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Abstract 

Evaluating and modeling human performance on even simple 
tasks requires a great deal of attention to millisecond-level 
cognitive and perceptual-motor operations. Modeling human 
performance in a task often requires that special care be taken 
to understand how these millisecond level operations are 
interleaved and how they evolve during the execution of the 
task. In modeling a simple decision-making task, we found 
that human subjects improved their routine speed as they 
became more familiar with the task. Modeling was conducted 
using the ACT-R architecture (Anderson & Lebiere, 1998). 
Refinements of the model indicated that interleaving of 
millisecond-level perceptual-motor and cognitive operators 
was crucial in accounting not only for the strategy shift as per 
soft constraints, but also in the marked speedup in 
performance over the course of several trials.  

Introduction 
Milliseconds matter in understanding human performance 
(Gray & Boehm-Davis, 2000). The soft constraints 
hypothesis (Gray, Sims, Fu, & Schoelles, 2006) implies that 
in the course of routine interactive behavior, the cognitive 
controller tends to select interactive routines that shave 
milliseconds off of task performance. Unfortunately, this 
local optimization may not result in optimal global 
performance. Hence, even in tasks that are thought of as 
involving higher-level cognition, such as decision-making, 
global performance may be suboptimal due to nearsighted, 
local optimization of interactive routines. 

From the perspective of the soft constraints hypothesis, 
computational models of decision-making must encompass 
a full accounting of the costs of information exploration and 
exploitation (Fu, 2007). Hence, an initial task for the 
modeler is to account for the perceptual-motor costs of 
skilled performance. As we show in this paper, this initial 
task brings to the foreground the interleaving of cognitive, 
perceptual, and motor operations that is characteristic of 
skilled performance.  

We describe an exploratory effort to model the 
interleaving of cognitive, perceptual, and motor operations 
required for information exploration/exploitation in a table-
based, decision-making task (Lohse & Johnson, 1996). The 
constraints of the model/framework are examined at the 
level of milliseconds, contrasted against human data, and 
the differences are analyzed with respect to the ACT-R 
framework (Anderson & Lebiere, 1998). 

The Task 
The experimental environment used in this research was 
designed to study and model how information access 
influences the way in which a decision is made – 
specifically what information is considered and how it is 
integrated given the environmental constraints and 
accessibility of information. We used a simple table task 
(see Figure 1) in which each of six alternatives (arranged in 
rows) had a value on each of six attributes (arrayed in 
columns). The value of the alternative was derived by 
summing the attribute scores so that the higher the value, the 
better the alternative. This environment allowed us to 
manipulate the way information was accessed in order to 
determine the cognitive and perceptual-motor tradeoffs 
involved. 

 

Figure 1: The Table Task environment for decision-making. 
The figure shows a subject clicking on the IFF-FREQ 

attribute (column) for alternative C (row). 

We predicted that performance would vary based on 
exploration/exploitation costs that variations in the task 
environment imposed on the decision maker. In particular, 
we expected different costs to result in differences in the 
time to make a decision as well as the amount of 
information considered during the trial (i.e., information 
exploration). We also predicted that when participants were 
transferred to conditions with different environmental 
constraints, that the transfer of old strategies or the adoption 
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of new ones would be influenced by 
exploration/exploitation costs of the old strategies applied to 
the new task environment. (Gray, 2000; Gray, Veksler, & 
Fu, 2004) 

Although these general predictions are validated in the 
Results section, this analysis is beyond our current modeling 
effort. Exploratory modeling of this simple task revealed the 
necessity to focus our scope of analyses on the basic motor 
components prior to taking the next step into modeling the 
higher-level experimental effects. 

Human Data 

Method 
The table task environment consisted of 6 alternatives 
arranged as rows and 6 attributes arranged as columns in a 
grid. Alternatives were military targets with attributes that 
contributed to their overall threat. There were values in the 
corresponding grid cells and it was the task of the 
participant to select the alternative whose corresponding 
attribute values summed to the highest value (see Figure 1).  

There were a total of four conditions that varied how the 
values in the grid could be accessed. For purposes of this 
paper and the models presented, we only cover the “by cell” 
condition (CE). In this condition, participants accessed 
information one cell at a time by clicking on the grid cell 
corresponding to the value of an attribute for a particular 
alternative.  

Each trial consisted of the participant checking the values 
in the grid and selecting the alternative with the highest 
overall value. Feedback on the number of correct answers 
was provided at the conclusion of the experiment.  
Participants completed 30 trials in this manner and for the 
CE condition included 18 participants. 

