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Abstract 
This paper presents a comparison of two models, built on the same 

architecture, ACT-R, and on the same dynamic decision making 

task, RADAR.  The two models represent the Strategy-Based 

Learning (SBL) approach and the Instance-Based Learning (IBL) 

approach. The SBL approach assumes a certain set of predefined 

strategies, and learning occurs by selecting the most successful 

strategy over time. The IBL approach proposes that decisions are 

made based on retrieval of good past experiences stored in 

memory. This approach assumes no previous initial experience 

apart from that gained while performing the task. Both models 

were tested with respect to two criteria: fit to human data during a 

training exercise with RADAR and adaptability to test conditions 

that are either similar to or different from the training conditions. 

Our comparison results demonstrate that both models fit learning 

human data successfully, but the IBL model is more robust than 

the SBL model.  This exercise initiates a discussion of the SBL and 

IBL approaches to modeling choice and decision making in ACT-

R and a reevaluation of how to compare and assess computational 

models. 
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Introduction 

In cognitive psychology there have been at least two views 

of the world: that humans understand the world by means of 

rules and by particular domain-related events (Nisbett, 

1993).  In cognitive modeling these same two views are 

often reproduced in the behaviorism and connectionism 

debate (Anderson & Lebiere, 2003).  The debate in the late 

1980s led to an opposition between the two modeling 

approaches, in which connectionism was perceived to 

resemble the underlying neural structure better than did 

behaviorism, a focus on learning from environmental 

stimuli rather than from generic rules, and a focus on 

subsymbolic manipulations rather than symbolic 

representations.  In reality the two approaches have more in 

common than what was recognized in this debate. 

ACT-R is a hybrid architecture composed of both 

symbolic and subsymbolic aspects (Anderson & Lebiere, 

1998, 2003). The symbolic aspects are declarative and 

procedural. The declarative knowledge is represented in 

chunks, and the procedural knowledge is represented in 

productions (if-then rules). The subsymbolic elements of 

ACT-R are the neural-like statistical and mathematical 

mechanisms that manipulate the symbolic representations. 

ACT-R allows for two different approaches to modeling 

human behavior that are particularly relevant for decision 

making and learning: the Strategy-Based Learning (SBL) 

and the Instance-Based Learning (IBL) approaches. 

The SBL approach is the most popular approach to 

modeling choice and decision making in ACT-R (Lovett, 

1998). Under this approach, modelers determine the 

strategies by which humans perform a task, and they 

represent these strategies in the form of production rules. 

Choice among competing production rules is controlled by 

the ACT-R subsymbolic utility learning mechanisms.  Each 

production has a utility value that represents the rule’s 

probability of success and the costs involved in reaching the 

goal. The utility learning mechanism produces a gradual 

switch from less successful to more successful strategies 

over time. 

The IBL approach, although less popular, has been used 

successfully in representing decision making, mostly in 

dynamic situations (Dutt & Gonzalez, 2008; Gonzalez, 

Lerch, & Lebiere, 2003). Under the IBL approach, modelers 

determine the representation of declarative knowledge 

(chunks) in a task and represent a generic decision making 

process in production rules. This approach has been the 

basis for the development of a theory of decision making in 

dynamic tasks, called Instance-Based Learning Theory of 

Dynamic Decision Making, which provides IBL models 

with a generic decision making process (Gonzalez et al., 

2003). 

The main learning in this approach occurs at the 

declarative rather than the procedural level, where actions 

are based on the storage and retrieval of similar chunks in 

and from memory. Selection among chunks is based on 

ACT-R’s activation subsymbolic learning mechanisms. 

Each chunk has a value of activation determined by a 

number of factors including the recency and frequency of 

use of that chunk.  For example, recency and frequency of 

usage of a chunk determine the base-level activation, which 

represents the probability that a chunk is needed. The 

activation is also modulated by the degree to which a chunk 

matches the retrieval cues, with chunks encoding similar 

situations to the current one receiving some activation.  
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Over time, an IBL model transitions from the use of a 

general heuristic to the use of instances, as determined by 

the number of instances stored and the similarity of the 

situations confronted in the task (Gonzalez et al., 2003). 

