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Abstract

The computational model presented here, Grasping Affor-
dances (GA) model, provides a precise explication of the no-
tion of affordance in the context of grasping actions carried
out by monkeys. This explication is consistent with both di-
rect perception theories and neuroscientific models of mon-
key brains, insofar as the identification of grasping affordances
requires, according to this model, neither object recognition
processes nor access to semantic memory. Nevertheless, this
model posits a cascade of complicated computational pro-
cesses, in the way of visuo-motor transformations, which sug-
gest the advisability of qualifying and re-interpreting the claim
that (grasping) affordances are directly available to an acting
biological system. This re-interpretation undermines the al-
leged alternative between direct and indirect perception theo-
ries, to the extent that substantive visuo-motor transformations
have to be posited in order to identify grasping affordances.
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Background and Motivations
The notion of affordance was originally introduced by J. J.
Gibson (Gibson, 1979) to single out perceived properties that
enable one to interact with objects in the environment. Pro-
cedurally, the notion of affordance is framed in the context
of direct perception theories, insofar as higher-level cogni-
tive processes, such as access to semantic memory, logical
inference, and object recognition processes are allegedlyun-
necessary to identify an affordance. Direct perception the-
ories emerged in contrast with so-called indirect perception
theories (Michaels & Carello, 1981). According to the latter,
complex mental processing steps are needed to fill in the gap
between impoverished descriptions of the world furnished by
sensory inputs on the one hand, and the rich and accurate de-
scriptions of the world delivered by perception on the other
hand. Thus, in particular, perceiving a glass as a graspable
object one can drink from is the final outcome of mental pro-
cesses involving knowledge of what a glass is, what it can
contain, and how one uses it.

A more precise understanding of the processes involved in
identifying an affordance is crucial to isolate what is concep-
tually and empirically at stake in the controversy between
direct and indirect perception theories. And an understand-
ing of these processes is crucial for the modelling of specific
sensory-motor control mechanisms in biological systems too.
The existence of a particulary versatile sensory-motor control
mechanism is witnessed by the wide range of sensory-motor
associations that monkeys are able to perform. Notably, this
behavioural ability persists upon presentation of many un-
known/novel objects, thereby suggesting that a robust gen-
eralization process, based on perceived object properties, is

at work there (Borghi, 2005).

In the context of grasping actions, neurophysiological data
on the macaque’s brain cortex are consistent with direct per-
ception views of affordances. In particular, these data suggest
that the anterior intraparietal area (AIP) is involved in the cod-
ing of object affordances (Rizzolatti & Sinigaglia, 2008),in
the light of functional hypotheses concerning more extended
brain circuits. The functional models of brain areas which
have been found to deliver afferent signals to AIP include nei-
ther perceptual object recognition nor higher-level cognitive
processes, such as planning and decision-making (Creem &
Proffitt, 2000; Milner, 1998). Moreover, strong efferent path-
ways have been identified which connect AIP to pre-motor
area F5 (Rizzolatti & Sinigaglia, 2008). Since F5 is promi-
nently involved in the coding of object-oriented actions (such
as grasping, holding, and manipulating), the AIP to F5 con-
nections suggest the existence of some sort ofdirect func-
tional link between perceptual feature detection and object-
directed actions.

The computational model presented here, Grasping Affor-
dances (GA) model, provides a precise explication of the
notion of affordance in the context of grasping actions car-
ried out by monkeys. This explication is consistent with
both direct perception theories and neuroscientific models
of the macaque’s brain. It is consistent with direct percep-
tion theories, insofar as the identification of grasping affor-
dances requires, according to the proposed computational
model, neither object recognition processes nor access to se-
mantic memory. It is consistent with neuroscientific models
of the macaque’s brain, insofar as (i) visual processes fur-
nishing AIP inputs are modelled in accordance with the bio-
logical ”Standard Model” proposed in (Riesenhuber & Pog-
gio, 2000), and (ii) the overall system output does not con-
flict with neuroscientific data and modelling constraints inso-
far as inputs supplied by AIP to brain motor areas are con-
cerned. Nevertheless, this model posits a cascade of com-
plex computational processes, in the way of visuo-motor
transformations, which suggest the advisability of qualify-
ing and re-interpreting the claim that (grasping) affordances
are directly available to an acting biological system. Thisre-
interpretation undermines the alleged alternative between di-
rect and indirect perception theories, to the extent that sub-
stantive visuo-motor transformations have to be posited inor-
der to identify grasping affordances.

