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Abstract 

We present an extension to biSoar, a bimodal version of the 

cognitive architecture Soar, by adding a bimodal version of 

chunking, Soar’s basic learning mechanism. We show how 

this new biSoar is a useful tool in modeling cognitive 

phenomena involving spatial or diagrammatic elements by 

applying it to the modeling of problem solving involving 

large-scale space, such as way-finding.  We suggest how such 

models can help in identifying variables to control for in 

human subject experiments. 

Introduction 

Cognitive architectures are of central interest in cognitive 

modeling since such architectures are directly useful in 

building cognitive models. The advantages of a general 

purpose architecture such as Soar or ACT-R to model and 

explain a variety of cognitive phenomena are well-known. 

However, these architectures are all based on a view of the 

cognitive state being symbolic or more precisely, predicate-

symbolic. In this view, the agent’s knowledge, goals etc are 

represented in terms of symbol structures that describe the 

world of interest in terms of properties of and relations 

between individuals in the world. We have argued that this 

view of cognitive state is too restrictive and fails to take 

adequate account of the role played by perceptual 

representations in thinking (Chandrasekaran, 2006). We 

have proposed that cognitive state should be viewed as 

multi-modal where, in addition to the traditional symbolic 

component, the cognitive state has several perceptual 

components and a kinesthetic one. The multi-modal view 

proposes a more involved role for perception where the 

perceptual systems, in addition to their role as transducers, 

also provides representations and processes to the cognitive 

process. Such a multi-modal state can support an agent 

experiencing the world multi-modally such as when having 

mental images in one or more modalities. One of the tasks 

of a research program that is based on this multi-modal view 

is to explore the consequences of multi-modal cognitive 

state for all components and mechanisms of a cognitive 

architecture. 

In particular, we need to examine the implications of 

multi-modality for components such as working memory, 

LTM and I/O and for control and learning mechanisms. As 

a first step towards constructing such a multi-modal 

architecture, we built biSoar (Kurup & Chandrasekaran, 

2006), which is a bimodal augmentation of the Soar 

architecture, where the two modes are the traditional 

symbolic component and a visual (diagrammatic) 

component. This limitation to bimodality has several 

advantages. First, intuitions about various issues related to 

multi-modality may be honed by investigating this limited 

version. Second, in problem solving, the most common and 

useful perceptual mode is the limited visual version 

involving diagrams. Soar was chosen for reasons of 

convenience but we think that many of the ideas in biSoar 

can be extended to other symbolic architectures such as 

ACT-R. However, Soar also has unique mechanisms such as 

chunking as a core learning mechanism, an issue that will be 

a focus of the current paper. As an aside, the visual 

component does not represent all aspects of mental imagery 

such as the visualization of faces but is restricted to 

diagrams. In addition to diagrams being common in 

problem solving, the focus on diagrams has the advantage of 

simplicity while retaining several of the challenges of 

bimodality that we wish to address.  

Currently, both working and long term memories are 

bimodal in biSoar. biSoar agents are able to create, modify 

and delete diagrammatic objects from WM as well as extract 

various relations that exist between objects in this memory. 

However, among the issues not addressed is how 

diagrammatic information gets into long term memory. 

Phenomenologically, it seems clear that memory is capable 

of recalling perceptual knowledge and experience to a more 

or less degree of fidelity. It seems plausible that in the 

course of learning, learning mechanisms transfer to long 

term memory not only symbolic information from working 

memory but diagrammatic information as well. In 

traditional Soar, there is only one learning mechanism, 

chunking. So it seemed natural to us to investigate how 

chunking can be expanded to learn bimodally. An 

empirically observed feature of many spatial memories is 

that spatial details are often simplified (Tversky, 2000). So, 

a challenge for bimodal chunking is the degree to which 

such simplification is an intrinsic architectural feature. 

