
Cognitive Redeployment in ACT-R: Salience, Vision, and Memory

Terrence C. Stewart (terry@ccmlab.ca)
Robert L. West (robert_west@carleton.ca)

Carleton Cognitive Modelling Lab
Institute of Cognitive Science, Carleton University

1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6 Canada

Abstract

Cognitive redeployment is the idea that an important part of
the evolution of cognition is the adaptation and re-use of
existing cognitive modules for new purposes. In this paper,
we apply this idea to the ACT-R declarative memory system
and the ACT-R visual system. We have developed a common
underlying implementation of these systems as part of the
Python ACT-R project. As a result, we can apply aspects of
vision to memory and vice-versa. In particular, we apply the
concepts of base-level learning, spreading activation, and
partial matching from declarative memory to vision. We also
apply the recent visual saliency model from vision to
declarative memory. This results in a variety of new models
of existing phenomena which rest on a simpler and more
general theoretical framework.

Introduction
In previous work (Stewart & West, 2006; Stewart & West,
in press), we have argued that it is useful to deconstruct the
ACT-R cognitive architecture (Anderson & Lebiere, 1998)
into its more basic components. By combining these
components in various ways, we can explore the effects of
architectural changes, as well as the more commonly
explored effects of numerical parameter changes. In other
words, instead of just adjusting values such as latency or
noise, it is possible to investigate the effects of adding
multiple memory systems, multiple production systems, and
new buffers for communication. This system is called
Python ACT-R and is integrated with a complete set of tools
(CCMSuite) for creating experimental environments,
running parallel simulations, and performing data analysis.
All source code and experimental data can be found at
<http://ccmlab.ca/ccmsuite.html> including the models
described here.

In this paper, we explore the implications of treating the
ACT-R declarative memory system and the ACT-R visual
system as being built out of the same underlying
components. These systems are traditionally treated as quite
separate in ACT-R; indeed, until recently the visual system
was part of an add-on component called ACT-R/PM.
However, these systems have a similar interface, in that they
both can be given requests to find items that fit a particular
pattern. The precise algorithms for determining which items
are found by the requests do differ between vision and
declarative memory, but we show in this paper that there are
underling similarities that allow us to combine these
algorithms, and apply the declarative memory ones to vision
and the vice versa.

The goal of this work is to determine whether there is an
advantage to treating vision and memory as systems built
from the same type of generic system. By consolidating the
models of these two phenomena and exploring their
similarities (and differences), we hope to arrive at a more
parsimonious cognitive model.

Cognitive Redeployment
If a generic memory system can be shown to accommodate
both the vision and the declarative memory systems within
the ACT-R cognitive architecture, then it can be seen as an
example of cognitive redeployment. Michael Anderson
(2007) argues that “the brain evolved by preserving,
extending, and combining existing network components,
rather than by generating complex structures de novo.” His
massive redeployment hypothesis (Anderson, forthcoming)
states that “cognitive evolution proceeds in a way analogous
to component reuse in software engineering, whereby
existing components ... are used for new purposes and
combined to support new capacities, without disrupting their
participation in existing programs” (Anderson, 2007, p.13).
This is the theoretical motivation behind our generic model.
Based on this we believe that it is useful to examine how
cognitive modules can be modified and re-purposed to
perform different cognitive functions.

The Python ACT-R system supports this exploration by
allowing the modeller to customize the ACT-R architecture.
In the current Lisp ACT-R system, the underlying modules
can certainly be modified, but this requires delving into the
underlying implementation of the architecture. In Python
ACT-R, creating memory systems and customizing them in
various ways is a basic part of the modelling process (much
like defining productions and chunks). No understanding of
the underlying implementation is needed. This makes
architectural exploration available to any cognitive
modeller, not just those willing to implement models from
scratch.

Salience
We began this project by updating Python ACT-R’s
capabilities by implementing ACT-R's new visual salience
system (Byrne, 2006). This was originally developed to
model the “pop-out” effect familiar to vision researchers.
This is implemented in Python ACT-R as a separate module
that can connect to the visual system. However, because the
visual system in Python ACT-R is built using the generic
system as the declarative memory system, it was also

In Proceedings of ICCM - 2007- Eighth International Conference on Cognitive Modeling. 313 - 318. Oxford, UK: Taylor & Francis/Psychology Press.

