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Abstract

Cognitive redeployment is the idea that an important part of 
the  evolution  of  cognition  is  the  adaptation  and  re-use  of 
existing cognitive modules for new purposes.  In this paper, 
we apply this idea to the ACT-R declarative memory system 
and the ACT-R visual system.  We have developed a common 
underlying  implementation  of  these  systems  as  part  of  the 
Python ACT-R project.  As a result, we can apply aspects of 
vision to memory and vice-versa.  In particular, we apply the 
concepts  of  base-level  learning,  spreading  activation,  and 
partial matching from declarative memory to vision.  We also 
apply  the  recent  visual  saliency  model  from  vision  to 
declarative memory.  This results in a variety of new models 
of  existing  phenomena  which  rest  on  a  simpler  and  more 
general theoretical framework.

Introduction
In previous work (Stewart & West, 2006; Stewart & West, 
in press), we have argued that it is useful to deconstruct the 
ACT-R cognitive architecture (Anderson & Lebiere, 1998) 
into  its  more  basic  components.   By  combining  these 
components in various ways, we can explore the effects of 
architectural changes,  as  well  as  the  more  commonly 
explored effects of numerical parameter changes.  In other 
words,  instead of just  adjusting values such as latency or 
noise,  it  is  possible  to  investigate  the  effects  of  adding 
multiple memory systems, multiple production systems, and 
new  buffers  for  communication.   This  system  is  called 
Python ACT-R and is integrated with a complete set of tools 
(CCMSuite)  for  creating  experimental  environments, 
running parallel simulations, and performing data analysis. 
All  source  code  and  experimental  data  can  be  found  at 
<http://ccmlab.ca/ccmsuite.html>  including  the  models 
described here.

In this paper, we explore the implications of treating the 
ACT-R declarative memory system and the ACT-R visual 
system  as  being  built  out  of  the  same  underlying 
components.  These systems are traditionally treated as quite 
separate in ACT-R; indeed, until recently the visual system 
was  part  of  an  add-on  component  called  ACT-R/PM. 
However, these systems have a similar interface, in that they 
both can be given requests to find items that fit a particular 
pattern.  The precise algorithms for determining which items 
are  found  by  the  requests  do  differ  between  vision  and 
declarative memory, but we show in this paper that there are 
underling  similarities  that  allow  us  to  combine  these 
algorithms, and apply the declarative memory ones to vision 
and the vice versa.

The goal of this work is to determine whether there is an 
advantage to treating vision and memory as systems built 
from the same type of generic system.  By consolidating the 
models  of  these  two  phenomena  and  exploring  their 
similarities (and differences), we hope to arrive at a more 
parsimonious cognitive model.

Cognitive Redeployment
If a generic memory system can be shown to accommodate 
both the vision and the declarative memory systems within 
the ACT-R cognitive architecture, then it can be seen as an 
example  of  cognitive  redeployment.   Michael  Anderson 
(2007)  argues  that  “the  brain  evolved  by  preserving, 
extending,  and  combining  existing  network  components, 
rather than by generating complex structures de novo.”  His 
massive redeployment hypothesis (Anderson, forthcoming) 
states that “cognitive evolution proceeds in a way analogous 
to  component  reuse  in  software  engineering,  whereby 
existing  components  ...  are  used  for  new  purposes  and 
combined to support new capacities, without disrupting their 
participation in existing programs” (Anderson, 2007, p.13). 
This is the theoretical motivation behind our generic model. 
Based on this we believe that it is useful to examine how 
cognitive  modules  can  be  modified  and  re-purposed  to 
perform different cognitive functions.

The Python ACT-R system supports this exploration by 
allowing the modeller to customize the ACT-R architecture. 
In the current Lisp ACT-R system, the underlying modules 
can certainly be modified, but this requires delving into the 
underlying implementation of the architecture.  In Python 
ACT-R, creating memory systems and customizing them in 
various ways is a basic part of the modelling process (much 
like defining productions and chunks).  No understanding of 
the  underlying  implementation  is  needed.   This  makes 
architectural  exploration  available  to  any  cognitive 
modeller, not just those willing to implement models from 
scratch.

