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Abstract

The computational model presented here, Grasping Affor-
dances (GA) model, provides a precise explication of the no-
tion of affordance in the context of grasping actions carried
out by monkeys. This explication is consistent with both di-
rect perception theories and neuroscientific models of mon-
key brains, insofar as the identification of grasping affordances
requires, according to this model, neither object recognition
processes nor access to semantic memory. Nevertheless, this
model posits a cascade of complicated computational pro-
cesses, in the way of visuo-motor transformations, which sug-
gest the advisability of qualifying and re-interpreting the claim
that (grasping) affordances are directly available to an acting
biological system. This re-interpretation undermines the al-
leged alternative between direct and indirect perception theo-
ries, to the extent that substantive visuo-motor transformations
have to be posited in order to identify grasping affordances.
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Background and Motivations

The notion of affordance was originally introduced by J. J.
Gibson (Gibson, 1979) to single out perceived propertiat th

at work there (Borghi, 2005).

In the context of grasping actions, neurophysiologicahdat
on the macaque’s brain cortex are consistent with direct per
ception views of affordances. In particular, these datgesy
that the anterior intraparietal area (AIP) is involved ia tod-
ing of object affordances (Rizzolatti & Sinigaglia, 2008),
the light of functional hypotheses concerning more extdnde
brain circuits. The functional models of brain areas which
have been found to deliver afferent signals to AIP include ne
ther perceptual object recognition nor higher-level ctgai
processes, such as planning and decision-making (Creem &
Proffitt, 2000; Milner, 1998). Moreover, strong efferenttpa
ways have been identified which connect AIP to pre-motor
area F5 (Rizzolatti & Sinigaglia, 2008). Since F5 is promi-
nently involved in the coding of object-oriented actionsofs
as grasping, holding, and manipulating), the AIP to F5 con-
nections suggest the existence of some sodict func-
tional link between perceptual feature detection and dbjec
directed actions.

enable one to interact with objects in the environment. Pro- The computational model presented here, Grasping Affor-
cedurally, the notion of affordance is framed in the contextdances (GA) model, provides a precise explication of the
of direct perception theories, insofar as higher-level cogni-notion of affordance in the context of grasping actions car-
tive processes, such as access to semantic memory, logici§d out by monkeys. This explication is consistent with

inference, and object recognition processes are allegedly

both direct perception theories and neuroscientific models

necessary to identify an affordance. Direct perception theOf the macaque’s brain. It is consistent with direct percep-

ories emerged in contrast with so-called indirect percepti
theories (Michaels & Carello, 1981). According to the Igtte

tion theories, insofar as the identification of graspingmaff
dances requires, according to the proposed computational

complex mental processing steps are needed to fill in the gafp®del, neither object recognition processes nor access to s
between impoverished descriptions of the world furnished b mantic memory. It is <_:on_5|stent with _negrosmentlflc models
sensory inputs on the one hand, and the rich and accurate d&f the macaque’s brain, insofar as (i) visual processes fur-
scriptions of the world delivered by perception on the othefishing AIP inputs are modelled in accordance with the bio-

hand. Thus, in particular, perceiving a glass as a graspab

lg@gical "Standard Model” proposed in (Riesenhuber & Pog-

object one can drink from is the final outcome of mental pro-9i0: 2000), and (i) the overall system output does not con-
cesses involving knowledge of what a glass is, what it cadlict with neuroscientific data and modelling constraintsan

contain, and how one uses it.

far as inputs supplied by AIP to brain motor areas are con-

A more precise understanding of the processes involved if€™Med. Nevertheless, this model posits a cascade of com-

identifying an affordance is crucial to isolate what is camc

plex computational processes, in the way of visuo-motor

tually and empirically at stake in the controversy betweerfransformations, which suggest the advisability of qualif
direct and indirect perception theories. And an understandnd @nd re-interpreting the claim that (grasping) afforcis

ing of these processes is crucial for the modelling of specifi
sensory-motor control mechanisms in biological systeras to
The existence of a particulary versatile sensory-mototrobn

are directly available to an acting biological system. Trkis
interpretation undermines the alleged alternative betvadee
rect and indirect perception theories, to the extent thht su

mechanism is witnessed by the wide range of sensory-motcttantive visuo-motor transformations have to be positetin
associations that monkeys are able to perform. Notably, thider to identify grasping affordances.

