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Abstract 

We propose an object recognition model based on analogical 
mapping and transfer. The objective of our model is to be 
able to generate and bind structural representations; and to 
recognize objects from a small set of primitives. The input is 
mapped to the associative memory and activation is spread 
upwards. Anticipations are generated through local mappings 
and transferred to be tested serially in the order of their 
relevance. Due to these mechanisms, our model is able to 
simulate phenomena such as object priming and global 
precedence effect. Additionally, it provides a framework for 
integrating visual perception and other higher-order cognitive 
processes.  

Keywords: Recognition, Analogy-making, Anticipation, 
Attention, Binding. 

Theoretical Framework 
It is a textbook assumption that object recognition is a 
heuristic process. Rather than passive recipients of sensory 
data, we actively form hypotheses and make anticipations. 
Fortunately, we are provided with memory and rich 
environmental context, which constrain the number of 
plausible anticipations, thus enabling the fast and reliable 
recognition of virtually infinite number of objects, people, 
and events. Committed to these beliefs, we started 
developing a model of object recognition based on the 
cognitive architecture DUAL (Kokinov, 1994a). There are 
several premises fundamental to this model: (i) recognition 
is a heuristic process constructing structural representations, 
(ii) anticipations are generated by analogy, (iii) context 
supports (and sometimes hinders) recognition. These 
assumptions, as well as their empirical support and 
computational implementations, will be discussed in details 
in the following sections. 

Object recognition is one of the most rigorously debated 
topics in the field of vision sciences. Although the issue has 
been approached from numerous paradigms and theoretical 
perspectives, the task of understanding and modeling vision 
is still far from being accomplished (see Peissig & Tarr, 
2007 for a recent review). A central question is what are that 
type of representations on which recognition operates. There 
are two basic approaches: view-based and object-based 
theories and respectively, models. The basic idea behind the 
view-based approach is that there is a stored template for 

each of the previously seen visual patterns. Recognition 
involves matching the stimulus input to an existing 
template. Most of these models implement some kind of 
normalization process in order to reduce the number of the 
necessary templates (Poggio & Edelman, 1990).There are 
plenty of computational models committed to this paradigm 
and they are capable of simulating a vast range of 
psychological phenomena. However, they show weak 
performance in some domains such as class-level 
recognition, matching known to unknown viewing 
conditions as well as generalization (Tarr & Bulthoff, 1998). 

In contrast, object-centered theories assume that 
recognition involves matching of view-point independent 
descriptions of spatial arrangements among parts of the 
object (Marr & Nishihara, 1978; Biederman, 1987).  A 
classic example of this type is the recognition-by-
components theory (RBC; Biederman, 1987). Its core 
premise is that recognition consists of extracting invariant 
structural representation of the object in terms of spatial 
relationships among basic shapes or components, the so-
called geons, which are then matched to stored object 
representations. Furthermore, Biederman and Gerhardstein 
(1993; 1995) argue that all perceptual objects are 
decomposable and each object has a unique configuration of 
parts. Structural computational models were developed by 
Hummel and Biederman (1992) and Hummel and 
Stankiewicz (1996).  

One question that is still open is how spatial inter-part 
relations originate. Because such relations are present at 
linguistic level, they can be readily available in the memory 
storage. So, the possibility remains that these relations are 
actively participating in object recognition through top-
down mediation of the binding process. Nevertheless, it is 
not clear how this process is realized. 

One plausible mechanism is analogy making, in particular 
mapping, which has already been granted the status of core 
principle for many cognitive processes (Gentner, Holyoak, 
& Kokinov, 2001). Several analogy-making computational 
models exist: COPYCAT (Hofstadter, 1984), ACME 
(Holyoak & Thagard, 1989), SME (Falkenhainer, Forbus, & 
Gentner, 1990), TABLETOP (French & Hofstadter, 1991), 
LISA (Hummel & Holyoak, 1997, 2003), AMBR (Kokinov 
& Petrov, 2001; Kokinov, 1994b) among others. Besides 
simulating analogy-making, these models demonstrate 
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excellent performance in modeling a number of other 
cognitive processes such as memory retrieval (Forbus, 
Gentner, & Law, 1994), judgment (Petkov, 2006), and 
infant categorization (Kuehne, Gertner, & Forbus, 2000). 
Although the incorporation of perception and high-order 
cognition is not a new idea (Chalmers, French, & 
Hofstadter, 1992), none of the models, which pursues this 
endeavor, explores the possibility that the mapping of 
objects in two domains, based on the relational structure, 
which serves other cognitive processes, can readily account 
for the top-down influence of these relational structures on 
the binding of sensory information. 

