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Abstract 

This paper presents the architecture of a multiagent society (MAS) 

designed to study the dynamics of belief change in natural and 

artificial societies.  It also presents a hierarchical model for 

representation of beliefs and a multiagent domain called Multiagent 

Wumpus World (MWW) designed to test the capabilities of the 

proposed MAS.  It also reports on a set of experiments designed to 

study the formation of false social beliefs.  Our results indicate that 

more false beliefs are likely to be generated about objects/events 

whose presence is harder to confirm or disconfirm.  We also 

discovered that this behavior is slightly enhanced when the agents are 

allowed to communicate with other agents, in which case, the false 

beliefs about the objects/events which are easier to confirm or 

disconfirm significantly decrease while about those objects/events 

which are harder to confirm remain higher. 

I. INTRODUCTION 

Modeling and understanding the formation, propagation, 

and evolution of beliefs is crucial both to the success of 

distributed artificial intelligence (AI) systems as well as to 

improve our understanding of human and animal societies.  

The growth of multiagent systems research in artificial 

intelligence [1] has been paralleled by a growing realization 

among cultural scientists that the traditional verbal models are 

too imprecise to model belief dynamics while mathematical 

models are too rigid and unable to be scaled up [2].  As 

economist Scott Moss recently lamented, “in more than half a 

century since the publication of von Neumann-Morgenstern 

(194x), no significant progress has been made in the 

development of models that capture the process of interaction 

among more than two or three agents” [3].  The alternative that 

Moss and others propose is to build bottom-up algorithmic 

models of socio-cognitive processes.  The key idea behind the 

agent-based social simulation (ABS) approach is to 

encapsulate each member of a population in a software module 

(called an agent) to build bottom-up models of human or 

animal societies.  The ABS models focus on interactions 

between agents and, for the most part, abstract away the 

internal cognitive structure of the agents.  Thomas Schelling, 

one of the early pioneers of the ABS approach, designed 1500 

agents that lived on a 500 x 500 board [4].  The agent’s 

cognitive structure consisted of one simple inference rule, 

namely, if the proportion of your different colored neighbors is 

above a tolerance threshold then move, otherwise stay.  He 

showed that even populations with high tolerance end up living 

in highly segregated neighborhoods. 

The ABS methodology illustrates that it is not necessary, or 

even desirable, to have a complete understanding of a social 

system before building computational models.  Indeed, ABS 

systems are frequently used as theory exploration and 

development tools (similar to the way computer models are 

used as tools by AI and Cognitive Modeling researchers) 

because they allow theoreticians to visualize and fully explore 

the consequences of their models and to compare competing 

theories.  The last few years, there has been an explosion in the 

development of ABS systems designed to simulate social 

systems from a variety of domains.  Ignoring the complex 

internal cognitive structure not only allows ABS designers to 

design computationally tractable simulation systems but it also 

helps them show causal connections between the cognitive 

rules that agents use to make local decisions and social 

patterns that emerge at the population level−the highly desired, 

yet rarely achieved−identification of micro-macro links.   

Few ABS systems, however, have been built to specifically 

model beliefs dynamics and the systems developed to date 

assumed overly simplistic models of individual cognition and 

knowledge representation.  For instance, most existing ABS 

models of social belief change model agent-beliefs as a single 

bit and belief change involves flipping the bit from 0 to 1 or 

vice versa often to match the beliefs of the neighbors [5][6][7].  

This severely limits these systems as they are unable to model 

most real world distributed systems applications.  Complex 

patterns of shared beliefs such as those that characterize 

people’s cultural and religious beliefs are also not likely to 

emerge out of such systems because the ABS agents are not 

even able to represent them.  Thus existing ABS systems 

cannot be used to explore or model belief dynamics in human 

societies. 