The paper is organized as follows. First, a selective
overview of neurophysiological findings about sensory-motor
circuits in the macaque’s brain cortex is provided, and ba-



sic features of computational models accounting for some of
these data are briefly recalled. Then, an explication of the
notion of affordance in the context of grasping actions is ad-
vanced. This explication sets the basic functional require-
ments for a computational model of grasping affordances,
whose architecture and basic functionalities are described in
some detail, and whose performances are evaluated on the
basis of some preliminary tests. The import of this model on
direct perception theories and future developments are briefly
outlined in the concluding remarks.

Relevant Neurophysiological Findings and
Computational Models

Brain areas in the macaque parietal and motor cortex were
shown to be involved in a series of sensory-motor transfor-
mations, such as the mapping into appropriate actions of vi-
sual information about objects and their location in the vi-
sual scene (Rizzolatti & Sinigaglia, 2008). In particular,the
AIP-F5 parieto-frontal circuit appears to play a crucial role in
the visual guidance of hand grasping and manipulation move-
ments, where AIP (Rizzolatti & Sinigaglia, 2008) was iden-
tified as a prominent cortical area involved in the coding of
grasping affordances. One should be careful to note, more-
over, that along the cerebral pathway starting from primary
visual cortex (V1), and reaching F5 via AIP, visual informa-
tion is transformed into motor information apparently with-
out the intervention of cortical areas involved in higher-level
perceptual and cognitive functions, such as the recognition of
objects and their uses (Creem & Proffitt, 2000; Milner, 1998)

Two main computational models have been proposed in
order to account for these data, by modelling AIP function-
alities in the context of more comprehensive brain circuits.
These are the FARS model (Fagg & Arbib, 1998) and a
computational model of AIP neurons introduced in (Oztop,
Imamizu, Cheng, & Kawato, 2006).

FARS is a neural model of cortical processes involved in
generating and executing grasping plans. This model focuses
on the interaction between AIP and premotor area F5, with-
out providing a computational account of how inputs to area
AIP are produced. In fact, affordances are ”programmed“
into this model, by hard wiring connections from units repre-
senting neurons in areas PIP and IT and units which represent
neurons of area AIP. The connectivity between these units is
determined by behavioural compatibilities. For example, an
AIP unit which is selective for a specific grasp type and hand
aperture receives inputs from units which hold input param-
eters of objects at which this kind of grasp and aperture are
usually directed. Moreover, the model does not specify how
these input parameters are computed from visual input. Their
availability is taken for granted, and therefore the process-
ing that visual information undergoes along the path from V1
to AIP is presupposed too. This comprehensive presupposi-
tion is acceptable in the FARS model, which is chiefly con-
cerned with the generation and execution of grasping plans.
It is not equally acceptable in a computational model which

aims at accounting for the processes enabling one to extract
affordances from visual inputs. For this reason, we have out-
lined here a computational account of contextually significant
visuo-motor transformations occurring on the path from V1
to AIP.

The model proposed in (Oztop et al., 2006) concerns the
development of AIP neuron functionalities while an infant is
learning to perform grasp actions. This model focuses on an
account of how units with processing properties similar to
those of AIP neurons emerge by visuo-motor learning. In-
terestingly, the model demonstrates that units with different
kinds of object selectivity emerge. In particular, units were
found which encode object dimensions independently of ob-
ject shape. This model exhibits limited generalization capa-
bilities with respect to novel objects which do not belong to
the initial training set. In fact, this generalization capability is
restricted to transformations with respect to the size of known
objects.

