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Abstract

Computer modeling is gaining popularity in the study of sys-
tems whose underlying processes are difficult to observe and
measure directly, or their controlled experimentation is not an
option. Since real-world phenomena, for instance psychologi-
cal or ecological, are often hugely complicated, and the models
trying to capture their essence relatively complex, validation of
the models and selection among the candidates is a challenge.
Furthermore, not all computer models are used merely for ex-
planatory purposes or to test theories, but some are used to sup-
port decision making. Therefore, it is critical which model the
decision makers put their confidence on. In this article I dis-
cuss a pragmatic method for selecting between classes of mod-
els that are designed to increase understanding in the most sig-
nificant single factor behind the global climate change, namely
human land-use. My focus is on agent-based land-use and
land-cover change models, and particularly models of learn-
ing and decision making. The proposed method fills the void
left by traditional statistical model selection methods that are
not applicable due to the nature of the model class of interest.

Keywords: Agent-based modeling; model selection; mini-
mum description length principle; decision making.

Introduction

These days Earth’s land-cover is going through changes at
faster pace than ever, and most of these changes are hu-
man initiated. Pervasive land-use and consequent land-cover
changes, occurring in different time scales and spatial extent,
have had and continually have adverse impact on local, re-
gional and global level by destroying natural ecosystems and
causing irreversible changes in global climate. In order to
understand the impact land-use change has on ecological sys-
tems, not only its consequences but also the underlying mech-
anisms and forces driving land-use decisions need to be ex-
plained.

Empirical measurements are not sufficient to understand
the combination of the factors behind the change (Parker,
Manson, Janssen, Hoffman, & Deadman, 2003). On the
other hand, experimental manipulation of landscapes is of-
ten impractical if not impossible (Baker, 1989). Combined
with other methods, for instance household surveys and anal-
ysis of census data, computer models offer a relatively ef-
fortless method for testing alternative theories and formulat-
ing new hypotheses, analyzing implications of environmen-
tal policies, predicting changes and exploring interactions be-
tween, for instance, social, psychological, economical, bio-
ecological, and even political and historical factors behind
land-use.

A number of different techniques have been used in mod-
eling the land-use and land-cover change (LUCC) (Parker
et al.,, 2003), for instance equation-based models, logistic
regression models based on suitability maps (Schneider &
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Pontius, 2001), system dynamic models, statistical methods,
symbolic or rule-based systems combined with qualitative ex-
pert knowledge, and evolutionary models, such as genetic al-
gorithms. Perhaps perhaps the most common methods are
cellular automata (CA) and Markov chain (MC) models, or
combinations of them (Brown, Riolo, Robinson, North, &
Rand, 2005; Jenerette & Wu, 2001; Parker et al., 2003).

Most of the early modeling efforts have concentrated in
biophysical processes rather than human actions (Itami &
Gimblett, 2001), even if the majority of the land-use change
is initiated by humans. On the other hand, mathematical and
statistical methods ignore the spatial aspect of LUCC (Man-
son, 2000). Therefore, in this article I consider a type of
models that still is an emerging approach, namely a combi-
nation of a cellular model representing the biophysical land-
scape, and an agent-based component representing the de-
cision makers, either individuals, households or institutions.
Land-use is then what links the agent to the landscape (Parker
et al., 2003; Evans, Sun, & Kelley, 2006).

Since computer models are often used to inform decision
makers in the process of designing environmental programs
and policies, and the direct or indirect consequences of these
decisions may be consequential, models’ plausibility and ad-
equacy to the task needs to be rigorously assessed, i.e., it is
pivotal to have a right model to the task. Models may generate
seemingly plausible outcomes even if the generating mecha-
nism is quite arbitrary. On the other hand, proper tweaking
of parameter values may make them produce any results the
decision maker would like to see. The lack of adequate tools
often makes it difficult to compare and choose between al-
ternative models on a fair basis without relying on their face
value, i.e., how well the model behavior confirms to the deci-
sion maker’s ideals. Therefore, it is important that the choice
of the model that decision makers put their confidence on is
based on sound principles. In other words, the evaluation,
validation and selection methods are as crucial as the models
themselves.