1

possible to connect the salience module to declarative
memory. However, it should be noted that we are not
claiming that the same physical neurons in the brain may be
responsible for both visual and memory effects. Rather, we
believe that a similar cognitive structures may be involved,
and that a common computational model may be used for
both.

To develop this idea, we first describe the ACT-R
declarative memory system and the vision system. Next, a
generic system is described that is capable of being
customized via particular sub-components to perform either
task. We then demonstrate its capabilities, showing
particular differences between this vision model and the
standard ACT-R vision model. Finally, we investigate what
capabilities are gained by the declarative memory system
now that the visual salience system can be integrated with it.
The result is both a novel model of distinctiveness in
memory and a demonstration of the usefulness of cognitive
redeployment.

Declarative Memory
The ACT-R declarative memory system consists of a
module for storing chunks (small meaningful collections of
data, such as “Fido is a dog”) and a retrieval buffer for
storing the currently recalled chunk. Chunks are placed into
memory whenever they are used by an ACT-R production
rule. A production rule can also make a request from
memory, asking for a chunk that fits a particular pattern
(such as “Fido is a what?”). If a chunk is found, then its
contents are placed in the retrieval buffer.

In many cases, there will be several chunks that match the
requested pattern. In these situations, the chunk with the
highest activation is retrieved. The activation of a chunk is
based on a variety of factors, the most important of which is
the base level learning equation. Here, a chunk's activation
is increased when it is used, and this activation decays over
time. There is also a formula for adjusting the activation of
chunks that almost match the memory request pattern
(partial matching), a formula for increasing the activation of
chunks that are similar to chunks already in buffers
(spreading activation), and a random amount of noise that
leads to variability in behaviour.

However, there is no way of modifying chunks once they
are placed in memory. Therefore, to avoid the problem of
repeatedly retrieving the most active chunk in situations
where this is not appropriate, ACT-R has a system for
maintaining “Fingers of Instantiation” (or FINSTs). This
allows a memory request to indicate that it should not recall
a recently retrieved item. Details and formulas for the
declarative memory system can be found in (Anderson &
Lebiere, 1998).

Vision
The vision system in ACT-R (formerly a part of ACT-
R/PM) has two sub-systems and two buffers associated with
these sub-systems. These two sub-systems are the “where”
and “what” systems, where the former is in charge of

directing visual attention, and the later in charge of
determining information about the object at the attended
location.

To perceive an object, an ACT-R production is first used
to instruct the vision system to find a location in space.
This can be something as simple as “find any object” or as
complex as “find a red object on the right side of the screen
that's above the object currently being attended to”. When
an object is found that matches these criteria, the location of
the object is placed in the visual location buffer. Next, the
“what” system can be used to attend to that location and get
information about the object. In ACT-R, this does not
involve a theory of visual processing. Instead, the features
that have been attached to the object by the modeller are
placed in the visual buffer. For example, a picture of a
house might be set to create a chunk in the visual buffer that
simply says “house”.

The vision system also supports a number of other
behaviours. If an object moves while being attended to,
then attention will follow that object (object tracking). If
nothing is being attended to, but a new item appears which
matches the previous search request, then it will
automatically be attended to (buffer stuffing). Requests can
also be made to only attend to “new” or “old” objects (i.e.
objects that have recently appeared or been visible for a
longer period of time). This functionality is similar to
FINST system in declarative memory.

One of the most recent advances in the ACT-R vision
system is the addition of a theory of visual salience (Byrne,
2006). Here, when an object is being searched for, the
system no longer chooses randomly among matching items.
Instead, the visual features of the object are examined, and
objects that have more rare features are more likely to be
attended to. This causes the well-known pop-out effect to
occur, e.g., where a single red object in a set of blue objects
is much more likely to be attended to.

Generic Chunk Storage and Retrieval
Both the declarative memory system and the vision system
operate according to the same basic premise: requests to
find chunks conforming to a particular pattern are made, and
the result is placed into an associated buffer (note, we are
treating objects in the visual field as chunks here). This is
the basic definition of a content-addressable memory
system, and has a simple implementation: chunks are placed
in the memory, these are examined individually to see
which ones match, and one of these is chosen as the final
result.

The key question is what to do when multiple chunks
match. In declarative memory, the base level learning,
partial matching, and spreading activation systems (as well
as random noise) all combine to form an activation value,
and the chunk with the highest activation value is returned.
The visual system can be thought of as operating in a
similar way, with the activation of the chunks in the visual
field boosted according to their level of salience.