Salience
We  began  this  project  by  updating  Python  ACT-R’s 
capabilities by implementing ACT-R's new visual salience 
system (Byrne,  2006).   This  was  originally  developed  to 
model  the “pop-out” effect  familiar  to  vision researchers. 
This is implemented in Python ACT-R as a separate module 
that can connect to the visual system.  However, because the 
visual system in Python ACT-R is built  using the generic 
system  as  the  declarative  memory  system,  it  was  also 
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possible  to  connect  the  salience  module  to  declarative 
memory.  However,  it  should  be  noted  that  we  are  not 
claiming that the same physical neurons in the brain may be 
responsible for both visual and memory effects.  Rather, we 
believe that a similar cognitive structures may be involved, 
and that a common computational model may be used for 
both.

To  develop  this  idea,  we  first  describe  the  ACT-R 
declarative memory system and the vision system.  Next, a 
generic  system  is  described  that  is  capable  of  being 
customized via particular sub-components to perform either 
task.   We  then  demonstrate  its  capabilities,  showing 
particular  differences  between  this  vision  model  and  the 
standard ACT-R vision model.  Finally, we investigate what 
capabilities are gained by the declarative memory system 
now that the visual salience system can be integrated with it. 
The  result  is  both  a  novel  model  of  distinctiveness in 
memory and a demonstration of the usefulness of cognitive 
redeployment.

Declarative Memory
The  ACT-R  declarative  memory  system  consists  of  a 
module for storing chunks (small meaningful collections of 
data,  such  as  “Fido  is  a  dog”)  and  a  retrieval  buffer  for 
storing the currently recalled chunk.  Chunks are placed into 
memory whenever they are used by an ACT-R production 
rule.   A  production  rule  can  also  make  a  request  from 
memory,  asking  for  a  chunk that  fits  a  particular  pattern 
(such as “Fido is a  what?”).  If a chunk is found, then its 
contents are placed in the retrieval buffer.

In many cases, there will be several chunks that match the 
requested pattern.   In these situations,  the chunk with the 
highest activation is retrieved.  The activation of a chunk is 
based on a variety of factors, the most important of which is 
the base level learning equation.  Here, a chunk's activation 
is increased when it is used, and this activation decays over 
time.  There is also a formula for adjusting the activation of 
chunks  that  almost  match  the  memory  request  pattern 
(partial matching), a formula for increasing the activation of 
chunks  that  are  similar  to  chunks  already  in  buffers 
(spreading activation), and a random amount of noise that 
leads to variability in behaviour.

However, there is no way of modifying chunks once they 
are placed in memory. Therefore, to avoid the problem of 
repeatedly  retrieving  the  most  active  chunk  in  situations 
where  this  is  not  appropriate,  ACT-R  has  a  system  for 
maintaining “Fingers of  Instantiation” (or  FINSTs).   This 
allows a memory request to indicate that it should not recall 
a  recently  retrieved  item.  Details  and  formulas  for  the 
declarative memory system can be found in (Anderson & 
Lebiere, 1998).

Vision
The  vision  system  in  ACT-R  (formerly  a  part  of  ACT-
R/PM) has two sub-systems and two buffers associated with 
these sub-systems.  These two sub-systems are the “where” 
and  “what”  systems,  where  the  former  is  in  charge  of 

directing  visual  attention,  and  the  later  in  charge  of 
determining  information  about  the  object  at  the  attended 
location.

To perceive an object, an ACT-R production is first used 
to  instruct  the  vision  system to  find  a  location  in  space. 
This can be something as simple as “find any object” or as 
complex as “find a red object on the right side of the screen 
that's above the object currently being attended to”.  When 
an object is found that matches these criteria, the location of 
the object is placed in the visual location buffer.  Next, the 
“what” system can be used to attend to that location and get 
information  about  the  object.   In  ACT-R,  this  does  not 
involve a theory of visual processing.  Instead, the features 
that  have been attached to the object by the modeller are 
placed  in  the  visual  buffer.   For  example,  a  picture  of  a 
house might be set to create a chunk in the visual buffer that 
simply says “house”.