A satisfactory account of bimodal learning could make an 

architecture with such a capability an effective medium for 

modeling cognitive phenomena involving spatial or 

diagrammatic elements. We explore the possibilities of 

biSoar for such modeling by applying it to the task of 

modeling phenomena involving the representation of and 
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reasoning about large-scale space. We build biSoar models 

of problem solving in two spatial reasoning tasks that have 

been well studied: simplification in recalled routes and 

distortions in geographic recall. Such modeling can be a 

valuable tool for exploring the space of explanations for 

spatial phenomena. For each task, we create multiple 

models and describe how each one suggests a different 

explanation for the observed phenomena. We indicate how a 

candidate explanation can in turn suggest variables to 

control for in human subject experiments.  

Multi-modal Cognitive Architectures 

The traditional approach to cognition and problem solving 

can be best described “predicate-symbolic”; that is, the 

knowledge and goals of an agent are represented as a set of 

entities, and relations (predicates) that hold between these 

entities. Problem solving proceeds by the application of 

rules of inference to these predicates. The role of the 

perceptual system is to give the agent information about the 

external world, and the role of the action system is to make 

changes to the world.  The output of the perceptual systems, 

in this view, is in the form of predicate-symbolic 

representations. Our alternative proposal calls for a much 

greater role for an agent’s perceptual system in cognition. 

Here, the agent has representations and processes that are 

characteristic to the individual modalities and cognition is 

an activity that involves all of them. The perceptual system 

as whole still give information about the external world, but 

aspects of the system are part of central cognition, 

independent of input from the external world. 

To create biSoar (Kurup & Chandrasekaran, 2006), a 

general-purpose cognitive architecture, Soar (Laird et al., 

1987) was augmented with the Diagrammatic Reasoning 

System (DRS) (Chandrasekaran et al., 2004), a domain 

independent system for representing diagrams. In DRS, 

diagrams are represented as a configuration of points, curves 

and regions. That points may refer to the location of cities or 

that regions represent states in a map, is task-specific 

knowledge that is part of Soar. This allows DRS to be used 

in multiple task domains without any modifications. DRS 

also provides a set of perceptual and action routines that 

allows Soar to create, and modify a diagram and to extract 

relations between diagrammatic objects from the diagram. 

By the addition of the capabilities of DRS, Soar’s cognitive 

state and long-term memory that were exclusively predicate-

symbolic, now become bimodal.  

Cognitive State in Soar 

Soar’s representations are predicate-symbolic. The cognitive 

state in Soar is represented by the contents of Soar’s WM 

and operator, if any, that has been selected. Fig 1(b) shows 

Soar’s cognitive state representation of the blocks world 

example in 1(a).   

Cognitive State in biSoar 

The cognitive state in biSoar is bimodal – it has both 

symbolic and diagrammatic parts. Fig 2 shows the bimodal 

representation of the world depicted in Fig 1(a). Working 

memory is biSoar is represented as a quadruplet, with each 

Identifier, Attribute, Value triplet augmented with a 

diagrammatic component in DRS that represents the 

visualization (metrical aspect) of the triplet. Since not all 

triplets need to be (or can be) visualized, the diagrammatic 

components are present only as needed. States represent the 

current or potential future state of interest in the world and 

the symbolic and the diagrammatic part may represent 

related or distinct aspects of the world. However, the 

diagrammatic representation is “complete” in a way that the 

symbolic representation is not. For example, from the 

symbolic representation alone it is not possible to say 

without further inference whether A is above C. But the 

same information is available for pick up in the diagram 

with no extra inference required. This has advantages (for 

instance in dealing with certain aspects of the Frame 

Problem) and disadvantages (over-specificity).  

From External Representation to Working 

Memory 

When an agent makes use of an external diagram, such 

as a map, for a specific problem solving task, what he 

attends to or observes is only relevant parts or aspects of the 

diagrammatic elements. This selective attention results in 
simplified versions of the corresponding diagrammatic 

elements to be present in WM. The mechanism that 

transforms an external diagrammatic element into a 

simplified version in WM is part of human perceptual 

machinery and is needed as an adjunct to biSoar as well. In 

this paper, we refer to this attention-controlled mechanism 

as the simplification mechanism. This mechanism is 

implemented as an Attend method that is part of any routine 

that interacts with an object in the external world. The 

Attend method produces the equivalent of the product of 

attention on aspects of the diagrammatic object. One way to 

think of Attend is that it is as if parts of the diagrammatic 

object on which attention is not focused is at a very low 

resolution resulting in the loss of many of the finer details 

while still preserving the general spatiality of the object. Fig 

Working Memory: 

Block (A), Block (B), Block 

(C), On (A,B), On (B,C) 

 

Selected Operator:  None 

(a) (b) 

Fig 1: (a)  Blocks World and (b) Soar’s representation of 

the world in (a). 