This paper presents a comparison of two models, IBL and 

SBL models, both interacting with the same real-time 

decision making task, and both developed under the same 

architecture (ACT-R).  This effort differs from other model 

comparison efforts in that other model comparisons are 

often done to evaluate different ―architectures‖ and often 

aimed at determining the ―winning‖ model (Anderson & 

Lebiere, 2003; Cassimatis, Bello, & Langley, 2008). By 

comparing two different modeling approaches that represent 

decision making behavior in the same task and in the same 

architecture, we highlight the real value of model 

comparison: to understand the processes by which behavior 

is represented, the constraints that the different approaches 

impose upon the task models, and the comparison of the 

theoretical assumptions of the two approaches (Lebiere, 

Gonzalez & Warwick, 2009). The models interacted in real-

time with a dynamic decision making task called RADAR 

(Gonzalez & Thomas, 2008). 

We compared the SBL and IBL models according to two 

different dimensions:  (1) fit: how well each model fits 

human learning data in the task; and (2) adaptability: how 

well each model is able to reproduce the way humans 

having learned in one scenario of the task behave in a 

testing condition, in scenarios that are similar to or different 

from the training condition. The fit criterion is common in 

model comparisons, whereas the adaptability criterion is 

relatively new (Gluck, Bello, & Busemeyer, 2008).  The 

adaptability criterion we use here is similar to the 

generalization criterion method (Busemeyer & Wang, 

2000), which divides observed data into two sets: a 

calibration or training set to estimate model parameters and 

a validation or test set to determine predictive performance.  

However, we further test the adaptability of our models by 

examining the models’ ability to adapt to test conditions that 

are either similar to or different from the training conditions. 

Experiment on the RADAR Task 

The task used for this modeling effort is a dynamic visual 

detection and decision making task that has been used in 

past research to study automaticity (Gonzalez & Thomas, 

2008) and training principles (Young, Healy, Gonzalez, & 

Bourne, 2007). The task, called RADAR, is described in 

detail by Gonzalez and Thomas (2008), and thus here we 

only summarize the relevant elements. 

The goal in RADAR is to detect and eliminate hostile 

enemy aircrafts by visually discriminating moving targets 

among moving distractors in a radar screen. RADAR is 

similar to military target visual detection devices, in which a 

moving target needs to be identified as a potential threat and 

a decision is made on how to best destroy the target. The 

task has two components: (a) visual and memory search and 

(b) decision making. The visual and memory search 

component requires the participant to memorize a set of 

targets and then look for the presence of one or more targets 

on a radar grid. A target threat may or may not be present 

among a set of moving blips that represent incoming 

aircraft. The blips—in the form of digits, consonants, or 

blank masks—begin at the four corners of the radar grid and 

approach the center at a uniform rate. The detection of an 

enemy aircraft must occur before the blips collapse in the 

middle of the grid.  This is the main component used in the 

experiment described below. The decision-making 

component is not relevant for this human experiment. 

General Experimental Methods 

Forty-eight participants at the University of Colorado, 

Boulder were asked to interact with RADAR to respond as 

quickly as possible to target letters or digits occurring 

among distractor letters or digits. In addition to target 

detection, participants were required to count deviant tones 

(low and high frequency) among standard tones (medium 

frequency) that played in the background during the target 

detection task. The experiment consisted of a training 

session and a test session with a 1 week-delay between the 

two sessions. Half the participants trained with both the 

tone-counting task and the target detection task and half 

performed the target detection task in silence. At test, half 

resumed their training condition and half switched. 

There were 8 blocks during training and 8 blocks during 

testing, each consisting of 160 total trials. A trial is a group 

of 7 frames (RADAR screen and individual attempt to 

detect a target).  A memory set of 1 or 4 possible targets was 

shown to participants prior to starting a trial. At most 1 

frame within each trial contained a target. Each frame 

included either 1 or 4 non-blank blips among which there 

could be one target and zero or more distractors in the 7 

frames of a trial.  Targets and distractors were consistently 

mapped (CM: a target in the memory set never appeared as 

a distractor within a block) or varied mapped (VM: a target 

in memory set could appear as a target in one trial and as a 

distractor in another trial of a block). 

Half the participants saw digits as the targets on CM 

trials. For these participants, letters were the distractors on 

CM trials and were both the targets and distractors on VM 

trials. The remaining participants saw letters as the targets 

on CM trials. For them, digits were the distractors on CM 

trials and were both the targets and distractors on VM trials. 

There were 9 integers 1 to 9 and 9 consonants C, D, F, G, H, 

J, K, L, M used as targets or distractors. 

The 160 trials were divided into two session halves, each 

with 4 blocks (i.e. 80 trials), separated by a 5-min break. 