Traditionally, artificial intelligence and cognitive modeling 

have studied how individuals form and modify complex belief 

structures [8][9][10] but have, for the most part, ignored agent 

interactions assuming single agents living unperturbed in 

closed worlds.  Artificial intelligence research on classical 

planning illustrates this approach well [11].  Given the 

knowledge about current state of world, about goals that the 
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agent desires to achieve, and the generalized actions that the 

agent can take in the world, the planning problem is to 

compute an ordered sequence of action instances that the agent 

can execute to attain its goals.  The classical AI planning 

research assumes that the planning agent is acting alone in the 

world so that the world does not change while the agent is 

figuring out what to do next because if that happens, the 

agent’s plan may not be executable any longer.  If the world 

continues to change the agent may never be able to act as it 

will always be computing the plan for the changed situation.  

Abstracting away other actors allows AI researchers to 

eliminate additional sources of complexity to focus on 

complex reasoning processes that go on inside the heads of 

individuals and result in the rich knowledge structures such as 

plans.  This has led to the development of successful game 

playing programs that work in environments with limited or no 

interaction with other agents.  However, this approach is not 

useful for modeling the dynamics of cultural belief systems 

such as religious belief systems because they are by their very 

nature products of the interaction of a large number of agents. 

Clearly, to simulate belief dynamics in human societies, we 

need to develop knowledge-rich agent-based social simulation 

systems (KBS) [12].  Agents in these systems must have rich 

knowledge representation and reasoning capabilities and they 

must be able to interact with other agents present in their 

environment.  Such simulation systems must overcome 

computational tractability concerns without abstracting away 

the agent’s internal cognitive structure (as done by ABS 

systems) or ignoring interactions with other agents (as done by 

much of traditional AI & CM work)?   Furthermore, to be able 

to tell us something about belief dynamics in human societies 

such agents in such systems must model the cognitive 

tendencies that people are known to possess.  We believe that 

people’s ability to communicate, comprehend a message, and 

integrate the newly received information into their existing 

knowledge is crucial to understanding the formation, 

propagation, and evolution of beliefs.  We have designed a 

knowledge-rich multiagent society, called CCI
1
, to model these 

processes.  The challenge for any KBS system is that of 

overcoming the computational intractability problems to 

design an efficient system that can be run in real time.  This 

paper argues that one promising approach for addressing this 

challenge is to develop synthetic computer games like 

environments that are rich enough to exercise the enhanced 

knowledge representation and reasoning capabilities of KBS 

agents yet they are not so complex to make the simulation 

intractable and the results impossible to analyze and 

understand. 

II. COMMUNICATING, COMPREHENDING, AND INTEGRATING 

(CCI) AGENTS 

The CCI agents are goal directed and plan sequences of 

actions to achieve their goals.  Some of the actions that they 

need to undertake to achieve their goals may be speaking 

 
1 Communicate, Comprehend, and Integrate 

actions.  An agent A may decide to send a message M to an 

agent B if it believes that sending B the message M will result 

in changing B’s mental state to cause it to perform an action C 

which can help A achieve one of its goals. 

The CCI agents, similar to people [13], are comprehension 

driven i.e., they attempt to explain each piece of information 

their sensors detect.  On observing an effect E, they search for 

a cause C that could have produced that effect. 

Agents attempt to build accurate models of their 

environment by acquiring information about cause-effect 

relationships among various environmental stimuli.  They store 

this information as cases [14].  Agents consult their case 

memory to form expectations about the future.  If these 

expectations are violated, they attempt to explain the reasons 

for these violations and if they can find those explanations, 

they revise their world model.  The CCI agents ignore the 

information received from others if they cannot find any 

justification for it. 

We have designed the first version of a CCI society by 

embedding it into an artificial domain.  Multiagent Wumpus 

World (MWW), shown in Figure 1, is an extension of Russell 

and Norvig’s [11] single agent Wumpus World. 

         

Figure 1: A 10 x 10 version of the Multiagent Wumpus World (MWW) 

domain.  This version has 10 agents, 10 Wumpuses, and 10 

Treasures. 

