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Abstract 
Cognitive systems for the representation of declarative 
knowledge like semantic networks and other graph-based 
systems are widely unrelated to characteristic neurobiological 
mechanisms in the brain. In this contribution we report on our 
efforts in bridging the gap between typical semantic relations 
like “is part of”, “has property” etc. and the laminar wiring 
pattern of the neocortex. Central to our approach is the 
identification of the cortical column as a basic building block 
within the relational network. These columns are typically 
sectioned into subsystems which comprise different horizontal 
layers and thereby provide different links for forward, 
backward and lateral processing. We show how these inter-
columnar connections can be related to semantic links, which 
reflect hierarchical knowledge, temporal ordering and 
ontological relationship. These dimensions are of outstanding 
interest for most cognitive tasks. But also arbitrary n-ary 
relationships can be build by representing the relations as 
nodes and using only the proposed basic link types. As 
inference mechanism, a simple locally controlled activation 
spread was applied. It results directly from the intra-columnar 
connectivity which is uniform for all nodes. We tested the 
system with large commonsense databases and obtained 
promising results including predictions, context influences 
and feature inheritance. 
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Introduction 
For the representation of relational knowledge in a graph-
based model we have developed a neural-symbolic network 
which combines ideas from classical semantic networks and 
recent findings of the neocortical wiring. It consists of 
columnar-like nodes as uniform entities for the 
representation of all concepts of the domain, including 
sensory measurements, motor actions, instances and 
categories. The nodes are connected by a set of directed 
links, which can be related to columnar subsystem, as we 
will argue in the next section.  

Semantic relations and columnar connections 
The biological entity, which in our approach corresponds to 
a network node, is the cortical column. The column is well 
known as the basic computational unit in the brain and its 
six-layered architecture has been addressed by several 
researchers to unravel the functional role (Raizada & 
Grossberg, 2003; Lücke & von der Malsburg, 2004; Kupper 
et al., 2006). Here we concentrate on a network build out of 

columnar-like nodes and do not target at a biologically 
detailed modeling of the single cortical column. The 
columns are typically sectioned into subsystems (see Fig. 1) 
which comprise different horizontal layers and thereby 
provide different links for bottom-up (BU), top-down (TD) 
and lateral processing. 
We refer to a schema described in (Körner, Tsujino & 
Masutaki, 1997) which assumes six distinct systems, which 
we will only briefly sketch here: Subsystem A1 receives 
input from lower cortical areas, subsystems A2 and B2 
project to areas higher in the cortical hierarchy, thus 
establishing together a bottom-up processing stream. Top-
down processing is realized via subsystem C2, which 
projects to lower areas, targeting in cortical layer I (since 
there are no neurons in this layer, it is not called a 
subsystem). The two remaining systems are for lateral 
processing (B1), which comprises many different cell types 
and can be subdivided further, and a system which sends 
primarily motor information to subcortical structures (C1). 

 
Figure 1: Sketch of the major pathways connecting cortical 

columns. Shown are cytoarchitecturally defined cortical 
layers (I-VI, left) and proposed functional subunits 
(A1 etc., right) with shadings referenced in Fig. 7. 

