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Abstract 

Response time (RT) and response accuracy are two of the 
most commonly used performance measures in cognitive 
psychology and studies of cognitive architecture. This paper 
examines the relationship and establishes a bridge between 
two currently separated groups of mathematical models of 
RT: models of RT and mental architecture and models of RT 
and accuracy. The bridge, called QN-RMD, is established by 
extending the queueing network (QN) architecture model of 
RT (Liu, 1996), which has successfully integrated a large 
number of RT-architecture models as special cases, and by 
representing the state changes in a mental QN as Reflected 
Multidimensional Diffusions (RMD). More specifically, the 
“state” of a K-server QN mental architecture is represented as 
a reflected diffusion space of K dimensions, in which 
“reflecting barriers” represent and reveal architectural 
constraints, while “absorbing barriers” represent accuracy-
related response criteria, analogous to diffusion models of RT. 
This approach moves beyond the current 1-D diffusion 
models that have successfully accounted for but are limited to 
single-stage fast responses. 1-D diffusions can only represent 
the “state” of a single server system in stochastic information 
accumulation, not multi-server architectures. This approach 
extends the architectural RT models to account for accuracy, 
brings the diffusion/accumulator models to the architectural 
domain, and unifies RT/accuracy/mental architecture 
modeling in a larger framework. 

Introduction 
Response time (RT) is arguably the most commonly used 
performance measure in cognitive psychology research; it is 
regarded as a reflection of the dynamic activities of an 
underlying mental architecture that transforms stimulus into 
response; and it is known to have a close relationship with 
response accuracy. 

The large majority of existing mathematical models of RT 
can be classified into two groups—models of RT and 
mental architecture and models of RT and response 
accuracy. The first group of models (called RT-architecture 
models in this paper) focuses on using RT to infer the 
possible temporal and architectural structures of the 
underlying mental system that transforms stimulus into 
response. This paper uses “architecture” to refer to “macro-
architecture” of processing stages. “Micro-architecture” 
neural network models are important but beyond of the 
scope of this paper. The second group of models (the large 
majority of which belong to the family of sequential 
sampling or stochastic information accumulation models) 
focuses on modeling the relationship between RT and 

accuracy. Each group has made great progress in modeling 
the aspects of RT it focuses on. There is, however, a 
substantial gap between the two groups of RT models. The 
architectural models have not made great progress in 
revealing and modeling the intrinsic relationship between 
RT and accuracy, while the sequential sampling models 
have been relatively silent about the architecture of the 
cognitive “black/mystery box” in which the samplings (such 
as random walks or diffusions) occur.  

This paper describes our research that (1) extends the 
queueing network (QN) architectural model of RT to cover 
accuracy; (2) establishes a natural link between the QN and 
the sequential sampling/diffusion models through a 
modeling approach called Reflected Multidimensional 
Diffusions (RMD); (3) develops QN and RMD methods to 
use RT and accuracy together for revealing mental 
architecture. In short, mental architecture is represented as a 
QN, whose state changes can be analyzed as a RMD. More 
specifically, the “state” of a K-server queueing network of 
mental architecture is represented as a reflected diffusion 
space of K dimensions, in which “reflecting barriers” 
represent and reveal architectural constraints, while 
“absorbing barriers” represent accuracy-related subject-
adopted response criteria, similar to diffusion models. This 
approach moves beyond the current 1-D diffusion models 
that have successfully accounted for but are limited to 
single-stage fast responses. 1-D diffusions can only 
represent the state of information accumulation of a single 
server, not multi-server architectures.  

Mathematical Models of RT and Mental 
Architecture 

 
As shown on the left side of Figure 1, RT/architecture 
models have focused on two issues that are central to RT 
modeling and theory in cognitive psychology. One is a 
temporal dimension distinguishing discrete from continuous 
information transmission models, and the other is an 
architectural arrangement dimension distinguishing serial 
stage models from network models. All of the models 
assume that the psychological activity that transforms 
stimulus into response is composed of a system of mental 
processes. Discrete information transmission models assume 
that a mental process transmits its processing output in an 
indivisible unit and will not make its output available to 
other processes until it is completed. Therefore, a process 
cannot begin until all of its preceding processes are  
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Mathematical Models of RT and Mental Structure Classified    Mathematical Models of RT 
in terms of Discrete versus Continuous Information Transmission   and Response Accuracy         
and Serial versus Network Architecture     (sequential sampling models) 
 
(from Liu, 1996, “Queueing network modeling of     
elementary mental processes,” Psychological Review,  
103(1), pp. 116-136).         
 