The model of grasping affordance extraction presented be-
low (GA model) provides - unlike the FARS model - a de-
tailed account of significant steps in perceptual processing
along the path from V1 to AIP. In addition to this, the GA
model is endowed - unlike the model proposed in (Oztop et
al., 2006) - with more extended generalization abilities inthe
way of novel/unknown objects.

GA Model Description

Affordances for Grasping

Affordances are not intrinsic properties of an object, but
rather depend on the relationship between object and agent
(Chemero, 2003). For example, differences in primate and fe-
line effectors account to a large extent for the different affor-
dances that objects convey to humans and cats, respectively.
As one moves to consider more specifically grasping affor-
dances for monkeys and humans, one should still be careful to
note that graspable objects do not merely ’afford’ our grasp-
ing them. Indeed, multiple opportunities for grasping arise
in connection with many graspable objects. For example, a
mug can be grasped by handle, lateral side, and top. These
grasps can be distinguished from each other in terms of hand
shape and wrist rotation obtaining just before grasping the
object (Tucker & Ellis, 2000). Accordingly, the grasping af-
fordances associated to a graspable object will be identified
in the GA model with a collection of (codes for) appropriate
hand configurations assumed by a hand just prior to grasp-
ing the object (Oztop et al., 2006; Tsiotas, Borghi, & Parisi,
2005). Since a graspable object may be grasped in several
ways, this means that multiple hand configurations can be as-
sociated to any given object in the GA model.

General GA Model Description

From the above discussion, three main requirements have
emerged for a computational model of grasping affordances
to be empirically adequate and to move beyond previous com-
putational models which include affordance extraction func-



Figure 1: The GA model is formed by four modules: the
SE Module, the MP Module, The APC Module, and the AR
Module. This computational model receives an image de-
picting an object as input, and produces a list of affordances
(appropriate grasps for the given object) as output.

tionalities: (a) the model must provide computational solu-
tions for significant processing steps along the path from V1
to AIP; (b) the model must enable one to extract multiple
hand-configurations from the same graspable object; (c) the
model must possess generalization capabilities with respect
to novel/unknown objects.

To accomplish (a), the visual pathway was modelled start-
ing from primary visual cortex V1 and reaching, through ar-
eas V2 and V4, into the posterior infero-temporal area (PIT),
which is identified as the cortical region supplying visual
monocular information to AIP (Borra et al., 2007). A bio-
logically plausible model of the ventral visual stream, named
Standard Model, was proposed in (Riesenhuber & Poggio,
2000). A component of the Standard Model, the view-based
Module, accounts for computations along the path from V1
to PIT which makes inputs available to AIP. Accordingly, the
Monocular Perception (MP) Module (see Figure 1) which is
an implementation of the view-based module was developed
and included in the GA model.

To accomplish (b), that is, to provide a computational so-
lution to the multiple affordance extraction problem, a proba-
bilistic approach was pursued. In particular, this problemcan
be formalized as the problem of identifying and computing a
multi-valued function which relates any visual input to a col-
lection of hand-configurations. More precisely, letX ⊆ R d

be thed-dimensional space of visual inputs, and letT ⊆ R c

be thec-dimensional space of hand configurations. Then, one
has to find a functional mappingf such that:

f : x∈ X −→℘(T)

where℘(T) is the power set ofT. A two-dimensional ex-
ample of a multi-valued function is illustrated in Figure 2.
This correspondence can be modelled by means of a prob-

Figure 2: Two-dimensional example of a multi-valued func-
tion. Points on thex axis represent visual inputs, and points
on thet axis represent hand-configurations. One may asso-
ciate ax point with multiplet points.

abilistic approach. More specifically, givenx, the output
computed by the mappingf can be approximated by the un-
conditional probability density functionp(t). Thus, in gen-
eral, the problem of modelling the functional mappingf can
be viewed in terms of estimating the conditional distribution
p(t|x). A general framework for modelling conditional prob-
ability distributions makes use of mixture models whose pa-
rameters functionally depend onx (Bishop, 1995):

p(t|x) =
M

∑
k=1

αk(x)φk(t|x) (1)