 
The relevant question in this context now is how semantic 
links can be ascribed to these pathways which originate 
from distinct subsystems. A good point to start with will be 
to look at those semantic relations which seem to be of 
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ubiquitous importance. Indeed, there seem to be very few 
basic relations which are relevant for concepts on all layers 
of abstraction, independent of the actual knowledge domain 
and these might be grouped according the three dimension 
of hierarchy, sequence and relationship. 
Hierarchies are used all over the neocortex as the core 
organization principle to deal with the nested structure of 
the surrounding world. Along this dimension of knowledge 
chunks the notions of BU and TD processing apply. 
Knowledge about hierarchical relationships is usually 
expressed in meronymies and holonymies, but also in 
relations like “is located in” or in the temporal domain 
(“happens during” etc). In our system three link types are 
used to build the chunking hierarchy and, following the 
basic cortical processing streams, columnar subsystems are 
assigned to each of them (Fig. 1, for details see e.g. 
Thomson & Bannister, 2003): A “has component” link, 
which originates in C2 and projects to layer I of nodes on a 
lower level (top-down). Two “is component of” links stem 
from different cortical layers (A2, B2) but terminate both in 
input layer A1. Together they serve for bottom-up 
information flow, and just differ in the granularity of 
transmitted information. Note, that an increased level of 
detail leads to a hierarchy, in which subclasses are 
represented above superclasses and instances are 
represented above categories (see e.g. Quian Quiroga et al., 
2005), generating a reversed ontological hierarchy. 
Sequential information is essential, especially for prediction. 
We associate corresponding semantic links with the 
columnar subsystem C1 (compare Lomber & Payne, 2000), 
but will not make use of it in the work presented here. 
Instead, we concentrate on ontological knowledge which is 
expressed in hyponyms and hypernyms. For this dimension 
(coined “relationship” above) six link types are used: has 
property / is property of, has subclass / is subclass of and 
has role / is role of. A suitable columnar subsystem for these 
connections seems to be B1 because of the existence of 
distinct functional subsystems within upper layer III 
(Yoshimura, Dantzker & Callaway, 2005) and the 
characteristic dense wiring pattern with horizontal 
connections of different ranges (e.g. Hirsch & Gilbert, 
1991). In this line, links denoting subclass relationships 
connect columns within one level (e.g. within one cortical 
area), whereas property and role links make inter-area 
connections, since they connect conceptual representations 
with more perceptually based ones. Summarizing, we have 
the following set of link types 
 

•  has component / is component of 
•  has consequence / is consequence of 
•  has property / is property of 
•  has subclass / is subclass of 
•  has role / is role of 

 
All network links proposed here differ in two important 
aspects to common semantic network links: First, we only 
use a very restricted set of basic link types, which are 
biologically justified, since they can be associated with 
specific neuronal source and target populations each within 
a specific columnar layer. Second, these links do not vary 

from node to node, but are common to all nodes. Not all 
links, of cause, are used by every node, but there are no 
links which are available only for certain nodes. The 
motivation for this homogenous layout is that the basic 
structure of the biological column is widely independent of 
the cortical site. 
In the following the focus will be only on the lateral 
connections originating and targeting in subpopulations of 
B1. For details on link types associated with the other 
subsystems for semantic relations about temporal and 
spatial ordering, see (Röhrbein, Eggert & Körner, 2007). To 
motivate the link types associated with B1, we start with 
quite general considerations concerning the coding of 
relational structures. 

Representation of arbitrary relations 
How can arbitrary relations be expressed within a graph-
based framework? The common way to represent facts like 
“John loves Mary” is to have nodes for the concepts 
involved (“John”, “Mary”) and a directed link between 
them. The link is typically labeled with the relation, which 
holds between the connecting concepts (“loves”). 
Unfortunately, this works only for dyadic relations: As soon 
as a third concept is involved, like in “Mary gives John a 
cookie”, the scheme has to be revised. 
One option here is to extend the directed links towards 
“hyperarcs” (see e.g. Harel, 1988). These are either 
conceptualized as n-ended arcs and then solve only half of 
the problem, because still only 2 roles are possible. Cases 
where directed hyperarcs are sufficient are quite restricted, 
e.g. for relations like lies-between(X,Y,Z,…) which can be 
represented by setting head H={X} and tail T={Y,Z,…}. 
Others, e.g. Boley (1992) in his "directed recursive 
labelnode hypergraphs" propose links which start at the 
relation node, cut n-1 argument nodes and end at the nth 
node of the n-ary relation. He criticizes approaches which 
introduce additional nodes, because they add “pseudo-
entities”, but this holds only as long if they cannot be given 
a reasonable interpretation. 
Another solution to handle relations with arity greater than 2 
is to have an extra node pointing the all involved concepts 
(e.g. used in SNePS). The links have to be labeled, 
otherwise one could not differentiate between the statements 
“Mary gives John a cookie” and “John gives Mary a 
cookie”. But here the labels do not reflect the type of 
relation as for binary relations; rather they specify roles like 
“giver”, “recipient” and “object”. More as a side effect, in 
doing so the “artificial” node becomes to represent the 
whole relation. The provision of labels is a general problem. 
They are unsatisfactory for several reasons, most 
importantly for us because biology does not allow for 
arbitrary link types. 
A variant of this approach would be to chunk information 
into a node which then comes to represent a part of the 
whole statement like “Mary gives John”. This is useful for 
computational reasons, since reasoning with nodes of arity 
beyond 3 have proven to be intractable. Conceptually there 
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is no further gain in representing parts of a statement, since 
it makes no sense to dispense completely with separate 
concepts for both “Mary” and “John”, and the semantic of 
the link becomes even more obscure. 
For a solution without arbitrary link types, two aspects of a 
“standard link” have to be considered: First, the link has 
only two ends, and second, there are only two different 
“values” for the endpoints: “arrow tail” and “arrowhead”, 
usually associated with an “ingoing” and “outgoing” 
semantic. For a true extension therefore, a graphical 
notation is needed based on that depicted in Fig. 2 (b) for a 
ternary relation. Here the link is allowed to have more than 
two connecting points and at the same time more than two 
possible values. For a biological interpretation such a graph-
based approach still causes a problem, since there are no 
different connection endings for neurons that can be 
associated with arbitrary roles. (In fact, there seem to be 
different link types and associated with them, different 
roles, but these are not arbitrarily definable, see above.) 