C 

B 

A 
Working Memory: 

Block (A), Block (B), Block 

(C), On (A,B), On (B,C) 

 

Selected Operator:  None 

Fig 2: biSoar representation of the world shown in 1(a) 

2



3(b) is the output of the Attend operator on the curve in 3(a) 

where the attention has been focused on just the beginning 

and end points. Fig 3(d) is the result of Attend on Fig 3(c) 

where the attention has been focused on the region’s broad 

shape. The result of Attend does depend upon the 

requirements of the task because that determines the aspects 

to which attention was paid to in the diagram. But 

simplification in this manner is architectural because it 

happens irrespective of the task or the domain. 

Bimodal LTM 

There are two questions that have to be answered in an 

implementation of Long Term Memory (LTM) – how are 

elements put into LTM (i.e., learned) and how are elements 

retrieved from LTM. In the case of Soar the answers to 

these two questions are chunking for learning and a 

matching process that matches the LHS of a LTM rule to 

WM for retrieval.  

Chunking - Chunking simply transfers the relevant contents 

of WM to LTM. In the case of biSoar, chunking transfers to 

LTM the simplified versions of the relevant external 

diagrammatic elements present in WM. 
Matching - In the case of Soar the retrieval process is 

straightforward because matching (or even partial matching 

when variables are present) symbols and symbol structures 

to each other is an exact process; either they match or they 

don’t.  When the cognitive state is bimodal, WM has 

metrical elements in addition to symbols. Matching metrical 

elements to each other (say a curve to another curve) is not 

an exact process since two metrical elements are unlikely to 

be exactly the same. Matching metrical elements would 

require a different approach like a non-exact process that 

can match roughly similar elements in a domain-

independent manner (since the matching should be 

architectural). It may also turn out that only calls to 

perceptual routines are present in LTM while matching 

metrical elements is a more low-level cognitive process 

present only in stimulus-response behavior. For now we 

take the latter approach where the LHS of biSoar rules 

contain only perceptual calls to the DRS that return symbol 

structures in addition to symbol structures. We think that 

this approach can account for many of the diagrammatic 

learning capabilities that are required in models of cognition 

except in cases where goal specifications contain irreducible 

spatial components, such as might be the case in  the 

problem solving of a sculptor. The RHS of a biSoar rule can 

modify either symbolic or diagrammatic parts of WM.   

Representation of Large-Scale Space 

In 1948, Tolman (1948) proposed that animals have an 

internal representation of large-scale space which he called 

the cognitive map. In 1960, Lynch (1960) produced his 

seminal study of the environment in which he identified 

Landmarks, routes, nodes, districts and edges as the features 

that are important in building a cognitive map. Since then 

there have been a number of models, both computational 

and cognitive, that have been proposed to account for a 

number of phenomena associated with the representation of 

space. A variety of behavioral/psychological studies have 

also aided the development of these models by providing a 

set of characteristics or behaviors that a model should 

posses.  

We believe the use of a general-purpose cognitive 

architecture such as biSoar can be beneficial in the area of 

modeling spatial phenomena for three reasons – First, it 

restricts spatial information to be learned, represented and 

used within the constraints of a general cognitive 

architecture. Second, it allows the modeler to be flexible in 

the strategies and knowledge that they use to model 

phenomena. Third, it is easier to identify the nature of the 

explanation (architectural vs. content) because these are 

explicitly distinguished in such a framework. We use biSoar 

to model two commonly observed phenomena in spatial 

reasoning - simplification in recalled routes and distortions 

in the recall of relations between geographic entities.  