The φk(x) are kernel functions, which are usually Gaussian
functions of the form

φk(t|x) =
1

(2π)c/2σc
k(x)

exp

{

−
‖t −µk(x)‖2

2σ2
k(x)

}

(2)

The parametersαk(x) can be regarded as prior probabilities of
t generated from thek-th component of the mixture. TheAf-
fordance Probabilistic Coding(APC) Module was designed
so as to provide a computational solution to (b), that is, to the
multiple affordance extraction problem (see Figure 1).

To accomplish (c), that is, generalization capabilities en-
abling one to extract affordances from novel objects, a start-
ing point was provided by the observation that the agent usu-
ally focuses its attention on the part of the object at which
the grasping action is directed (Schiegg, Deubel, & Schnei-
der, 2003). This behaviour suggests the possibility of associ-
ating parts of a graspable object to affordances, and to store
this “mereological“ information for use when novel graspable
objects are presented. For example, one may learn to asso-
ciate appropriate affordances to handles and cylinders, re-
spectively, and to use this information when a cup (result-
ing from the “composition” of handle and cylinder) is pre-
sented. This process was actually implemented by sliding an
“attention window” on the image of an object, and by ex-
tracting a collection of grasping affordances at each displace-
ment step. This function is achieved by the Subimage Extrac-
tion (SE) Module (see Figure 1). Finally, a post-processing



step was required as well, in order to select the more plau-
sible affordances. The post-processing step is accomplished
by Affordance Ranking (AF) Module (see Figure 1). APC
and AR modules account for the AIP affordance computa-
tion. The online learning of sensorimotor associations might
be grounded onto a basic grasping ability such as described in
(Oztop, Bradley, & Arbib, 2004). Learning of sensorimotor
associations may occur by collecting pairs of visually pre-
sented ”object part” and related ”hand-configuration” every
time a successful grasp is made. Since the focus of this work
is not on the acquisition of sensorimotor associations, how-
ever, we suppose here that a series of such pairs is already
available.

Figure 3: The APC Module is formed by a neural network
and a Gaussian mixture model. Given anx vector, the neural
network computes the required Gaussian parametersθ(x) to
approximatep(t|x) (see (Bishop, 1995) for more details).

GA Model specification and implementation
The GA model takes the image of an object as input and sup-
plies the object’s grasping affordances as output. It is com-
posed by four modules, as shown in Figure 1. The input im-
ageI , represented in gray scale, is processed by the SE Mod-
ule, which extractsn subimagesI j , j = 1, ...,n. The number
of subimages depends on the dimensions of the windowW
sliding on the imageI , the image size, and the window dis-
placement stepDS.

Each subimage is then sent as input to the MP Module. The
MP Module takes a sub-imageI j as input, and gives a 256
feature vector as outputx j . The latter is presented as input to
the APC Module, which computes the correspondingp(t|x j).

To estimatep(t|x j), one uses a mixture model of the form
expressed in eq. 1, whose parametersαk(x), µk(x) andσk(x)
(for Gaussian kernel as in eq. 2) depend on the visual input
x. The relationship between visual inputsx and correspond-
ing mixture parameters is modelled by means of a two-layer,
feed-forward neural network withH hidden nodes. There-
fore, the ACP Module has a combined density model and
neural network structure, as shown in Figure 3.