Figure 2: Graphical representations for binary relations (a) 
have to be extended in two ways to deal with n-ary 

relations: The number and the type of terminal points. 
Sketched in (b) is a graphical notation for n=3. 

 
Here we present a very straight-forward solution to this by 
proposing an additional node for each role. A ternary 
relation is now represented as sketched in Fig. 3 (b) with 
new intermediate nodes labeled with digits. This schema 
can easily be extended for relation with greater arity (c) and 
is also valid for binary relations (b), thus avoiding any 
discontinuity. The new nodes have a clear interpretation: 
For the statement “Mary gives John a cookie” with 
X=Mary, Y=John and Z=cookie, node 1 represents “Mary 
acting as giver”, node 2 “John acting as receiver” and node 
3 “cookie as a gift”. These nodes can participate in other 
relational statements, e.g. the node 2, if it is to be expressed 
that Mary gives some things to some other people. Of 
course, the same holds for concepts, since these usually 
participate in different situations having different roles (see 
simple example below). Fig. 3 (d) shows how the fact “a 
can is made of aluminum” is represented and indicates the 
embedding in our columnar framework with links of type 
has-role / is-role-of (depicted now as solid bidirectional 
links). 
On the conceptual side, the advantage of the proposed 
schema lies in the uniform treatment of arbitrary n-ary 
relations. This is opposed to standard semantic networks 
which show a tendency to binarize not only relations with 
more than two roles, but also monadic relations like “has 

property”. E.g., typical KL-ONE representations are 
restricted to unary and binary predicates. This is not an 
inherent restriction and n-ary description logics have been 
proposed (e.g. Schmolze, 1989), but nevertheless n-tuples 
for n>2 are usually represented indirectly by reification. 
There are also technical advantages, since the modeling of 
relations as nodes allow for inheritance, activation spread 
etc., which we will elaborate on shortly in the next section. 

 
Figure 3: Proposed pattern for representing n-ary relations 

(a-c, n=2,3,4). The dyadic relation in (d) is represented with 
5 nodes connected with has-role / is-role-of links. 

Relational prototypes 
For every relation which can be expressed in our framework 
(like “gives”, “made of” etc.) there is a so-called relational 
prototype, which functions as a template and which is 
connected with all relations of that type. An example is 
given in Fig. 4 for the relation “made of”. There are two 
instances of this relation involving three concepts in the 
same manner as in Fig. 3 (d), but additionally nodes which 
code the relation are connected (dashed arrows) with 
corresponding nodes of the relational prototype. These links 
are of type has-subclass / subclass-of and thus allow for the 
inheritance of properties (not included in the figure). The 
nodes constituting the relational prototype (within the gray 
oval) get their meaning via their connection to all instances 
of these nodes. 