Results & Discussion 
Our interest lays in modeling the millisecond level 
interactive routines of each trial in addition to the changes in 
information exploration/exploitation that occurred in 
performance within and across trials. The trial duration 
analysis below is intended as a benchmark for the 
subsequent model’s performance.  
Total Trial Duration 
Total trial duration averaged 23.77s, StErr = 478.32ms. 
However, trial durations across the 30 trials follow a power-
law of learning (Figure 2). It is thus important to note that 
trial duration decreased from the first (M = 36.92s; StErr = 
3.66s) to the last trial (M = 21.72s; StErr = 1.8s).   
Number of Cell Clicks 
Participants were presented with a 6x6 grid of cells for a 
total of 36 cells that would need to be checked to have 
perfect information during a trial. Is there any indication 
that participants saved time by not checking every cell? 
Although there was some variability in the number of cells 
clicked across the trials, participants clicked an average of 
35.81 cells. Therefore, participants roughly clicked on each 
cell once. The subsequent model therefore also clicks on 
each cell once during a trial.   

 
Figure 2: Power law of learning in trial duration 

Inter-Cell Click Interval 
In addition to trial duration and number of cells clicked, we 
assessed how participants were spending their time during 
task performance. In particular, we analyzed how long they 
spent between cell clicks. We will call this the “inter-cell 
click interval”. Given that not all participants clicked the 
same number of cells during each trial, the following 
analysis only shows data from the first 36 cell clicks. As 
will be discussed later, the inter-cell click interval provides 
insights into how strategies evolve over time and how we 
can modify our models to match human performance. It also 
provides insights into the cognitive and perceptual-motor 
shortcuts that people take and that a cognitive model needs 
to account for. Essentially, these are the millisecond-level 
operations that are crucial in many repetitive or well-
practiced tasks.  

Figure 3 illustrates how inter-cell click intervals changed 
over the course of the whole task. Initially, inter-cell click 
intervals averaged ~950ms whereas by the end of the 30 
trials, they had decreased to ~550ms. This trend is 
analogous to the trend of the overall trial duration we 
observed in Figure 2 and is one of the ways we can 
determine how the strategy that the participants employed 
evolved. 

Furthermore, within a trial (see Figure 4), we witness 
variability in inter-cell click intervals with respect to cell 
click number. The more cells are clicked within a trial, the 
shorter the inter-cell click interval becomes. Notice also that 
there is a seesaw pattern such that every 7th inter-cell click 
interval is longer than the surrounding ones. This is 
accounted for by the fact that each 7th click was a row 
switch. One explanation for this is that at the end of a row, 
participants updated their current highest value and 
therefore took longer transitioning to the next alternative.  

Within a row, the inter-cell click interval also showed a 
slight increase presumably explained by the increase in 
cognitive load as participants added more values to their 
running total of the alternative’s value. Figure 4 shows 
average data across all 30 trials. 
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Figure 3: Power law of learning in inter-cell click interval 

 
Figure 4: Average human inter-cell click interval within a 

trial. Peaks represent transitions between alternatives (rows)  

Transitioning Between Rows 
Another important consideration for task performance is 
encompassed by the soft constraints hypothesis (Gray et al., 
2006). Soft constraints guide the selection of interactive 
routines at the millisecond level to minimize performance 
costs as measured in terms of time. The utilization of soft 
constraints is reflected in apparent strategy shifts as 

performers become familiar with the task. Although initially 
certain biases may have caused the performer to use one set 
of interactive routines, the cost of exploration/exploitation 
ultimately shifts performance towards more efficient 
strategies. 

This shift in strategy is most clearly seen in the transitions 
between alternatives (rows). Whereas initially participants 
were biased to “read” the values in the rows from left to 
right (Figure 5A), after several trials a more efficient 
strategy emerged. The new strategy had participants 
alternating the direction in which they clicked the cells 
based on their final position in a particular row (Figure 5B). 
Figure 5C shows that across trials participants increased 
their use of strategy B by 10%. 

The Model(s) 
To model human performance on this task, we used the 
ACT-R cognitive architecture (Anderson et al., 2004). ACT-
R is a modularized production system with a subsymbolic 
memory module. It has visual and motor modules to embed 
it in the task environment. It also has declarative memory 
and a procedural module. In addition, it has imaginal and 
goal buffers to store its working memory and goal chunks, 
respectively. Thus, it serves as a good framework to model 
human performance on this simple table task. 

Several ACT-R models were developed in order to model 
the various components of human speed increases during 
this task. The essential structure of all of the models is the 
same: each model simply goes through each alternative, 
uncovers each cell value, sums the cells and updates its 
memory of the highest value after comparing it with the 
previous highest value. The differences between the models 
primarily lie in how they execute this list of perceptual-
motor and cognitive operations.  