2

Our approach is to treat the different process involved in
retrieval as sub-modules. Without any sub-modules, the
activation value of all chunks in the generic memory system
is considered to be zero. Since all the chunks have the same
activation value, if more than one chunk matches, the
system chooses randomly between them.

As part of the model creation process, Python ACT-R
allows the modeller to attach particular sub-modules to
adjust the activation values. This is similar to, but more
flexible than, the standard ACT-R approach of turning on or
off the various aspects such as partial matching or spreading
activation. The following sub-modules have been written:

Base Level: the standard ACT-R base level learning
equation. Activation increases whenever a chunk is added
into memory, and decays over time. This also includes the
new optimized version (Petrov, 2006).
Spreading Activation: increases activation for slots that
have chunk values matching those in particular buffers.
Allows for configuring which buffers are used and the
strength of the spreading.
Partial Matching: allows chunks that do not exactly match
the request to be returned, but at a decreased level of
activation. Note that this sub-module requires a slightly
more complex integration with the memory module, as it
not only adjusts the activation levels, but also adjusts the set
of chunks that could be returned.
Noise: a configurable amount of logistic noise added to the
activation of each chunk. Can also add a random fixed
amount to a chunk when it is first created. Equivalent to the
Lisp ACT-R parameters ANS and PAS.
Salience: increases the activation of chunks based on the
rarity of the slot values. Requires specifying a context of
which chunks to consider when determining how rare
particular values are.

To complete the implementation, the chunk storage
system also defines a threshold (a value that activations
must be above in order to be retrieved) and a latency (a
value determining how lower activations require more time
to recall). Furthermore, a FINST (fingers of instantiation)
system is also available, which keeps track of what chunks
have been recently recalled, and allows those chunks to be
temporarily ignored.

The first four of these sub-modules should be familiar to
ACT-R users. They form the terms in the standard ACT-R
activation equation. The fifth sub-module implements the
new salience estimation process (Byrne, 2006). With this
approach, the declarative memory system and the vision
system can constructed from the same basic system.

Vision as Memory
The core part of a vision system can now be implemented
via the new generic system. For the most part, this generic
system will be familiar to those who have worked with the
ACT-R declarative memory system. Using this for vision
requires a few special considerations. Chunks representing

the currently visible objects are stored in a generic memory
system that can be thought of as representing the visual
trace. The ACT-R model can then make requests of that
system to find particular objects, just as is done in the
standard ACT-R vision system. However, there are two
major complications to this process.

First, there needs to be a way to fill the memory with the
currently available chunks. For this type of function, Python
ACT-R also allows for the creation of separate production
systems. These can be specified in exactly the same way as
the core production system, allowing this sort of sub-
module to be easily implemented. This separate production
system for vision can also be used to implement buffer-
stuffing and tracking (see West, Stewart, Pyke, & Emond,
2006 for an example of using this approach for buffer
stuffing).

We have found that the production system for filling the
visual memory requires a very short action time (the time
required for a production to fire), around 5 to 10 msec in
order to be reasonably responsive to changing stimuli. Of
course, since this is a separate production system it, does not
affect how quickly the productions in the ACT-R procedural
memory fire (normally 50 msec). Furthermore, if this
system uses the Base Level sub-module and a high
threshold (~5.5) and decay (~0.95), then it is not necessary
to also clear the memory: the decay of activation for old
chunks will automatically ensure objects that no longer are
visible are not returned. This can be seen in Figure 1.

One difference between this system and the standard
ACT-R vision system is that there is no bias towards
returning new objects. Instead, Figure 1 shows that older
objects can have a higher activation if they have been in the
visual field for a longer amount of time. However, this
effect disappears if chunks that were in the visual field on
the previous cycle are included in the context set for
determining salience. In this case, new objects will be
returned if they a sufficiently salient.

Figure 1: Activation levels of two chunks in the new vision
system, visible for different periods of time. Activation

uses the Base Level learning equation with d=0.95.

The second complication involves the separate “what” and
“where” systems in ACT-R vision. One approach is to
ignore this distinction, and not model the vision system to
this fine a degree. This is the approach taken by the SOS
vision system for ACT-R (West & Emond, 2002), and has

3

been shown to be useful in situations where the details of
vision are not an important part of the cognitive process
being modelled.