Sources of Map Knowledge 

Knowledge of large-scale space can come from multiple 

sources. The most common, of course, being personal 

experience of navigation in space. We automatically build 

representations of our environment as we traverse them. A 

second, and important, source is maps. Our knowledge of 

large environments, such as the spatial extent and 

geographical locations of the fifty states, originated from 

our use of maps. Representations, originating from either 

source, are combined and modified in various ways during 

problem solving for various purposes. In this paper, we 

focus on phenomena involving maps.   

The Space of Explanations 

When models are implemented in a cognitive architecture as 

possible explanations for a phenomenon, the behavior of 

interest can arise from one, or a combination of, two 

influences:– Architectural and Content where Content can 

be further sub-divided into Strategy and Knowledge.  

An architectural explanation appeals to the specifics of 

the architecture of the agent to explain the phenomenon of 

interest. The phenomenon is produced as the result of a 

process that is automatic and arises out of the architecture, 

not a deliberative decision by the agent.  A phenomenon can 

also emerge as a result of a particular strategy employed by 

the agent to solve the given task. This is different from an 

Fig 3: (b) and (d) show the result of applying the visualize 

operator to (a) and (c) respectively 

(a) (b) 

(c) (d) 
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architectural explanation because the phenomenon is unique 

to the current task. An agent’s behavior can also be seen as 

arising from its knowledge (or lack thereof) of the task 

domain and the world. During problem solving, an agent 

may learn to solve the problem one way due to the 

knowledge it has at the time. Given more knowledge, the 

agent might have learned to solve the problem in a different 

way resulting in different observable phenomena. 

In general, a phenomenon can have more than one 

explanation and it is difficult for an outside observer to 

decide if the reason for the phenomenon is architectural, 

strategic or knowledge related without further 

experimentation. Also, due to the number of free variables 

and tunable parameters in cognitive architectures, and the 

fact that they are essentially Turing machines, the ability (or 

inability) to build a model in the architecture cannot be 

taken as the final word on whether the explanation offered 

by the model is correct (or incorrect). Under certain 

circumstances, however, the inability to build a model in 

this framework can be taken as a sign that the approach (or 

strategy) is flawed. More importantly, building cognitive 

models help us identify the possible sources of a 

phenomenon. This can in turn be used to develop a series of 

controlled experiments to decide between the sources. 

Task 1 – Simplification in Route Recall 

Curves recalled from spatial memories, whether they are 

rivers in Paris or routes by cab drivers rarely preserve their 

exact curvature or their orientation to each other and to 

other landmarks (Tversky, 2000).  Details in a curve such as 

the actual angles at intersections are lost and route curvature 

is usually straightened. In this paper, we refer to this 

phenomenon as simplification. We explore how this 

phenomenon can arise from the architectural features of 

biSoar. In particular, we explore whether the chunking of 

the simplified diagram in WM (represent only that to which 

attention was paid) is enough to explain the emergence of 

simplification in recalled maps.  

Model 1 

The agent (referred to as Simp1) is given the task of finding 

various routes in the map shown in Fig 4. Fig 5 shows the 

result of route-finding for certain locations from the map. 

The route-finding strategy used is a simple one in which the 

agent finds the routes on which the current point lies, finds 

the next point along all possible directions, calculates the 

Euclidean distance to the destination from each point and 

picks the one with the lowest value. The critical step in the 
strategy is the step where, once the next point has been 

selected, the agent notes the route from the current point to 

the selected next point paying attention to only the starting 

and ending points of the route. This results in a 

representation of the route that is simplified according to the 

attentional demands of the task, in WM. When Soar’s 

chunking mechanism learns from the resolution of the 

sugboal, it learns this simplified representation from WM. 

Model 2  

A new agent (Simp2) is created and given the same task as 

Simp1. Simp2’s strategy is the same as Simp1’s except that 

Simp2 chooses to pay attention to only the locations of 

important intersections and the names of the routes they lie 

on. During recall, Simp2 recalls these locations and 

connects them using straight lines. Fig 6 shows routes 

recalled between the same locations as in Fig 5. 

Discussion 

The two models (represented by the two agents Simp1 and 

Simp2) indicate two different explanations for the 

simplification phenomenon. The simplified routes recalled 

by Simp1 are the result of an architectural feature of biSoar 

– bimodal chunking. Depending on which aspects of the 

routes that attention was paid to, Simp1 chunks a simplified 

version of the original route. Simp2 on the other hand, does 

not even bother trying to chunk the spatiality of the routes. 