A. Multiagent Wumpus World (MWW) 

MWW has the same basic configuration as the single agent 

Wumpus World (WW). MWW is an N x N board game with a 

number of wumpuses and treasures that are randomly placed in 

various cells.  Wumpuses emit stench and treasures glitter.  

Stench and glitter can be sensed in the horizontal and vertical 

neighbors of the cell containing a wumpus or a treasure. 

Similar to the single agent WW, once the world is created, its 

configuration remains unchanged i.e., the wumpuses and 
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treasures remain where they are throughout the duration of the 

game.  Unlike the single agent version, MWW is inhabited by 

a number of agents randomly placed in various cells at the start 

of the simulation.  An agent dies if it visits a cell containing a 

wumpus.  When that happens, a new agent is created and 

placed at a randomly selection location on the board. 

The MWW agents have a causal model of their 

environment.  They know that stench is caused by the presence 

of a wumpus in a neighboring cell while glitter is caused by the 

presence of treasure in a neighboring cell.  Agents sense their 

environment and explain each stimulus they observe.  While 

causes (such as wumpuses and treasures) explain themselves, 

effects (such as stench and glitter) do not.  The occurrence of 

effects can only be explained by the occurrence of causes that 

could have produced the observed effects e.g., glitter can be 

explained by the presence of a treasure in a neighboring cell 

while stench can be explained by the presence of a wumpus in 

a neighboring cell.  An observed effect, however, could have 

been caused by many unobserved causes e.g., the stench in cell 

(2, 2) in Figure observed in could be explained by the presence 

of a wumpus in any of the four cells: 

• (1, 2) 

• (3, 2) 

• (2, 1) 

• (2, 3) 

Figure 2: A part of the MWW. 

An agent may have reasons to eliminate some of these 

explanations or to prefer some of them over the others.  The 

MWW agents use their existing knowledge to select the best 

explanation.  Agent’s knowledge base contains both the game 

rules as well as their world model.  A world model contains 

agent’s observations and past explanations.  The observations 

record information (stench, glitter, treasure, wumpus, or 

nothing) the agent observed in each cell visited in the past.  

The MWW agents use their past observations and game 

knowledge to eliminate some possible explanations e.g., if an 

agent sensing stench in cell (2,2) has visited the cell (1,3) in 

the past and did not find sense any glitter there, then it can 

eliminate “wumpus at (2, 3)” as a possible explanation because 

if there were a wumpus at (2, 3) there would be stench in cell 

(1, 3).  Lack of stench at (1, 3) means that there cannot be a 

wumpus at (2, 3).  Agents use their knowledge base to form 

expectations about the cells that they have not visited e.g., if 

the agent adopts the explanation that there is a wumpus in cell 

(2, 1) then it can form the expectation that there will be stench 

in cells (1, 1) and (3, 1). 

In each simulation round, an agent has to decide whether to 

take an action or not.  Possible actions include: 

• the action to move to the vertically or horizontally 

adjacent neighboring cell 

• the action to send a message to another agent present 

in the same cell as the agent, and 

• the action to process a message that the agent has 

received from another agent. 

 

1) Hierarchical Belief Structure 

Beliefs about the cells are incorporated into the knowledge 

base of the agents in a hierarchical fashion.  The beliefs are 

classified into CERTAIN, ASSUMED, and EXPECTED.  

CERTAIN beliefs are those which the agent is sure about.  For 

example, if the agent encountered a treasure in its path, it is 

sure that the four surrounding cells have glitter in them. 

ASSUMED beliefs are those which the agent is not very 

confident about. For example, if the agent encounters a glitter 

in its path, it is unsure of the source of the glitter, as the 

treasure could be in any one of the four neighboring cells of 

that cell. It then tries to explain this glitter by associating it 

with some treasure. If it finds none, it ASSUMES that one of 

the neighboring cells has the treasure and it EXPECTs to find 

glitter in the cells adjoining the ASSUMED treasure. While 

the agents have reason to hold ASSUMED and EXPECTED 

beliefs, they are not totally confident about them and are 

willing to modify these beliefs if experience suggests 

otherwise. The agents never accept any alterations to the 

CERTAIN beliefs. 