Blocks varied by mapping and processing load (number of 

items in the memory set and number of blips in each trial) 

condition. The four blocks in each session half included one 

of each combination of mapping condition and processing 

load (CM 1+1, VM 1+1, CM 4+4, VM 4+4). For the first 

session half these conditions occurred in the order CM 1+1, 

CM 4+4, VM 1+1, VM 4+4. For the second session half 

these conditions occurred in the reverse order VM 4+4, VM 

1+1, CM 4+4, CM 1+1. Thus, the average block position 

was the same for each condition across session halves. 



We use correct detection time (in ms) as the dependent 

variable. Results are presented in a later section, where they 

are compared to the results from the IBL and SBL 

computational models. 

Instance-Based Learning Model 

The IBL model was based upon the Instance-Based 

Learning Theory (IBLT) and other IBL developments 

(Gonzalez et al., 2003).  IBLT was originally developed as a 

way to explain and predict decision making in dynamic, 

complex tasks (Dutt & Gonzalez, 2008; Gonzalez et al., 

2003). For the RADAR task an instance (referred to as a 

chunk in ACT-R) had the structure shown in Table 1. 

 

Table 1: Structure of an Instance in RADAR 

Slot Name Description Chunk 

Blip-Situation Value of Blip Situation 

Decision Spacebar Press Decision 

 

The Blip-Situation slot corresponded to the blip value 

(letter or number) occurring on the RADAR screen in one of 

the north-west, north-east, south-west, or south-east 

locations, respectively at a time.  In the case of 1+1 trials, 

three out of the four slot locations contained a NIL value. 

For the purpose of linear similarity calculations (discussed 

later), the nine consonants were numbered from 10 to 18. 

The Decision slot refers to the act of pressing or not the 

spacebar. Although typically instances have a Utility slot to 

categorize an experience as good or bad in a situation after 

the IBL model gets feedback, in this model, due to the task’s 

trial structure and the trivial feedback, we did not use such a 

slot.  

As per Gonzalez et al. (2003), the IBL starts with the 

recognition process in search for alternatives and the 

classification of the current situation as typical or atypical. 

A situation is typical if there are memories of similar 

situations (i.e., instances of previous trials that are similar 

enough to the current situation). If it is typical then the 

retrieved instance is used in judging the value of the 

decision to be made in the current situation. If the situation 

is atypical (i.e., no instance similar to the current conditions 

is found in memory), a judgment heuristic is applied (in the 

present case, the heuristic is ―wait for next blip‖). When a 

decision point comes into place at one of the four blip 

positions, NW, NE, SW, and SE, a choice has to be made 

whether to search for more alternatives or to execute the 

current best alternative. In the RADAR task, the choice is 

simply made by seeing if the retrieved instance is similar 

enough to the one of the current blip situations (in case 

nothing was retrieved or the instance that was retrieved did 

not equal the current blip situation, then a choice is made to 

wait for the next blip situation and not to press the spacebar 

key, i.e. by a ―wait for next blip‖ judgment heuristic). Thus, 

if something was retrieved from declarative memory, then 

the decision is to press the spacebar only if the retrieved 

instance is exactly the same as the current blip situation. 

Before the IBL process starts for each frame’s blips in a 

trial, the IBL model notices a set of target letters or numbers 

at the beginning of the trial in memory set and stores them 

in its declarative memory. Also the IBL process moves from 

one blip situation to another applying the process described 

below to each filled-in blip situation. The pattern of 

traversal between blip situations forms a Z (i.e., NW, NE, 

SW, and SE, respectively) until the frame time of 2.062 s 

runs out. If the IBL model cannot process all the filled-in 

blips before the frame time runs out, then it resets and starts 

at the NW filled-in blip for the next frame. Each of the IBL 

stages suggested in the IBLT (Gonzalez et al., 2003) is 

represented by production rules (if-then rules) in ACT-R: 

Recognition On a trial if there is a recognition (or retrieval) 

failure or if the retrieved blip does not match the current 

situation blip, then apply the ―wait for next blip‖ heuristic; 

otherwise if there is a recognition (or retrieval) success and 

a match between retrieved and current blips, then apply an 

instance-based judgment procedure. 

Judgment On a trial if there is a recognition failure or if the 

retrieved blips do not match the current blip situation, then 

apply a wait for next blip judgment heuristic in which the 

spacebar is not pressed but the next blip situation is 

considered in a Z order. In case of recognition (or retrieval) 

success where the retrieved instance matches the current 

blip situation, apply an instance based judgment where the 

decision is to press the spacebar. 

