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Abstract 

Representations in sensory cortices are organized 
topographically: auditory cortex is organized tonotopically, 
somatosensory cortex is organized somatotopically, and 
visual cortex is organized retinotopically.  Substantial 
progress has been made in understanding how topography 
develops at a neurocomputational level, particularly in the 
early and middle stages of processing in the visual system.  
We extend this work to investigate how higher-level semantic 
representations could develop based on topographic input 
from sensory maps in the ventral visual pathway.  The 
receptive fields of cells in these maps correspond to the loci 
of activity within a cortical topography rather than explicitly 
coded sensory features.  Using this model, we show that 
meaningful semantic representations at increasing levels of 
abstraction naturally emerge as a result of exposure to a set of 
visual stimuli.  For example, when presented with a set of 
simple visual features (color, texture, size, and shape) the 
model develops semantic representations that distinguish 
basic level categories (e.g., dogs, tables, cars), superordinate 
categories (e.g., animals, furniture, vehicles), and living 
versus nonliving things.  This work therefore offers a 
computationally explicit hypothesis about how semantic 
representations could emerge in the brain.  Our results suggest 
the possibility that high-order concept representations may be 
encoded topographically much the same way as low-order 
sensory representations, and that these representations may be 
learned based on the same principles of neural computation 
known to be operating in sensory cortex. 

Introduction 
Topography is an important principle of neural organization 
and is present in all sensory cortices of the brain (Kandel, 
Schwartz, & Jessell, 2000).  Topography represents a 
mapping from sensory space (e.g., location in the visual 
field, wavelength of light) to cortical space (e.g., location in 
extrastriate visual cortex).  In such a mapping, nearby 
neurons in cortical space have similar receptive fields (they 
respond to nearby parts of sensory space) and are therefore 
selective for similar sensory features.  Put simply, sensory 
similarity is reflected in cortical proximity.   

 Topographic representations have been particularly well- 
studied in the early processing stages in the ventral visual 
pathway of the primate brain.  This pathway proceeds 
through a hierarchy of stages beginning with striate cortex 
(V1) and proceeding through extrastriate cortices (V2, V4) 
to inferotemporal cortex (IT).  In the early stages of 
processing, receptive fields are small and neurons are highly 

selective for primitive sensory features (e.g., specific retinal 
locations, orientation of bars of light, and colors).  As 
processing progresses receptive fields become increasingly 
large and neurons become selective for more abstract and 
complex features (e.g., specific configurations of features, 
and simple objects). 

Physiological studies have established that topographies 
are present in the early and middle stages of the ventral 
pathway (V1, V2, V4) and the structure of these 
topographies has been well-described in the literature 
(Fujita, Tanaka, Ito, & Cheng, 1992; Hadjikhani, Liu, Dale, 
Cavanagh, & Tootell, 1998; Livingstone & Hubel, 1984; 
Shipp & Zeki, 1989, 2002a, 2002b; Tanaka, 1996; Tootell, 
Silverman, Hamilton, Devalois, & Switkes, 1988; Tootell, 
Switkes, Silverman, & Hamilton, 1988; Vanessen & 
Gallant, 1994).  The primary organization is retinotopic, 
with neighboring neurons coding for sensory information 
located at nearby positions in the visual field.  Embedded 
within this retinotopy are secondary topographies such as 
orientation columns and color blobs whose neurons are 
selective for particular object orientations and colors, 
respectively.  Physiological findings also suggest that a 
more complex object-based topography may exist in IT 
cortex, but neither the structure nor learning mechanisms 
underlying this putative topography are fully understood 
(Fujita et al., 1992; Sigala & Logothetis, 2002; Tanaka, 
2000). 

At a computational level, significant progress has been 
made in understanding how sensory topographies develop in 
the early and middle stages of the ventral pathway.  
Biologically plausible models based on self-organizing 
learning algorithms have simulated topographic 
development computationally and have been able to 
successfully reproduce physiological data (Barrow, Bray, & 
Budd, 1996; Carreira-Perpinan, Lister, & Goodhill, 2005; 
Goodhill, 1993; Goodhill & Willshaw, 1994; Olson & 
Grossberg, 1998; Sirosh & Miikkulainen, 1997; Sit & 
Miikkulainen, 2006).  All these models are based on two 
well-established neural mechanisms, competition and 
Hebbian learning, that operate throughout neocortex.   

In this work we consider what role, if any, these self-
organizing mechanisms might play in the learning of higher-
order semantics.  Specifically, we use a computational 
model to investigate the type of representation that develops 
in a later stage cortical map that (i) receives topographically 
organized sensory inputs, and (ii) self-organizes based on 
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the same mechanisms of neural computation known to 
operate in the earlier processing stages of the ventral 
pathway. We find that after exposing the model to a set of 
visual stimuli, the topography reflects multiple levels of 
semantic categories more than low-level visual similarities.  

