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Abstract 

We investigate the hypothesis that historical information 
plays an important role in learning action selection via 
reinforcement learning. In particular, we consider the value of 
the history of prior actions in the classic T maze of Tolman 
and Honzik (Tolman & Honzik 1930). We show that 
including a sequence of actions in the state makes it possible 
to learn the task using reinforcement learning. Moreover we 
show that learning over sequences of length 0 ~ 4 is necessary 
to model rat behavior. This behavior is modeled in Soar-RL 
and compared to an earlier model created in ACT-R.  

Introduction 
In many tasks, immediate sensory data is insufficient for 

decision making. Enriching the state with information about 
previous actions or previous situations can disambiguate 
between situations that would otherwise appear identical, 
which makes it possible not only to make correct decisions 
but also to learn the correct decision. Moreover, knowledge 
of the past can replace the need for unrealistic sensors, such 
as knowing the exact location in a maze.  

Using historical information as part of the state 
representation poses some challenges. For the tasks we 
describe here, we use a simplified version of history – a 
sequence of prior actions. This leaves open the length of 
sequence, and how to model the relation between similar 
sequences to achieve proper level of generalization and 
specialization during learning. We demonstrate how these 
issues can be addressed in Soar-RL (Nason, & Laird, 2005) 
by proposing a simple model on an animal based 
experiment. We analyze the task and compare results to a 
recent ACT-R model (Fu & Anderson 2006). 

The T Maze Task  
The task we will explore is the T maze task of Tolman and 
Honzik (Tolman & Hoznik 1930) in which a rat is put at the 
start location and it is rewarded if it gets to the end location. 
As shown in Figure 1, the T maze contains 14 numbered 
blinds (dead-ends), each corresponds to a binary choice 
point (the task is designed to prohibit the rats from going 
back at T-junctions). Whenever the rat turns into a dead-
end, that is considered an error. In such a maze, there are 
few if any salient features. Rats are able to maintain a sense 
of direction, so that would provide the ability to create for 
different classes of T’s. The only other salient features 

appear to be a history of the rat’s behavior – that is the 
sequence of turns it made before coming to a T at which it 
must make a decision.  

 
 

Figure 1. T maze used in Tolman and Honzik (1930) 
 
To cast this as a problem conducive to reinforcement 
learning, we use the same conventions as a recent ACT-R 
model on this task (Fu & Anderson 2006). Moving into 
dead-ends and turning back results in immediate negative 
reward, while reaching the final goal results in positive 
reward. Figure 2 shows a picture of the actual environment, 
where the maze is embedded in a grid world and the subject 
moves one unit at a time. Dark boxes represent penalties, 
and the light box represents the final reward. 
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Figure 2. T-maze model 

Qualitative Analysis of Task Constraints 
Given the dearth of features in the environment, the only 
external features available to the rat are its prior moves. 
Thus, we assume the representation of the state includes a 
sequence of previous moves. The moves could be encoded 
relative to the current heading: left, right, forward, 
backward; however, as pointed out in (Fu & Anderson 
2006), the rats have strong directional bias, and thus we 
assume they have knowledge of absolute direction and have 
available the absolute directions of their movement To 
describe the model, we use north, east, south and west as 
labels for these directions. For example, at choice point 6, 
the state includes the sequence of [east, north, west, …] 
ordered left-to-right by recency, so that the first item in the 
sequence is the current direction.  

Figure 3 shows the relationships among the choice points 
associated with each numbered dead-end based on the 
sequence representation described earlier. Choice points that 
are grouped together have the same previous input sequence 
and face with the same set of choices. Within the same 
group, points are further divided based on what is the 
correct choice. Decision points, for which moving north (2, 
4, 6) or moving west (3, 11) are correct, are colored in light 
number with dark background; other points are colored in 
dark number with light background. Points in the same 
group but with different color are competing points in that 
learning to reduce the error for one type of points will 
simultaneously increase the error for the other type of 
points. Interference is most intense for the most general 
level (Seq 0), and disappears at the most specific level (Seq 
4), where the correct decision can be learned for each choice 
point. The tree structure in Figure 3 therefore captures all 
such constraints in the task model. 