behavioural ability persists upon presentation of many un-

The paper is organized as follows. First, a selective

known/novel objects, thereby suggesting that a robust gersverview of neurophysiological findings about sensoryanot
eralization process, based on perceived object propgisies circuits in the macaque’s brain cortex is provided, and ba-



sic features of computational models accounting for some o&ims at accounting for the processes enabling one to extract
these data are briefly recalled. Then, an explication of thaffordances from visual inputs. For this reason, we have out
notion of affordance in the context of grasping actions is adlined here a computational account of contextually sigaiftc
vanced. This explication sets the basic functional requirevisuo-motor transformations occurring on the path from V1
ments for a computational model of grasping affordancesto AlP.

whose architecture and basic functionalities are destiibe The model proposed in (Oztop et al., 2006) concerns the
some detail, and whose performances are evaluated on thievelopment of AIP neuron functionalities while an infast i
basis of some preliminary tests. The import of this model orlearning to perform grasp actions. This model focuses on an
direct perception theories and future developments aeflyori account of how units with processing properties similar to

outlined in the concluding remarks. those of AIP neurons emerge by visuo-motor learning. In-
terestingly, the model demonstrates that units with dffier
Relevant Neurophysiological Findings and kinds of object selectivity emerge. In particular, unitsreve
Computational Models found which encode object dimensions independently of ob-

ject shape. This model exhibits limited generalizationacap

Brain areas in the macaque parietal and motor cortex Werfjjiies with respect to novel objects which do not belong to
shown to be involved in a series of sensory-motor transfor_the initial training set. In fact, this generalization chipiy is

mations, such as the mapping into appropriate actions of Vigggyricted to transformations with respect to the size ofkm
sual information about objects and their location in the Vi'objects.

sual scene (Rizzolatti & Sinigaglia, 2008). In particutie The model of grasping affordance extraction presented be-
AIP-F5 parieto-frontal circuit appears to play a cruciderm |, (GA model) provides - unlike the FARS model - a de-

the visual guidance Of_ hand g_fasp_i”g anc_i manipulation_moveth"ed account of significant steps in perceptual procegssin
ments, where AIP (Rizzolatti & Sinigaglia, 2008) was 'den'along the path from V1 to AIP. In addition to this, the GA

tified as a prominent cortical area involved in the coding Ofmodel is endowed - unlike the model proposed in (Oztop et

grasping affordances. One should be careful to note, morey 5404 - with more extended generalization abilitiethia
over, that along the cerebral pathway starting from p”ma%vay of novel/unknown objects.

visual cortex (V1), and reaching F5 via AlP, visual informa-
tion is transformed into motor information apparently with GA Model Description
out the intervention of cortical areas involved in highevel .
perceptual and cognitive functions, such as the recognitio Affordances for Grasping
objects and their uses (Creem & Proffitt, 2000; Milner, 1998)Affordances are not intrinsic properties of an object, but
Two main computational models have been proposed imather depend on the relationship between object and agent
order to account for these data, by modelling AIP function-(Chemero, 2003). For example, differences in primate and fe
alities in the context of more comprehensive brain circuits line effectors account to a large extent for the differefaraf
These are the FARS model (Fagg & Arbib, 1998) and adances that objects convey to humans and cats, respectively
computational model of AIP neurons introduced in (Oztop,As one moves to consider more specifically grasping affor-
Imamizu, Cheng, & Kawato, 2006). dances for monkeys and humans, one should still be careful to
FARS is a neural model of cortical processes involved innote that graspable objects do not merely "afford’ our grasp
generating and executing grasping plans. This model fecusdéng them. Indeed, multiple opportunities for grasping aris
on the interaction between AIP and premotor area F5, within connection with many graspable objects. For example, a
out providing a computational account of how inputs to areamug can be grasped by handle, lateral side, and top. These
AIP are produced. In fact, affordances are "programmed‘grasps can be distinguished from each other in terms of hand
into this model, by hard wiring connections from units repre shape and wrist rotation obtaining just before grasping the
senting neurons in areas PIP and IT and units which represeabject (Tucker & Ellis, 2000). Accordingly, the grasping af
neurons of area AIP. The connectivity between these units ifordances associated to a graspable object will be ideshtifie
determined by behavioural compatibilities. For exampte, a in the GA model with a collection of (codes for) appropriate
AIP unit which is selective for a specific grasp type and hanchand configurations assumed by a hand just prior to grasp-
aperture receives inputs from units which hold input paraming the object (Oztop et al., 2006; Tsiotas, Borghi, & Parisi
eters of objects at which this kind of grasp and aperture ar@005). Since a graspable object may be grasped in several
usually directed. Moreover, the model does not specify howvays, this means that multiple hand configurations can be as-
these input parameters are computed from visual input.rThegociated to any given object in the GA model.
availability is taken for granted, and therefore the preees .
ing that visual information undergoes along the path from V1General GA Model Description
to AIP is presupposed too. This comprehensive presupposikrom the above discussion, three main requirements have
tion is acceptable in the FARS model, which is chiefly con-emerged for a computational model of grasping affordances
cerned with the generation and execution of grasping plango be empirically adequate and to move beyond previous com-
It is not equally acceptable in a computational model whichputational models which include affordance extractioncfun
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Figure 1. The GA model is formed by four modules: the