Choice The choice refers to picking the spacebar to press 

once the decision to press or not to press the spacebar has 

been made. 

Execution Execute the spacebar or no spacebar press 

decision and wait for feedback from the system. 

Also, in the above algorithm, the productions were 

assumed to take a commonly used value of 50 ms in ACT-

R. There were some steps executed to read and encode the 

blip stimulus from the screen (i.e., visual time) in the model 

as well as some time expended in hearing deviant tones in 

the tone counting task that ran in the background. The visual 

and auditory times to see and hear each blip situation or 

each tone respectively were assumed to be at the ACT-R 

default values of 185 ms and 100 ms, respectively.  

Sub-Symbolic Level of the IBL model 

In ACT-R each instance (or chunk) has an activation value 

that is used for making retrieval in the recognition phase of 

the IBL model. An instance is retrieved from memory if the 

activation exceeds a retrieval threshold (RT), which sets the 

minimum activation with which an instance can be 

retrieved, and if the activation is the highest of all instance 

activations at the time of retrieval. ACT-R defines activation 

of an instance as: 

  li

l

ii MPBA     (1) 

Where Bi is the base-level activation and reflects the 

recency and frequency of practice of the ith instance, which 

is given by 

)ln(
1





n

j

d

ji tB      (2) 

Where n is the number of presentations of the ith 



instance; tj is the time since the jth presentation; and d is the 

decay parameter (bll) which is usually set at 0.5.  

Specification elements l in the PM summation are 

computed over the slot values of the retrieval instance 

specification. Match Scale P reflects the amount of 

weighting given to the similarity in Slot l, which is a 

constant across all slots with the value set at 1.0. Match 

Similarities Mli represent the similarity between the value l 

in the retrieval specification and the value in the 

corresponding slots of the current instance i. The PM 

mechanism as described above was computed by the Blip-

Situation slot of the instance. We used a function to 

calculate the similarity based on the absolute value of the 

distance between the Blip-Situation slot of the current 

instance and those retrieved from memory.  

Finally, is the noise value, which is composed of two 

components: permanent noise associated with each instance 

and instantaneous noise computed at the time of a retrieval 

request. Both noise values are generated according to a 

logistic distribution characterized by a parameter s. The 

mean of the logistic distribution is 0 and the variance

is 

related to the s value by 






s


      (3) 

We set the instantaneous noise s value in the IBL model 

to make it a part of the activation equation. 

For the purpose of modeling the RADAR task, the 

parameters described above had the values given in Table 2. 

 

Table 2: IBLT (ACT-R) Parameters with Values 

Parameter/Slots Value 

RT -18.0 

bll 0.5 

s 0.25 

P 1.0 

Blip-Situation Integers from 1 to 18 

 

Strategy-Based Learning Model 

In the SBL model we used four strategies. One of these 

strategies called "exhaustive equals" strategy was an optimal 

strategy, which would always yield the optimal press of the 

spacebar key and produce 100% accuracy in the detection 

task. The other three strategies were suboptimal strategies. 

These strategies represent practically feasible strategies for 

the task, and they provide competition that can be used to 

model performance, through the utility learning mechanism 

in ACT-R. The chunk structure for the SBL model was 

exactly the same as the one for the IBL model. 

The SBL model starts by making use of one of the four 

strategies defined in the model (if a strategy could not 

execute before a frame ended, then the model resets and 

tries to apply strategies again in the next frame). When the 

model executes, there is a competition set up between the 

three suboptimal strategies and the optimal ―exhaustive 

equals‖ strategy. The initial utility of the optimal strategy is 

set lower than that of the suboptimal strategies, and one of 

the suboptimal strategies executes in the task during the 

initial blocks. The suboptimal strategies give negative 

rewards, whereas the optimal strategy gives a positive 

reward whenever executed. The end effect is that although 

the suboptimal strategies fire initially, later the optimal 

strategy picks up because it has increased its utility through 

repeated positive rewards. Given below are the details of the 

different strategies in the RADAR’s SBL model. 

Exhaustive Equals Strategy Compare all filled-in blips on 

the RADAR screen with all targets seen at the beginning of 

the trial and press spacebar if a match is found. 

Random Equals Strategy Compare a randomly selected 

filled-in blip on the RADAR screen with a randomly 

selected target seen at the beginning of the trial and press 

spacebar if a match is found. 