The  vision  system  also  supports  a  number  of  other 
behaviours.   If  an  object  moves while  being attended to, 
then attention will follow that object (object tracking).  If 
nothing is being attended to, but a new item appears which 
matches  the  previous  search  request,  then  it  will 
automatically be attended to (buffer stuffing).  Requests can 
also be made to only attend to “new” or “old” objects (i.e. 
objects  that  have  recently  appeared  or  been  visible  for  a 
longer  period  of  time).  This  functionality  is  similar  to 
FINST system in declarative memory.

One of  the most  recent  advances  in  the  ACT-R vision 
system is the addition of a theory of visual salience (Byrne, 
2006).   Here,  when  an  object  is  being  searched  for,  the 
system no longer chooses randomly among matching items. 
Instead, the visual features of the object are examined, and 
objects that have more  rare features are more likely to be 
attended to. This causes the well-known pop-out effect to 
occur, e.g., where a single red object in a set of blue objects 
is much more likely to be attended to.

Generic Chunk Storage and Retrieval
Both the declarative memory system and the vision system 
operate  according  to  the  same basic  premise:  requests  to 
find chunks conforming to a particular pattern are made, and 
the result is placed into an associated buffer (note, we are 
treating objects in the visual field as chunks here).  This is 
the  basic  definition  of  a  content-addressable memory 
system, and has a simple implementation: chunks are placed 
in  the  memory,  these  are  examined  individually  to  see 
which ones match, and one of these is chosen as the final 
result.

The  key  question  is  what  to  do  when multiple  chunks 
match.  In  declarative  memory,  the  base  level  learning, 
partial matching, and spreading activation systems (as well 
as random noise) all combine to form an  activation value, 
and the chunk with the highest activation value is returned. 
The  visual  system  can  be  thought  of  as  operating  in  a 
similar way, with the activation of the chunks in the visual 
field boosted according to their level of salience.
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Our approach is to treat the different process involved in 
retrieval  as  sub-modules.   Without  any  sub-modules,  the 
activation value of all chunks in the generic memory system 
is considered to be zero.  Since all the chunks have the same 
activation  value,  if  more  than  one  chunk  matches,  the 
system chooses randomly between them.

As part  of  the  model  creation  process,  Python  ACT-R 
allows  the  modeller  to  attach  particular  sub-modules  to 
adjust  the activation values.   This is similar  to,  but  more 
flexible than, the standard ACT-R approach of turning on or 
off the various aspects such as partial matching or spreading 
activation.  The following sub-modules have been written:

Base  Level: the  standard  ACT-R  base  level  learning 
equation.  Activation increases whenever a chunk is added 
into memory, and decays over time.  This also includes the 
new optimized version (Petrov, 2006).
Spreading  Activation: increases  activation  for  slots  that 
have  chunk  values  matching  those  in  particular  buffers. 
Allows  for  configuring  which  buffers  are  used  and  the 
strength of the spreading.
Partial Matching: allows chunks that do not exactly match 
the  request  to  be  returned,  but  at  a  decreased  level  of 
activation.   Note  that  this  sub-module  requires  a  slightly 
more complex integration with the memory module,  as it 
not only adjusts the activation levels, but also adjusts the set 
of chunks that could be returned.
Noise: a configurable amount of logistic noise added to the 
activation  of  each  chunk.   Can  also  add  a  random fixed 
amount to a chunk when it is first created.  Equivalent to the 
Lisp ACT-R parameters ANS and PAS.
Salience: increases the activation of chunks based on the 
rarity of the slot values.  Requires specifying a context of 
which  chunks  to  consider  when  determining  how  rare 
particular values are.