SE Module, the MP Module, The APC Module, and the AR ” o
Module. This computational model receives an image de@Pilistic approach.  More specifically, given the output
picting an object as input, and produces a list of affordanceCOMPuted by the mapping can be approximated by the un-

(appropriate grasps for the given object) as output. conditional probability density functiop(t). Thus, in gen-
eral, the problem of modelling the functional mappihgan

be viewed in terms of estimating the conditional distribati
tionalities: (a) the model must provide computational solu p(t|x). A general framework for modelling conditional prob-
tions for significant processing steps along the path from Viability distributions makes use of mixture models whose pa-
to AIP; (b) the model must enable one to extract multiplerameters functionally depend ar{Bishop, 1995):
hand-configurations from the same graspable object; (c) the
model must possess generalization capabilities with mspe
to novel/unknown objects.

To accomplish (a), the visual pathway was modelled start
ing from primary visual cortex V1 and reaching, through ar-
eas V2 and V4, into the posterior infero-temporal area (PIT)
which is identified as the cortical region supplying visual
monocular information to AIP (Borra et al., 2007). A bio-
Ié)g ggg dplag?jlg: sv?sogiljg(f);g?j Vi?]nggla\gesrl:ﬁlljzgfzmﬁ:?go, The parametersy(x) can be regarded as prior probabilities of
2000). A component of the Standard Model, the view-baset% generated from_t_hle_-th cor_nponent of the mixture. TW'
Module, accounts for computations along the path from V1 ordance Pro_bablllstlc COd'r.'gAPC) Mpdule was des_lgned
to PIT which makes inputs available to AIP. Accordingly, the soas to provide a computaponal solution to (b.)' that ishep t
Monocular Perception (MP) Module (see Figure 1) which iSmult|ple affordance extraction problem (see Figure 1).

an implementation of the view-based module was developegbﬁz agﬁce)TglésxTr;?t’ at;g: dlz,ng:smfer?rlrlwzig?/gl %%p:g:t'fsg r:
and included in the GA model. g jects,

To accomplish (b), that is, to provide a computational son9 point was provided by the observation that the agent usu-

: . . ally focuses its attention on the part of the object at which
lution to the multiple affordance extraction problem, al@ao the grasping action is directed (Schiegg, Deubel, & Schnei-
bilistic approach was pursued. In particular, this probtem grasping 99, '

be formalized as the problem of identifying and computing ader, 2003). This behaviour suggests the possibility of@sso

multi-valued function which relates any visual input to & co at!”? parts of a gr“a.spable quect to affordances, and te stor
lection of hand-configurations. More precisely, ¥t & 9 this “mereological” information for use when novel grasieab

be thed-dimensional space of visual inputs, andTeC K¢ objects are presented. For example, one may learn to asso-
' - ciate appropriate affordances to handles and cylinders, re

be thec-dimensional space of hand configurations. Then, one . o .
, . , . Spectively, and to use this information when a cup (result-
has to find a functional mappinggsuch that: . " S . .
ing from the “composition” of handle and cylinder) is pre-
sented. This process was actually implemented by sliding an
“attention window” on the image of an object, and by ex-
whereld (T) is the power set of . A two-dimensional ex- tracting a collection of grasping affordances at each disp!
ample of a multi-valued function is illustrated in Figure 2. ment step. This function is achieved by the Subimage Extrac-