Since the APC Module receivesn feature vectorsx j in
input, its overall output is formed byn density functions
p(t|x j). Note, however, that the desired output is a set
T = {t1, t2, . . . , tL} corresponding to theL distinct hand-
configurations that enable one to grasp the viewed object.
Therefore, a non-trivial output selection problem remainsto
be solved at this stage: one has to isolate hand-configurations
which differ from each other as much as possible, and whose

probability value is sufficiently high.
This requirement corresponds, for each single feature vec-

tor x and relatedp(t|x), to choose as member of the setT
the gaussians’ centersµk(x) of the mixture associated to the
higher values ofαk(x). In the case ofn probability distribu-
tions p(t|x1), . . . , p(t|xn), in order to obtain a behaviour simi-
lar to the single distribution case, one may proceed as follow:

1. generates sample points from each distribution, obtaining
n× s points, each of which defines a hand configuration.
Not every hand configuration thus obtained corresponds to
grasps for the input object; only those gathering around the
kernel’s means do, while the other points are distributed in
a sparse manner;

2. a clustering over then×spoints is performed;

3. the clusters are ranked according to the order of their vari-
ance values, and the firstL clusters with lower variances are
selected because a lower variance implies less uncertainty
about the hand configurations;

4. finally, the setT will be formed by the centers of the se-
lected clusters.

Test and Results
The GA model was designed so as to extract multiple hand-
configurations, and to generalize its affordance-extraction ca-
pability with respect to novel objects. Two experiments were
performed to test the extraction and generalization abilities,
respectively. The results of these tests corroborate the pos-
session of the extraction ability, in addition to the required
generalization ability as far as novel objects obtained from
the composition of known object parts are concerned. Let’s
see.

The first test, which is concerned with the extraction of
multiple hand-configurations, makes use of three different
prototypical object images: a sphere, a cylinder and a bottle.
It is assumed that the first two objects can be grasped using
a power grasp only, whereas the bottle can be grasped in two
different ways, by precision and power grasps. For each of
these prototypical object images, similar images were gener-
ated by means of small contour variations. For each proto-
type, the resulting training and test sets were composed by 20
and 10 images, respectively (Figure 4)

In order to generate target hand configurations, GraspIt!
(Miller & Allen, 2004), a robotic grasping simulator, was
used. In particular, the robotic hand called Robonaut, en-
dowed with 14 degrees of freedom, was chosen. Conse-
quently, in the GA model hand configurations are identified
by a vector of 14 components, where each component repre-
sents just one hand joint’s angle. Spherical and cylindrical ob-
jects are associated to a single hand configuration, generated
manually by changing the Robonaut’s degrees of freedom.
Bottle objects are associated with two distinct hand config-
urations: a precision grasp, applied on the object’s top part,
and a power one applied on the lateral part (see fig. 4). Train-
ing set targets are generated adding some Gaussian noise to



(a) Some training objects (left) and test objects (right).

(b) Target hand-configurations.

Figure 4: Examples of spherical, cylindrical and bottle ob-
jects used to train and test the system, and target hand-
configurations.

these hand configurations. In this test, the attention window
encompasses the whole object. Thus, for each object there
is a single feature vectorx with an associatedp(t|x). Hand
configurations are obtained by selectingµk(x) associated with
the higher values ofαk(x). The model parameters are sum-
marized in table 2. For thei-th degree of freedom, percentage

error is defined as |t i−yi |
maxi−mini

×100, whereyi is the model out-
put, andmaxi andmini are the max and the min value, respec-
tively, for the i-th degree of freedom.Average errorbetween
model output hand configuration and target hand configura-
tion is defined as the mean of percentage error over all de-
grees of freedom. For all test objects in each class, mean and
standard deviation of average error is computed and showed
in table 1.

Table 1: For each object class, the mean and standard de-
viation of the average error over all objects in the test set
is reported here. Moreover, for each class mean hand-
configuration over all objects in the class is exhibited.

Bottle Grasp 1 Bottle Grasp 2 Spherical Cylindrical
2%±0.4 1.9%±0.6 3.9%±1.4 1.3%±0.4

Table 2: Model parameters for each test. Image size,W and
DSare expressed in pixels.