 
Figure 4: Relational prototypes (grey oval) are 

component-wise connected with all instances thereof via 
has-subclass / is-subclass-of links (dashed arrows). 
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Note that also the cortex seems to build separate 
representations for different tasks. For spatial cognition 
tasks e.g. knowledge about spatial relations has to be 
provided and all the nodes representing instances of these 
relations should be arranged in neighbored representations. 
There is also a psycholinguistic justification of treating 
relations as abstract concepts, which comes from work of 
Chaffin and Herrmann (1988). They found basic 
characteristics, which are known to hold for objects, also for 
relations. These include decomposability, typicality, 
codability, multiple inheritance and compositionalibility.  
 

Activation spread 
The activation spread results from intra- and inter-columnar 
connectivity patterns. Internally each node has an activity 
vector with one entry for each subsystem. The connections 
between nodes depend on the represented knowledge and 
follow the rules outlined above. In the current version of the 
system, we use the simplest rule for intercolumnar 
connections without weighting and thresholds: The 
incoming activation aj of a specific subsystem xin equals the 
sum of the activations of the corresponding outgoing 
subsystems of all those nodes i, which are connected to 
node j: 
 

∑=
i

outijiinj xawxa )()(  

The processing within a node depends on the intra-columnar 
wiring, which is handcrafted, but identical for all nodes in 
the network. We omit here all definitions except those 
which are made use of in the example which follows in the 
next section, i.e. we focus on the subsystems marked in grey 
in Fig. 5. 

 
 

Figure 5: Columnar network nodes are subdivided into 
functional subsystems and associated semantic link types. 

In this report the focus is mainly on the shaded parts of B1. 
 
The intra-columnar propagation rules for the activities 
aj(xout) of a node j are defined in the following for the 
subsystems xout of B1. We use the abbreviations B1a, …, 
B1f given in Fig. 5. 
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Note, that in all cases the activity vector remains 
unchanged, unless the incoming activity changes, i.e. there 
is no automatic fading away. 
 

Toy example 

Network 
We tested our network with large knowledge databases, i.e., 
all relations are extensionally defined. In the following we 
demonstrate the behavior with a toy example consisting of 
four pieces of relational knowledge, which are fed into the 
system: 
 
 

can is-made-of aluminum
can is-used-for drinking
can is-used-for gaming
car is-used-for driving

 
 

A representation of these statements involves six concepts 
(for can, car, aluminum etc.) and two relational prototypes 
(is-made-of and is-used-for). All nodes and relations 
necessary for representing the knowledge are generated 
automatically resulting in the network shown in Fig. 6. 
This example requires the use of only two different link 
types: has-role / is-role-of links (depicted as solid 
bidirectional arrows) and has-subclass / is-subclass-of links 
(dashed bidirectional arrows). Note that role nodes can be 
part of more than one relational statement (here node “tool-
can”). 

Task 
Let’s assume that an object has been presented to the 
system, which was identified as a can. This successful 
recognition leads to an activation of the column representing 
“can”`. In the next time step one might wish to ask the 
system about the usage of this object. This situation can be 
directly expressed in our network through the activation of 
two nodes: Node “can” receives top-down input via layer I 
which activates neurons in subsystem C2 and parts of 
subsystem B1. We choose an activity value of 1 and set: 
 
 

1)( =layerIacan  
 
 

C2 

B2 

A2 

A1 

B1 

C1 

has property  
is property of 

has role  
is role of 

has subclass  
is subclass of 

node

b 
a 

c 
d 
e 
f 

44



Node “usage” is activated bottom-up leading to a firing of 
neurons in subsystem A1. For simplicity, the same activity 
value is assumed here: 
 
 

1)1( =Aausage  
 
 

Starting at these two nodes, the activation spreads according 
to the proposed intra-columnar wiring and according to the 
connections between nodes specified by entries of the 
knowledge base. 
 

 
Figure 6: Example network with representations for 
relations made-of and used-for. See text for details. 