More specifically, we propose that the visual information 
is mapped to the information stored in memory. By analogy, 
anticipations are generated about the spatial relations 
between the elements at the input and how they can be bind 
to each other. Later, these anticipations are transferred and 
verified with the actual data.  The implementation of this 
mechanism has one additional implication: the generated 
anticipations refer to all levels of the semantic hierarchy, so 
that binding and recognition of a higher level can precede 
the recognition of the lower level if the level of activation of 
these anticipations is higher. The global precedence 
phenomenon has been extensively documented (Navon, 
1977; Kimchi, 1992), but it poses difficulty for the 
structural theories, which argue for part-base recognition 
(Biederman, 1987). Although our model is intrinsically 
structural, it overcomes this limitation due the specificity of 
its architecture. When the activation from the target spreads, 
it propagates upwards to the superordinate levels of the 
semantic network allowing anticipation formation at any 
level. As a result, the level of recognition in not fixed to a 
particular location within the hierarchy either.  

Another important factor in object recognition is the 
available contextual information. Recognition performance 
is more accurate when the object is primed with consistent 
scene and dropped when the prime is inconsistent (Palmer, 
1975). In addition, object detection is more accurate and 
naming is facilitated when the object appears in a consistent 
setting (Biederman, Mezzanotte, & Rabinowitz, 1982; 
Boyce & Pollatsek, 1992). Our model is context sensitive 
because the activation level of a particular bit of information 
basically represents its relevance to the current context. 
More active elements are anticipated more rigorously and 
verified with priority, thus speeding up their recognition 

Major advantage of the proposed models is its potential 
for integration of visual perception with other cognitive 
processes such as reasoning on the basis of common 
mechanism, that is, mapping. Similar principle has been 
incorporated in COPYCAT (Hofstadter, 1994), although it 
focuses on higher-order perception of events and analogical 
reasoning. Our task is to determine the potential of mapping 
ability to support the cognitive system from the very 
beginning of visual processing, through fast, implicit 
recognition, to relatively slower, explicit analogy making.  

RecMap Model of Active Recognition Based on 
Analogical Mapping 

In RecMap model, the recognition involves (i) mapping of 
limited input information onto structurally organized 
memory traces; (ii) creation of anticipations on the basis of 
these mappings; (iii) sequential checking of the 
anticipations. The model is based on the cognitive 
architecture DUAL (Kokinov, 1994a), and builds up on the 
AMBR model (Kokinov & Petrov, 2001, Kokinov, 1994b) 
The RecMap model uses all mechanisms of AMBR and 
proposes new mechanisms for anticipation-forming, 
binding, and recognition, which are integrated with the old 
ones, thus allowing the mapping process to guide 
recognition as well. 

The AMBR Model 
AMBR model consists of a huge number of interacting with 
each other hybrid micro-agents with symbolic and 
connectionist part. The permanent agents (concepts and 
some of the instances) constitute the system’s long-term 
memory, a semantic network with merged representation of 
the declarative and episodic knowledge. Each agent 
represents bits of information, but even small pieces of 
knowledge are represented by a coalition of many agents. At 
the same time, each agent has an activation level depending 
on its relevance to the ongoing context, and only active 
agents participate in symbolic operations.  

The AMBR agents that represent the environment (source 
node) and the task (goal node) serve as a source of 
activation, which spreads with decay. Each active instance-
agent emits a marker. This marker is sent to its parent 
concept-agent (representing type) and then upwards in the 
class hierarchy. When two markers meet, a hypothesis-agent 
for correspondence between the two marker-origins is 
created. The structural correspondence mechanism in turn 
creates new hypotheses on the basis of old ones. For 
example, if two relations are analogical, their respective 
arguments should also be analogical, etc. Thus, 
dynamically, a constraint satisfaction network of 
interconnected, competing with each other hypotheses 
emerges. Once a hypothesis maintains leading activity long 
enough and reaches a critical value, it is promoted to a 
winner, representing the analogy performed by the model. 

In AMBR, the process of analogy-making is not separated 
into sub-processes - retrieval and mapping overlap and 
interact with each other. As a result, the structural 
constraints, crucial for the mapping process, influence the 
retrieval as well. 

Innovations 
In comparison to AMBR, RecMap is equipped with several 
new mechanisms. These are the creation and maintenance of 
hypotheses for recognition, anticipatory mechanism, and 
attention.   