To  complete  the  implementation,  the  chunk  storage 
system  also  defines  a  threshold (a  value  that  activations 
must  be above in  order  to  be retrieved)  and a  latency (a 
value determining how lower activations require more time 
to recall).  Furthermore, a FINST (fingers of instantiation) 
system is also available, which keeps track of what chunks 
have been recently recalled, and allows those chunks to be 
temporarily ignored.

The first four of these sub-modules should be familiar to 
ACT-R users.  They form the terms in the standard ACT-R 
activation equation.  The fifth sub-module implements the 
new salience estimation process (Byrne, 2006).  With this 
approach,  the  declarative  memory  system and  the  vision 
system can constructed from the same basic system.

Vision as Memory
The core part of a vision system can now be implemented 
via the new generic system.  For the most part, this generic 
system will be familiar to those who have worked with the 
ACT-R declarative memory system.  Using this for vision 
requires a few special considerations.  Chunks representing 

the currently visible objects are stored in a  generic memory 
system that  can  be  thought  of  as  representing  the  visual 
trace.  The ACT-R model can then make requests of that 
system  to  find  particular  objects,  just  as  is  done  in  the 
standard  ACT-R vision  system.   However,  there  are  two 
major complications to this process.

First, there needs to be a way to fill the memory with the 
currently available chunks. For this type of function, Python 
ACT-R also allows for the creation of separate production 
systems.  These can be specified in exactly the same way as 
the  core  production  system,  allowing  this  sort  of  sub-
module to be easily implemented.  This separate production 
system for  vision  can  also  be  used  to  implement  buffer-
stuffing and tracking (see West, Stewart, Pyke, & Emond, 
2006  for  an  example  of  using  this  approach  for  buffer 
stuffing).  

We have found that the production system for filling the 
visual memory requires a very short action time (the time 
required for a production to fire), around 5 to 10 msec in 
order to be reasonably responsive to changing stimuli.  Of 
course, since this is a separate production system it, does not 
affect how quickly the productions in the ACT-R procedural 
memory  fire  (normally  50  msec).   Furthermore,  if  this 
system  uses  the  Base  Level  sub-module  and  a  high 
threshold (~5.5) and decay (~0.95), then it is not necessary 
to also clear the memory: the decay of activation for  old 
chunks will automatically ensure objects that no longer are 
visible are not returned.  This can be seen in Figure 1.

One  difference  between  this  system  and  the  standard 
ACT-R  vision  system  is  that  there  is  no  bias  towards 
returning  new objects.  Instead, Figure 1 shows that older 
objects can have a higher activation if they have been in the 
visual  field  for  a  longer  amount  of  time.  However,  this 
effect disappears if chunks that were in the visual field on 
the  previous  cycle  are  included  in  the  context  set  for 
determining  salience.  In  this  case,  new  objects  will  be 
returned if they a sufficiently salient.

Figure 1: Activation levels of two chunks in the new vision 
system, visible for different periods of time.  Activation 

uses the Base Level learning equation with d=0.95.

The second complication involves the separate “what” and 
“where”  systems  in  ACT-R  vision.   One  approach  is  to 
ignore this distinction, and not model the vision system to 
this fine a degree.  This is the approach taken by the SOS 
vision system for ACT-R (West & Emond, 2002), and has 
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been shown to be useful in situations where the details of 
vision are  not  an important  part  of  the  cognitive  process 
being modelled.

However, an alternative approach is to implement vision 
using two separate memory systems: one that is filled with 
the  locations of all available objects.  This can be used to 
implement the “where” system, and results in filling a visual 
location buffer with a location that can be attended to.  The 
“what”  system can  then be  a  separate  memory,  which  is 
only  filled  with  items  near  the  currently  attended  visual 
location.  This maps well onto the behaviour of the current 
ACT-R vision system.