An early investigation of the role of topographic structure 
in semantics was conducted by Ritter & Kohonen (1989). In 
this work, the authors showed that a SOM could produce a 
topography of logical word roles (e.g., subject nouns, object 
nouns, verbs) based on the statistical structure of word 
context.  Applied work in content retrieval (Laaksonen, 
Koskela, & Oja, 2002; Laaksonen & Viitaniemi, October, 
2006) have successfully used SOMs to organize images 
based on visual similarity.  Our model differs from prior 
work in that it focused on the visual modality, has a 
hierarchical structure more closely tied to known 
hierarchical structure of cortex, and has the objective of 
understanding psychological phenomena associated with 
semantics. 

Self Organizing Maps 
Self-organizing maps (SOMs) are a computational 
abstraction of cortical representation and processing 
(Kohonen, 1982, 1990).  SOMs correspond to a locally 
connected population of neurons in a contiguous area of 
cortical tissue.  As shown in Figure 1, the basic unit of 
representation within a SOM is the cell.  Cells within a 
SOM are indexed based on their spatial location and each is 
modeled as a k-length weight vector specifying the preferred 
k-length input for the cell (i.e., the input that causes the cell 
to fire maximally).  When presented with an input pattern, 
cells within a SOM compete to represent this pattern.  The 
response of each cell is based on the similarity between its 
weight vector and the input pattern.  The winning cell is the 
cell most similar to the input.   
 

 
 

Figure 1:  Self organizing map. 
 
SOM learning is accomplished by modifying the weight 

vector of the winning cell so that it is more similar to the 
input, therefore making this cell more likely to win again 
with future presentations.  Critically, the weight vectors of 
cells in close spatial proximity to the winning cells are also 
updated.  As a result, with experience the response of a 
SOM tends to become spatially organized, learning a 

mapping from the statistical regularities discovered in its k-
dimensional input space to a set of topographically 
organized neighborhoods within the SOM. 

Mathematically, if x(t) is a vector representing the input 
to a SOM at time t and wi(t) represents the weight vector of 
cell i at time t, then the winning cell c is given by 

ArgMinc {║ x(t) – wc(t) ║},                       (1) 

where the ║·║ operator denotes vector distance.  We use 
Euclidean distance for all distance computations in our 
model.  The weight vector for each cell i is updated 
according to the following SOM learning equation 

wi(t+1) =  wi(t) + α(t) hc,i(t){ x(t) – wc(t) },                  (2) 

where α(t) is a time-dependent learning rate, and hc,i(t) is a 
kernel function that is centered on the winning cell c and 
that computes the magnitude of the update to cell i based on 
its spatial proximity to the winning cell.  In our model we 
use the the Gaussian kernel function 
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where λ(t) is a time-dependent parameter that determines 
the width of the kernel,  and i(x,y) and c(x,y) denote the map 
coordinates of cells i and c, respectively.  We compute α(t) 
and λ(t) as exponentially decreasing functions of time, with 
time denoting discrete presentations of training inputs.   

While SOMs are not detailed biophysical models of 
cortex, the core assumptions embodied in this class of 
models can be mapped directly to their biophysical 
correlates: The weight vectors of SOM cells correspond 
biologically to the concept of receptive fields; winning cells 
are analogous to the peak location of activity within a 
cortical area, governed by the net result of the competitive 
interplay between local excitatory and inhibitory activity 
driven by an input; and the spatially-localized learning 
algorithm is a computational abstraction of Hebbian 
learning that occurs between neurons participating in a 
bump of cortical activity and the active afferent neurons 
providing their input.  SOMs therefore provide a 
computationally efficient and biophysically plausible 
method for modeling the development of spatially 
structured representations in cortex.  

Methods 

Model Architecture 
As shown in Figure 2, our model is a two-level hierarchy 

of SOMs.  The first level consists of a set of four 10x10 
sensory maps each corresponding to a particular visual 
feature:  color, size, shape, and surface appearance. Each 
sensory map receives inputs in the form of real-valued 
sensory vectors, for example the color map receives three-
vectors representing the hue, saturation and brightness of 
the stimuli.  These maps are then exposed to a set of visual 
stimuli and are allowed to self-organize according to the 
SOM learning equations given by (1), (2) and (3).     
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The sensory maps capture the type of abstract featural 
representations found in the later stages of the ventral visual 
pathway when retinotopy is no longer present.  With 
retinotopy no longer available as a basis of representation, 
subsequent cortical areas must somehow make sense of a 
more abstract sensory topography.  It is important to note 
that the sensory maps in our model are not intended to 
explicitly instantiate the computations performed from early 
to late stage visual cortex (for one example of such a model, 
see Riesenhuber & Poggio, 1999; Serre, Oliva, & Poggio, 
2007), but rather they serve as plausible summaries of how 
concrete visual information provided by a stimulus is 
ultimately encoded in abstract representations in the later 
stages of visual cortex.   