---------------------------------------------------------------------------   --------------------------------  
  Architectural arrangement  
  of mental processes 
  -------------------------------------------------------    
Temporal  Serial    Network    State 
Transmission   Stages   Configurations   Transitions 
---------------------------------------------------------------------------   ------------------------------- 
          
Discrete  Subtractive   Critical Path Network                  Counter/accumulator     
  Additive factors               Random-walk 
  General Gamma                          
         Accumulator 
Continuous Cascade                     Diffusion       
  Queueing series  Queueing Network (QN)  Reflected Multidimensional Diffusions 

(RMD for state of QN) 
---------------------------------------------------------------------------- 
 
Figure 1:  Mathematical Models of RT and Mental Architecture (left side) and    
 Mathematical Models of RT and Response Accuracy (right side)  
 
completed. Continuous information transmission models, 
in contrast, assume that each process transmits it s partial 
output to other processes continuously as soon as they are 
available rather than waiting for the full completion of 
processing, and thus a process can begin even though its 
preceding processes are still active. Serial stage models 
assume a serial arrangement of mental processes, whereas 
network models assume a network configuration. The two 
dimensions jointly define four classes of models as shown 
on the left side of Figure 1 (Liu, 1996). As described in 
detailed in Liu (1996), a class of queuing network models 
for RT and mental architecture was proposed which, in its 
most general form, represents continuous-transmission-
network models and they include the existing models in 
the other three cells as special cases, and thus unify them 
in a larger modeling framework.  Liu (1996) also 
reexamined the logic and conclusions of the previous 
models.  It turns out that many of the conclusions based 
on the previous models are open to alternative 
explanations. All the QN models in Liu (1996) were 
discussed in relation to empirical data.   Furthermore, it 
was shown that QN models allow us to cover a broader 
range of possible mental structures that mental system 
might assume but had not been modeled by previous 
models, such as feedback or non-unidirectional 
information flow, information “overtaking and 
bypassing”, and process dependencies or non-selective 
influence of factor effects, and can be subjected to well-

defined empirical tests.  The QN approach to RT 
modeling published in Liu (1996) focuses on the use of 
RT to infer mental architecture and is able to broaden the 
scope of thinking about the possible configurations of 
mental systems and the possible causes for certain RT 
phenomena. However, some important questions 
remained open including how the QN models deal with 
response accuracy and what their relation is to the 
sequential sampling models described below. 

Mathematical Models of RT and Accuracy 
The importance of examining RT and accuracy together 
in RT analysis and modeling has been emphasized by 
many researchers (e.g., Audley, 1960; Corbett and 
Wickelgren, 1977; Dosher, 1979; Meyer et al., 1988; 
Pachella, 1976; Pew, 1969; Ratcliff, 1978; Wickelgren, 
1977). A crucial requirement is that they both arise 
naturally from common processing mechanisms (Ratcliff, 
1978; 1985).  The class of mathematical models that have 
achieved the greatest success in this regard is the class of 
sequential sampling (also called stochastic information 
accumulation) models, including random-walk models 
and related diffusion models, and counter or accumulator 
models. Sequential sampling models have been applied 
most extensively to model RT and accuracy data in choice 
RT experiments (e.g., Audley, 1960; Audley and Pike, 
1965; Ashby, 1983; Edwards, 1965; Gronlund and 
Ratcliff, 1991; Heath, 1981; Laberge, 1962; Laming, 
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1968; Link and Heath, 1975; Pike, 1966; Ratcliff, 1978, 
1981, 1985, 1988; Ratcliff and McKoon, 1982; Ratcliff 
and Rouder, 1998,2000; Ratcliff, Van Zandt, and 
McKoon, 1999; Stone, 1960; Van Zandt, Colonius, and 
Proctor, 2000; and Vickers, 1970). They have also been 
applied to model simple RT data patterns (e.g., Diederich, 
1995; Schwarz, 1994; Smith, 1995), and recently, in 
modeling decision making (Aschenbrenner, Albert, and 
Schmalhofer, 1984; Busemeyer and Townsend, 1993; 
Busemeyer and Diederich, 2002; Diederich, 1995, 1997, 
2003a, 2003b; Diederich and Busemeyer, 2003; Roe, 
Busemeyer, and Townsend, 2001) and classification 
(Ashby, 2000; Cohen and Nosofsky, 2003; Nosofsky and 
Palmeri, 1997). All sequential sampling models share the 
notion that the human information processing system 
accumulates information over time until a preset response 
criterion is reached and this accumulation process evolves 
stochastically. 