Result 
In Fig. 6 all nodes which receive activation are colored: The 
nodes which received input, several nodes coding the 
relation and two nodes which represent a concept: 
“drinking” and “gaming”. This highly selective activation of 
relevant nodes becomes even more important if we consider 
realistic knowledge networks like that one we obtained by 
using freely-available ontological and commonsense 
databases (see Röhrbein et al., 2007). They typically 
comprise hundreds of instances for one relational prototype, 
but the only relational structures which get completely 
activated are those matching with the concepts contained in 
the “question”, in this example “can” and “USAGE”. As can 
be seen from the propagation rules defined above, this is 
due to the nonlinearity for the is-role-of activity, which 
leads to the desired gating behavior. 
For a quantitative comparison the contribution of the 
different subsystems to the total node activity can be found 
in Fig. 7. The depicted activity vectors of all involved nodes 
show the highest activation for nodes “drinking” and 
“gaming”. Clearly, the gained sum activity scales with the 
provided input values, which were here set to 1, but the 
different subsystems’ contributions depend on the 

weightings in the definitions above. Moreover, it is not quite 
clear what should be taken as the “sum activity” of a 
column (see e.g. measurements by Staiger et al., 2000). On 
the other hand, the provision of an “answer” as system 
output, which might consist of a short list of top-ranked 
nodes, is considered rather as a side effect. The more 
important result in our view lies in the selective activation 
of relevant substructures which can be used for subsequent 
processing steps. 

 
Figure 7: Activity vectors resulting from C2 activation of 

“can” and A1 activation of “USAGE”. Shading styles refer 
to columnar subsystems in Fig. 1. 

 

Discussion 
A similar node-based representation is used in LISA (e.g. 
Hummel & Holyoak, 2003), in which a form of symbolic 
connectionism is proposed which also avoids labeled links 
for the representation of relational structures. Hummel and 
Holyoak argue for a 4-tired hierarchical schema comprising 
“propositional units”, “role-binding units”, “token units” 
and “semantic units”. These nodes roughly correspond to 
neurons, whereas in our approach only one uniform unit is 
assumed which is related to a larger biological entity, the 
cortical column. This enables us to differentiate e.g. 
between superclasses and properties which are treated 
uniformly in LISA as features at the level of “semantic 
units”. Related constructs can also be found in connectionist 
modeling approaches of linguistic aspects. E.g., Hadley and 
Cardei (1999) introduced p-nodes, which are clusters 
consisting of a core node connecting sequence nodes with 
role nodes. Quite similarly to our approach, these role nodes 
are for the binding of concepts to appropriate roles, but here 
the possible roles are restricted to a predefined and fixed set 
of only three role nodes: concepts can be linked either to an 
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“agent role”, an “action role” or a “patient role”. In 
SHRUTI (Shastri, 1999), "focal-clusters" represent n-ary 
relations and contain beside n role nodes also a number of 
special-purpose nodes like enablers and collectors. Shastri 
does not relate this unit to biological mechanisms like the 
cortical column, but it might be worthwhile to pursue that 
direction. 
In general, the coding of higher-valence relations by 
introducing additional nodes has already been recommended 
by Levesque, Brachman (1984) and is proposed also in 
recent approaches (e.g. Schultheis, Barkowsky & Bertel, 
2006), but without considering the need for having role 
nodes. Another example would be the “relational element 
theory” put forward by Chaffin and Herrmann (1988). In 
their investigation on analytical vs. unitary approaches to 
semantic relations they also propose a decomposition into 
relational elements (like “agent” and “instrument”), but 
these are more like properties of relations, e.g. “dimension”, 
“discrete” etc. than role nodes proper. Furthermore they 
consider only binary relations. 
A final note should be made with respect to the postulation 
of Firstness, Secondness and Thirdness as the fundamental 
ontological entities (see Sowa, 2000). This trichotomy has 
not always been interpreted uniformly, but it seems to fit to 
our graphical representation, where 1st-ness corresponds to 
the objects per se, 2nd-ness to the properties of an objects 
and 3rd-ness to the relation between objects (see Fig. 8). 

Figure 8: Peircean notions of Firstness, Secondness and 
Thirdness as major ontological distinctions might be related 

to network patterns which emerge from our approach. 
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