Several different model selection methods, such as
Akaike’s Information Criterion (AIC) (Akaike, 1973),
Bayesian Information Criterion (BIC) (Schwarz, 1978),

and the Minimum Description Length (MDL) principle
(Griinwald, 1998), particularly its enhanced version Nor-
malized Maximum Likelihood (NML) distribution (Rissanen,
1999), apply to probabilistic model classes. However, LUCC
models do not lend themselves easily to probabilistic inter-
pretation but can be best characterized as complex adaptive
systems (CAS). Moreover, land-use change data is not al-
ways readily available in quantities warranting use of cross-



validation or bootstrap methods (Lendasse, Wertz, & Verley-
sen, 2003).

In this article I study a model selection method based on
a practical interpretation of the MDL principle. In the next
chapter I review the agent-based framework for LUCC mod-
eling. Discussion on the model selection criterion follows.
The criterion was originally introduced and extensively eval-
uated with a set of artificial data in Laine (2006). Here its
properties are addressed in the context of real-world data.

Agent-based Models of Land-use and
Land-cover Change

Two fundamental ideas behind agent-based models (ABMs)
are: first, the decision making is distributed among au-
tonomous actors, which either operate individually or may
communicate and cooperate, and secondly, the heterogeneity
of actors is captured by characteristics that may be unique or
shared by agents. The focus is on the macro-level patterns in
collective behavior emerging from agents’ individual charac-
teristics and micro-level phenomena, such as local behavior
and interaction between agents.

ABMs come in multiple disguises but here I am particu-
larly interested in models in which agents inhabit a simulated
environment, so that they are ‘physically’ tied to a specific
location and have a fixed neighborhood. The models of land-
use and land-cover change fall into this category of models.

The agent-based approach has been used to study various
land cover change related processes in several areas of the
world: for instance agricultural land-use decision making by
colonist households in Brazilian Amazon (Deadman, Robin-
son, Moran, & Brondizio, 2004), migration and deforestation
in Philippines (Huigen, 2004), agricultural household land-
use decision making in the US Midwest (Evans & Kelley,
2004; Laine & Busemeyer, 2004), reforestation in the Yu-
catan peninsula of Mexico (Manson, 2000), and ex-urban de-
velopment in Maryland, US (Irwin & Bockstael, 2002).

Land-use Framework

The conceptual assumptions behind the land-use framework
were adapted from Cioffi-Revilla & Gotts (2003). The most
important ones are listed below:

1. The landscape is an abstract rectangular area divided into
cells of equal size, which serve as the decision-making
units.

2. Each cell has various biophysical properties that remain
constant over time.

3. The main actors in the model are autonomous agents. They
have a potentially infinite existence, although they can per-
ish. All agents are of the same type (e.g., households), but
their individual characteristics may vary.

4. Agents control a region, called parcel, which is a set of
adjacent cells on the two-dimensional landscape. Agents
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Figure 1: Main components of the land-use framework.

have exclusive access to this region, and there is no prop-
erty exchange between the agents.

5. Agents make resource allocation decisions on their parcel

in order to satisfy their goals. Agents have a limited set
of available actions, i.e., options to which to allocate their
resources. Agent actions change the use of the cells on
their parcel.

6. All agents have the same learning and decision strategy.

7. The global environment consists of external conditions that

are common to all parcels. These conditions may change
over time.

The architecture of the system is depicted in Figure 1.

Decision Models

At each decision round agents observe the state of their land,
and make a decision about its use in the next round. They
make the decision for each cell separately; they either decide
to keep the old use or select another use from the given alter-
natives. After making the decision for each cell, they observe
the payoff earned from different uses. This payoff is then
used as a basis for the next decision.

In this study I am primarily interested in agents’ learning
and decision processes. Thus, the alternative model classes in
selection consist of different decision and learning strategies.
In addition to a random and a null model (which never makes
any changes), other model classes chosen for the study con-
stitute a set of relatively straightforward reinforcement-based
strategies, familiar from psychology and economics litera-
ture. These are a model that makes locally greedy changes,
Q-learner (Watkins & Dayan, 1992), and two versions of
the experience-weighted attraction (EWA) model (Camerer
& Ho, 1999): one that only considers its individual payoff



(iEWA), and one that also takes its neighbors’ payoff into ac-
count (SEWA).

Model Selection Framework

Characteristic to the class of LUCC models, as opposed to
more traditional cognitive models, is that they are often vali-
dated against land-use data instead of comparing the model’s
behavior to experimental human data. The modeling task then
is to find out what kind of decision processes may have gen-
erated the observed land-use change patterns. This indirect
derivation of agent behavior from the landscape poses another
range of challenges to the validation process. Yet another val-
idation technique emerging in LUCC modeling is field exper-
iments, in which the researcher takes her laboratory to the
stakeholders and makes them play a role game that mimics
the real-world decision making context (Olivier Barreteau &
Attonaty, 2001; Carpenter, Harrison, & List, 2005).

