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Abstract accumulation in the LBA is ballistic (i.e. without momermt-t

moment variability). This simplification, enables the deri
Brown and Heathcote (2008) proposed the LBA as the sim- ) P

plest model of choice and response time data. This claim was, 10N of full analytic expressions for the model’s full prdbia

in part, based on the LBA requiring fewer parameters to fit ity density function. Despite this simiplificaiton, Browma
most data sets than the leading alternative, the Ratcliff diffu- Heathcote (2008) show that the LBA is able to account for
sion model (Ratcliff & Tuerlinckx, 2002). However, parameter b h Kk d f hoi ks (Ratcliff & Roud
counts fail to take into account functional form complexity, or ~P€Nchmark data from two-choice tasks (Ratcli ouder,
how the parameters interact in the model when being estimated 1998; Ratcliff, Gomez, & McKoon, 2004) LBA parameters

from data. We usegp, or the “effective number of parame- — haye also been shown to have neural correlates (Forstmann et
ters”, calculated from Markov Chain Monte Carlo samples, to

take these factors into account. We found that in a relatively ~&l-» 2008; Ho, Brown, & Serences, submitted). o
simple, simulated, data set and on average in a complex, real,  Brown and Heathcote (2008) also claimed the LBA is sim-

?hagall_;(z that the diffusion had fewer effective parameters than pler because, when fiting standard two-choice data, it re-
L . ] . ) _quired one less parameter than the most recent version of
{i(ceé';wn?égil ggrﬂ‘s)llg)rzitr;odels, response time; Bayesian stalis- ihe giffusion model (Ratcliff & Tuerlinckx, 2002). Myung
and Pitt (1997), however, explain that the number of free pa-
A wide range of experimental tasks involve a decision betametersk, does not necessarily provide a full indication of
tween at least two alternatives. Some believe that the pranodel complexity. Specificallyk fails to take into account
cess behind making simple decisions is the same regardlefighctional form complexity (i.e., differences in flexabylbe-
of what the decision is about. The most successful class diveen different mathematical functions), or how the parame
theories about simple decision processes are evidence acders interact when parameters from the model are estimated
mulator models. There are many types of evidence accumdrom data. Spiegelhalter, Best, Carlin, and van der Linde
lator model that differ slightly from one another. However, (2002) proposed a method to address these aspects of model
the central assumption common to all is that, when makingomplexity using the deviance information criterion (DIC)
a decision about a stimulus, evidence is gradually accumuand an associated estimas, of the effective number of
lated for each alternative response. Once there is enoughodel parameters. These quantities are estimated usiRg pos
evidence for one particular response that response is madefior samples obtained by Bayesian Markov Chain Monte
and the time taken to accumulate that evidence is the decfarlo (MCMC) methods. We use these methods to investi-
sion time. The most frequently applied evidence accumulatogate the claim that the LBA is a “simpler” model of the de-
model for decisions between two alternatives is the Rétclif cision process. To begin we provide a brief overview of the
diffusion model (Ratcliff, 1978; Ratcliff & Rouder, 1998; diffusion and LBA models.
Ratcliff & Tuerlinckx, 2002). For example, Ratcliff and eol .
leagues have used the diffusion model to account for the de- Overview of Models

cision process in lexical decision tasks (Ratcliff, Gom&z, Consider the following example — participants are shown a
McKoon, 2004), recognition memory tasks (Ratcliff, 1978), patch of 64x64 pixels, each of which are either white or black
to investigate the effects of aging on cognitive perforneanc and the asked whether the stimulus is mostly bright or mostly
(e.g. Ratcliff, Thapar, & McKoon, 2004). Ratcliff, Segrave dark. The Ratcliff diffusion model begins by assuming that
and Cherian (2003) also present neural evidence consistepfrticipants sample information continuously from thensti
with the diffusion model. ulus. Each sample of information counts as evidence for one
Brown and Heathcote (2008) recently proposed an alternasf the two responses and is used to update an evidence total,
tive evidence accumulator model of the decision process: thsayx, shown by the irregular line in the left panel of Figure 1.
Linear Ballistic Accumulator (LBA) model. The LBA was
proposed as a simpler model of decision than the diffusion !Brown and Heathcote (2008) also show that the LBA is able to
model. The claim of simplicity was based in part on the factaccount for decisions between more than two alternatives becasue

that the LBA | f noise in the decisi it allows one accumulator for each choie. As the Ratcliff diffusion
attnhe assumes one Iess source or noise In the deciSIGhgde| has not been extended to the multiple choice case we will

process. That is, in constrast to the diffusion model, ewide focus on the two choice case.
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Figure 1: Overview of the diffusion and LBA models (left anght panel, respectively)