 

 
Figure 3. Relations among choice points 

 

Our hypothesis is that choice points with similar state 
representations (in this case the sequence of prior moves) 
will appear similar to the rat and it will learn to make the 
same decisions in those states. Choice points with different 
correct directions but similar state representations will 
interfere with each other during learning. According to 
Figure 3, if the agent makes decision based on Seq 0, for 
example, it will tend to move south more than north and east 
more than west at each choice point where those options are 
available, since south and east correspond to the correct 
choice for the majority of the choice points within each 
group (4 south vs. 3 north and 5 east vs. 2 west). At Seq 4 
(the most specific level), all choice points are completely 
discriminated and the correct decision can be made at each 
choice point.  

Our assumption is that sequences of prior actions are 
maintained and available for decision making. Figure 3 
provides the information necessary to determine what 
impact each sequence can have on learning. Relying solely 
on sequences of length 0, a rat should tend to make more 
errors at points 2, 4, 6, 3, and 11. Relying solely on 
sequences of length 1, point 4 should involve less error than 
point 2 and 6, since point 4 is discriminated from majority 
of conflicting points (especially the strongest point 14) but 
only interfere with point 12. Point 4 will be correctly 
learned at the next specificity level, while point 2 and 6 are 
still confused with point 8. Point 3 will involve more errors 
than point 11 since it is not discriminated from point 7 until 
sequence length of 4.  

One important property of most approaches to learning 
these discriminations is that learning is quicker for more 
general levels because they are exposed to more examples. 
For example, there are 4 different rules (different 
combinations of states and legal actions) at the level of Seq 
0, each of them will receive a quarter of the total training 
instances, while at the most specific level of Seq 4, there are 
28 different rules, each of them only receives less than 4% 
of total training instances. This suggest there is an 
advantage to including selection knowledge based on all 
levels of the sequences so that some rough knowledge can 
come into play early, but more and more specific knowledge 
is learned over time. No deliberate mechanism is required to 
achieve this effect.  

These conclusions are largely consistent with the 
experimental data from the T-maze task shown in Figure 4. 
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Figure 4. Percentage error in Honznik (1930) 

Soar Reinforcement Learning Model 
As mentioned above, our hypothesis is that the model 

must consider the spectrum of specificity levels of the state 
representations and that these will influence learning and 
behavior. In Soar, this effect can be readily modeled 
because Soar allows knowledge for selection of an action to 
be encoded in multiple rules that fire together in parallel, 
each providing its own prediction of the expected utility of 
the operator. The expected utilities for the same operator are 
combined, producing a single, joint expected probability. 
Thus, when making a decision, rules match and fire for each 
of the levels, for each of the possible actions. Thus, we can 
capture all of the levels of specificity in Figure 3. Once a 
decision is made, all the rules that contributed to the 
selected action update their expected utility values.  

The effect is that general rules will have the most 
influence for decisions at novel situations where specific 
rule hasn’t been learned yet. In these situations, the expected 
values created by the specific rules will be relatively weak 
with values still close to the initial value of 0. As learning 
progresses, more and more of the specific rules will have 
sufficient examples so that their learning stabilizes and their 
values, combined with corresponding general rules, reflect 
the expected utility of those situations.  

Soar-RL 
Soar reinforcement learning implements the general 

temporal-difference learning. The learned policy is 
represented as a Q value function as in standard Q learning. 
A Q value reflects the utility of taking a particular action in 
a particular state. In Soar-RL, a Q value is associated with 
each state-action pair represented as a Soar RL production 
rule. The update function in the case of multiple rules firing 
is as the following. A temporal difference is computed 
based on the sum of Q values for all rules that match the 
current condition, and is evenly distributed to update each 
rule. Since more general reinforcement learning rules fire 
more often, and a specific rule will always fire with the 

same general rule (there is a strict hierarchy in this task), the 
result is that the general rule quickly learns generalized Q 
value with relatively fewer trainings, while specific rules 
will fine tune the total Q value for specific situations and 
stabilize after receiving more training examples. Without 
general rules, the model has to learn the specific rules in 
novel situations without the useful initial bias that can be 
provided by general rules. Without specific rules, the correct 
behavior cannot be earned. 