At present, we have deliberately avoided implementing 
different decision-making strategies and have focused our 
modeling effort on getting the interleaving of cognitive, 
perceptual, and motor operators right. As discussed below, 
we do not know how to account for the obvious adaptations 
in interleaving that humans undergo. We view our lack in 
this regard as a comment on the state of the art in 

 
 

Figure 5: Different strategies in uncovering cell values. (A) Reading values left to right (B) Reading values alternating 
left-to-right and right-to-left (C) Percent of right-to-left cell click transitions as a function of trial number 
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interleaving which has not advanced much since the 
pioneering EPIC-Soar work of Chong in the late 90’s 
(Chong, 1998a, 1998b; Chong & Laird, 1997). One method 
that has touched on interleaving of perceptual-motor and 
cognitive operators since then is Cognitive Constraint 
Modeling (Lewis, Howes, & Vera, 2004). Cognitive 
Constraint Modeling provides a description of behavior 
derived via constraint satisfaction. However, unlike Chong’s 
work, this method is not at all concerned with how human 
interleaving strategies adapt through experience. 

The absence of a mechanism that interleaves cognitive 
operators has led us to build models that do not change over 
trials but which bracket human performance (Gray & 
Boehm-Davis, 2000; Kieras & Meyer, 2000). 
Understanding the differences between these models offers 
some insight into how perceptual-motor and cognitive 
mechanisms might evolve across trials. 

Model 1: Non-Interleaved 
This was an “out-of-the-box” model, composed of 
sequential productions that can roughly be divided into four 
categories. The first set of productions (Figure 6A) started 
each trial and switched between alternatives. The second set 
of productions (Figure 6B) was the workhorse of the model. 
This set of productions initiated the perceptual-motor 
operations of moving the mouse and visual attention to the 
various cells. It was also responsible for adding the values 
in the cells. It did this in a systematic left-to-right fashion 
for all alternatives. Thus, this model employed strategy A 
from Figure 5. The third set of productions (Figure 6C) 
compared a current alternative’s value to the highest value 
so far and updated the model’s memory of the highest 
alternative seen. The fourth set of productions (Figure 6D) 
only fired after each alternative’s value had been computed 
and the model was ready to select its answer. 

 
Figure 6: Workflow of the models 

The model had declarative knowledge of addition facts 
and number relation facts. Thus, whenever it needed to 
compare whether a current alternative’s value was greater 
than the highest value so far, it would search in its 
declarative memory for a relation fact involving those 
values. 

The model also had a goal buffer that kept track of the 
alternative that it was currently scrutinizing, and an imaginal 
buffer that kept track of the highest value seen so far. Since 
it is beyond the scope of this paper to model human 
accuracy on this task, it sufficed for the model to hold the 
highest value and alternative in its imaginal buffer at all 
times, disallowing for any forgetting errors to occur.  

This was the simplest model that encoded the task and for 
this reason, we did not expect its performance to match well 
with human data. It is termed non-interleaved because the 

perceptual-motor and cognitive operations were done 
largely sequentially and not interleaved with each other. We 
found that although this simple model failed to match 
duration times on the majority of trials, it did match 
duration times as compared to the first trial of human data 
(Figure 8, Model 1: Non-Interleaved). 

Model 2: Interleaving Cognitive with Perceptual-
Motor Operations (I-CPM) 
Examining the time plot of ACT-R’s various modules over 
the course of a single inter-cell click interval (Figure 7), we 
noticed that gaps between production firings could be used 
to interleave perceptual-motor and cognitive operations. The 
interleaving was accomplished by firing productions that 
added the value of the last cell to the running total as the 
motor module was moving the mouse to the next cell. This 
interleaving saved ~100ms during each inter-cell click 
interval and decreased total trial duration by about 2.8 
seconds from ~34.6s to ~31.8s, matching human duration 
times from Trial 2 (Figure 8, Model 2: I-CPM). 

 
Figure 7: Time graph of between cell clicks in ACT-R for 

the non-interleaved model. 

Model 3: Interleaving Motor Preparation Time (I-
CPM+MP) 
Figure 7 also shows that the motor component (moving the 
mouse to the cell and then clicking it) comprised 80% of the 
time of the entire duration (786ms out of 931ms). What this 
means is that just the motor component alone takes more 
time than the entire inter-cell click interval in the human 
data.  

During the course of a single trial, the repetitive sequence 
of moving the mouse to a cell and then clicking is done 
many times. In the human data, this practiced motor 
sequence became increasingly faster as attested by the 
decrease in the inter-cell click interval (see Figure 4). We 
decided to account for this increase in speed by taking 
advantage of ACT-R’s motor module mechanisms.  

When a motor command is issued to ACT-R’s motor 
module, that command is executed in three phases: 
preparation, initiation, and execution. In cases where the 
model can tell ahead of time what movement will follow, it 
is beneficial to begin “preparing” the next movement before 
the current movement is finished executing. Thus, to 
account for the learning effects we observe in repeating the 
same two motor commands over and over, we allowed the 
model to begin preparing the next motor command prior to 
the finish of the current command. For example, while the 
move-mouse command was executing, the model already 
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began preparing the mouse-click that would inevitably 
follow. 