Instead, it learns the locations of important intersections and 

the routes they are on and connects them with straight lines 

during recall. As mentioned before, the ability to create 

these models does not automatically suggest that either (or 

both) explanation is the definitive source of the 

simplification phenomenon. There could be other as yet 

unwritten models that might turn out to be, in fact, right. 

However, these models do suggest that one variable to 

control for is whether subjects are recalling only locations 

or both locations and routes. One way to do this would be to 

R3 

R2 

R1 

R4 
R5 

Fig 4: The map for models Simp1 and Simp2. Routes are 

found from P1 to P2, P4 to R1R3-1 and R1R4 to R1R5 

R1 

R2 

R1 

R4 

R2 

R5 

R1 

R2 

Fig 5: Routes found by Simp1 from the map in Fig 4. (a) R1R4 

to R1R5. (b) P4 to R1R3-1. (c) P1 to P2 

(a) (b) 

(c) 
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have a particularly attention grabbing feature on one of the 

curves (maybe a loop or sudden change in direction).  

Task 2 – Distortion in Geographic Recall 

According to Stevens and Coupe (1978), when subjects 

were asked about the relation between San-Diego and Reno, 

most answered that San-Diego was to the west of Reno even 

though in reality, Reno is west of San Diego. They go on to 

suggest that this result indicated two things – one, that the 

cognitive map was unlikely to be a faithful metrical 

representation and two, that the representation was 

hierarchical in nature, the hypothesis being that since the 

subjects did not have any information about the relationship 

between SD and Reno they went up the hierarchy and 

compared the containing regions – California and Nevada. 

Since California is to the West of Nevada, it followed that 

SD was to the west of Reno.  

We built three different models of problem solving for 

this task. Model 1 is of an agent that has a single simplified 

metrical representation of California and Nevada in LTM 

(and WM) like in Fig 7 (a). In this particular example San 

Diego to the West of Reno, but an agent that paid particular 

attention to these cities may have a metrical representation 

with the cities in their correct relationship to each other. 

Model 2 has symbolic information in LTM that San Diego 

is South of San Francisco and that Reno is East of San 

Francisco. It constructs a diagram (Figure 7(b)) in WM 

using this information and extracts the (wrong) answer from 

the diagram. Model 3 has symbolic information in LTM that 

San Diego is in California, Reno in Nevada and that 

California is to the West of Nevada. This information is 

used to construct a diagram (Figure 7(c)) and the (wrong) 

answer extracted from it.  

Discussion 

The variety of models in Task 2 exhibit biSoar’s flexibility 

in modeling spatial phenomena. Each model provides a 

different explanation and, in essence, suggests a separate 

control variable. For example, in Model 2, the explanation is 

that subjects use a specific strategy – that of comparing the 

location of the target cities to a common city and inferring 

the relationship from that knowledge. This strategy can be 

controlled for by using artificial maps (as Stevens and 

Coupe do in their original paper) that do not provide this 

extra information. Thus, models in biSoar have a 

straightforward mapping to issues to control for and 

building these models provides a natural way of discovering 

these issues. Of course, the experimenter is free to simply 

think of various explanations without modeling in biSoar, 

but the advantage is that it provides additional constraints 

and restricts the experimenter to those explanations that are 

cognitively possible. The disadvantage is that we do not 

know of any systematic way of generating these 

models/variables. Certain heuristics such as “look for at 

least one explanation from each possibility in the 

explanation space” can suggest lines along which the model 

builder/experimenter may approach the problem.  

Related Work 

Soar – Lathrop and Laird (2006) report on progress in their 

work on expanding Soar to include a perceptual 

representation and reasoning system. There is at least one 

important theoretical distinction between their work and 

ours. Our work is based on the assumption that all aspects of 

the agent’s architecture including the cognitive state, 

memory, learning etc, are multi-modal and that during 

problem solving Soar can seamlessly access representations 

across all modalities. Lathrop and Laird take a different 

approach, one in which the perceptual system is part of the 

total cognitive system, but outside of high-level cognition. 