Total evidence begins at some starting poxt; z, and evi-  accumulator has no effect on the other accumulator(s). The
dence that favours a “bright” response decreases the value amount of evidence an accumulator begins with on each trial
x and evidence for a “dark” response increases the valie of is sampled (separately for each accumulator) from thevater
Evidence accumumlation continues umtieaches one of the [0,B]. The evidence in each accumulator increases at a linear
response boundaries, the horizontal lines at®iarFigure 1.  rate determined by the drift rate parametegsand vy, for

The choice made depends upon which boundary was reachdatjght and dark responses, respectively. Accumulatior con

a for “dark” and O for “bright” response. The time taken to tinues until evidence in one accumulator reaches a response
make the choice is the accumulation time plus a non-decisioboundary,a® which is usually assumed to be the same for
time component]Jy, composed of things such as encodingall accumulators. The accumulator which reaches the bound-
time and the time taken to make a motor response. ary first selects its associated response and accumulatien t

Consider a stimulus composed of almost 100% white pixPlus non-decision timeJer, gives the reaction time. As in
els. When a participant samples from this stimulus almost althe Ratcliff diffusion model, the drift rate is assumed toyva
of the evidence will favour a “bright” response, and so thebetween-trials according to a normal distribution with mea
accumulation total will quickly increase towards The av- v and standard deviatian
erage rate of this accumulation is called thét rate, v, and To sum up, the diffusion model has the parameters
variability in moment-to-moment accumulation is assunted t (8,2 Sz, Ter, &, V,S,n) and the LBA has the parameters
take the value. Ratcliff (1978) added the additional assump- (& B, Ter,V1,V2,1), Wherev; refers to the mean drift rate in
tion that drift rate also varies from trial-to-trial accard to  the accumulator for thig, response. The parameterisation for
a normal distribution with meaw and standard deviatiog. ~ €ach model, however, differs depending on the design of the
Ratcliff and Rouder (1998) incorporated between-triai-var data from which the data were obtained. There is, therefore,
ability in the start point of acccumulation, assuming thfat- no fixed difference in the number of parameters between the
lows a uniform distribution ong— %,24_ %]_ Finally, Ratcliff =~ models. There are, however, parameterisations of these mod
and Tuerlinckx (2002) included between-trial variability ~ €ls which are commonly applied. For example, when there is

non-decision tim& in the form of a uniform distribution on  No bias for one response over the other therzfherameter of
[Ter — %,Ter + %]_ the diffusion model can be fixed 8t reducing the number of

In the LBA there are separate accumulators gathering evil€€ parameters in the diffusion model by one. Also, in order
idence for each of the “bright” and “dark” responses. Thesd© Solve a scaling property common to all evidence accumu-
accumulators are assumed to be linear, ballistic and imdepe'ator models, thes parameter is generally fixed at 0.1. Sim-

nt. That means eviden mulation h linearimcreas— .~ -
dent atmeans evidence accumulation has alinear increa 2In previous applications of the LBA andB have been labelled

with no within-trial variability (i.e,. is ballistic rathethan  , ang A, respectively. We adopt this alternative labelling here to
stochastic as in the diffusion model), and accumulatiomi& 0 facilitate equality in parameter names across models.



ilarly, when fitting the LBA, drift rates for correct and erro of posterior samples. DIC can be expressed in two parts as

responses tend to be assumed equal for both choices unleB8C = D(0) + 2pp, wherepp = D(6) — D(8), whereD(8) is
the choice corresponds to an experimental manipulatign, (e. a measure of misfit between data and model predictions, and
word vs. non-word in a lexical decision task or studied vs.2pp is a penalty for the “effective” number of parameters in
unstudied in a recogniton memory task). Drift rates for erro the model (Spiegelhalter et al., 2002). Tpg measure ad-
responses are also typically assumed to be fixed at one minjissts the number of parameters in the model to take account
the drift rate for correct response, solving the scalingprty ~ of functional form complexity. Larger values pp indicate a
for the LBA. This means when the LBA has been applied thermore complex model able to potentially predict a greater the
usually only one drift rate parameter is estimated— the drifrange of patterns of data. A better model, which achieves a
rate for correct responses. Based on these standard parantelance between fit and complexity, has a smaller DIC.
terisations, Brown and Heathcote (2008) concluded that the Posterior sampling for both the Ratcliff diffusion and LBA
LBA uses one less parameter than the diffusion model to aomodels have been implemented using the Bayesian MCMC
count for data typical of two-choice tasks. This finding, eom program WinBUGS (diffusion: Vandekerckhove et al., 2008;
bined with some apparently simpler structural assumptiond.BA: Donkin, Averell, Brown, & Heathcote, 2009). We use
led Brown and Heathcote (2008) to conclude that LBA wasthese implementations to calculate DIC gmsl allowing us
simpler than the diffusion model. We now explore whetherto compare the functional form complexity between the mod-
the pp measure of model complexity agrees with the author'sels. Because DIC anpp are dependent on the data to which
conclusions. the models are applied we will present the results of fits to
two different sets of data: simulated data generated by the
Model Complexity diffusion model, and a benchmark data set from Ratcliff and