The random walk models assume that in a two-choice 
response situation, the information accumulation process 
“randomly walks” in discrete steps between two decision 
boundaries (also called “absorbing barriers”) based on the 
value of a cumulative evidence variable, each boundary 
representing one of the two choices. The process 
generally walks to the positive or the negative boundary 
depending on whether the value of the evidence variable 
is positive or negative. The time for the process to reach 
one of the two boundaries for the first time (immediately 
terminating the process) is called the first passage time, 
which determines RT. The probability that the process 
terminates at one or the other boundary is called first 
passage probability, which determines the probability of 
the associated response. The continuous versions of the 
random walk models are called diffusion models, which 
assume that the corresponding stochastic process drifts 
continuously toward the positive or the negative 
boundary, depending on whether the mean rate of 
information accumulation is positive or negative. 

The term “counter models” has been used to refer to 
models that assume discrete counting increments, while 
“accumulator models” are used broadly to refer to both 
discrete and continuous evidence accumulation. The idea 
of using a counter to model RT can be traced back to 
McGill (1963, 1967), Laberge (1962), and Audley and 
Pike (1965). Usher and McClelland’s (2001) leaky, 
competing accumulator model represents the state of the 
art in accumulator modeling.  

These sequential sampling models are very successful 
in modeling RT-accuracy relations for single stage fast 
binary responses, but relatively silent on multistage 
architecture issues. The challenge is to bridge the gap 
between the two groups of models summarized above. 
 

Queueing Network Modeling of Mental 
Architecture, RT, and Accuracy: Reflected 

Multidimensional Diffusions 
 
The QN architecture model of RT presented in Liu (1996) 
adopts the following assumptions similar to those 

commonly made in the RT literature: A stimulus is 
composed of several types of stimulus components (called 
customers), who arrive at various nodes of the processing 
network to request for service and that the sequence of 
customer arrival times, the sequence of customer service 
times, and the sequence of customer departure times are 
all stochastic processes. Presently, similar to all major RT 
models, QN models for RT assume that there is a separate 
response unit at the end of the processing network (after 
the “last” or the “exit” node), which is responsible for the 
actual response. QN models assume that a response is 
made when the response unit has accumulated N signal 
components, delivered from the “exit” node. RT is 
defined and determined by the network sojourn time of 
the Nth signal customer who completes all its network 
service requests and departs from the network. 

To extend the 1996 QN-RT model to cover response 
accuracy, the QN-RMD research makes two extensions to 
the 1996 QN definition of RT: First, we assume that RT is 
defined and determined by the Nth “response activating” 
customer (rather than solely by the Nth “signal customer” 
in the 1996 model, which only elicits a correct response). 
In a binary RT task (e.g., Yes or No), the Nth response 
activating customer is the Nth Yes customer for a Yes 
response or the Nth No customer for a No response. In a 
RT task involving K alternatives, the Nth response 
activating customer refers to the Nth i-type customer for a 
trial with an i-type response. Second, we treat N as a 
parameter that is analogous to the setting of “counts” in 
accumulator models and the setting of boundary positions 
in random walk or diffusion models. A larger N is 
analogous to a higher preset count or wider boundary. The 
largest useful N could mean the “limit on the number of 
useful observations” (Swensson, 1972; p. 30; also in 
Usher and McClelland, 2001; p. 551-552). 