 The probability of making a particular choice is 
calculated based on the Boltzmann distribution (equation 1). 
In the binary choice case of this task model, it can be 
rewritten as equation 2, therefore the probability of making 
the wrong choice Pwrong is a monotonic function of the Q 
value difference quantity Q(s, awrong) – Q(s, acorrect). Here the 
Q value represented as a function of a state-action pair, 
where awrong stands for the wrong action and acorrect stands for 
the correct action. 
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Figure 5 plots the Q value difference = Q(s, awrong) – Q(s, 

acorrect) at each choice point for reinforcement learning rules 
with different specificity level (from Seq 0 to Seq 4). The Q 
values are learned separately and each is an average from 10 
independent simulations for 17 trials. These Q value 
difference curves show the convergences trends for rules at 
different specificity level. The plot qualitatively illustrates 
how rules at each specificity level will affect the relative 
error rate shown in Figure 4. The initial error rate 
distribution should be similar to the curve Seq 0, but as 
more and more specific decisions are learned it eventually 
converges to the curve of Seq 4, the most specific level, as 
explained in the analysis presented in the previous section. 
The plot can be viewed approximately as a contour of Q 
value difference updating dynamics, since when all levels of 
rules are used in Soar, the total Q value difference will 
gradually converge following the path which is consistent 
with our empirical results (data not shown). One specific 
interpretation from Figure 5 is that initial error for point 4 is 
relatively higher than point 3, but it learns faster and results 
in lower total error rate. Qualitatively, the average Q value 
difference across all specificity levels, which is shown as a 
bold curve in Figure 5 approximates the relative total error 
rates for each dead-end. This can be confirmed by 
comparing with Figure 4. 
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Figure 5. Effects of reinforcement learning rules with 

state representation at different specificity levels 
 

Figure 5 only shows the qualitatively analysis based on 
separate simulations of each individual level. It is more 
informative to examine the combined Q value difference of 
all rules during learning which is shown in Figure 6 & 7. 

The numbers in Figure 6 & 7 refer to trials, with 20 trial 
intervals. For example, the curve with 1 represents the Q 
value difference after trial 1, 3 represents after 21 trials. 
There are totally 81 trials shown in the plot to demonstrate 
the Q value dynamics, although the actual rat experiment 
only takes 17 trials. Figure 6 shows learning with only the 
most general rules and the most specific rules. Figure 7 
shows learning with all levels of rules. One of the main 
differences between Figures 6 and 7 is that point 3 is 
learned relatively slowly when using all levels of rules. The 
dynamics of learning is consistent with Figure 5 and the 
above analysis. 

  
Figure 6. Change of combined Q value difference during 

learning, using levels 0 and 4. 

 
Figure 7. Change of combined Q value difference during 

learning, using levels 0 through 4. 

Results 
Figure 8 compares observed data with prediction using all 

4 levels of rules. The parameters are penalty for turning 
back -20, reward for reaching the goal +100, learning rate 
0.1, linear discount of 10, on-policy learning with 
Boltzmann exploration temperature 3. We experimented 
with both standard exponential discount and linear discount.  
Figure 5-7 are generated using standard exponential 
discount, as that is the standard in the RL field and default 
in Soar. However, we discovered that a linear discount 
produces a better empirical match to the data, and that is 
what is used for the Soar results in this section. The 
parameter that has the most impact on matching the 
empirical data is the learning rate. The results are not very 
sensitive to the other parameters. 

 
Figure 8. Soar model prediction including level 0-4 
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(a) 

 
(b) 

Figure 9. (a) Prediction using ACT-R model.  
(b) Prediction using Soar model with equivalent rules. 

Comparison with ACT-R 
An ACT-R model (Fu & Anderson 2006) was developed 

to model the Tolman and Honzik (1930) experiment, relying 
on ACT-R’s native reinforcement learning component. In 
ACT-R, there are weights associated with rules. Learning 
adjusts those weights, which are used in selection. Each rule 
corresponds to one action and there is no explicit 
combination of values or joint updating of rules that are for 
the same action. The ACT-R model uses two sets of rules: a 
set of twenty-eight specific rules, two for each choice point; 

and a set of four general rules, one for each absolute 
direction. The specific rule set is equivalent to the level of 
seq. 4 (the model does not use sequences, assuming a rat 
knows its position in the maze), and the general rule set is 
equivalent to seq. 0 in Figure 3. 

Figure 9 (a) shows the ACT-R prediction with only the 
most general rules and most specific rules, which is 
equivalent to using only Seq 0 and Seq 4 in the Soar model. 
Figure 9 (b) shows the prediction using Soar 0, 4 model, 
which is similar to the ACT-R model especially for blind 3. 
 