_ i Rouder (1998).
An overly complex model can provide an excellent fit to a

given set of data, yet still not be considered to give a satisf Estimating pp and DIC for the LBA and
ing account of the underlying process. In particular, a more . :

complex model can “overfit” the data by fitting the random Diffusion Models

error specific to a particular sample as well as the structur&mulated Data

due to the underlying processes. Becasue only the structrgne first set of data were generated from a diffusion process
re-occurs in new data, overfitting limits the model's apilit  \ith parameters given in Table 1. Our simulated data set was
terms of prediction. Myung (2000) suggests that at least tWontended to mimick data from a two-choice task with a single
factors contribute to model complexity — the number of pa-experimental factor where stimuli were varied so as to only
rameters in the model and the functional form of the modelgffect the difficulty of the task. This meant that only theftdri
which determines how the parameters interact. FUnCtionE]rlate paramete,v, was allowed to vary across the three con-
form complexity can differ between models with the samegitions. All other parameter, sz, Ter, &, S, 1) Were assumed
number of parameters when one model is able to produce @ pe constant across all conditions. We also fizéal be 2,
wider range of predictions than the other. In any particularepresenting unbiased responding. This parameterisition
experimental design, the degree to which the effects of-funcstandard for fitting data from experiments which have a sin-
tional form complexity are observed depends on the interacgle within-subjects condition which varies from trial-tigal
tion between model and data. (e.g. Ratcliff, Gomez, & McKoon, 2004). The simulated data
A number of model selection methods take into ac-can be thought of as coming from a single participant who
count functional form complexity. We will focus on one completed 1000 trials in each of the three difficulty condi-
such measure: the Deviance Information Criterion (DIC)tions.
(Spiegelhalter et al., 2002). DIC has been applied across When fitting both the diffusion model and the LBA model,
a wide range of fields including psychology (e.g., Myung, parameters were fixed to match the assumptions made when
Karabatsos, & Iverson, 2005). Vandekerckhove, Tuer|ianXgenerating the data; so only drift rate was allowed to
and Lee (2008) used DIC to compare various instantiationgary between the three difficulty conditions. This means
of the diffusion model. The DIC can be considered thethat for the diffusion model we have eight free parameters
Bayesian version of the Akaike Information Criterion (AIC; (a,s,, Ter, &, N, V1,V2,V3), and for the LBA seven free param-
Akaike, 1973), but with a complexity penalty term which eters(a, B, Ter,1, V1, V2, v3). Unbiased responding in the LBA
takes into account functional form complexity, rather thancorresponds to having the same valuesa@nd B for each
simply counting the number of free parameters, as in AIC. response. Posterior samples were obtained for both mod-
DIC can be computed from MCMC samples of a model'sels using their WinBUGS implementations. For each model
posterior parameter distributions. L@tepresent such a sam- three chains each containing 10,000 MCMC samples were
ple. Deviance can be written 8§6) = —2logL(y|6), where  collected, with the first 3,000 samples for each chain were
L(y|6) represents the likelihood of data vecyagiven param-  discarded as burn-in. Visual inspection of the chains sug-
eters®. ThenD(B) is the deviance of the estimated poste-gested that after burn-in samples collected from each chain
rior mean parameters al{0) is the mean of the distribution were from the same stationary distribution, which we now



assume to be the true posterior distribution. We fit diffusion and LBA models seperately to data from
three individual participants, each of whom completed al-
most 8000 trials. Both models have previously been fit to
fhe Ratcliff and Rouder (1998) data sets using non-Bayesian
estimation techniques (diffusion: Ratcliff & Rouder, 1998
LBA: Brown & Heathcote, 2008). We used very similar pa-
rameterisations to that used in the original fits with thnee e

Table 1: Mean of posterior samples for parameters from th
diffusion and LBA models for fits to data generated from dif-
fusion model. DIC angp are also reported for each model.