This correspondence can be modelled by means of a proltion (SE) Module (see Figure 1). Finally, a post-processing

M
P(tX) = > aw(X)@(t[x) €Y
k=1

The @«(x) are kernel functions, which are usually Gaussian
functions of the form
t — (x)]|?
N wun} @

““”@mwwu>p{ 202(x)

fixeX—0O(T)



step was required as well, in order to select the more plauprobability value is sufficiently high.

sible affordances. The post-processing step is accongplish  This requirement corresponds, for each single feature vec-
by Affordance Ranking (AF) Module (see Figure 1). APC tor x and relatedp(t|x), to choose as member of the Set
and AR modules account for the AIP affordance computathe gaussians’ centerg(x) of the mixture associated to the
tion. The online learning of sensorimotor associationshinig higher values ofix(x). In the case oh probability distribu-

be grounded onto a basic grasping ability such as described tions p(t|x1), ..., p(t|X), in order to obtain a behaviour simi-
(Oztop, Bradley, & Arbib, 2004). Learning of sensorimotor lar to the single distribution case, one may proceed as/ollo
associations may occur by collecting pairs of visually pre- ) o o
sented "object part” and related "hand-configuration” gver 1. generatgs sample points .from egch distribution, qbtalnl_ng
time a successful grasp is made. Since the focus of this work N % S points, each of which defines a hand configuration.
is not on the acquisition of sensorimotor associations,-how NOt évery hand configuration thus obtained corresponds to

ever, we suppose here that a series of such pairs is already9rasps for the input object; only those gathering around the
available. kernel's means do, while the other points are distributed in

a sparse manner;

Affordance Probabilistic Coding 2. aclustering over the x spoints is performed;

. % 8( x) ‘A p(t]x) 3. the clusters are ranked according to the order of their var
i } ance values, and the filstlusters with lower variances are
selected because a lower variance implies less uncertainty
about the hand configurations;

Neural Network Mixture Model

4. finally, the sefl will be formed by the centers of the se-
Figure 3: The APC Module is formed by a neural network lected clusters.
and a Gaussian mixture model. Givenxavector, the neural
network computes the required Gaussian paramétegsto Test and Results

approximatep(t|x) (see (Bishop, 1995) for more details). ~ The GA model was designed so as to extract multiple hand-
configurations, and to generalize its affordance-exibaata-
. . ) pability with respect to novel objects. Two experimentsaver
GA Model specification and implementation performed to test the extraction and generalization #slit
The GA model takes the image of an object as input and suprespectively. The results of these tests corroborate the po
plies the object’s grasping affordances as output. It is-comsession of the extraction ability, in addition to the reqdir
posed by four modules, as shown in Figure 1. The input imgeneralization ability as far as novel objects obtainednfro
agel, represented in gray scale, is processed by the SE Modhe composition of known object parts are concerned. Let's
ule, which extracts subimages;, j = 1,...,n. The number see.
of subimages depends on the dimensions of the windbw  The first test, which is concerned with the extraction of
sliding on the image, the image size, and the window dis- multiple hand-configurations, makes use of three different
placement stepS. prototypical object images: a sphere, a cylinder and aéottl
Each subimage is then sent as input to the MP Module. Thé is assumed that the first two objects can be grasped using
MP Module takes a sub-imade as input, and gives a 256 a power grasp only, whereas the bottle can be grasped in two
feature vector as outpuf. The latter is presented as input to different ways, by precision and power grasps. For each of
the APC Module, which computes the correspondiigx;j).  these prototypical object images, similar images were gene
To estimatep(t|x;), one uses a mixture model of the form ated by means of small contour variations. For each proto-
expressed in eq. 1, whose parametas), [k(X) andog(x)  type, the resulting training and test sets were compose@®by 2
(for Gaussian kernel as in eq. 2) depend on the visual inpund 10 images, respectively (Figure 4)
X. The relationship between visual inpwt&nd correspond- In order to generate target hand configurations, Graspilt!
ing mixture parameters is modelled by means of a two-layer(Miller & Allen, 2004), a robotic grasping simulator, was
feed-forward neural network withl hidden nodes. There- used. In particular, the robotic hand called Robonaut, en-
fore, the ACP Module has a combined density model andlowed with 14 degrees of freedom, was chosen. Conse-
neural network structure, as shown in Figure 3. guently, in the GA model hand configurations are identified
Since the APC Module receives feature vectors¢; in by a vector of 14 components, where each component repre-
input, its overall output is formed by density functions sents just one hand joint’s angle. Spherical and cylintloba
p(tlx;). Note, however, that the desired output is a sefiects are associated to a single hand configuration, gemkrat
T = {t1,t2,...,tL} corresponding to thd distinct hand- manually by changing the Robonaut’'s degrees of freedom.
configurations that enable one to grasp the viewed objecBottle objects are associated with two distinct hand config-
Therefore, a non-trivial output selection problem remdms urations: a precision grasp, applied on the object’s top, par
be solved at this stage: one has to isolate hand-configngatio and a power one applied on the lateral part (see fig. 4). Train-
which differ from each other as much as possible, and whosing set targets are generated adding some Gaussian noise to