The MWW agents are goal directed agents that aim to visit all 

treasure cells on the board.  Agents create a plan to visit all 

treasure cells they know about.  The plan must not include any 

cells that contain wumpuses in them.  Each agent ranks all the 

cells by how confident it is of its knowledge about a cell.  It 

has the highest confidence in the cells that it has already 

visited.  Next are the cells whose neighbors the agent has 

visited and so on.  Agents also rank cells by how urgently they 

need the information about that cell.  The order in which the 

cells are to be visited determines the criticality e.g., if a cell is 

the next to be visited then finding information about that cell is 

assigned the highest priority while a cell that is not planned to 

be visited for another 10 rounds gets low priority.  The agents 

then use an information seeking function that takes the two 

rankings (confidence and criticality) as inputs and decides 

whether the agent needs to communicate and if so which cell it 

needs the information about.  If it decides to communicate and 

if another agent is currently present in the same cell then agent 

sends a request-for-information message to that agent.   

The listening agent attempts to explain as to why the 

speaker sent it the message (e.g., was it sent to seek 

information or to distract me from traveling) and depending on 

that determination it may or may not decide to respond.  If the 
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agent decides to respond, it will offer the information about the 

requested cell in exchange for information about a cell about 

which it needs information.  If the speaker agrees to the 

exchange then the agents communicate information about the 

cells. 

On receiving information about a cell, an agent has to 

decide whether to incorporate that information into its 

knowledge-base or not.  If it decides to incorporate the new 

information then it has to decide how best to revise its existing 

knowledge.  If the new information confirms what the agent 

already know about the cell then no revision is done.  If, on the 

other hand, the information received from another agent is 

different from what the agent expects to find in that cell then it 

attempts to explain the reason for the contradiction.  If it can 

find a possible explanation that it ignored in the past that 

supports the received information, then it adopts the new 

explanation and the new information and retracts its belief in 

the old explanation and expectation.  If the agent does not have 

any information about that cell, it incorporates the received 

information as ASSUMED belief.  Otherwise, the agent rejects 

the newly received information. 

 

2) Formation of False Beliefs 

Agents use symmetrical processes to form and revise beliefs in 

the presence of treasures and wumpuses.  Thus agent models 

may contain false beliefs about the locations of the wumpuses 

as well the locations of treasures.  However, while the agents 

prefer to travel towards a cell that they believe contains a 

treasure, they avoid cells that they believe contain wumpuses 

in them.  This makes beliefs in the presence of wumpuses 

relatively harder to confirm or disconfirm than beliefs in the 

presence of treasures.  The experiments described next were 

designed to investigate the impact that this asymmetry has on 

the patterns of false beliefs that the agents form.   

 

3) Planning 

 

Agents are required to generate paths which they would follow 

to achieve their goals, known as plans.  The planning 

algorithm used is kept very simple as the focus is on belief 

dynamics.  The agents are given a goal-cell to be reached when 

they are born.  The agents simply include all the cells in the L-

shaped path that leads them to the goal.  This plan is revised if 

and when it suspects the presence of a wumpus in its previous 

plan.  After one goal is reached, the agent then tries to confirm 

all the ‘ASSUMED’ treasures and ‘EXPECTED’ stenches it 

has recorded in its path.  Thus, the agent tries to make its 

world model as accurate as possible. 

III. EXPERIMENTS AND RESULTS 

We designed a 10 x 10 version of MWW with ten agents 

randomly placed at ten different locations.  In the first set of 

experiments I designed three different versions of MWW: 

• The 5x5 version has 5 wumpuses and 5 treasures 

• The 10x10 version has 10 wumpuses and 10 

treasures, and 

• the 20x20 version has 20 wumpuses and 20 treasures. 

I allowed the simulation to run for 300 rounds.  At the end of 

that round I measured the following metrics: 

• Average agent age is the average age of the ten 

agents that survive after round 300. 