After a correspondence hypothesis emerges, a structural 
correspondence mechanism creates a hypothesis for 
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recognition. For example, suppose that a certain line from 
the environment happens to be mapped to a particular line 
from memory. If the second line is a part of a square, then a 
recognition-hypothesis that the first line is also a part of a 
square emerges. 

Simultaneously, the anticipatory mechanism (Petkov, 
Naydenov, Grinberg, & Kokinov, 2006) is operating. The 
memorized instance-agents inform the relevant relations in 
which they participate for all their hypotheses. If a certain 
relation collects the hypotheses for all its arguments, it 
creates an anticipation-agent, representing the expectation 
that the same relation is present in the environment. The 
anticipation-agents are copies of their mentor-relations but 
all their arguments are replaced with the respective 
analogical elements from the target situation. 

The attention mechanism monitors all anticipation-agents, 
sorts them by their activation (i.e. relevance), and at fixed 
time intervals asks a simulated perceptual system to check 
the relation represented by the most active one. In the 
current version of the model the perceptual system is just a 
pre-defined list of the relations, which are currently present. 
Another role of attention is to bind together the hypotheses 
for recognition for the respective relation and their 
arguments. For example, because all operations are 
performed locally, the relational arguments may have 
hypothesis that are parts of a wall, but not necessarily one 
and the same wall. So, the binding mechanism is 
responsible to bind all hypothesized walls into one.  

Thus, various hypotheses for recognition emerge locally, 
support or suppress each other, and are merged by the 
attentional binding mechanism. The recognition hypotheses 
in turn emit markers upwards in the conceptual system, 
participate in new hypotheses and anticipations, and create 
even more abstract recognition hypotheses. As a result of 
the relaxation of the network of hypotheses, the most active 
of them are promoted to winners. 

Experimental Simulations 
The domain for these simulations is hierarchical objects 
consisting of vertical or slopped lines and ovals, organized 
by spatial relations in figures (see Figure 1). 

There are several concepts in the long-term memory, 
named ‘house’, ‘lorry’, ‘tree’1, etc., as well as their parts, 
and the parts of these parts and so on. For example, a 
particular instance-agent for a house is linked to its parts – 
‘roof’, ‘wall’, and to the relation ‘above’ between them. In 
turn, the agent ‘wall’ is represented with a head-agent, 
linked to four lines, two of them horizontal, two vertical, as 
well as to several relations between these lines. The ‘roof’ 
consists of one horizontal, one left-right slopped, and one 
right-left slopped line, etc. When a target object is given to 

                                                                                                                     
1 All names, used in the simulations are arbitrary. The model 

would work as well if the agents were named ag01, ag02… The 
choice of the set of primitives is also arbitrary, without any 
psychological validation. 

the model, it is represented only by these lines (called 
primitives), without any relations between them.  

The model’s task is to organize the square and the 
triangle2 through the anticipatory and attentional 
mechanisms, and to create hypotheses that the square and 
triangle are respectively wall and roof (in competition with 
many other hypotheses), to anticipate possible relations 
between the square and the triangle, to organize them in a  

‘house’ ‘lorry’ ‘tree’ 

Figure 1:  Example of the objects used in the simulations. 
 
single object, and finally to recognize the house. Note that 
these processes overlap and the given order is very rough.  

There are several instances for each concept from the 
long-term memory, and each concept is randomly linked to 
some of these instances, thus ensuring that the activation 
would propagate from the semantic (conceptual) to episodic 
(concrete instances) memory. 

In a series of five simulations the main properties of the 
model are demonstrated. In the first simulation, a single 
object is recognized, thus the integrated work of all 
mechanisms is tested. In the second simulation, an object 
that shares all but one relation with the first one is 
recognized. In the third simulation, various priming effects 
are simulated. In the fourth and fifth simulations, the ability 
of the model to deal with more complex scenes and 
situations is tested. 

Simulation 1: Recognition of a House 
The task of the model in the first simulation was to 
recognize a single object – a ‘house’.  There are only seven 
primitives on the input, representing the straight contours – 
three horizontal lines, two vertical, one left-to-right slopped, 
and one right-to-left slopped. 

The activation spreads from these primitives to the parent 
concepts of these lines and then back to some of their 
instances. Many hypotheses for correspondence emerge. For 
example, each of the horizontal lines creates its own 
hypotheses with various horizontal lines, which participate 
in various objects. In turn, these correspondences create 
hypotheses for recognition. For example, if ‘line-b1’ is a 
part of a wall, and the target ‘line-1’ is analogical to ‘line-
b1’, then the respective correspondence creates and supports 
a hypothesis for recognition that ‘line-1’ is also a part of a 
wall.  