This motor preparation interleaving refinement of the 
model drastically decreased inter-cell click interval and, 

consequently, trial duration. The improvement decreased 
individual trial time by about 7.3 seconds, from ~31.8s to 
~24.5s. This is a marked improvement over Models 1 and 2 
and brought the model closer to the average human trial 
time of  ~23.8s (Figure 8, Model 3: I-CPM+MP). 

Model 4: Alternating Transitions Between Rows (I-
CPM+MP+R) 
In a task in which interactive routines are on the order of 
hundreds of milliseconds, it is important to be able to 
determine where exactly it was that the model was incurring 
a large time cost. We therefore compared the inter-cell click 
interval analyses for human and model data. This 
comparison revealed that the major difference between 
human and model inter-cell click intervals was during the 
transitions between alternatives (where each alternative is a 
row in Figure 1).  

As discussed earlier, participants’ strategies changed over 
the course of the task. Initially, they clicked on cells in a left 
to right fashion whereas later they alternated the direction 
depending on their ending position in a given row. We thus 
incorporated this alternating behavior into the model thereby 
decreasing the distance the mouse had to move when a new 
alternative was encountered. Since move-mouse execution 
time in ACT-R is closely related to the distance that the 
mouse must move, as per Fitts’ Law (Fitts, 1954; 
MacKenzie, 1992), this feature allowed the model to 
transition faster between alternatives (compare Figure 5 A 
and B). 

This refinement in the model decreased total trial duration 
time by about 900ms from ~24.5s to ~23.6s (Figure 8, 

Model 4: I-CPM+MP+R). Although this was not a large 
difference, incorporating this component into the model 
makes it more cognitively plausible especially given that we 
see human participants exhibiting this shift in strategy.  

This final refinement of the model had the best fit to the 
asymptote performance in human data. Future work will 
include the model learning to choose between the two 
strategies. 

Conclusion & Future Work 
Sometimes one can learn more from a modeling effort when 
the model does not fit the data than when it does. In fact, the 
lack of fit can tell us a lot about not only the limitation of 
the model itself and how to proceed to modify it but also 
about the limitation and error of the constraints with which 
the model was implemented. In this case, we wanted to 
investigate where and how the speedup in performance in 
humans occurs and in particular what it was about the “out-
of-the-box” model that prevented it from matching human 
times.  

Where Does the Time Go? 
According to human data, the inter-cell click interval varies 
as a function of trial number (Figure 3) and cell click 
number within a trial (Figure 4). We can see that the 
majority of inter-cell click intervals fall within the 600ms 
range. The first trials have longer durations as compared to 
the last trials, and the first few cell clicks in a trial take 
longer than subsequent cell clicks. However, the “out-of-
the-box” model (Model 1) performs considerably slower in 
all cases, an average of around 950ms per inter-cell click 
interval. 

One way we can speed up the model’s performance is to 
interleave the cognitive and perceptual-motor components. 

 
Figure 8: Comparison of Trial Duration Times Between the 4 Models and Human Data. Model 1: Non-Interleaved – 

Purely sequential model; Model 2: I-CPM – Interleave cognitive, perceptual, and motor operations; Model 3: I-CPM+MP – 
Interleaved motor preparation (MP) time added; Model 4: I-CPM+MP+R – Alternating transitions between rows 
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This results in at most a speedup of ~100ms per inter-cell 
click interval. However, if we look at human data 
particularly towards the end of the 30 trials (Figure 3), we 
see times of 520-600ms, which is considerably faster than 
the model’s motor component alone, as per Figure 7, would 
allow. 

Another way to speed up the model’s performance is to 
interleave the motor preparation times with execution times. 
Since ACT-R does not do production compilation across 
perceptual and motor commands, there does not seem to be 
any other way of incurring this speedup in performance 
(Taatgen & Lee, 2003). The speedup afforded by this 
preparation interleaving results in a decrease of ~200ms per 
inter-cell click interval.  

As per the soft-constraints hypothesis, a further 
refinement of the model altered how transitions between 
rows occurred. This resulted in an additional savings of 
~30ms per inter-cell click interval.  

Taken together, this modeling effort demonstrates the 
importance of millisecond-level considerations operating 
under even the simplest of tasks. The current model was 
intended to address the most perceptually motor intensive 
condition of the study. As such, it has led us to discover the 
crucial nature of interleaving and soft-constraints in 
attaining skilled performance. 

The table task environment is a rich test bed for exploring 
how interactive routines in an information 
exploration/exploitation task evolve to produce skilled 
performance. Future modeling work of this task will explore 
how the different experimental conditions affect this 
evolution of interactive routines, and how these interactive 
routines influence performance in the decision-making task. 
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