However, an alternative approach is to implement vision
using two separate memory systems: one that is filled with
the locations of all available objects. This can be used to
implement the “where” system, and results in filling a visual
location buffer with a location that can be attended to. The
“what” system can then be a separate memory, which is
only filled with items near the currently attended visual
location. This maps well onto the behaviour of the current
ACT-R vision system.

In either case, the result is a memory-based system that
constantly maintains a collection of chunks representing the
visible objects available to the ACT-R model. As objects
appear and disappear, the activation levels of chunks in this
visual system change. When a retrieval request is made (i.e.
when ACT-R chooses to attend to a visual object), a chunk
representing that object is placed into a visual buffer. The
activation levels of the chunks control this process just as
they do in ACT-R declarative memory. The result is a
variation of the generic chunk storage system that functions
as a visual system.

Applying Memory Sub-Modules to Vision
Implementing vision via the standard ACT-R memory
system can, by itself, be seen as a useful modelling advance,
as it provides a parsimonious explanation of both systems.
Having both vision and memory built using the same
cognitive components shows how it is possible to redeploy
cognitive facilities from one task to another. Of course,
significant work is still needed to rigorously compare the
performance of this new vision system, the ACT-R vision
system, and real human vision. This work is on-going.

However, it is worth pointing out two significant
advantages that are available to this new vision system due
to its integration with existing memory models. Just as the
Base Level sub-module was used to implement item decay
from visual memory, it is also possible to use both the
Partial Matching sub-module and the Spreading Activation
sub-module.

Applying Partial Matching to vision provides a natural
implementation of many of the special-case features that are
used in the current ACT-R vision system. Instead of the
VISUAL-MOVEMENT-TOLERANCE parameter, which
indicates how far away from a point an object can be and
still be noticed, the partial matching system can gradually
reduce the activation of chunks farther away from the point
of interest. A similar approach can be taken for features
such as colour, where a search for a red should also find
objects that are pink (although perhaps at a slightly lower
activation level).

Another new possibility arises with Spreading Activation.
Here, the activation of visual chunks can be increased based
on the current contents of the goal buffer (or any other
buffer). This can be seen as a type of top-down processing
influencing visual attention. This aspect of top-down and

bottom-up salience is discussed in more detail at the end of
this paper.

A detailed analysis of these possibilities is still in
progress. However, the mere fact that these options appear
naturally from this method of modelling vision is promising
in and of itself.

Memory as Vision
It is also possible for us to apply the salience module used in
the vision system to the declarative memory system. When
used in the context of vision, this module leads to pop-out
effects. If this same system is applied to declarative
memory, then it results in a bias towards recalling unique
chunks. This can be seen as an implementation of
distinctiveness. Chunks that have similar slot values will
tend to have lower activations than chunks that have
distinctive values. This makes it easier to recall rare or
special items in memory (a well known memory effect).

We now turn to a specific example of the modelling
capabilities gained by using the salience module to create a
distinctiveness effect in declarative memory.

Release from Proactive Interference
The Salience sub-module increases the activation of chunks
with unique slot values. This can be seen as functionally
equivalent to decreasing the activation of chunks with
similar slot values. That is, if a chunk is similar to (i.e. is
semantically related to) another chunk in memory, then the
activation for those chunks will be less than it would be
otherwise.

This precisely corresponds to the classic phenomenon of
release from proactive interference. Here, a list of words is
presented to a subject, and they are then asked to recall as
many as possible (usually with a distractor task to eliminate
rehearsal). Four groups of words are usually presented.
The first three groups all contain words of a similar category
(e.g., household items). The fourth group, however,
presents words from a different category (e.g., animals).
The observed effect is that recall accuracy decreases over
the first three groups, and then increases for the fourth,
although it does not usually increase up to the accuracy of
the first group.

To implement this in ACT-R, the chunks representing
words are assumed to have a slot indicating what category
they are in. The model uses the Salience, Noise, and Base
Level sub-modules, as well as the FINST system (to stop
the model from recalling the same word repeatedly).
Results from the model are shown in Figure 2.

These results show the general pattern seen in human
data. The exact shape of this curve is highly dependent on a
large number of factors (Hasher et al., 2002), so we have not
attempted to fit this data to a particular set of results. The
model currently has enough free parameters to adjust to fit
any similar shape, so further data is required to constrain the
model.