Challenges to the Model Selection Criterion

So, which method should be used to select between agent-
based LUCC models? There is no straightforward answer,
but several inherent characteristics of the modeling domain
needs to be taken into consideration. These challenges, more
thoroughly discussed in Laine (2006), are reviewed next.

First, with the exception of some simple cases', it is dan-
gerous to assume that some ‘true’ model exists, and design a
system so that it tries to approximate this ‘truth’. After all,
model parameters and functions are not inherent properties
of the system we want to model but theoretical constructs we
use to describe the system. We impose the properties to the
system. Again, there is no way to verify that a ‘true model’
exists, and consequently the task of estimating something that
does not exist becomes quite impossible.

Secondly, existing model selection methods most com-
monly penalize for model complexity?, i.e., its propensity
to overfit, by taking the number of free parameters into ac-
count. A typical LUCC model is a collection of multiple au-
tonomous components and processes that interact at multiple
spatial levels and temporal scales. Thus, free parameters are
not equally easy to identify in this class of models as they are
in probabilistic or polynomial model classes.

Thirdly, the data available for the validation of CAS are not
plenty and always not random samples. Sometimes it is even
hard to make a distinction between the data and the model.

These considerations make it particularly clear that most
of existing model selection methods, for instance penalized
maximum likelihood methods, such as AIC or BIC, are inap-
plicable. Nevertheless, the MDL principle, and especially its
refined formulation, the NML distribution, have some nice

ISimple cases such as the model of the average height of six
graders, or presidential candidate’s approval rate.

ZFollowing the terminology adopted in Laine (2006), I substitute
the term ‘flexibility’ for ‘complexity’ for two reasons; first, the latter
is heavily burdened, meaning different things for different people,
and secondly, the LUCC model class and the modeled domain are
inherently complex systems, so it would be misleading to imply that
complexity is necessarily problematic.
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theoretical properties, but for many practically interesting
model classes they cannot be calculated (Rissanen, 1999). Fi-
nally, in many cases the scarcity of data does not allow for
adequate generalization tests.

Normalized Minimum Error Principle

Here I propose a selection criterion that overcomes some of
these challenges. It makes the following assumptions:

e No ‘true’ model exists.

e Measure of flexibility is based on the model’s performance
with respect to data, not some predetermined structural

property.

o A model itself does not determine its fit to data, but an error
function is required.

While the last two points address the trade-off between
goodness-of-fit and the model class flexibility, the first one
takes a more ideological standpoint on what is tried to achieve
with the model selection criterion, namely that the goal is to
find the best model to explain the data rather than a model that
approximates some ‘true’ state of the world. We need to esti-
mate the model’s fit in order to quantify how well it captures
the essential properties of the data.

The fit is not enough, since too flexible model is prone
to overfit. Two-part code, also called a crude version of
the MDL principle trades off flexibility to superior fit by
choosing the model H in class ; that minimizes the sum
L(D|H,M;) + L(H|M;), where L(-) is the description length
in bits. The underlying idea is that regularities in the data
can be used to compress it, and the best model to explain
the data is one that compresses the data most efficiently. In
other words, the model using the least number of bits in de-
scribing the data most likely captures its underlying regulari-
ties. These regularities can then be used to gain insight on the
structures and processes that generated the data.

The two-part code formulation still uses the maximum like-
lihood parameters to account for the model class flexibility
(the second term in equation). We are not interested in the
best-fitting model, but a well-fitting model in a class that is
not overly flexible. In other words, we want to find a model
that can reveal interesting patterns in the data, not a model
that captures mere noise. This is where the error function
comes into play. Next, I will present a method how to treat
the trade-off between fit and flexibility adequately using er-
rors.

If we want to explain an observed data sample x" from the
set of all data samples X" with the help of the model class M;,
ideally we want 9 to

1. contain a model H that makes a small error on x", and

2. contain models H' that do not make small errors on most
y" belonging to X".



This can be achieved by minimizing the following ratio,
called Normalized Minimum Error (NME) (Laine, 2006):

NME(x", ;) = ER([B(x", 94)
o _ZyneanR(y”|é(y”7M))’

where ER(-) is the error model class M; makes on x" using
the parameter values 8(x") that minimize the error, and y" are
‘all possible data samples’. By normalizing each error this
way we obtain a relative measure for fit and flexibility, which
we can use as a model selection criterion.