The more instances of a particular concept are relevant, 
the more support the hypotheses for recognition about the 

 
2 Note, there are not any squares or triangles in the memory. The 

objects are organized as hypotheses for recognition as ‘wall’, 
‘cabin’ (of a lorry), etc. The terms square and triangle are used 
only for better description. 
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respective concept would receive. Thus the pressure for top-
down priming influence is presented. Note, however, that 
because of the pressure for one-to-one mapping, the 
hypotheses for correspondence between the target line and 
the stored lines inhibit each other. Thus, the contextual top-
down influence is limited.  

 

gure 2:  The hypothesis for correspondence H2 creates 
t

 At the same time, numerous anticipations about possible 

w agents (hypotheses and anticipations) 
in

 the simulation, at time 59.24 

Figure 3:  If the anticipation ‘angle-90’ is confirmed, it is 

Simulation 2: Recognition of a Lorry 
as the same, 

bin’ 

Simulation 3: Priming 
n was to simulate the impact 

the higher activation of the 
in

t the first run, RecMap recognized ‘lorry’ at time 

 
 
Fi

he recognition-hypothesis ‘square-2’. Independently, H3 
creates ‘square-3’. In turn, the anticipation ‘angle-90’ is 
created because each of the arguments of the memorized 
relation ‘angle-90’ has hypotheses for correspondence. 

 

relations between the target lines are created (see Figure 2 
for an example).  

In turn, the ne
fluence the spread of activation making some elements 

more relevant than others. The attention mechanism checks 
sequentially the anticipations. If certain anticipation is 
rejected, it just ‘died’. If it is confirmed, the respective 
anticipation turns into an instance-agent. Thus, the 
description of the scene is enriched a bit. At the same time, 
the hypotheses for recognition of the relational arguments 
are bound with each other (see Figure 3). Thus, new 
relations are involved in the competition between the 
recognition-hypotheses.  
Results As a result of
(hundreds cycles of the program) a recognition-hypothesis 
‘house’ becomes a winner; recognition-hypotheses for 
‘roof’ and ‘wall’ become winners respectively at times 
99.84 and 104.96. Interestingly, the whole object was 
recognized before its parts consistent with the global 
precedence effect demonstrated by Navon (1977). Actually, 
before the whole object is recognized, there is no reason to 
recognize the square as a wall or as a cabin for example. 
The resolve of the puzzle starts after confirming the 

anticipation ‘above’ with the two parts as arguments. Thus, 
the already created instance-agent ‘above’ add the decisive 
support for the ‘house’ and later on, the parts of the house 
are  recognized as well.  

 

Line-1 

Line-2 

Bottom-line 

Left-line 

H

H

Angle 
900 

TARGET (SCENE) 

Angle 
900 

BASE (MEMORY) 

 
   Square 

Part-of Part-ofSquare-2 
(recognition) 

Line-1 

Line-2 

Bottom-line 

Left-line 

H

H

Angle   
900 

TARGET (SCENE) 

Angle-900 

(anticipation) 

BASE (MEMORY) 

  Square 

Part-of Part-ofSquare-1 
(recognition) 

Square-2 
(recognition) transformed into an instance-agent. At the same time, the 

recognition-hypotheses of its arguments are bound to each 
other (compare to Figure 2). 

Everything, including the seven input lines, w
as in the first simulation except  that in the list of predefined 
relations the relation ‘above’ is replaced with ‘in-touch’, 
thus the correct response of the model was ‘lorry’. 
Results At time 60.20 a ‘lorry’ was recognized; a ‘ca
and a ‘trailer’ were recognized respectively at time 107.66 
and 110.32. 

The role of the third simulatio
of context priming on the recognition process.. Actually, 
simulation 3 consists of three separate runs of the program. 
In all three runs, the model’s task is to recognize a single 
lorry (the simulation 2 is repeated). However, at the first 
run, additional instance of a ‘road’, associatively linked to 
‘lorry’ is attached to the input, thus supplying the concept 
‘lorry’ with extra activation.  

The prediction was that 
stances of ‘lorry’ would facilitate the recognition process. 

In the second run, the concept ‘fence’, associated with 
‘house’ is activated, expecting to hinder the recognition. 
Finally, it the third run, again ‘fence’ is pre-activated but 
with extremely high stimulation, thus simulating abnormal 
fixation. 
Results A
58.92; ‘cabin’ at time 86.58; ‘trailer’ at time 94.08, thus 
fully confirmed our expectations (compare with the 
respective results without priming from the Simulation 2 – 
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60.20, 107.6,6 and 110.32). At the second run the respective 
times were 62.22, 11.508, and 130.72. At the third run the 
model made wrong recognition – at time 103.12 a ‘roof’ 
was recognized, at time 139.28 – a ‘house, at time 178.34 – 
a ‘cabin’. 