Table 1 compares the correlations of the ACT-R model 
and Soar model. The Soar 0, 4 model predicts the ACT-R 
model very well (correlation 0.94), while Soar 0~4 model 
predicts the experimental data better (correlation 0.92) than 
the other models. The differences between the correlation 
coefficients are statistically significant. For statistical 
significance of difference between 0.90 and 0.92, the p 
value is < 0.005 based on our simulation data. This (weakly) 
suggests that the rats learn to make decisions using a history 
of prior decisions.  
 

Table 1. Correlation Matrix comparing all models 
 

 Observed Soar0~4 Soar 0,4 ACT-R 
Observed - 0.92 0.90 0.86 
Soar 0~4 - - - 0.82 
Soar 0,4 - - - 0.94 
ACT-R - - - - 
 
Taking a closer look at the results, Soar 0~4 matches the 

blinds closer to the beginning much better while the Soar 
0,4 model matches better for those closer to the end. Table 2 
compares the correlation with partial experimental data. One 
hypothesis could be that for the choice points close to the 
end, the general rules are sufficient to produce good results, 
so that there is less need to use the lower level rules, which 
take longer to learn correctly. While for choice points at the 
beginning, the general rules alone produce bad results, and 
the more specific rules are necessary to produce good 
results. This hypothesis suggests that the rules at different 
levels are not learned and/or used uniformly for all choice 
points. 

 
Table 2. Correlation with partial observed data 

 
 Soar0~4 Soar 0,4 ACT-R  

Blinds 1~6 0.98 0.82 0.71 
Blinds 10~14 0.86 0.98 0.87 
 
Table 3 compares the two levels of difference between the 

ACT-R model and our Soar model. The most important 
difference is our model’s learning over multiple sequences 
of past actions (the model level difference). It is reasonable 
to assume that representing that information in the state and 
increasing the number of rules in ACT-R would improve the 
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ACT-R model’s match to the observed data, especially for 
the early choice points.  

 
Table 3. Comparison between the models 

 
 Model Level Architectural Level 

Soar Use action history Parallel rule firing 
ACT-R No action history Single rule firing 
 

A detailed comparison between reinforcement learning in 
ACT-R and Soar has already been made by Nason (Nason 
& Laird 2004). However, this task model highlights an 
important difference between the two approaches. In Soar, 
for a single decision, multiple reinforcement learning rules 
are allowed to contribute to the decision making and then 
are updated by learning. In ACT-R, although multiple rules 
contribute to making a decision through competition, only 
one is picked and updated. Soar speeds learning with 
multiple reinforcement learning rules in terms of requiring 
fewer external actions, although the asymptotic behavior of 
the two approaches should be similar. This architectural 
level difference is secondary for the results presented here – 
it is the action history representation (model level 
difference) that makes the qualitatively different predictions 
in our hypothesis. However, it may be worthwhile to 
explore the importance of this architectural level difference 
in other applications. 

An additional difference between the models is in the 
reward discount functions used in Soar and ACT-R. The 
default option in Soar is to multiply future expected reward 
with a discount factor γ (0 < γ <1) in the step-wise update 
function, which results in exponential decay of rewards. As 
mentioned earlier, we experimented with linear discount 
(constant discount between steps) which generates slightly 
better results because exponential decay increases the 
differential adjustment of values near the final choice points 
relative to the early choice points (as evident in Figures 6 & 
7).  The ACT-R model uses a hyperbolic discount function, 
which is closer in its impact to an exponential than a linear 
discount. The different discount functions have more 
impacts on the later choice points in the result curves; they 
do not significantly change the relative error rates for earlier 
choice points (such as point 3 vs. point 4).  

Discussions 
The major contributions of this paper are to examine the 

contribution of sequences of action histories, to decision-
making and learning. The second major contribution was to 
evaluate the approach to representation and updating of 
expected values in Soar-RL and discovering that they 
provide an accurate model of learning dynamics by having 
overlapping rules at different specificity levels. 
Functionally, learning progresses from generalize to 
specific. The ACT-R model provided a useful benchmark 
for comparison.  

We can also ask where our model falls short. Our model 
does not make a good prediction at blind 12. This could be 

due to experimental data noise, but it’s more likely that 
there is more structure in the task that is not captured by our 
model. One possibility can be that instead of always using 
absolute directions, the rats may actually use combinations 
of absolute and relative directions, such as turning left and 
right as the state encoding strategy. 
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