H M Image size W DS Cluster
Test 1 5 2 160×160 160×160 0 None
Test 2 5 5 500×500 160×160 30 5

The second experiment is meant to test generalization ca-
pabilities with respect to novel objects. To test this ability,
the system was trained to associatepartsof an object to hand-
configurations. Subsequently, the system was given in input
a novel object resulting from the ”composition“ of previously
known parts. In this test, a cup is used, which is obtained from
the composition of a cylinder and a handle. Examples of both
training images and the cup used as test image are shown in
figure 5. There are four kinds of training images: (a) cup
handles; (b) upper and lower cup parts; (c) lateral cup parts;
(d) non-graspable cup parts. Two target hand-configurations
are associated with images (a); only one hand-configuration
is associated to images (b) to (d). The training set targets
are generated adding some Gaussian noise to hand configura-
tions. Targets for non-graspable cup parts images are drawn
from a Gaussian distribution with a large variance, so as to re-
flect the fact that in this case no plausible hand-configuration
candidate exists. The K-Mean clustering algorithm is imple-
mented by the AR Module, setting to 5 the number of clusters.
In table 3, cluster centroids are shown together with cluster
variance. The fifth cluster was discarded in view of its large
variance. Note that the first four cluster centroids are very
similar to target hand configurations (fig. 5) with respect to
which mean percentage error was computed.

(a) Some training objects (left) and test object (right).

(b) Target hand-configurations.

Figure 5: (a) Examples of training and test images (see text).
(b) Examples of target hand-configurations.

Concluding remarks
The architecture of the GA model is largely motivated by the
goal of computationally investigating the allegedly direct link
between perception and action established by the perception
of affordances. One should be careful to note that the over-
all output of the GA model does not correspond to actions,
but rather corresponds to hand configurations. Therefore,
one may legitimately question the claim that the GA model
computes a perception-action transformation. However, in



Table 3: The graph visualizes the obtained cluster centroids.
Compare these images with target hand configurations of fig.
5. The fifth cluster was discarded in view of its large variance.
The percentage error with respect to target was mediated over
all degrees of freedom.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

σ = 0.12 σ = 0.12 σ = 0.09 σ = 0.09 σ = 0.34
Mean and standard deviation of percentage error

1.9%±2 2.5%±2 2%±1.2 1.8%±1.5 (discarded)

the context of grasping actions, the model embodies the as-
sumption that an appropriate hand configuration for grasping
an object is a configuration assumed by a hand just prior to
grasping that object. This configuration is closely relatedto
the goal of the grasping action. Thus, the grasping action
can be generated from the initial configuration, in terms of
motor commands, by a forward model on the basis of such
goal-related information. For this reason, one can meaning-
fully maintain that the computation of hand configurations
from visual inputs performed by the GA model is the gist of
a perception-action transformation.

As discussed in the first section, a more precise understand-
ing of the processes involved in identifying an affordance
is crucial to isolate conceptual and empirical differencesbe-
tween direct and indirect perception theories. The GA com-
putational model is in agreement with the notion that the
identification of affordances does not require higher cognitive
processes, such as logical inference and object classification.
However, the transformation performed in the GA model re-
quires a cascade of fairly complicated processing stages, and
the solution of non-trivial computational problems. Notably,
in order to achieve significant generalization capabilities, the
APC module was geared so as to produce in output a set
of probability distributions each one of them expressed as
a Gaussian mixture, coding hand configurations for just one
part of the image. Here, the pertinent modelling question is:
how one does choose the appropriate hand configurations for
the object? In the case of just one probability distribution, a
natural candidate are the centers of the Gaussians associated
to the higher mixture coefficients. In the case of a set of prob-
ability distributions, various possibilities arise, onlyone of
which was pursued in the GA model. This solution provides
a significant proof-of-concept, together with a vivid illustra-
tion of the important qualifications that are needed when one
makes use of the attribute direct in the expression direct per-
ception of affordances. An alternative solution, which we are
currently exploring, involves a unique probability distribu-
tion, which arises by taking as some sort of union over the set

of distributions based on a similarity measure between gaus-
sian mixture models (Hershey & Olsen, 2007).
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