These results in agreement with the effects of consistent 
an

Simulation 4: Recognition of Two Objects 
e attached 

l in 

 
Results The overall recognition time was slowed down but 

Simulation 5: Integration of Recognition and 

e episode was added to the long-term 

e house and 

r ‘house’, ‘lorry’, and ‘tree’ are 
su

Conclusions 
The RecMap model for recognition, based on the DUAL 
architecture and the AMBR model for analogy-making is 

presented. The main e model are that the 

ALOGY: Humans 
– the Analogy-Making Species, financed by the FP6 NEST 
Programme of t on. (Contr. No 

d inconsistent contextual priming demonstrated in the 
psychological literature (Palmer, 1975, Biederman, et al., 
1982). 

In the fourth simulation 14, instead of 7 lines wer
to the input of the model. A situation with two different 
objects was simulated (see Figure 4, left panel). There were 
not any relations between parts or primitives of different 
objects (i.e. anticipations for such relations were created but 
later rejected). 

Figure 4:  Left panel: Stimuli, presented to the mode
simulation 4. Right panel: The base situation, used in 

simulation 5. 

not considerably. The times for recognition of a ‘lorry’, 
‘cabin’, ‘trailer’, ‘house’, roof’, ‘wall’ were 58.98, 69.38, 
93.04, 97.56, 122.38, 136.14, respectively. This is evidence 
that the model can operate on more complex scenes with a 
little increase of computational resources. Thus, the model’s 
ability to scale up is demonstrated. 

Analogy-making 
Finally, a whole bas
memory and the capability of the RecMap model to perform 
the whole cycle from perception to complex analogy was 
tested. The base situation consists of two trees with a 
relation ‘left-of’ between them (see Figure 4).  
Results The model successfully recognized th
the lorry (just as in the Simulation 4) and continued with the 
analogy-making process. 

Because all concepts fo
b-classes of the superordinate concept ‘neighborhood’, the 

respective markers from the target and base objects cross, 
and new hypotheses for correspondence between the target 
objects and the trees are created. In turn, the RecMap 
mechanisms created anticipations that the lorry is in left of 
the house, and vice versa. The former anticipation is 
rejected, the latter one is confirmed, and thus the right 
spatial analogy was settled. 

assumptions of th
analogy-making is very basic human ability, and that the 
recognition is an active process of dynamical creation and 
verification of various hypotheses and anticipations. The 
model is based on an associative organization of the 
memory; on high context sensitivity; on basic mechanisms 
for analogy-making and hypotheses creation; on 
anticipatory behavior; and on attentional mechanism for 
sequential testing of anticipations. 

Our model was successful at stimulating several effects 
that are considered characteristic for human object 
recognition. To begin with, the model manages to anticipate, 
verify, and construct hierarchical structural representations 
of objects by analogy, which reveals the potential of this 
mechanism to support low as well as high-level recognition. 
Even more, it is able to recognize as different two objects 
that share all but one relation.  

However, structural does not always mean part-based as 
we demonstrated. The recognition may start from the whole 
and then proceed to the parts of the objects. Even more 
interesting is the chronology of events when the model is 
presented with two objects. When the recognition began 
with a particular object, it continued with its parts only on 
the basis of the competition between the active 
anticipations.  

Furthermore, we showed that the influence of context in 
the priming simulations can be modeled in an ecological 
manner. The model is not only able to simulate facilitative 
effects when the priming is consistent, but also slows down 
and is prone to mistakes when the context is leading. 

Finally, we demonstrated that our model is able not only 
to bind objects and recognize them, but also to perform 
analogical reasoning. The novel in our approach is that all 
processes are guided by one and the same underlying 
principle - the ability of analogical mapping.  

Nevertheless, there are several limitations of the current 
model. Although we assumed some kind of attentional 
mechanism, future work is needed to develop one with 
higher psychological plausibility.  Another shortcoming is 
the type of the information that is used. Although the top-
down construction of structural descriptions is important, it 
is unlikely that it is the sole pressure in recognition.  
Continuous metric information should be added as well as 
other bottom-up pressures such as salience.  Finally, the 
model’s ability to recognize and reason about more variable 
and complex objects and events should be tested.  

The greatest future challenge is to implement the same 
principles of binding on more realistic stimuli and to use 
both structural and metric information.  
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