4

Figure 2: Recall accuracy for the Release from Proactive
Interference task. The words presented in groups 1-3 are all

from the same category, while group 4 is different.

In particular, one issue is the context for determining how
rare particular slot values are. Clearly, not all chunks in
declarative memory should be considered. Instead, we are
examining the possibility of limiting the chunks to only
those above a certain activation, or weighting them by their
activation.

Salience and Spreading Activation
In examining the effects of these modules in various
configurations, there is a certain similarity between the
Salience sub-module and the Spreading Activation sub-
module. Both of them are used to increase activations of
particular chunks (i.e. to make them more or less likely to be
recalled) based on contextual information. For the Salience
system, this increase is based on the uniqueness of the
chunk among some set of chunks. For Spreading
Activation, this increase is based on the similarity between
the chunk and some specific buffer content.

One way of interpreting this difference is to consider
Salience to be a model of bottom-up attention, while
Spreading Activation is top-down attention. That is,
Salience is a low-level, highly automatic process that is only
somewhat controllable by high-level reasoning. It may be
possible to adjust the context used to determine Salience
(for example, by only considering objects in the left half of
the visual field, (c.f. Byrne, 2006), or only considering
chunks of a particular type), but it is not organized for fine-
grained control.

In contrast, the Spreading Activation system can be used
to focus attention on chunks based on their similarity to one
specific focused chunk. Here, chunks that are related are
connected in a semantic web, with shared chunk values
allowing attention to one chunk to increase the activation of
chunks that are connected to it. Applying this to vision
allows for a similar focusing of attention on objects related
to the current topics of thought.

It is also interesting to note that both sub-modules share a
similar equation, based on the logarithm of one over the
number of chunks which share that slot value. Indeed, it is
possible to see Salience as a version of Spreading
Activation that spreads from every possible chunk (or every
chunk in the context set if this set is defined in some way),

rather than from one particular chunk. This suggests that
these two sub-modules may share a common underlying
implementation as well.

Conclusion
Inspired by the idea of cognitive redeployment, we have
been exploring how the components of ACT-R can be
adapted to perform different cognitive tasks. This
architectural flexibility has been an important part of our
Python ACT-R project, allowing for the cognitive
architecture itself to be adjusted. This capability was
exploited here to show that two disparate systems (vision
and declarative memory) may share common underlying
components.

In addition, the commonalities between vision and
declarative memory allow us to take particular features from
vision (or memory) and apply them to memory (or vision).
If the visual salience system is connected to declarative
memory, we find a natural implementation of the
distinctiveness phenomenon, leading to a novel model of
release from proactive interference. Furthermore, salience
and spreading activation seem to form a complementary
pair; one implementing bottom-up attention, and the other
implementing top-down attention.

References
Anderson, J. R., & Lebiere, C. (1998). The atomic

components of thought. Mahwah, NJ: Erlbaum.
Anderson, M. (2007). Evolution of cognitive function via

redeployment of brain Areas. Neuroscientist, 13(1):13–
21.

Anderson, M. (forthcoming). The massive redeployment
hypothesis and the functional topography of the brain.
Philosophical Psychology.

Byrne, M. (2006). A theory of visual salience computation
in ACT-R. 13th Annual ACT-R Workshop, Pittsburgh,
PA.

Hasher, L., Chung, C., May, C., & Foong, N. (2002). Age,
time of testing, and proactive interference. Canadian
Journal of Experimental Psychology, 56(3), 200-207.

Petrov, A. A. (2006). Computationally efficient
approximation of the base-level learning equation in
ACT-R. 7th International Conference on Cognitive
Modeling. Trieste, Italy.

Stewart, T.C. & West, R. L. (2006) Deconstructing ACT-R.
7th International Conference on Cognitive Modelling.
Trieste, Italy.

Stewart, T.C. & West, R.L. (in press) Deconstructing and
Reconstructing ACT-R: Exploring the Architectural
Space. Cognitive Systems Research.

West, R.L, & Emond B. (2002). SOS: A simple operating
system for modeling HCI with ACT-R. 7th Annual ACT-R
Workshop. Pittsburgh, PA.

West, R. L., Stewart, T. C., Emond, B., & Pyke A. (2006).
Modelling emotion in ACT-R. 13th Annual ACT-R
Workshop, Pittsburgh, PA.

5

6