In either case, the result is a memory-based system that 
constantly maintains a collection of chunks representing the 
visible objects available to the ACT-R model.  As objects 
appear and disappear, the activation levels of chunks in this 
visual system change.  When a retrieval request is made (i.e. 
when ACT-R chooses to attend to a visual object), a chunk 
representing that object is placed into a visual buffer.  The 
activation levels of the chunks control this process just as 
they  do  in  ACT-R  declarative  memory.   The  result  is  a 
variation of the generic chunk storage system that functions 
as a visual system.

Applying Memory Sub-Modules to Vision
Implementing  vision  via  the  standard  ACT-R  memory 
system can, by itself, be seen as a useful modelling advance, 
as it provides a parsimonious explanation of both systems. 
Having  both  vision  and  memory  built  using  the  same 
cognitive components shows how it is possible to redeploy 
cognitive  facilities  from one task to  another.   Of  course, 
significant work is  still  needed to rigorously compare the 
performance of this new vision system, the ACT-R vision 
system, and real human vision.  This work is on-going.

However,  it  is  worth  pointing  out  two  significant 
advantages that are available to this new vision system due 
to its integration with existing memory models.  Just as the 
Base Level sub-module was used to implement item decay 
from  visual  memory,  it  is  also  possible  to  use  both  the 
Partial Matching sub-module and the Spreading Activation 
sub-module.

Applying  Partial  Matching  to  vision  provides  a  natural 
implementation of many of the special-case features that are 
used in the current ACT-R vision system.  Instead of the 
VISUAL-MOVEMENT-TOLERANCE  parameter,  which 
indicates how far away from a point an object can be and 
still  be noticed, the partial matching system can gradually 
reduce the activation of chunks farther away from the point 
of interest.   A similar approach can be taken for features 
such as colour, where a search for a  red should also find 
objects that are  pink  (although perhaps at a slightly lower 
activation level).

Another new possibility arises with Spreading Activation. 
Here, the activation of visual chunks can be increased based 
on  the  current  contents  of  the  goal  buffer  (or  any  other 
buffer).  This can be seen as a type of top-down processing 
influencing visual attention.  This aspect of top-down and 

bottom-up salience is discussed in more detail at the end of 
this paper.

A  detailed  analysis  of  these  possibilities  is  still  in 
progress.  However, the mere fact that these options appear 
naturally from this method of modelling vision is promising 
in and of itself.

Memory as Vision
It is also possible for us to apply the salience module used in 
the vision system to the declarative memory system. When 
used in the context of vision, this module leads to pop-out 
effects.  If  this  same  system  is  applied  to  declarative 
memory, then it  results in a bias towards recalling unique 
chunks.   This  can  be  seen  as  an  implementation  of 
distinctiveness.   Chunks that  have similar slot  values will 
tend  to  have  lower  activations  than  chunks  that  have 
distinctive  values.   This  makes  it  easier  to  recall  rare  or 
special items in memory (a well known memory effect).

We  now  turn  to  a  specific  example  of  the  modelling 
capabilities gained by using the salience module to create a 
distinctiveness effect in  declarative memory.

Release from Proactive Interference
The Salience sub-module increases the activation of chunks 
with unique slot values.  This can be seen as  functionally 
equivalent  to  decreasing  the  activation  of  chunks  with 
similar slot values.  That is, if a chunk is similar to (i.e. is 
semantically related to) another chunk in memory, then the 
activation for  those chunks will  be  less  than it  would be 
otherwise.

This precisely corresponds to the classic phenomenon of 
release from proactive interference.  Here, a list of words is 
presented to a subject, and they are then asked to recall as 
many as possible (usually with a distractor task to eliminate 
rehearsal).   Four  groups  of  words  are  usually  presented. 
The first three groups all contain words of a similar category 
(e.g.,  household  items).   The  fourth  group,  however, 
presents  words  from  a  different  category  (e.g.,  animals). 
The observed effect is that recall accuracy decreases over 
the  first  three  groups,  and  then  increases  for  the  fourth, 
although it does not usually increase up to the accuracy of 
the first group.