The MDL principle is a general method of doing inductive
inference, and the NME criterion is one way of implement-
ing it. Yet another interpretation of the principle is the NML
distribution, which selects a model class M; whose universal
model H, not necessarily in M;, minimizes the worst case re-
gret. Regret of model H with respect to class 9V; is the extra
number of bits that are required to describe the data sample x”
using H instead of using x"’s maximum likelihood model in
M;. H is called a universal model, since it tries to mimic all
models in the class M;. It has been proved (Rissanen, 1999)
that the NML criterion defines a unique model that minimizes
the maximum regret.

The NME criterion uses errors as measure of fit, whereas
the NML criterion uses probabilities. The term in the denom-
inator is the most crucial aspect of both criteria, since it ac-
counts for their ability to penalize for excess flexibility. The
relationship between these two was demonstrated in Laine
(2006).

Evaluation of the Criterion

The proposed criterion has been extensively tested with artifi-
cially generated data in Laine (2006). In this section I discuss
some of its properties in the light of a representative case of
real land-cover change data.

Review of Experiments with Artificial Data

Acquisition of multiple samples of accurate land-cover data
with a good resolution is difficult or at least time consuming.
Therefore, the preliminary experiments were conducted with
data generated by an artificial system, i.e., the same model
classes that were used as candidate models were also used
as data generating classes. This is a common practice when
comparing multiple model selection methods (Busemeyer &
Wang, 2000; Pitt, Myung, & Zhang, 2002). The experiments
were run in several conditions by varying the biophysical and
agent characteristics, and the error function.
The main findings in the first set of experiments are:

1. The criterion tends to select the generating class if it is
among the candidates.

2. The criterion predominantly selects model classes with
fewer free parameters, and never chooses a class more flex-
ible than the generating class.

3. For no data set it strongly prefers any single class, but the
selected model depends on the error function.
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Case-study

The data used in the second set of experiments comes from
the state of Indiana in the Midwestern United States. The for-
est cover of the state of Indiana has undergone drastic changes
during the last couple of hundred years; from almost 100%
of the state being forest before the first settlers entered and
cleared the land for agricultural production, down to 5-10%
in the early 1900’s, and then up to the current day’s 20%,
which mostly resides on the rolling hills of the South-central
part of the state.

This study concentrates on deforestation and reforestation
between 1940 and 1998 in two rural townships, Indian Creek
and Van Buren, both about 10km x 10km in size. The avail-
able data indicates that the forest cover has undergone a sig-
nificant increase within the first 15 years of the study period
and after that a modest but gradual increase. The overall in-
crease of forest cover is around 20% in both townships. The
change has not been unidirectional nor uniform; for instance,
both deforestation and afforestation can be seen in the both
townships, as pictured in Figure 2.

Data

Data used in these experiments consists of land-cover maps
covering the study period, slope and soil data, and ownership
data. In addition to these, economic data (prices and wages),
and forest growth data were imported as exogenous forces.
The land-cover is represented as a grid of cells of size 50m x
50m that records the land-use for each cell. Ownership, slope,
and soil data is recorded per cell in similar grids.

Experimental Conditions
The experiments were divided into a number of conditions by

varying:

1. Agent characteristics Homogeneous vs. heterogeneous
agents by household size, initial wealth and the number of
neighbors.

2. Fitting method Landscape level vs. individual parcel level

fit of parameters.

3. Error function (1) Mean absolute difference, (2) composi-

tion, (3) edge length, and (4) mean patch size. The first one
measures the point by point difference between two land-
scapes, whereas the latter three calculate a squared differ-
ence between forest percentages, forest border lengths or
mean forest patch sizes of two landscapes.