 

 
 

Figure 2: Architecture of the model. 
 
The second level in the model consists of a single 10x10 

association map that receives convergent inputs from the 
lower-level sensory maps.  Computationally, the input to 
these maps is a concatenation of the spatial locations of 
activity in each of the sensory maps.  The implication of this 
method of coding is that the receptive fields of cells in the 
association map correspond to cortical coordinates rather 
than explicitly encoded sensory-based features.  We believe 
this is a subtle, but important aspect of the model.  In the 
early stages of visual processing, the basis of neural 
organization is either driven by hardwired anatomical 
connections (as in the case of retinotopy) or by topography 
organized around concrete, low-level sensory-based features 
(as with orientation columns).  In the later stages of visual 
processing, no such representational “boostrapping” is 
available.  These later-stage cortical areas must somehow 
make sense of more abstract and complex representations 
based on the spatial location of activity in upstream maps.  
The association map in our model faces the same challenge:  
to learn meaningful representations based on spatially 
encoded inputs from the sensory maps. 

Simulation Procedures 
Stimuli  The model was repeatedly presented with a set of 
96 visual stimuli consisting of 8 classes of objects (bicycles, 

bushes, cars, cats, dogs, chairs, tables, and trees) and 12 
variants within each class.  The variants captured 
characteristic within-class featural differences, for example 
trees of varying color and size.  Each stimulus was coded as 
a [0,1] normalized 10-vector based on its color (hue, 
saturation, brightness), size (x, y, and z dimension in a 
typical viewing angle), shape (roundness, complexity) and 
surface appearance (smoothness, textural uniformity).  The 
vector values were estimated based on images collected 
from Google™ Images (http://images.google.com). 
 
Model Learning Weight vectors of all cells in the SOMs 
were initialized to random values in the range [0.1, 0.9].  
Learning then proceeded in two phases.  First, each of the 
sensory SOMs were presented with the relevant vector 
component of the training stimuli (e.g., the color map was 
presented with hue, saturation and brightness values) and 
the weight vectors were updated according to equations (1), 
(2) and (3).  In each of 500 learning iterations, the 
presentation order of the stimuli was randomized to 
minimize order effects.  After training, the stimuli were 
presented to each of the sensory maps, and the map 
coordinates of the winning cells for each input were 
computed for each of the four maps.  The four pairs of 
coordinates for each stimulus were then concatenated and 
the resulting vectors were then used for the second phase of 
learning.  In this phase, the association map were trained 
using an identical procedure, with the exception that the 
input patterns presented to the association map were the 
concatenated outputs from the trained sensory maps. 

Results 
Figure 3 shows an example of the representation that is 
learned by one of the lower-level sensory maps, in this case, 
the map that was trained using size information for each 
stimulus1.  The winning cell for each stimulus is labeled in 
the figure based on its object class.  Inspection of this map 
reveals that there is no clear object-based topography, as 
only two of the object classes (cats and bikes) are co-located 
in the same region of the map.  Instead, the map captures an 
abstract size-based topography in which larger objects are 
represented in the upper region of the map (smaller objects 
in the lower region), and taller objects are represented 
towards the left side of the map (wider objects towards the 
right).  Similar results were found in each of the other 
sensory maps:  an abstract sensory-based topography 
emerged, but stimuli from the same object class were not 
co-located in the map.   

 
Figure 4 shows the response2 of each cell in the size map 

when presented with one of the tree stimuli.  As is evident, 
the map response to the stimulus is spatially localized to a 
neighborhood of activity surrounding the winning cell.   
 

                                                           
1 Many of the variants within each object class share the same 

values and therefore not all 96 stimuli are visible due to overlap. 
2 Cell responses were computed based on the Euclidian distance 

between the stimulus and the cell’s weight vector.  Smaller 
distances imply greater similarity and larger cell responses. 
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Figure 3: Sensory size map after learning. 
 

 

 
 

Figure 4: Response of the size map to a tree stimulus. 
 
The structure of the association map after learning is 

shown in Figure 5.  The winning cell for each stimulus is 
labeled in the figure based on object class.  In contrast to the 
sensory maps which learned abstract sensory-based 
topographies, a clear object-based semantic topography 
emerged in the association map after learning.  For example, 
a neighborhood of cells responsive to tables emerged in the 
lower left region of the map, and a set of cells most 
responsive to trees are spatially co-located in the upper right 
region.  For some object classes, the neighborhoods overlap, 
as in the case of dogs and cats, and trees and bushes, 
indicating that the map was unable to distinguish these 
classes of stimuli based on available visual information.  
Nevertheless, for all object classes the map learned to 
represent the class in a spatially co-located region of cells. 