In QN-RMD, the relationship between RT, accuracy, 
and mental architecture is studied by analyzing the 
departure process at the network exit node (again, its Nth 
departure is the Nth accumulation at the “dummy” 
response node) and examining how this departure process 
is affected by network architecture and subject-adopted 
response criterion. We adopt the common assumption that 
the departure process at each QN node i, Di(t), is a 
continuous stochastic process that has independent and 
stationary increments. Mathematically, this is equivalent 
to assume, Di(t1) – Di(t0), …, Di(tn) – Di(tn-1) are 
independent for any n≥ 1 and 0≤t0≤...≤tn≤∞ and the 
distribution of Di(t) – Di(s) depends only on t-s, for all i. 
This assumption is the most commonly made in the QN 
literature. Formal mathematical limit theorems that justify 
the use of these assumptions for analyzing various types 
of queueing systems and thus the use of Brownian 
approximations have been proved for various types of 
flow system models (see e.g., Chen, 1996; Williams, 
1998). The K-vector departure process of a K-server 
queueing network of mental architecture, D(t) = [Di(t), 
i=1,…, K], can be represented as a Reflected Diffusion in 
K dimensions, in which “reflecting barriers” represent and 
reveal architectural constraints, while “absorbing barriers” 
represent accuracy-related response criteria. Informally, 
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“reflecting barriers” define the space in which the 
diffusions can occur. Diffusion occurs “normally,” in the 
interior of the space, but is instantaneously “pushed back” 
into the space when it hits one of the reflecting barriers. 
The reason “reflecting barriers” exist for QN is because 
departure processes cannot take on any arbitrary values. 
For example, in a 2-node serial QN system, if K1 is in 
front of K2, we must have D1(t) ≥ D2(t) (all departures at 
K2 must have departed from K1 first). Thus, the diffusion 
of the 2-vectored process [D1(t), D2(t)] can only occur in 
the region in which D1(t) ≥ D2(t) (i.e., a reflecting barrier 
exists at D1(t) = D2(t), with a reflecting direction pointing 
toward the allowed region). Reflecting barriers can be 
defined similarly if K2 is in front of K1, or for other 
situations. Thus reflecting barriers reveal the architectural 
arrangement of the mental system. “Absorbing barriers” 
are defined in the same sense as current diffusion models 
of RT, such as those of Ratcliff. Due to space limit, this 
paper chooses two representative cases as illustrations. 

1. Single–server QN for binary responses 
The simplest case of a QN is a single server system. The 
binary response case called binary, single-step responses, 
has been modeled most extensively and successfully by 
existing diffusion RT models. “The diffusion model was 
designed to explain fast, single step, as opposed to 
multistep, decision processes, …” (Ratcliff, et al., 1999; 
p. 262.). This case serves two purposes: important by 
itself to show a concrete link between QN and 
RW/diffusion models, and as the base or starting point for 
modeling more complex architectures. In this QN, binary 
response (Yes/No) are triggered by two types of 
customers, A and B, who arrive at the server with arrival 
rates of λa and λb, respectively, in accordance with a 
renewal process having an arbitrary interarrival 
distribution and are served by the server with service rates 
of µa and µb, respectively. 

This method assumes that each type-A customer 
departing from the server carries an information amount 
of +1, while each type-B departing customer carries -1. 
This assumption is similar to, e.g., the classical RT 
diffusion models of Ratcliff et al., (1999) and the “two-
barrier single channel model” of Smith (2000). In the 
following I show how this single server QN is 
mathematically identical to the classical RT diffusion 
models, but it offers a QN interpretation to it. Let Sn 
denote the total amount of information carried by the first 

N departing customers. We have,  Sn = 
1

N

i
i

X
=
∑ , i ≥ 1;  

where Xi=1 for a departing customer of type A and Xi = -
1 for a departing customer of type B. 
 
Clearly this departure process Sn is a random walk (RW), 
and its relation to existing RW models of binary RT 
becomes at least intuitively apparent. If we speed up the 
departure process by considering smaller and smaller time 
intervals and letting ∆t go to 0, then the total amount of 
information carried by all departed customers by time t, 

D(t), follows a diffusion process. In fact, this comes 
naturally also as a consequence of our general assumption 
of independent stationary increments mentioned earlier. 
In the queueing literature it is commonly regarded as a 
harmless assumption to treat fast discrete customer 
departures as a continuous flow (see, e.g., Harrison, 
1985).Mathematically, D(t) can be characterized with the 
Kolmogorov backward equation, as follows: 

 ),,()
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where p(t, x, y) is the transition density, x is the starting 
state, y is the ending state, of time period t. This equation 
is called the Kolmogorov backward equation because the 
differentiation is with respect to the backward variable 
(the initial state) x on the right side of the equation above. 
This equation is identical to Ratcliff et al’s (1999, p.299) 
diffusion equation, with difference only in the notations. 

When µ≠0 (diffusion with a drift), then as shown in 
Harrison (1985) in his analysis of diffusion approximation 
of stochastic flows in queueing systems, we have, 
Px{Xt=b}, the probability that the process first crosses the 
barrier b before crossing the barrier at 0, when the starting 

position is at x, as ,
(b)-1
(x)-1  b}  {XP tx ξ

ξ
==    0 ≤ x ≤ b, 

 where ξ(z) ≡ exp( 2
2
σ
µz−

) 

This result is the same as that in Ratcliff et al (1999, 
p.299), who presented Px{Xt=0}, the probability that the 
process first crosses the absorbing barrier 0 before 
crossing the barrier at b:  Px{Xt=0} = 1 - Px{Xt=b} = 1- 

(b)-1
(x)-1

ξ
ξ

 = 
1 -(b)
(x)-(b)

ξ
ξξ

 

 This is identical to Ratcliff et al (1999, p299), with the 
difference found only in the symbol notations. 