Parameter Data Diffusion LBA

a 125 128 250 ceptions. First, for the diffusion model we included betnee
s,/B 044 034 432 trial variability in non-decision time. This variability & in-

n 133 123 237 cluded in the diffusion model as it has been standard peactic

T 435 432 237 since Ratcliff and Tuerlinckx (2002). Second, for the LBA

5 196 196 i} both the upper bound of the uniform distribution of starting

v 1 103 609 point of accumulationB, and response threshol,were al-

Vo 23 226 74 lowed to vary between speed and accuracy conditions. Brown
V3 363 369 882 and Heathcote (2008) assumid- a in the speed-emphasis
DIC - 183.76 4755 condition, but we found that fit was greatly improved by re-
PD ) 5.97 6.81 moving this constraint. For the diffusion model we followed

Ratcliff and Rouder (1998) and assumed that only boundary
separationawas allowed to vary between speed and accuracy
Table 1 contains mean posterior samples for each parameenditions. Third, we found that the diffusion gave much bet

ter for both the diffusion and LBA models. The average pos-er fits to data by estimating between-trial variability tars
terior diffusion model parameter samples are close to the pgoint of accumulation for speed and accuracy conditions sep
rameters used to generate the data, as expected. The averagately. This contrasts with Ratcliff and Rouder (1998) ap-
posterior LBA parameters are close to parameters estimatggtoch, wheres, was fixed af/20 for both speed and accuracy
using non-Bayesian methods of fitting (e.g. maximum likeli- conditions.

hood estimation) to the same data set. For both models, only drift rate was allowed to vary
DIC andpp values are also given in Table 1. As one mightpetween brightness conditions.  Although there were 33
expect, the DIC for the diffusion model is smaller than theprightness conditions in the original data, the conditions
DIC value for the LBA model (-183.76 and -47.55, for dif- \yere collapsed to seven since visual inspection suggested
fusion and LBA respectively), suggesting that the diffusio that the majority of brightness levels which were ei-
model provides a better account than the LBA of data simuther very difficult or very easy were homogenous in RT
lated from a diffusion process. Quite unexpectedly, howeve and accuracy. This meant that for the diffusion model
the po value for the diffusion model is also smaller than that (gag,, agng, Sy Sugs Ters &, 1) Were free parameters, and for
for the LBA model,pp equal to 597 and 681 respectively. the LBA (8acc; Bspd Bace, Bspd, Ter, 1) Were free parameters.
This suggests that — despite the diffusion model having morgyhen combined with the seven drift rate parameters com-
free parameters than the LBA model — when functional formmgn to both models, there were 14 free parameters for the
complexity is taken into account, the number of “effective” giffusion model, and 13 free parameters for the LBA model.

parameters is actually smaller than that of the LBA model. A single chain of 10,000 samples was collected for each of
At least for these simulated data, from a very simple expery, o | BA and diffusion models, with the first 3,000 samples
?mental design, the results seem clear - the diffusion modeic.orded from analysis as burn-in. Again, visual inspecti
is less complex than the LBA. As previously stated, how-q¢ yhe chain confirmed that stationarity after burn-in. Ea®|
ever, functional form complexity depends upon the datagein ., ntains mean posterior parameter values for each model and
modelled. We turn now to actual data, to a data set_ which haéach participant. Though, for brevity we do not present them
become a benchmark data set for models of choice and rgore biots of model predictions and data confirm that the av-
sponse time (Brown & Heathcote, 2008; Vandekerckhove eérage parameter values provide a good fit to the data. The

al., 2008). quality of fit between model and data was greater for the dif-
Ratcliff and Rouder’s (1998) Data fusion model than the LBA. This is reflected in DIC apgd
values reported in Table 2: for all participants the difursi

Ratcliff and Rouder (1998) performed a simple brightnessfnoolel had a smaller DIC value than the LBA models

discrimination task with two within-subject factors: binig

NEess ar_ld instructions The_re were 3:.3 levels of brlghnesds_us 3Donkin, Brown, and Heathcote (2009) have shown that an LBA
determined by the proportion of white vs. black pixels in &model where the sum of correct and error drift rates are not over-
64x64 display (brightness was varied randomly from trigl-t constrained to be one can provide a large improvement in quality of

trial). Between blocks of trials, participants were given i fit: This comes, however, at the expense of an increase in the num-
' ber of free parameters. Since we wish the present discussion to be a

structions on \_Nhether to respond with an emphasis on speggirospective look at the claims of Brown and Heathcote (2008) we
or an emphasis on accuracy. discuss this no further here.