To  implement  this  in  ACT-R,  the  chunks  representing 
words are assumed to have a slot indicating what category 
they are in.  The model uses the Salience, Noise, and Base 
Level sub-modules, as well as the FINST system (to stop 
the  model  from  recalling  the  same  word  repeatedly). 
Results from the model are shown in Figure 2.

These  results  show the  general  pattern  seen  in  human 
data.  The exact shape of this curve is highly dependent on a 
large number of factors (Hasher et al., 2002), so we have not 
attempted to fit this data to a particular set of results.  The 
model currently has enough free parameters to adjust to fit 
any similar shape, so further data is required to constrain the 
model.
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Figure 2: Recall accuracy for the Release from Proactive 
Interference task.  The words presented in groups 1-3 are all 

from the same category, while group 4 is different.

In particular, one issue is the context for determining how 
rare particular slot values are.   Clearly,  not  all chunks in 
declarative memory should be considered.  Instead, we are 
examining  the  possibility  of  limiting  the  chunks  to  only 
those above a certain activation, or weighting them by their 
activation.

Salience and Spreading Activation
In  examining  the  effects  of  these  modules  in  various 
configurations,  there  is  a  certain  similarity  between  the 
Salience  sub-module  and  the  Spreading  Activation  sub-
module.  Both of them are used to increase activations of 
particular chunks (i.e. to make them more or less likely to be 
recalled) based on contextual information.  For the Salience 
system,  this  increase  is  based  on  the  uniqueness  of  the 
chunk  among  some  set  of  chunks.   For  Spreading 
Activation, this increase is based on the similarity between 
the chunk and some specific buffer content.

One  way  of  interpreting  this  difference  is  to  consider 
Salience  to  be  a  model  of  bottom-up attention,  while 
Spreading  Activation  is  top-down attention.   That  is, 
Salience is a low-level, highly automatic process that is only 
somewhat controllable by high-level reasoning.  It may be 
possible  to  adjust  the  context  used  to  determine  Salience 
(for example, by only considering objects in the left half of 
the  visual  field,  (c.f.  Byrne,  2006),  or  only  considering 
chunks of a particular type), but it is not organized for fine-
grained control.  

In contrast, the Spreading Activation system can be used 
to focus attention on chunks based on their similarity to one 
specific focused chunk.  Here, chunks that are related are 
connected  in  a  semantic  web,  with  shared  chunk  values 
allowing attention to one chunk to increase the activation of 
chunks that  are  connected to  it.   Applying this  to  vision 
allows for a similar focusing of attention on objects related 
to the current topics of thought.

It is also interesting to note that both sub-modules share a 
similar  equation,  based  on  the  logarithm of  one  over  the 
number of chunks which share that slot value.  Indeed, it is 
possible  to  see  Salience  as  a  version  of  Spreading 
Activation that spreads from every possible chunk (or every 
chunk in the context set if this set is defined in some way), 

rather than from one particular chunk.  This suggests that 
these  two  sub-modules  may  share  a  common  underlying 
implementation as well.

Conclusion
Inspired  by  the  idea  of  cognitive  redeployment,  we  have 
been  exploring  how  the  components  of  ACT-R  can  be 
adapted  to  perform  different  cognitive  tasks.   This 
architectural  flexibility has been an important  part  of our 
Python  ACT-R  project,  allowing  for  the  cognitive 
architecture  itself  to  be  adjusted.   This  capability  was 
exploited here to show that two disparate systems (vision 
and  declarative  memory)  may  share  common  underlying 
components.

In  addition,  the  commonalities  between  vision  and 
declarative memory allow us to take particular features from 
vision (or memory) and apply them to memory (or vision). 
If  the  visual  salience  system  is  connected  to  declarative 
memory,  we  find  a  natural  implementation  of  the 
distinctiveness  phenomenon,  leading to  a  novel  model  of 
release from proactive interference.  Furthermore, salience 
and  spreading  activation  seem to  form a  complementary 
pair; one implementing bottom-up attention, and the other 
implementing top-down attention.
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