The second experiment is meant to test generalization ca-
pabilities with respect to novel objects. To test this &ili
the system was trained to associadetsof an object to hand-
configurations. Subsequently, the system was given in input
a novel object resulting from the "composition” of previtys
known parts. In this test, a cup is used, which is obtainem fro
the composition of a cylinder and a handle. Examples of both
training images and the cup used as test image are shown in
figure 5. There are four kinds of training images: (a) cup
handles; (b) upper and lower cup parts; (c) lateral cup parts
(d) non-graspable cup parts. Two target hand-configuration
are associated with images (a); only one hand-configuration
is associated to images (b) to (d). The training set targets
are generated adding some Gaussian noise to hand configura-
tions. Targets for non-graspable cup parts images are drawn
from a Gaussian distribution with a large variance, so asto r
Figure 4: Examples of spherical, cylindrical and bottle ob-flect the fact that in this case no plausible hand-configomati

jects used to train and test the system, and target hangandidate exists. The K-Mean clustering algorithm is imple
configurations. mented by the AR Module, setting to 5 the number of clusters.

In table 3, cluster centroids are shown together with ctuste
variance. The fifth cluster was discarded in view of its large
these hand configurations. In this test, the attention windo yariance. Note that the first four cluster centroids are very
encompasses the whole object. Thus, for each object theggmilar to target hand configurations (fig. 5) with respect to

is a single feature vectorwith an associate@(t|x). Hand  \hich mean percentage error was computed.
configurations are obtained by selectjngx) associated with

the higher values ofix(x). The model parameters are sum-
marized in table 2. For th'eth degree of freedom, percentage E

(a) Some training objects (left) and test objects (right).

(b) Target hand-configurations.

error is defined aw x 100, wherey; is the model out-
put, andmax andmln are the max and the min value, respec-

tively, for thei-th degree of freedomAverage errotbetween 1
model output hand configuration and target hand configura-

tion is defined as the mean of percentage error over all de-

grees of freedom. For all test objects in each class, mean and

standard deviation of average error is computed and showed
in table 1.

(-

Table 1: For each object class, the mean and standard de-
viation of the average error over all objects in the test set

is reported here. Moreover, for each class mean hand-
configuration over all objects in the class is exhibited.

(b) Target hand-configurations.

Bottle Grasp 1 Bottle Grasp2  Spherical  Cylindrical

2%+04 19%+0.6 39%+1.4 13%104
. o Figure 5: (a) Examples of training and test images (see.text)
¢ -['_'L,s o »y (b) Examples of target hand-configurations.
5 = ¢ \j)ﬁ?

Concluding remarks

The architecture of the GA model is largely motivated by the
goal of computationally investigating the allegedly dirkk
between perception and action established by the perceptio
of affordances. One should be careful to note that the over-

Table 2: Model parameters for each test. Image $i¢@nd
DSare expressed in pixels.

H M Image size Y] DS Cluster all output of the GA model does not correspond to actions,
Test1 5 2 160160 160160 O  None but rather corresponds to hand configurations. Therefore,
Test2 5 5 50500 160x160 30 5 one may legitimately question the claim that the GA model

computes a perception-action transformation. However, in



. . . . ., of distributions based on a similarity measure between-gaus
Table 3: The graph visualizes the obtained cluster cergroid sian mixture models (Hershey & Olsen, 2007),

Compare these images with target hand configurations of fig.
5. The fifth cluster was discarded in view of its large vargnc References
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