Table 2: Mean of posterior samples for parameters from tffiesittn and LBA models for fits to individual participant®fm
Ratcliff and Rouder (1998). DIC angb are also reported for each model.

IE Diffusion .256 .061 .066 .006 155 245 1813478 11.93
LBA .603 .215 .373 116 .263  .107 - -229311.59

KR Diffusion .249 .065 .023 .015 153 .227  .1523793 10.05
LBA .615 .223 .383 .143 341 123 - -1327 12.79

NH Diffusion .246 .086 .078 .003 213 259 1725938 11.85
LBA A79 251 27 121 307 129 - -487011.15

was the case in the simulated example the decrease betweerfFirst, we used numerical integration of the Winbugs re-
the nominal and effective number of model parameters dusults for the diffusion model in order to equate the focus of
to functional form complexity was greater for the diffusion inference for each model. The WinBUGS code given by
(-2.7 on average) than the LBA (-1.2 on average). OverallVandekerckhove et al. (2008) for the diffusion model imple-
when applied to real data coming from a more complicatednents start point variability and non-decision time vaittgib
design, the diffusion model tended to require fewer “effect hierachically —that is, by drawing a sample for each of these
parameters” (11.3 on average) than the LBA model (11.8 omparameters for each trial performed by a participant on each
average). At the level of individual participants, howewee =~ MCMC iteration. This approch was necessitated because the
see thapp was smaller for the LBA than the diffusion model Ratliff diffuison does not have an analytic likelihood when

for two out of three participants. these sources of between-trial variability are included. |
] ] contrast, the WinBUGS code takes advantage of the LBA's
Discussion mathematical simplicity by using an analytic expression fo

DIC is a model selection criterion which attempts to seleett the likelihood of the LBA model which integrates out all
model which is best able to predict new data. DIC, pagla forms of between-trial variability. This difference makée
measure of model complexity, can be calculated from MCMcdeviances for each model produced by WinBUGS incommen-
Samp|es from the deviance Of posterior parameter distribusurate; for the diffusion model this deviance focuses on the
tions. The pp measure takes into account functional form particular set of trials Observed, whereas for the LBA the de
complexity, and can be thought of as the effective number o¥iance is appropriate for the population of possible triated
parameters used to fit the data. When using data simulatd¥ence prediciton of performance by each subject performing
from the diffusion model with a simple experimental design,NeWw trials. As the latter focus is clearly more appropriate f
the diffusion model, perhaps surprisingly, had a smatigr ~ OUr purposes we numerically integrated the deviance fdr eac
value than the LBA model. In other words, for our simu- diffusion model posterior sample and used these integrated
lated data set the diffusion model was simpler than the LBAdeviances to calcualte DIC anmg.
in terms of functional form complexity. When the models Second, the prior distributions for diffusion model param-
were fit to benchmark data from Ratcliff and Rouder (1998)eters are based on the range of parameter values estimated
which model was simpler differed between participants. Foffrom all of the published diffusion fits found by Matze and
two out of three participants the LBA required fewer effeeti Wagenmakers (submitted). Priors for LBA parameters were
parameters. Averaging over participants, however, sugdes obtained from simulations which took the range of diffusion
the diffusion model was simpler. model parameters from Matze and Wagenmakers (submitted)
There are a number of technical details associated witland mapped them onto changes in LBA parameters. This
DIC and pp should be addressed. Spiegelhalter et al. (2002)yave a range of LBA parameters to be used as priors which
state that DIC angbp are appropriate when: the distribution may account for approximately the same range of patterns
of posterior samples are approximately normal, and the modef data. In both cases the prior distribution of parameters w
provides a reasonable account of the data. We have alreadygsumed uniform within these ranges. These prirors are info
addressed the second point, i.e. the posterior parametees w mative not only in excluding parameters outside the allowed
providing good predictions of data. In the models presentedange, but also because the width of the range of allowed pa-
here the posterior distributions for each parameter gJagel  rameters determines the contribution made by the priordo th
proximate normal distributions, making it more likely titla¢  posterior deviance. A narrower range reduces posterior de-
joint distribution of these parameters are also approxéigat viance and hence improves DIC. The large sample sizes that
normally distributed. DIC angbp are also dependent on the we examined means that the contribution of the prior is dom-
prior distribution used and the “focus” of our analysis. Weinated by the likelihood of the data when determining pa-
have made an attempt to make these factors equivalent acrassneter estimates within a model. However, this does not
models. necessarily mean that differences in the prior for each mode



are not influential on thelifference in posteior deviance be-  ods for fitting the linear ballistic accumulatdvlanuscript
tween models, and hence DIC. In ongoing work we are imple- Submitted for Publication.