Bottom Two Equals Strategy Compare the bottom two 

(SW, SE) filled-in blips with all targets seen at the 

beginning of the trial and press spacebar if a match is found. 

Top Two Equals Strategy Compare the top two (NW, NE) 

filled-in blips with all targets seen at the beginning of the 

trial and press spacebar if a match is found. 

Each strategy is represented in an ACT-R production 

rule. Each production has a utility associated with it that can 

be set directly by setting a parameter :u. Like activations, 

utilities for productions could have noise added. The noise 

is controlled by the utility noise parameter s, which is set 

with the parameter :egs in ACT-R. The noise is distributed 

according to a logistic distribution with a mean of 0 and a 

variance of 

. If there are a number of productions 

competing with expected utility values Uj the probability of 

choosing production i is described by the formula: 

 

Probability (i)=Exp (Uj/(2)
0.5

s) / Sum(Exp (Uj/(2)
0.5

s))

        (4) 

 

The summation is over all the productions that are 

currently able to execute (their conditions were satisfied 

during the matching).  Note however that Equation 4 only 

describes the production selection process. It is not actually 

computed by the system. The production with the highest 

utility (after noise is added) is the one chosen to execute. 

Also the utility learning mechanism updates the utility of a 

production (strategy) using the following equation: 

 

Ui(n) = Ui(n-1) + α * (Ri(n) – Ui(n-1))  (5) 

 

If Ui(n-1) is the utility of a production i after its n-1st 

application and Ri(n) is the reward the production receives 

for its nth application (set by :reward parameter), then its 

utility is Ui(n) after its nth application. In the above 

equation,  is the learning rate and is typically set at .2 (this 

value can be changed by adjusting the :alpha parameter with 

the sgp command). According to this equation the utility of 

a production is gradually adjusted until it matches the 

average reward that the production receives. A reward is 

delivered when a strategy fires, and the reward Ri(n) that 

production i receives is the external reward received minus 

the time from the production’s selection to the reward. This 

subtraction serves to give less reward to more distant 



productions. This reinforcement goes back to all the 

productions that have executed between the current reward 

and the previous reward. 

For the purpose of the RADAR task, the parameters as 

described above had the following values. 

 

:egs 0.1 :ul t    (9) 

Exhaustive-Equals-Strategy :u -4 :reward +1 

Random-Equals-Strategy :u 5 :reward -1 

Bottom-Two-Equals-Strategy :u 10 reward -1 

Top-Two-Equals-Strategy :u 5 :reward -1 

 

The utility of the optimal strategy is lower than that of the 

three non-optimal strategies because we want to model to 

make errors similar to humans when it executes but reduce 

these errors overtime. The reward given to the suboptimal 

strategies decreases their utility, whereas the reward given 

to the optimal strategy increases its utility over time. The 

structure on utility and rewards might yield a monotonic 

dominance from the SBL approach even when changing 

environments and incorporating changes in the reward 

structure based upon changes in the environment is part of 

future work. Also, production compilation was not used in 

this model and it is a part of future work i.e. whether doing 

production compilation will make the SBL approach behave 

more like an IBL approach to modeling the experiment.  

Model Fits to Human Data 

The IBL and SBL models were run over 8 simulated 

participants in training and test conditions in RADAR. 

Figures 1 and 2 present the average times for correct 

responses during the training phase, including human data 

(Young et al., 2007) and SBL and IBL predictions. Figure 1 

gives the average data for the within-subjects blocks 

CM1+1, CM4+4, VM1+1 and VM4+4.  Both, the IBL and 

the SBL models fit the human data quite well, R
2
=0.98 and 

RMSD=69 ms for IBL, and R
2
=0.90 and RMSD=163 ms for 

SBL. 

 
Figure 1: Average correct response times (ms) for CM 1+1, 

VM 1+1, CM 4+4, and VM 4+4 blocks in human data and 

SBL and IBL models during training. The error bars show 

90% confidence intervals. 

