM, human is still capable in solving 
complex problems to its near optimal solution. Our model 
while having a good fit to the performance of human TSP 
solving, also predicts the information seeking behavior 
during the problem solving procedure. Our model also 
explored on the question of how different VWM size affects 
the information seeking behavior during problem solving.  
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