menting “vague” priors (i.e., priors with approximatelyuad ~ Donkin, C., Brown, S., & Heathcote, A. (2009). The over-
probability across a very broad range of parameters for both constraint of response time modebManuscript Submitted
models) in order to test the sensitivity of our results to the for Publication.

prior specification. Forstmann, B. U., Dutilh, G., Brown, S., Neumann, J., von

In summary, we have provided a relatively preliminary in- Cramon, D. Y., Ridderinkhof, K. R., et al. (2008). The
vestigation into the complexity of models of choice and re- striatum facilitates decision-making under time pressure
sponse time using a Bayesian model selection criterion. The Proceedings of the National Academy of Science, 105,
criterion, DIC, and an associated measure of model complex- 17538-17542.
ity that takes into account differences in funcitonal fopg, Ho, T., Brown, S., & Serences, J. (submitted). Domain gen-
are relatively easy to apply becasue it can be directly cal- eral mechanisms of perceptual decision making in human
culated based on MCMC samples from posterior model pa- cortex. Journal of Neuroscience.
rameter distributions. If we consider simplicity as thegan Liu, C. C., & Aitkin, M. (2008). Bayes factors: prior sensi-
of potential data patterns which a model can predict, our re- tivity and model generalizabilityJournal of Mathematical
sults suggest that it may have been premature to claim that th Psychology, 52, 362—375.

LBA is the simplest model of choice and response time. OuMatze, D., & Wagenmakers, E. J. (submitted). Psychological
results suggest that for these models a simple count of param interpretation of exgaussian and shifted wald parameters:
eters will not suffice, and that more investigation is reedir A diffusion model analysisManuscript submitted for pub-
Functional form complexity based on prediction, howewer, i lications.

not the only aspect which might define a model’s simplicity. Myung, 1. J. (2000). The importance of complexity in model
For example, the mathematical tractability of the LBA, whic  selection. Journal of Mathematical Psychology, 44, 190—
enables analytic likelihoods to be derived, make it posdibl 204.

more estimate parameters from data using even quite basMyung, I. J., Karabatsos, G., & Iverson, G. J. (2005).
software, such as Microsoft Excel (Donkin, Averell, et al., A bayesian approach to testing decision making axioms.
2009). Journal of Mathematical Psychology, 49, 205—-225.

Although DIC has been found to be reliable (e.g. MyungMyung, I. J., & Pitt, M. A. (1997). Applying Occam’s razor in
et al., 2005), there are alternative approches to defining-fu ~ modeling cognition: A Bayesian approacRsychonomic
tional form complexity. For example, both DIC and Bayes Bulletin & Review, 4, 79-95.
factors adjust for complexity, but DIC emphasizes posterio Ratcliff, R. (1978). A theory of memory retrievaPsycho-
prediciton whereas Bayes factors emphasize the seledtion o logical Review, 85, 59-108.

a true model. Different approches have different strengthKatcliff, R., Gomez, P., & McKoon, G. (2004). Diffusion
and weaknesses. For example, DIC, like AIC, is inconsis- model account of lexical decisiorPsychological Review,
tent, so that as sample size increases it tends to sele¢y over 111, 159-182.
complex models. Bayes factors are less attractive in termRatcliff, R., & Rouder, J. N. (1998). Modeling response
of prediciton becasue they asses the degree to which thetimes for two—choice decision$sychological Science, 9,
prior rather than posterior predicts new data (Liu & Aitkin, 347-356.
2008). As part of a larger project we are investigating the deRatcliff, R., Segraves, M., & Cherian, A. (2003). A compar-
gree to which conclusions about complexity are robust over a ison of macaque behavior and superior colliculus neuronal
range of such model selection measures (Myung & Pitt, 1997; activity to predictions from models of simple two—choice
Myung, 2000). decisions.Journal of Neurophysiology, 90, 1392-1407.
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