Results

The proposed model selection criterion cannot be analyzed
in isolation of the error function it uses. The current study
uses four different error functions three of which are so called
summary statistics; they characterize a single aspect of the
land-cover, whereas the fourth one, mean absolute difference,
is a location by location measure. This metric uses more in-
formation of the landscapes than the other three that do not
consider location.
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Figure 2: Deforestation, afforestation and stable forest cover in Indian Creek (left) and Van Buren (right) townships from 1940

to 1998.
Indian Creek Van Buren Indian Creek Van Buren
Error: | Selected NME (u) Selected NME (u) Error: | Selected NME (u) Selected  NME (u)
€Y SEWA (¢c) .25 (.413) random  .499 (.588) €)) SEWA (i) .193(.249) | iEWA (c¢) .59 (.752)
2) iEWA (¢) .05(415) Q(©) .12 (.585) 2) greedy (c) .04 (.180) Q) .39 (.820)
3) sEWA (i) .35(.463) | SEWA (¢) .05 (.537) 3) Q@ 154 (.205) | SEWA (¢) .67 (.795)
@ SEWA (¢c) .103(.406) | iIEWA (¢) .49 (.594) @) greedy (i) .674 (.778) Q) .03 (.222)

Table 1: Selected model classes and their NME scores for
homogeneous agents with landscape level fit (mean scores in
parenthesis, c=collectively fitted, i=individually fitted).

Summary statistics are supposedly easier to fit, since there
are several possible ways to get them right, for instance, sev-
eral different land-cover configurations may have the same
composition. Consequently, there are fewer ways of getting
them wrong, too. However, there are very few ways, actually
only one, of getting the location-by-location comparison cor-
rect, and a considerable number of ways of getting it wrong.

The selected models together with the respective NME
scores and their means are presented in Tables 1 and 2 for
homogeneous and heterogeneous agents, respectively, using
different error functions. The number of decimal points is
determined by how many decimals are needed to distinguish
between the NME scores.

For homogeneous agents only one time out of eight is the
individually fitted model class selected, whereas for hetero-
geneous agents three times out of eight. This is roughly what
can be expected; when there is more variation in the agent
population, there is potentially something to be gained by fit-
ting the agents individually. In other words, the benefit at-
tained in better fit outweighs the cost in extra flexibility.

In general, the selection criterion selects simpler mod-
els, i.e., collectively fitted classes, for homogeneous agents
with both landscapes. However, with heterogeneous agents
it predominantly selects individually fitted classes for Indian
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Table 2: Selected model classes and their NME scores for het-
erogeneous agents with parcel level fit (mean scores in paren-
thesis, c=collectively fitted, i=individually fitted)).

Creek, but collectively fitted for Van Buren. This indicates
that either agent heterogeneity plays a bigger role in Indian
Creek and some of the models classes are able to capture it,
or the larger number of agents in Van Buren is hard to fit,
and the selection criterion resorts to making a safe decision
of selecting simpler model classes.

Finally, null and random model classes are seldom se-
lected. This supports the fact that the real landscapes are dy-
namic, and undergo very characteristic changes which cannot
be captured either by a chaotic or a stationary process.

Discussion and Future Work

The literature provides us with evidence that, somewhat
counter-intuitively, location-by-location comparison is not
that difficult after all. Pontius er al. (2004) argue that not
a single model has been reported that is able to predict the
location of land-cover changes better than a null model, a
model that predicts no change. The proposed selection cri-
terion is looking for a model class that is simple and contains
a model that fits the data well. Since the changes over time
in the real landscapes are usually small, a model that predicts
few changes should perform well. Why does not the NME
criterion select the null model?

In the current experiments ‘all possible data’ was replaced




by ‘all available data’ for practical reasons. This decision has
detrimental consequences. For instance, even if both Indiana
landscapes exhibit some idiosyncrasies, nevertheless they can
be assumed to be generated by ‘the same process’; they are
physically linked, subject to the same weather conditions and
under the same county rules.

However, the NME criterion penalizes a model class, pos-
sibly the null model class, that fits well both of these data
samples, as if it fitted ‘all data’ well, and never chooses the
same model class for both landscapes. There is no outstand-
ing solution to this dilemma yet. Thus, the very first theo-
retical and practical challenge is to circumscribe the actual
meaning of ‘all possible data’ in order to fully understand the
relation between theoretical underpinnings of the proposed
criterion and the underlying practical issues inherent to the
modeled domain.

Finally, although a common agreement in the field of
LUCC modeling is that model validation is crucial, this study
represents one of the first attempts to introduce model selec-
tion methodology to this complex spatial domain. The goal of
model selection is to find a model that helps us gain insight
into the processes underlying the — natural, psychological
or economic — phenomenon of interest. Although the pro-
posed criterion penalizes for excess complexity, simplicity is
not the end in itself, but prevents us from becoming overcon-
fident in more complex models when there is not enough data
to support them. On the other hand, a considerable reflection
should be involved when choosing the candidate models: too
simplistic models to start with do not bring us any closer to
understanding complex natural phenomena.
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