The convergence of the results of the queueing 
literature and the RT-diffusion models shown above 
offers a queueing architectural explanation to the RT 
diffusion modeling. Since our diffusion representation of 
the departure process of the single-server queueing 
system has converged precisely with the diffusion model 
of Ratcliff, all the related results of Ratcliff apply. One 
intuitive interpretation of the diffusion parameters with 
the QN parameters is: The mean drift rate, µ, is 
determined by the difference between the two mean 
arrival rates (λa-λb). This is intuitive, since an RT trial 
with stimulus A would carry more customers (features) of 
A, thus produce a greater arrival rate of type A customers 
than a B-type RT trial. This is similar in spirit to, e.g., 
Ratcliff’s (1978) work of using stimulus relatedness to 
decide drift rate. The boundary positions can be 
interpreted as the minimum amount of total positive or 
negative information carried by all the departed customer 
to elicit an A or B response, respectively (as in Ratcliff, 
we will also use b and 0 as the two boundaries). The 
starting point is the subject’s response bias, which can be 
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    K1 

D1 

a). A tandem two-server system with two types of 
customers: type A (“triangles”) and type B (“circles”) 

K2 

D2 

D1(t) 

D2(t) 0 

a b 

d 

e 

c 
c’ 

b’ 

assumed as “preloaded departures” or “information 
preloaded in the system”—thus called a “bias.” A 
discussion of the relationship between this single server 1-
D diffusion model and the corresponding accumulator 
model can be found in Liu (2005). Due to space limit, we 
elect to discuss 2-D cases next to illustrate how to 
consider architecture issues in this QN-RMD framework. 
 
2. A tandem 2-Server QN for binary responses 

 
A basic, fundamental, and illustrative case involving all 
three issues: RT, accuracy, and architecture is a tandem 2-
server QN as shown in Figure 2, which goes beyond 
single-stage RT-accuracy modeling and demonstrates the 
importance of considering “reflecting” barriers, in 
addition to “absorbing” barriers of the conventional 1-D 
diffusion models. 
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Case A. A series of 2 discrete processing stages 
corresponds to a sequence of 2 1-d diffusions 
 
The mental architecture theories of discrete processing 
series (e.g., Donders’ and Sternberg’s theories, upper-left 
cell of Figure 1) assume that K1 must complete all its 
work before K2 can start. In other words, all departures 
from K1 must complete before K2 starts its departure 
process, i.e., D1(t) must complete before D2(t) starts. In 
Figure 2, this can be visualized as a sequence of two 1-d 
diffusions for each type of customers, first along the line 
from 0 to a for D1(t), and then along the line from a to b 
for D2(t). For the simplest case of “no bias” RT tasks, 
both types of customers go through the same diffusion 
sequence (first 0-to-a, and then a-to-b). 
 
Case B. A continuous-flow 2-server queue-series 
corresponds to a reflected 2-d diffusion. 
 
The mental architecture assumption of continuous flow 
(e.g., McClelland’s Cascade, Miller’s and Liu’s queue 
series, lower-left cell of Figure 1) does not require K1 to 
complete its processing before K2 can start. In other 
words, D1(t) and D2(t) may occur concurrently, subject to 
certain constraints in a queueing system. Specifically, the 
joint distribution of D1(t) and D2(t) can be characterized 
as a reflected 2-d diffusion: If K1 is in front of K2, then 
diffusion occurs in the upper region above the reflecting 
barrier shown as the diagonal line (0—b) in panel b of 
Figure 2. If K2 has finite waiting space, s, (in front of 
K2), then diffusion is further bounded by a reflecting 
barrier shown as line (d—e), whose vertical distance to 
line 0—b is s. A reflecting barrier (line a—b) exists if D1 
has an upper limit. Absorbing barrier is shown as line b—
c. For simplicity of presentation and analysis, we continue 
to focus on the no-bias RT situation for now, meaning 
that the two types of customers “race in the same 
diffusion space,” shown as a pair of trajectories (a solid 
and a dotted curve, where the solid one wins in this 
illustration) in panel b of Figure 2. Several testable 
performance predictions can be made with regard to RT-
accuracy relation in this situation, including: 