Further inspection of the learned association map in 
Figure 5 reveals a semantic topography that captures 
superordinate categorical distinctions among the object 
classes.  For example, in the lower-left region of the map 
there is a neighborhood of cells responsive to chairs and 
tables (furniture), and similarly there are distinct regions of 
cells whose receptive fields prefer trees and bushes (plants), 
bikes and cars (vehicles), and dogs and cats (animals).  
Furthermore, the topography encoded in the map also 
learned the semantic distinction between living and non-
living stimuli.  Cells representing dogs, cats, trees, and 
bushes (living things) are co-located in the upper region of 
the map and tables, chairs, cars, and bikes (non-living 
things) are co-located in neighborhood of cells in the lower 
region of the map.   

 

 
 

Figure 5: Association map after learning. 
 
The responses of the association map to two sets of 

similar stimuli are shown in Figure 6.  Each class of 
stimulus shown in the figure (table, chair, tree, and bush) 
produces a graded, locally organized response around the 
winning cell.  Furthermore, the responses of the map to 
similar classes of stimuli (table and chair, tree and bush) 
share a similar subset of active cells, demonstrating the 
existence of topography in the form of neighborhoods of 
cells responsive to stimuli at multiple levels of abstraction 
(object class and superordinate category).   

Although these results confirm the hypothesis that high-
level semantic topography can be driven by the same 
principles of neural computation found in the lower levels 
of the visual pathway, we raise two concerns.  First, it is 
possible that these results are an artifact of the learning 
procedure due to the random initialization of the maps 
and/or the random ordering in which the stimuli were 
presented.  To address this concern, we simulated the model 
over a large number of random seeds and confirmed that the 
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structure of the learned topography in the association map 
was consistent across all simulations.  Although the specific 
location of the category clusters varied, the clusters 
themselves reliably emerged as did the superordinate 
organization (plants, animals, furniture, and vehicles) and 
the living versus non-living distinction. 

 

 
 

Figure 6: Association map responses. 
 
A second concern is that the semantic organization shown 

in Figure 5 is an artifact of the way that the stimuli were 
coded.  It is possible that the 96 stimulus vectors were 
trivially separable at multiple levels of abstraction, and 
therefore the resultant topography was in some sense 
predetermined.  To address this concern, we performed a 
hierarchical clustering3 of the training stimuli, producing the 
tree shown in Figure 7.  As is evident, hierarchical 
clustering does not produce the same meaningful categorical 
clusters of stimuli produced in our model: At the level of 
object classes, only bicycles are distinguished from the 
other classes (i.e., they share a common branch within the 
hierarchy); at the level of superordinate category, only 
plants and animals are independently clustered; and at the 
highest level, the clustering categorically generates two 
heterogeneous groups: plants-bicycles and cars-tables-
chairs-animals.   

 

                                                           
3 The clusters were computed using the hierarchical clustering 

algorithm in Mathematica® using a Euclidian distance function. 

 
 

Figure 7: Clustering tree of the training stimuli. 

Discussion 
The aim of this work was a plausibility proof of the 
hypothesis that the principles of self-organization and 
cortical topography at work in lower-level visual processing 
may also drive the learning and structure of higher-order 
semantics.  We developed an explicit computational model 
in which a self-organizing map receives inputs from a 
hierarchy of topographic sensory maps and we found that 
meaningful semantic representations at increasing levels of 
abstraction naturally emerge as a result of exposure to a set 
of sensory stimuli.  Specifically, when presented with a set 
of simple visual features (color, size, texture, shape) the 
higher-level map develops a topography of semantic 
representations that distinguishes basic level categories 
(bicycles, bushes, cars, cats, dogs, chairs, tables, and trees), 
superordinate categories (plants, animals, furniture, 
vehicles), and living versus nonliving things.  

This work therefore offers a computationally explicit 
hypothesis about how semantic representations could 
emerge in the association cortex of the brain.  Our results 
may also be relevant to the ongoing debate about whether 
conceptual knowledge is primarily organized anatomically 
by modality as posited by the sensory-functional hypothesis  
(Farah & McClelland, 1991; Warrington & McCarthy, 
1983; Warrington & Shallice, 1984), or by category 
(Caramazza & Mahon, 2003).  The results of our 
simulations suggest fundamental mechanisms of neural 
computation could lead to the emergence of topographically 
organized semantic representations without the need to posit 
that these representations are innate.  
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