Figure 2 gives the average time for correct responses for 

the IBL, SBL, and human data across the silent and tone 

between-subjects conditions in the RADAR task.  Again, 

both the IBL and the SBL models fit the human data very 

well, R
2
=1.00 and RMSD=43 ms for IBL, and R

2
=1.00 and 

RMSD=174 ms for SBL. In Figures 1 and 2, the SBL model 

seems to give generally higher time values compared to 

human data, and the SBL model has higher RMSD. This 

difference may be because in the SBL model the four 

strategies execute in productions in a fixed time (50 ms per 

production) and there is not speedup in the correct response 

times due to this fixed strategy execution time, whereas in 

the IBL model the speedup comes on account of activation-

retrieval time speedup. The retrieval time decreases if the 

activation of instances increases over blocks (Anderson & 

Lebiere, 1998). Also, it is clear from Figure 1 that both 

models (i.e., IBL and SBL) take more time in 4+4 blocks 

than 1+1 blocks (for both consistent and varied mapping). 

This finding demonstrates the effects of workload well 

known in behavioral studies of automaticity (Gonzalez & 

Thomas, 2008). The workload effect results from the extra 

time taken to process four rather than one item. 

 
Figure 2: Average correct response times (ms) for silent and 

tone conditions for human data and SBL and IBL models 

during training. The error bars show 90% confidence 

intervals. 

Similarly, the tone takes slightly more time to process 

than silent trials for both IBL and SBL models, as a result of 

the auditory productions to process the tones. Also, the 

difference is greater for the SBL model than the IBL model 

from the human data because in the SBL model there is no 

activation-retrieval speedup to compensate for time spent in 

tone counting whereas in the IBL model there is such a 

speedup, which reduces the overall time.  

To test the adaptability of both SBL and IBL models and 

given the limited space in this paper, we report the data for 

only those groups that switch: tone-to-silent (Figure 3) and 

silent-to-tone (Figure 4). The R
2
s for both the SBL and IBL 

models are very high at test (all are 1). Thus, the main 

difference between the models at test is in the RMSD 

measure. The SBL model has an RMSD = 160 ms when it is 

trained in tone and transferred to silent, whereas the IBL 

model's RMSD = 50 ms. The SBL model's RMSD when 

trained in silent and transferred to tone is 248 ms, whereas 

the RMSD value for the IBL model is 62 ms. 

Thus, one can conclude that both models, SBL and IBL, 

are quite good according to the adaptability criterion, but the 

IBL model produces values closer to the human data than 

the SBL model does. 



 
Figure 3: Average correct response times (ms) for human 

data and SBL and IBL models across blocks, for training in 

the tone and testing in the silent condition. The error bars 

show 90% confidence intervals. 

 
Figure 4: Average correct response times (ms) for human 

data and SBL and IBL models across blocks, for training in 

the silent and testing in the tone condition. The error bars 

show 90% confidence intervals. 

Discussion and Future Work 

Researchers often evaluate computational models of human 

behavior by comparing how different architectures or 

modeling approaches would represent a common task. This 

mode of model evaluation has been highlighted more 

recently by several model comparisons and competitions. 

The research we present here compares SBL and IBL 

approaches to modeling choice, but in this comparison in 

addition to using the same task, RADAR, we compare SBL 

and IBL approaches under the same architecture, ACT-R. 

According to traditional goodness of fit measures, R
2
 and 

RMSD, both SBL and IBL approaches to model choice fit 

human performance during a training experiment in 

RADAR quite well. Both representations are able to 

reproduce human data during the training conditions that 

varied both between subjects in tone/no tone training, and 

within subjects on the consistency of mapping and 

workload.  When we compare the models in terms of their 

ability to adapt to transfer conditions, just as humans do, 

again both the SBL and IBL models have equally high 

values of R
2
.  But the IBL model was found to be closer to 

human data than the SBL model according to the RMSD 

measure during both training and test. 

These results demonstrate that the numerical measures 

might not be good enough to tease two models apart. 

Further, the generalization criterion might not be sufficient 

either. To us, the IBL model has some advantage over the 

SBL model that the numerical measures do not show: 

Because the IBL model continues filling the chunk structure 

from the environment during test, the changes in conditions 

of the environment are captured in the instances stored and 

retrieved from memory, whereas the SBL approach is blind 

to changes in the environment.  The SBL model continues 

applying the same strategies at test, which might not be as 

effective as they were during training, once the conditions 

of the task change. In addition, in dynamic situations the 

strategies are often unknown a priori or difficult to define at 

all. These are often discovered with task practice, and there 

is much evidence that learning in dynamic decision making 

tasks is implicit (Gonzalez et al., 2003).  Often humans are 

unable to explain any rules or strategies used to solve a 

dynamic problem.  Thus, we think that the IBL approach is 

more appropriate to model dynamic decision making 

(Gonzalez et al., 2003) than the SBL approach.   
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