This means that perceptual representations can be accessed 

only through the input/output system and access to them is 

restricted to the input and output phases of Soar’s decision 

cycle. In practice, the implementations are very similar and 

we believe their system can model most of what we do, 

including the visualization of information and subsequent 

extraction of the desired spatial relationship as in Model 3. 

However, they do not as yet have a theory of automatic 

learning (what we refer to as bimodal chunking) for the 

visual part, which provides the basis for an architectural 

explanation of phenomena such as simplification. 

ACT-R – ACT-R or Adaptive Control of Thought – 

Rational (Anderson et al., 2004) is a general cognitive 

architecture whose goal is to model all aspects of high-level 

Fig 6: Routes found by Simp2 from the map in Fig 4. (a) 

R1R4 to R1R5. (b) P4 to R1R3-1. (c) P1 to P2 

R4 

R2 

R5 

R1 
R2 

R1 

R2 

R1 
(a) (b) 

(c) 

San-Diego 

Reno C 
N 

Fig 7:(a) Map of SW U.S. in LTM (& WM) of Model 1. (b) 

& (c) are diagrams in WM constructed by Models 2 & 3 

(a) (b) 

(c) 
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human cognitive activity. However, there are no reports on 

any work in augmenting ACT-R’s cognitive state to be 

multi-modal. Certain related work such as ACT-R/S (S for 

spatial) (Harrison & Schunn, 2002) augment ACT-R with 

representations for immediate space and object shapes for 

manipulation but there is no claim to a diagrammatic 

component that unifies experience whether from memory or 

perception.  

Other Work – There have been a number of non-cognitive 

architecture oriented proposals for spatial representation and 

learning, notably the Spatial Semantic Hierarchy or SSH 

(Kuipers, 2000). The SSH is a multi-layered theory, that 

represents its knowledge of space at multiple levels – 

control, causal, topological and metrical, with the 

information at one level building on what was learned at the 

next lower level (except in the case of the metrical level.) In 

its current avatar, biSoar encompasses the topological and 

metrical levels of SSH. The representational and problem 

solving capabilities of biSoar and SSH with regards to 

topological information are similar. The real difference is at 

the metrical level. SSH proposes a few ways in which 2-D 

metric information may be represented but biSoar, and in 

particular, DRS provide a concrete representational format 

for metric information. Further, biSoar creates, modifies and 

inspects this information during problem solving making 

DRS an integral part of the problem solving process.  

Other models include Absolute Space Representation 

(ASR) (Jefferies & Yeap, 2001) and MIRAGE (Barkowsky, 

2001). Both combine models of representation with a 

metrical representation that has aspects of DRS.  

Since SSH, ASR and MIRAGE are all intended to model 

spatial representation and reasoning, they lack the flexibility 

of a general cognitive architecture that biSoar provides.  

Concluding Remarks 

We have presented a proposal for bimodal learning within 

the existing learning mechanism in Soar, chunking, and 

shown how building models of spatial representation and 

reasoning within this architecture can help in the design of 

experiments. We believe that a bimodal architecture 

augmented with bimodal chunking can be an useful vehicle 

in exploring the nature of the human cognitive map.  

Two additional details need to be satisfactorily addressed 

for a measure of closure in this direction of research. The 

first relates to biSoar's rule matching process mentioned 

earlier, where elements in LTM rules are matched against 

structures in WM. It is not yet clear how to match diagrams 

on the LHS of rules to the diagrammatic part of WM. 

Second, the processes involved in composing diagrammatic 

elements from different LTM rules in WM according to the 

needs of the current goal. For example, subjects may 

remember the border of Texas using multiple diagrams - 

one consisting of a simplified overall view, another 

representing the "top hat" part and a third representing the 

coastline. During recall, the diagram is constructed by 

integrating these overlapping or locally inconsistent images 

with the aid of task-specific knowledge. 

We believe that the idea of simplification that is 

presented extends naturally to other memories such as 

semantic and episodic memories. Further, even though it is 

presented in the context of Soar, the general ideas are likely 

to be applicable to other symbolic architectures like ACT-R. 
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