 
 
 
 
  

 

b). For customers’ departure processes D1(t) and D2(t), if K1
and K2 form a discrete processing series, then we have two
1-d diffusions in a row, first along the border from 0 to a,
then along the border from a to b. If K1 and K2 form a
continuous-flow series, then we have one 2-d reflected
diffusion. See text for more details.
igure 2 A tandem 2-Server QN and its Reflected 
Diffusion Space 

this tandem 2-server QN  shown in Figure 2, we 
sider a pair of 2-vectored departure processes, {D1A(t), 
(t)} and {D1B(t), D2B(t)}, corresponding to the type-A 
 type-B departures from K1 and K2, respectively. 
ilar to the diffusion cases for a single server, we 
me each customer departing at K2 carries the same 
unt of information to contribute to its type of 
onse only. A response is made when D2A(t) or D2B(t) 

t reaches its criterion value. Let us consider two cases, 
esponding to the debates between discrete and 
tinuous information transmission between stages. 

1). When K1’s service rate is much larger than K2 (e.g., 
K1 is a super fast perceptual server) and K2 has unlimited 
waiting space (i.e., s=∞ ), then the probability is almost 1 
that D1 is much greater than D2, thus the probability of 
hitting the reflecting barrier at (0—b) is almost 0. In this 
situation, in terms of its effect on RT/accuracy, the 2-d 
diffusion would behave as if it is a 1-d diffusion of D2(t) 
along the line of (0—c), similar to the classical diffusion 
RT models and to the single server case discussed earlier. 
Informally, if K1 is so powerful, we don’t have to worry 
about it; we just need to consider K2. 
 
2). When K1 is not a super fast server or when an 
experimental factor increases the sojourn time at K1 (thus 
decreases the departure rate at K1), RT/accuracy will not 
show the same type of exponential relationship predicted 
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by classical RT-diffusion models or single-server QN 
models, since now we have a true 2-d reflected diffusion, 
bound by the reflecting barriers, whose effect can not be 
ignored. Quantitatively, it would take a longer time to 
achieve the same level of accuracy obtained in the 1-d 
diffusion case. 
 
3). Further, when there is a very low limit in the departure 
process of K1 (e.g., in the so-called data-limited tasks in 
which impoverished or significantly degraded stimuli are 
used), RT/accuracy will not show the same type of 
exponential relationship predicted by classical RT-
diffusion models or single-server QN models. This can be 
visualized in panel b of Figure 2: when a is smaller than b 
(slide the line a-b downward to, say, d-b’), the 2-d 
diffusion will never be able to reach the absorbing barrier 
b-c (i.e., subject never responds) UNLESS the subject 
reduces the absorbing barrier, by moving it to the left to 
b’c’, by willing to make less accurate responses. This 
offers an alternative explanation to the classical “infinite-
RT” problem (Ashby, 1982). 
 
4). The order of server arrangement is an architectural 
research question itself. The analysis above assumes K1 is 
in front of K2. When K2 is in fact in front of K1, 
diffusions would occur in the lower region. Thus, a 
method of using RT/accuracy together to reveal the order 
of K1 and K2 is to see whether an upper- or a lower- 
region diffusion best fits the data. 

3. Other network cases 
 
The single-server and the 2-server QNs and their diffusion 
representations described above are the simplest network 
cases. Concrete testable predictions can also be made 
about more complex network arrangements. Two 
examples are listed below: 
 
1). A series of K discrete processing stages correspond to 
a series of K 1-d diffusions. This is an extension of Case 
A of the 2-server QN to a general series of discrete stages. 
 
2). A series of K continuous flow servers correspond to a 
reflected K-d diffusion with a “lower-triangular reflection 
matrix.” Characteristics of this reflection matrix reveal the 
layout of the series. This is an extension of Case B of the 
2-server QN to a general queueing series. 
 
Additional network cases and related discussions can be 
found in Liu (2005). 
 
In summary, the QN-RMD (Queuing Network-Reflected 
Multidimensional Diffusions) represents mental 
architecture as a QN, whose state of operation can be 
represented as a multidimensional diffusion space. QN-
RMD extends the QN architectural RT models to account 
for accuracy, brings the Random Walk/diffusion models 

of RT and accuracy to the multi-server architectural 
domain, and unifies the two currently separated schools of 
approaches in a larger framework. The work helps reduce 
the “fragmentary nature of the results” (Luce, 1986, p. 
491), by “synthesizing what we know” (Newell, 1990; p. 
16). 
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