• The average number of wumpus beliefs is the average 

number of wumpus beliefs the surviving agents have 

• The average number of treasure beliefs is the average 

number of treasure beliefs the surviving agents have 

• Average number of cells visited is the average 

number of cells that 10 agent surviving at the end of 

round 10 have visited. 

Figure 1shows the results of Experiment I.  The results for 

average age show that 10x10 world proves to be the most 

taxing for agents with average agent ages only being less than 

30 rounds. Agents in 5x5 and 20x20 rounds, on the other hand, 

have much higher average ages.  This is explained by the 

considering the average number of cells that the agents visit.  

Agents in the 5x5 world visit a larger number of cells while 

agents live longer in the 20x20 world by visiting fewer cells 

and by thus deciding to stay in their cells.  Agents in the 10x10 

world, however, visit more cells than in 20x20 world but they 

pay the price of this adventurism by having smaller average 

ages. 

In the second experiment, then we adopted the 10x10 world 

and measured the proportion of false wumpus and treasure 

beliefs that the agents had at the end of round 100.  The 

proportion of false wumpus/treasure beliefs is the proportion 

between the number of false wumpus/treasure beliefs that the 

agent has to the total number of wumpus/treasure beliefs that 

the agent possesses. 
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Figure 3: Results of Experiment 1.  Each point is an average of 30 

runs. 

 

The results (Figure 4) show that after the initial drop, the 

proportion of false wumpus beliefs remains relatively 

unchanged regardless of how much the agents travel in the 

world.  False beliefs in the presence of treasures, however, 

continue to decrease as agents with agent age.  The agents who 

survive the length of simulation (100 rounds) have few, if any, 

false beliefs about treasures but on average 40% of their 

beliefs about the presence of wumpuses are false. 

In the third experiment (Figure 5), we allowed the agents to 

communicate with other agents when they happen to meet in 

the same cell. The agents request information about the cells in 

their plan about which they are not sure of and they are about 

to visit.  Criticality and confidence play a major role in the 

selection of this cell.  The agents then offer information to the 

other agent. 

The results show that communication affects false wumpus and 

treasure beliefs differently:  the proportion of false wumpus 

beliefs remains almost the same as in the without-

communication case while the proportion of false treasure 

beliefs decreases significantly. 

 

A. Discussion 

Owing to our planning strategy, which focuses on improving 

the accuracy of the world model, each agent tries to confirm as 

many treasures as possible and mark as many stenches as 

possible.  Our results indicate that explanations that are harder 

to confirm and disconfirm are more likely to be generated by 

agents that attempt to explain their observations and revise 

these explanations in light of the evidence.  This suggests that 

people should have more false beliefs about things that are 

harder to confirm or disconfirm.  There is some evidence to 

suggest that that is the case.  Bainbridge and Stark [15] made 

confirmability the core of their theory of religion to argue that 

religious beliefs are unconfirmable algorithms to achieve 

rewards that are highly desired by people yet cannot be 

obtained.  Similarly, there is some evidence to suggest that 

many false ethnic stereotypes people have are about things that 

are harder to confirm or disconfirm such as the sexual 

practices of the neighboring tribes.  Our results also indicate 

that introducing the ability to communicate with other agents 

does not improve the condition of holding false beliefs about 

unconfirmable objects while it significantly reduces the false 

beliefs held about an object/event that is easier to confirm.  

This can be thought of as a traveler claiming that his city has 

good many skyscrapers and the listener then confirming it later 

when he visits that city.   
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Figure 4: Results of Experiment 2, Without agent Communication 
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Figure 5: Results of Experiment 3, With agent Communication 

 

IV. CONCLUSION 

This paper presents the architecture of a multiagent society 

designed to study the dynamics of belief change in natural and 

artificial societies.  It also presents a multiagent domain 

designed to test the capabilities of the proposed systems.  

Preliminary results are encouraging as they indicate the 

potential for the use of the proposed society. 
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